
D2.4.10 Architecture and Execution
Semantics for the SWS

Coordinator: Tomas Vitvar
(National University of Ireland, Galway)

with contributions from:

Matthew Moran, Maciej Zaremba (National University of Ireland, Galway),

Michal Zaremba, Adrian Mocan, Mick Kerrigan, Thomas Hasselwanter

(University of Innsbruck, Austria)

Abstract.
EU-IST Network of Excellence IST-2004-507482 Deliverable D2.4.10 version 2

The goal of this deliverable is to design the Semantic Web Services Architecture and to establish
grounds for joint work on the Semantic Service Oriented Architecture involving various groups.
In this work we define the architecture from several viewpoints allowing to clarify different
architecture aspects, its services, processes and technology.

Keyword list: Web Services, Service Oriented Architecture, Semantic Web

Copyright c© 2007 The contributors

Document Identifier KWEB/2006/D2.4.10/v2
Project KWEB EU-IST-2004-507482
Version v2.0
Date December 30, 2007
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Tomas Vitvar
E-mail address: tomas.vitvar@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

École Polytechnique Fédérale de Lausanne
France Telecom
Freie Universität Berlin
National University of Ireland Galway
University of Innsbruck
University of Liverpool
University of Manchester
University of Trento

4

Changes

Version Date Author Changes
0.2 20.12.06 Tomas Vitvar First version.
0.3 10.01.07 Tomas Vitvar Comments from reviews implemented
1.0 08.02.07 Tomas Vitvar Final changes and alignments
1.1 20.10.07 Tomas Vitvar Updates of the deliverable v1.0
1.2 30.10.07 Tomas Vitvar Comments implemented
2.0 03.12.06 Tomas Vitvar Final second version.

Executive Summary

The architecture for the Semantic Web Services is the overarching the work done within
the WP2.4 over the duration of the Knowledge Web project. The main goal is to provide
a framework which would allow integration of various functionality required for services
provisioning while at the same time promoting goal-based invocation of web services
which are semantically described. In this deliverable we aim to find the consensus of var-
ious researchers working on the architecture for the Semantic Web Services and establish
the solid grounds for joint collaboration within the OASIS Semantic Execution Environ-
ment Technical Committee. The work in this deliverable reflects the second version of the
architecture and contains additional concepts build on the top of architectures for Seman-
tic Web Services or Semantically Oriented Architectures from other EU funded projects.
In this deliverable we define a number of perspectives through which the architecture is
described, namely global view identifying a number of layers from the global viewpoint
on the architecture, service view identifying various types of services and describing these
services in detail, process view describing processes which are both provided as well as
facilitated by the architecture, and technology view revealing details of the technology
used for implementation of the architecture and its middleware system in particular. A
special focus of this deliverable is on definition of the execution semantics for the execu-
tion phase of the service provisioning process. We formally define the algorithm for the
interaction of various components within that process.

The major content of this deliverable has been used as the input for the accepter and
published jounral articles, namely SESA: Emerging Technology For Service-Centric En-
viornmnets[15] published in IEEE Software special issue on Service-Centric Software
Components by IEEE Press and Semantically-enabled Service Oriented Architecture:
Concepts, Technology and Application[13] published in Service Oriented Computing and
Aplpications journal by Springer.

The work on the architecture is the continuous and incremental process which in-
volves various aspects specific for each group and project where the architecture is being
developed. The work in this deliverable aims to establish grounds which will allow to add
additional concepts and functionality to the architecture in the future.

Contents

1 Introduction 1
1.1 Goal of the Deliverable . 2
1.2 Overview of the Deliverable . 2

2 Global Architecture 3
2.1 Governing Principles . 3
2.2 Global SESA Architecture . 4

2.2.1 Stakeholders Layer . 5
2.2.2 Problem Solving Layer . 5
2.2.3 Service Requesters Layer . 6
2.2.4 Middleware Layer . 6
2.2.5 Service Providers Layer . 8

2.3 Underlying Concepts and Technology 8
2.4 Running Example . 9

3 Architecture Views 12
3.1 Service View . 12

3.1.1 Middleware Services . 13
3.1.2 Business Services . 17
3.1.3 Example of Business Services Modeling 20

3.2 Process View . 24
3.2.1 Business Processes . 24
3.2.2 Middleware Processes . 24
3.2.3 Example of External Integration 25
3.2.4 Execution Semantics . 26

3.3 Technology View . 29
3.3.1 Management . 29
3.3.2 Communication and Coordination 31
3.3.3 Execution Semantics . 32

4 Execution Semantics for Execution Phase 34
4.1 Definitions . 34

4.1.1 Information Semantics . 34

iii

CONTENTS

4.1.2 Behavioral Semantics . 35
4.1.3 Grounding . 35
4.1.4 Data Mediation . 36
4.1.5 Process Mediation . 38

4.2 Algorithm . 39
4.3 Discussion on Data and Process Mediation 44

5 Evaluation 45

6 Conclusion and Future Work 47

iv December 30, 2007 KWEB/2006/D2.4.10/v2

Chapter 1

Introduction

The design of enterprise information systems has gone through a great change in re-
cent years. In order to respond to requirements of business for flexibility and dynamism,
traditional monolithic applications are being challenged by smaller composable units of
functionality known as services. Information systems thus need to be re-tailored to fit
this paradigm, with new applications developed as services and legacy systems to be up-
dated in order to expose service interfaces. The drive is towards a design of information
systems which adopt paradigms of Service Oriented Architectures (SOA). With the goal
of enabling dynamics and adaptivity of business processes, SOA builds a service-level
view on organizations conforming to principles of well-defined and loosely coupled ser-
vices - services which are reusable, discoverable and composable. Although the idea of
SOA targets the need for integration that is more adaptive to change in business require-
ments, existing SOA solutions will prove difficult to scale without a proper degree of
automation. While today’s service technologies around WSDL, SOAP, UDDI and BPEL
certainly brought a new potential to SOA, they only provide partial solution to interop-
erability, mainly by means of unified technological environments. Where content and
process level interoperability is to be solved, ad-hoc solutions are often hard-wired in
manual configuration of services or workflows while at the same time they are hindered
by dependence on XML-only descriptions. Although flexible and extensible, XML can
only define the structure and syntax of data. Without machine-understandable semantics,
services must be located and bound to service requesters at design-time which in turn
limits possibilities for automation. In order to address these drawbacks, the extension
of SOA with semantics offers scalable integration, that is more adaptive to changes that
might occur over a software system’s lifetime. Semantics for SOA allow the definition
of semantically rich and formal service models where semantics can be used to describe
both services offered and capabilities required by potential consumers of those services.
Also the data to be exchanged between business partners can be semantically described
in an unambiguous manner in terms of ontologies. By means of logical reasoning, se-
mantic SOA thus promotes a total or partial automation of service discovery, mediation,
composition and invocation. Semantic SOA does not however mean to replace existing

1

1. INTRODUCTION

integration technologies. The goal is to build a new layer on the top of existing service
stack while at the same time adopting existing industry standards and technologies used
within existing enterprise infrastructures.

1.1 Goal of the Deliverable

The goal of this deliverable is to provide a conceptual and logical/detail design of the
architecture for the semantic web services forming Semantic Service Oriented Architec-
ture (SESA). This work is compliant with requirements for web service description as
described in deliverable D2.4.1 while at the same time it is in line with the conceptual
and formal framework for the Semantic Web Services as described in deliverable D2.4.5.
The design of the architecture also integrates some work done in WP2.4, i.e. discovery,
interoperation, invocation and mediation of web services (deliverables D2.4.2, D2.4.7,
D2.4.12). This work has also been done with respect to selected use case of the WP2.4
from the SWS Challenge (deliverable D2.4.13) (Data and Process Mediation of Services
in Enterprise Application Integration).

For the design of the architecture in the context of the Knowledge Web project we fol-
low the standard software engineering approach to development of computer-based and
information systems. Thus, we conform to phases of conceptual analysis and design, log-
ical/detail design, implementation, testing, and deployment. The work on the architecture
in this deliverable falls into the phases of conceptual and logical/detail design which fol-
lows a conceptual analysis from deliverables D2.4.1 and D2.4.5 (i.e. requirements anal-
ysis, conceptual framework for Semantic Web Services). Additional phases are partially
covered within the SWS challenge efforts of WP2.4.

1.2 Overview of the Deliverable

In Section 2 we define the global architecutre and governing principles which drive the
architecture research, design and imlpamantation. We also describe the running example
we refer to throughout the deliverable. In Section 3 we describe the architectrue from
several perspectives including services that architecture offers and supports, processes ac-
cording to which the architecture behaves and technology implementing the architecture,
its services and processes. In Section 4 we describe in detail the algorithm for the exe-
cution semantics of the architecture execution processes and in Section 5 we describe the
evaluation process and results of the architecture from the SWS Challenge initiative. In
Section 6 we conclude the delivarable.

2 December 30, 2007 KWEB/2006/D2.4.10/v2

Chapter 2

Global Architecture

In this chapter we define several governing principles for the SESA research, design and
implementation as well as underling SESA technology. We also intruduce a running
example used to illustrate various aspects of the SESA in this deliverable.

2.1 Governing Principles

The SESA architecture builds on a number of principles which define essential back-
ground knowledge governing the architecture research, design and implementation. These
principles reflect fundamental aspects for service-oriented and distributed environment
which all promote intelligent and seamless integration and provisioning of business ser-
vices. These principles include:

• Service Oriented Principle represents a distinct approach for analysis, design, and
implementation which further introduces particular principles of service reusability,
loose coupling, abstraction, composability, autonomy, and discoverability.

• Semantic Principle allows a rich and formal description of information and behav-
ioral models enabling automation of certain tasks by means of logical reasoning.
Combined with the service oriented principle, semantics allows to define scalable,
semantically rich and formal service models and ontologies allowing to promote to-
tal or partial automation of tasks such as service discovery, contracting, negotiation,
mediation, composition, invocation, etc.

• Problem Solving Principle reflects Problem Solving Methods as one of the fun-
damental concepts of the artificial intelligence. It underpins the ultimate goal of
the architecture which lies in so called goal-based discovery and invocation of ser-
vices. Users (service requester’s) describe requests as goals semantically and in-
dependently from services while the architecture solves those goals by means of

3

2. GLOBAL ARCHITECTURE

logical reasoning over goal and service descriptions. Ultimately, users do not need
to be aware of processing logic but only care about the result and its desired quality.

• Distributed Principle allows to aggregate the power of several computing entities
to collaboratively run a task in a transparent and coherent way, so that from a service
requester’s perspective they can appear as a single and centralized system. This
principle allows to execute a process across a number of components/services over
the network which in turn can promote scalability and quality of the process.

2.2 Global SESA Architecture

In this section we define the overall SESA architecture, depicted in Figure 2.1, building
on governing principles introduced in section 2.1. These layers are: (1) Stakeholders
forming several groups of users of the architecture, (2) Problem Solving Layer building
the environment for stakeholders’ access to the architecture, (3) Service Requesters as
client systems of the architecture, (4) Middleware providing the intelligence for the in-
tegration and interoperation of business services, and (5) Service Providers exposing the
functionality of back-end systems as Business Services.

Semantic Execution Environment (Machine A)

Stakeholders
Layer

System
Administrator

Developer Tools
(ontology management,

monitoring, ...)

Applications
(user tools, access portals, ...)

Network
(internet, intranet, extranet)

Service Requesters
Layer

Domain
Expert

Problem Solving
Layer

Software
Engineer

Domain Ontologies

Discovery Adaptation

CompositionOrchestration Mediation Grounding

Fault Handling Monitoring

Back-end
System Z

Business
Service S2

Business
Service S3SEE

(Machine D)

Middleware Layer

SEE
(Machine C)

Back-end
System X

Business
Service S1

User 1 User 2

E
xe

cu
tio

n
M

an
ag

em
en

t

S
ec

ur
ity

Reasoning CommunicationFormal Languages Storage

Service Providers Layer

vertical broker

base

Shared Message Space

SEE
(Machine B)

Figure 2.1: Global View

4 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

2.2.1 Stakeholders Layer

Stakeholders form the group of various users which use the functionality of the architec-
ture for various purposes. Two basic groups of stakeholders are identified: users, and
engineers. Users form the group of those stakeholders to which the architecture pro-
vides end-user functionality through specialized applications. For example, users can
perform electronic exchange of information to acquire or provide products or services,
to place or receive orders or to perform financial transactions. In general, the goal is to
allow users to interact with business processes on-line while at the same time reduce their
physical interactions with back-office operations. On the other hand, the group of engi-
neers form those stakeholders which perform development and administrative tasks in the
architecture. These tasks should support the whole SOA lifecycle including service mod-
eling, creation (assembling), deployment (publishing), and management. Different types
of engineers could be involved in this process ranging from domain experts (modeling,
creation), system administrators (deployment, management) and software engineers.

2.2.2 Problem Solving Layer

The problem solving layer contains applications and tools which support stakeholders
during formulation of problems/requests and generates descriptions of such requests in
the form of user goals. Through the problem solving layer, a user will be able to solve
his/her problems, i.e. formulate a problem, interact with the architecture during process-
ing and get his/her desired results. This layer contains back-end systems which directly
interface the middleware within business processes, specialized applications built for spe-
cific purpose in a particular domain which also provide specific domain ontologies, and
developer tools providing functionality for development and administrative tasks within
the architecture.

Developer tools provide a specific functionality for engineers, i.e. domain experts,
system administrators and software engineers. The functionality of developer tools cover
the whole SOA lifecycle including service modeling, creation (assembling), deployment
(publishing), and management. The vision is to have an Integrated Development Envi-
ronment (IDE) for management of the architecture. The IDE aids developers through
the development process including engineering of semantic descriptions (services, goals,
and ontologies), creation of mediation mappings, interfacing with architecture middle-
ware and external systems. By combining this functionality, a developer will be allowed
to create and manage ontologies, Web services, goals and mediators, create ontology to
ontology mediation mappings and deploy these mappings to the middleware.

Applications provide a specialized functionality for architecture end-users. They pro-
vide a specialized domain specific ontologies, user interfaces and application functional-
ity through which stakeholders interact with the architecture and its processes. Through
specialized applications in a particular application settings, the technology and its func-

KWEB/2006/D2.4.10/v2 December 30, 2007 5

2. GLOBAL ARCHITECTURE

tionality can be also validated and evaluated. A specialized end-user functionality is sub-
ject to design and development in application oriented projects, such as SemanticGov1.
In this project we develop a specialized functionality for clients to interact with public
administration processes facilitated by the middleware system.

2.2.3 Service Requesters Layer

Service requesters act as client systems in a client-server settings of the architecture. With
respect to the problem sovling principle, they are represented by goals created through
problem/request formulation by which they describe requests as well as interfaces through
which they wish to perform conversation with potential services. Service requesters are
present for all applications and tools from problem solving layer and are bound to specific
service semantics specification.

2.2.4 Middleware Layer

Middleware is the core of the architecture providing the main intelligence for the integra-
tion and interoperation of Business Services. For the purposes of the SESA, we call this
middleware Semantic Execution Environment (SEE) (the SEE conceptual architecture is
depicted in figure 2.1). The SEE defines the necessary conceptual functionality that is im-
posed on the architecture through the underlying principles defined in section 2.1. Each
such functionality could be realized (totally or partially) by a number of so called mid-
dleware services (in section 3.1.1 we further define middleware services that realize these
conceptual functionalities). We further distinguish this functionality into the following
layers: base layer, broker layer, and vertical layer. The SEE middleware system is be-
ing specified within the OASIS Semantic Execution Environment Technical Committee
(OASIS SEE TC)2 with reference implementations of WSMX3 and IRS-III4.

Vertical Layer The Vertical layer defines the middleware framework functionality that
is used across the Broker and Base Layers but which remains invisible to them. This tech-
nique is best understood through so called ”Hollywood Principle” that basically means
”Don’t call us, We’ll call you”. With this respect, framework functionality always con-
sumes functionality of Broker and Base Layers, coordinating and managing overall execu-
tion processes in the middleware. For example, Discovery or Data Mediation is not aware
of the overall coordination and distributed mechanism of the Execution Management.

1http://www.semantic-gov.org
2http://www.oasis-open.org/committees/semantic-ex
3http://www.wsmx.org
4http://kmi.open.ac.uk/projects/irs

6 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

• Execution Management defines a control of various execution scenarios (called ex-
ecution semantics) and handles distributed execution of middleware services.

• Security defines a secure communication, i.e. authentication, authorization, confi-
dentiality, data encryption, traceability or non-repudiation support applied within
execution scenarios in the architecture.

Broker Layer The Broker layer defines the functionality which is directly required for
a goal based invocation of Semantic Web Services. The Broker Layer includes:

• Discovery defines tasks for identifying and locating business services which can
achieve a requester’s goal.

• Orchestration defines the execution of a composite process (business process) to-
gether with a conversation between a service requester and a service provider within
that process.

• Monitoring defines a monitoring of the execution of end point services, this moni-
toring may be used for gathering information on invoked services e.g. QoS related
or for identifying faults during execution.

• Fault Handling defines a handling of faults occurring within execution of end point
Web services.

• Adaptation defines an adaptation within particular execution scenario according to
users preferences (e.g. service selection, negotiation, contracting).

• Mediation defines an interoperability at the functional, data and process levels.

• Composition defines a composition of services into an executable workflow (busi-
ness process).

• Grounding defines a link between semantic level (WSMO) and a non-semantic level
(e.g. WSDL) used for service invocation.

Base Layer The Base layer defines functionality that is not directly required in a goal
based invocation of business services however they are required by the Broker Layer for
successful operation. Base layer includes:

• Formal Languages defines syntactical operations (e.g. parsing) with semantic lan-
guages used for semantic description of services, goals and ontologies.

• Reasoning defines reasoning functionality over semantic descriptions.

• Storage defines persistence mechanism for various elements (e.g. services, ontolo-
gies).

KWEB/2006/D2.4.10/v2 December 30, 2007 7

2. GLOBAL ARCHITECTURE

• Communication defines inbound and outbound communication of the middleware.

The SEE middleware can operate in a distributed manner when a number of mid-
dleware systems connected using a shared message space operate within a network of
middleware systems which empoweres this way a scalability of integration processes.

2.2.5 Service Providers Layer

Service providers represent various back-end systems. Unlike back-end systems in ser-
vice requesters layer which act as clients in client-server setting of the architecture, the
back-end systems in service providers layer act as servers which provide certain function-
ality for certain purpose exposed as a business service to the architecture. Depending on
particular architecture deployment and integration scenarios, the back-end systems could
originate from one organization (one service provider) or multiple organizations (more
service providers) interconnected over the network (internet, intranet or extranet). The
architecture thus can serve various requirements for Business to Business (B2B), Enter-
prise Application Integration (EAI) or Application to Application (A2A) integration. In
all cases, functionality of back-end systems is exposed as semantically described business
services .

2.3 Underlying Concepts and Technology

In this section we describe a concrete semantic service model and technology we choose
for realization of the SESA architecture described in section 2.2. In general, a semantic
service model builds the additional layer on the top of the current Web service stack by
introducing a semantic mark-up for functional, non-functional and behavioral aspects of
service descriptions. Today, several initiatives exists in this area such as Web Service
Modeling Ontology (WSMO)[11], OWL-S[8] and WSDL-S[10].

With respect to requirements imposed on the architecture through the governing prin-
ciples, we choose the WSMO model for our work. The reason why we choose WSMO
and not other specifications (e.g. OWL-S) is that WSMO has a well defined focus which
is in solving of integration problems by clear separation of requester and provider side
(i.e. between goals and services) and thus fully adopts the semantic, problem solving and
service orientation principles (see section 2.1). In addition, WSMO is being developed
as a complete framework including: the conceptual model describing all relevant aspects
of Web services – ontologies, goals, web services and mediators, Web Service Modeling
Language (WSML)[11] – a family of ontology languages based on different logical for-
malisms and different levels of logical expressiveness (including both Description Logic
and Logic Programming representation formalisms), Web Service Execution Environ-
ment (WSMX) – a reference implementation for the middleware system, and the Web

8 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

Service Modeling Toolkit (WSMT)5 – an IDE used for engineering of WSMO descrip-
tions (services, goals, and ontologies), creation of mediation mappings, and interfacing
with architecture middleware and external systems. WSMO and its counterparts thus pro-
vides grounds for semantic modeling of services and semantic technology which could
be well adopted to particular domain requirements (e.g. by choosing appropriate WSML
variant according to particular modelling requirements, by extending the functionality of
WSMX, WSMT, etc.).

WSMO conceptual model. In this paragraph we describe the WSMO top-level con-
ceptual model which defines the ontology used for modeling of SESA business services.
The WSMO top-level conceptual model consists of Ontologies, Web Services, Goals, and
Mediators.

• Ontologies provide the formal definition of the information model for all aspects
of WSMO. Two key distinguishing features of ontologies are, the principle of a
shared conceptualization and, a formal semantics (defined by WSML in this case).
A shared conceptualization is one means of enabling information interoperability
across independent Goal and Web service descriptions.

• Web Services are defined by the functional capability they offer and one or more
interfaces that enable a client of the service to access that capability. The Capa-
bility is modeled using preconditions and assumptions, to define the state of the
information space and the world outside that space before execution, and postcon-
ditions and effects, defining those states after execution. Interfaces are divided into
choreography and orchestration. The choreography defines how to interact with the
service while the orchestration defines the decomposition of its capability in terms
of other services.

• Goals provide the description of objectives a service requester (user) wants to
achieve. WSMO goals are described in terms of desired information as well as
“state of the world” which must result from the execution of a given service. The
WSMO goal is characterized by a requested capability and a requested interface.

• Mediators describe elements that aim to overcome structural, semantic or concep-
tual mismatches that appear between different components within a WSMO envi-
ronment.

2.4 Running Example

In this section we introduce a running example which we will use throughout the deliver-
able to demonstrate various aspects of the SESA. This scenario and its implementation is

5http://wsmt.sourceforge.net

KWEB/2006/D2.4.10/v2 December 30, 2007 9

2. GLOBAL ARCHITECTURE

based on scenarios from the SWS Challenge6, an initiative which provides a standard set
of increasingly difficult problems, based on industrial specifications and requirements.

RosettaNet
Gateway

Customer
Relationship
Management

Order
Management

System

Execution Semantics

Web Service and
Service Discovery

Selection

Orchestration

h

h

Repository

select from L

Execution
Interface

Late-binding
Interface

Capability

h

h

invoke G, S

description
implementation

Publish
descriptions

W
S

en
dp

oi
nt

s

Racer Service

Blue Company
(Service Requester)

Execution
Interface

Capability

W
S

en
dp

oi
nt

s
WSMO Goal

implementation

description

Moon e-Marketplace Service Providers

Mueller Service

Blue
Back-end Systems Mueller

Back-end Systems

Middleware

1

3

2

2

3

a

b

Figure 2.2: Running Example

As depicted in figure 2.2, the scenario introduces various service providers (such as
Racer and Mueller) offering various purchasing and shipment options for various prod-
ucts through e-marketplace called Moon. On the other hand, there is a service requester
called Blue who intends to buy and ship a certain product for the best possible price. The
Moon operates the e-marketplace on the middleware system of the SESA. Following are
the prerequisites of the scenario.

• Service requesters and providers are using various back-end systems for handling
interactions in their environment. In particular, Mueller uses a Customer Relation-
ship Management system (CRM) and an Order Management System (OMS) while
Blue uses a standard RosettaNet7 system.

• Engineers representing service requesters and service providers respectively model
services and requests using the WSMO model while at the same time different
ontologies as well as different descriptions of choreographies are used by service
requester and provider. In particular, Blue sends its request and expects to receive
a response according to the RosettaNet PIP3A4 Purchase Order (PO) specification.
On the other hand, Mueller in order to process the request must perform more inter-
actions with its back-end systems such as identify a customer in the CRM, open the

6http://www.sws-challenge.org
7RosettaNet (http://www.rosettanet.org) is the B2B integration standard defining standard components

called Partner Interface Processes (PIPs), which include standard intercompany choreographies (e.g. PIP
3A4 Purchase Order), and structure and semantics for business messages.

10 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

order in the OMS, add all line items to the OMS from the request and close the order
in the OMS. Thus, data and process interoperability issues exists between Blue and
Mueller – Blue uses information model and choreography defined by the PIP3A4
and Mueller uses information model and choreography defined by the CRM/OMS
systems.

• Service requesters and service providers maintain the integration with their re-
spective back-end systems through the implementation of necessary web services
(adapters for their back-end systems). Both Blue and Mueller are responsible for
maintaining these adapters and their integration with the middleware through se-
mantic descriptions and/or through interfaces with the middleware.

• Engineers representing service providers and service requesters respectively pub-
lish ontologies they use for WSMO goal and service descriptions in the middleware
repositories. In addition, they publish mapping rules between their ontologies and
existing ontologies in the middleware system.

The scenario runs as follows: all business partners first model their business services using
WSMO (see section 3.1.3). After that, Blue sends the purchase order request captured in
WSMO goal to the middleware system which on receipt of the goal executes the achieve-
Goal execution semantics including: (1) discovery, (2) selection and (2) orchestration.
During discovery, the matching is performed for the goal and potential services at abstract
level as well as instance levels (abstract-level discovery allows to narrow down number
of possible Web services matching a given Goal while instance-level discovery carries
out detailed matchmaking considering instance data of the service and the goal). During
selection, the best service is selected (in our case Mueller service) based on preferences
provided by Blue as part of the the WSMO goal description. Finally during orchestration,
the execution and conversation of Blue and Mueller services is performed by processing
the choreography descriptions from Blue’s goal and Mueller’s service. We will refer to
this scenario and the figure 2.2 throughout the deliverable to illustrate various aspects of
the SESA.

KWEB/2006/D2.4.10/v2 December 30, 2007 11

Chapter 3

Architecture Views

In this chapter we define the SESA architecture from several perspectives, namely global,
services, processes and technology. Within these views, we identify and describe in detail
service and process types which are provided and facilitated by the architecture as well as
technology used for building the architecture, its middleware and service infrastructure.

3.1 Service View

The SEE consists of several decoupled services allowing independent refinement of these
services - each of which can have its own structure without hindering the overall SEE
architecture. Following the SOA design principles, the SEE architecture separates con-
cerns of individual middleware services thereby separating service descriptions and their
interfaces from the implementation. This adds flexibility and scalability for upgrading or
replacing the implementation of middleware services which adhere to required interfaces.

Services provide certain functionality for certain purpose. With respect to the service
orientation which enables a service level view on the organization we further distinguish
services from several perspectives. From the view of services’ functionality, we distin-
guish two types of services:

• Business Services are services provided by various service providers, their back-
end systems – business services are subject of integration and interoperation within
the architecture and can provide a certain value for users. In the SESA architecture,
business services are exposed by service providers, their back-end systems, as se-
mantic descriptions conforming to the WSMO service model (as defined in section
2.3). Business services are published to the middleware repositories.

• Middleware Services are the main facilitators for integration and interoperation of
business services. Middleware services are deployed to the middleware system.

12

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

From the view of business services’ abstraction, we further distinguish following two
types of services.

• Web Services are general services which might take several forms when they are
instantiated (e.g. purchase a flight).

• Services are actual instances of Web Services which are consumed by users and
which provide a concrete value for users (e.g. purchase a flight from Prague to
Bratislava).

3.1.1 Middleware Services

In this section we describe a number of middleware services which realize the total or par-
tial conceptual functionality of the middleware described in section 2.2.4. These services
also reflect the current WSMX implementation – the reference implementation of the SEE
middleware. In figure 3.1, middleware services are depicted together with their interfaces.
Middleware services can be further combined into so called middleware processes which
provide a certain functionality of the middleware system to its users. Middleware pro-
cesses are described in section 3.2.2.

<<component>>
Orchestration

<<component>>
Repository

<<component>>
Data Mediation

<<component>>
Process Mediation

<<component>>
Web Service

Discovery

<<component>>
Selection

<<component>>
Reasoner

Reasoner

repository

data mediator

process
mediator

web service
discovery

selection

<<component>>
Communication

<<component>>
Service

Discovery service
discovery

receiver

<<component>>
Core

Run execution
semantics

sender

<<component>>
Goal Refinement

refinement

orchestration

Figure 3.1: Service View – Middleware

KWEB/2006/D2.4.10/v2 December 30, 2007 13

3. ARCHITECTURE VIEWS

Core. Core realizes the Execution Management, Monitoring, Fault Handling and For-
mal Languages conceptual functionalities of the middleware. The core manages the co-
ordination and communication within middleware processes as defined by so called Ex-
ecution Semantics. Execution semantics define the interactions of various middleware
services which serves particular middleware process for specific purpose. Each middle-
ware process is started by invocation of particular external interface (implemented by the
Communication service) and can be interfaced through other external interfaces during
execution by means asynchronous communication with the middleware. A number of
execution semantics can exist in the middleware which can facilitate the design-time pro-
cesses (modeling, creation, deployment and management) such as getting/storing entity
from/to repository and run-time such as conversation with data and process mediation ap-
plied where necessary (see section 3.2). The middleware core also implements the formal
language support, i.e. parser. The parser parses the semantic messages into the object
model as defined by WSMO4J1. In addition, the core defines the distributed operation of
the middleware which can operate on a number of physical machines connected using
a shared message space. Shared spaces provide a messaging abstraction for distributed
architecture which empowers the scalability of integration processes.

Communication. The Communication service realizes Communication and Ground-
ing conceptual functionalities of the middleware. It facilitates inbound and outbound
communication within the middleware system. In other words, any message sent to or
sent from the middleware system is passed through this component. The Communication
thus implements a number of external interfaces through which the functionality of the
whole middleware system can be consumed. Through invocation of such external inter-
face, the execution process is triggered in the middleware system or it is possible to step
into the already running execution process in the middleware system (which facilitates
asynchronous interactions with the middleware system). Since the middleware system
is meant to support the integration of semantic web services, messages which are being
handled within execution processes at the middleware system are messages conveying
semantic descriptions of data (according to the WSMO model). On the other hand, the
mechanism used for invocation of services is based on SOAP and WSDL specifications.
Thus, the communication component also implements mechanisms for grounding of se-
mantic WSMO level and physical invocation level.

Reasoner. The Reasoner service realizes the Reasoner functionality of the middleware.
It provides reasoning support over the semantic descriptions of resources. Reasoning is
an important functionality required during various execution processes and it is used by
most of the components such as discovery, data mediation, process mediation, etc. Dif-
ferent requirements apply to reasoning which is based on the variant of the WSML lan-
guage used for semantic descriptions. Description Logic (DL) based reasoner is needed

1wsmo4j.sourceforge.net

14 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

when DL-based variant of WSML is used, and a Datalog or F-Logic based reasoner when
WSML-Flight or WSML-Rule variant is used respectively. The use of the particular rea-
soner is application dependent as well as in tight connection with the formalism (e.g. DL
vs. logic programming) used in modeling of semantic descriptions. The reasoner compo-
nent offers a universal layer on top of several existing reasoners (called WSML2Reasoner
2) that cover the above mentioned requirements. As a consequence, depending on the
WSML variant used, the queries are passed to the proper underlying reasoning engine in
a completely transparent manner. Development of reasoners for WSML is ongoing work
in the WSML WG3.

Repository. Repository realizes Storage conceptual functionality of the middleware.
It manages the persistent mechanisms for various entities including goals, services, on-
tologies and mediators (mapping rules). All these entities are described using WSML
semantic language.

Data Mediation. Data mediation realizes Mediation conceptual functionality of the
middleware. It facilitates run-time mediation during execution process when different
ontologies are used in service descriptions involved in the process. Data mediation can be
applied during discovery between service requester’s goal and potential services which
satisfy the goal or during conversation between service requester and service providers
when description of services’ interfaces can use different ontologies. Such data mediation
operates on mapping rules between ontologies which must be published to the architecture
before the mediation can happen. These mapping rules are created using design-time data
mediation tool which is part of the WSMT ontology management tools. Detail description
of data mediation for the semantic web services can be found in [9].

Process Mediation. Process mediaton realizes Mediation conceptual functionality of
the middleware. It facilitates the run-time mediation when different choreography inter-
faces are used in service descriptions involved in the conversation. Process mediation
is applied together with choreography, data mediation, and communication components
when service requester and service provider communicate (exchange messages). By anal-
ysis of choreography descriptions, process mediator decides to which party the data in a
received message belongs – service requester, service providers or both. Through this
analysis, the process mediator resolves possible choreography conflicts including stop-
ping a message when the message is not needed for any party, swapping the sequence
of messages where messages are to be exchanged in different order by both parties, etc.
More information about conceptual definition of process mediator and choreography con-
flicts can be found in [1].

2http://tools.deri.org/wsml2reasoner
3http://www.wsmo.org/wsml

KWEB/2006/D2.4.10/v2 December 30, 2007 15

3. ARCHITECTURE VIEWS

Goal Refinement. Goal Refinement realizes Discovery conceptual functionality of the
middleware. Goal refinement is a process of creating an abstract goal from a concrete
goal. The refinement of the goal must be first performed when the concrete goal is
supplied for the web service discovery. The abstract goal contains no instance data in
its definition (instance data is provided separately from the goal definition either syn-
chronously or asynchronously) whereas concrete goal contains instance data directly em-
bedded in its definition (directly as part of WSMO capability definition). For example, the
WSMO capability of the concrete goal can contain axioms in a form ?x[name hasV alue
“HarryPotter′′] memberOf book whereas abstract goal contains axioms in a form ?x
memberOf book where instance of the book concept is provided separately from the goal
definition.

Web Service Discovery. Web Service discovery realizes Discovery conceptual func-
tionality of the middleware. Web Service discovery is a process of finding services sat-
isfying requesters needs. At this stage, services are matched at abstract level taking into
account capability descriptions of services. Several set-theoretical relationships exist be-
tween these description such as exact match, plug-in match, subsumption match, intersec-
tion match, and disjnontness. More detailed information about web service discovery in
WSMO can be found in [5].

Service Discovery. Service discovery realizes Discovery conceptual functionality of the
middleware. Service discovery is a process of finding concrete services satisfying con-
crete goals of users. At this stage, services which match at abstract level are matched at
instance-level when additional information might be retrieved from the service provider.
Such information (e.g. price or product availability) usually has a dynamic character
and is not suitable for static capability or ontology descriptions. For this purpose so
called late-binding interactions (see section 3.2) within the execution process and service
providers might take place in order to retrieve this information through specialized ser-
vice interfaces. In WP2.4 we have elaborated on the service discovery in our ESWC2007
paper[14].

Selection. Selection realizes Adaptation conceptual functionality of the middleware.
Selection is a process where one service which best satisfies user preferences is selected
from candidate services returned from the service discovery stage. As a selection criteria,
various non-functional properties such as Service Level Agreements (SLA), Quality of
Services (QoS), etc. can be used expressed as user preferences – non-functional prop-
erties of the goal description. Such non-functional descriptions can capture constraints
over the functional and behavioral service descriptions. Selection can thus restrict the
consumption of service functionality by a specific condition, e.g. quality of service pref-
erence may restrict the usage of a service when its satisfiable quality is provided. More
detailed information about service selection in WSMO can be found in [16].

16 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

Orchestration. Orchestration realizes Orchestration conceptual functionality of the mid-
dleware. The Orchestration implements a run-time conversation between a service re-
quester and a service provider by processing their choreography interfaces. This also
involves interactions with process mediator (together with data mediator) as well as Com-
munication service called each time the message exchange needs to happen between a
service requester and a service provider.

3.1.2 Business Services

Business services contain a specific functionality of back-end systems which descriptions
conform to WSMO Service specification. Description of business services is exposed
to the architecture (these descriptions are published to the middleware repositories) and
are handled during execution processes in the middleware in both design-time (service
creation) and run-time processes (late-binding and execution of services). The important
aspect of service creation phase is semantic modeling of business services which we define
in following levels (see figure 3.2).

• Conceptual Level. Conceptual level contains all domain specific information which
is relevant for modeling of business services. This information covers various
domain-specific information such as database schemata, organizational message
standards, standards such as B2B standards (e.g. RosettaNet PIP messages), or
various classifications such a NAICS4 (The North American Industry Classification
System) for classification of a business or industrial units. In addition, the specifi-
cation of organizational business processes, standard public process such as Roset-
taNet PIP processes specifications, and various organizational process hierarchies
are used for modeling of business processes. All such information is gained from
the re-engineering of business processes in the organization, existing standards used
by organizational systems or existing specifications of organizational systems (e.g.
Enterprise Resource Planning systems).

• Logical Level. Logical level represents the semantic model for business services
used in various stages of execution process run on middleware. For this purpose we
use WSMO service model together with WSML semantic language. WSMO de-
fines service semantics including non-functional properties, functional properties
and interfaces (behavioral definition) as well as ontologies that define the infor-
mation models on which services operate. In addition, grounding from semantic
descriptions to underlying WSDL and XML Schema definitions must be defined in
order to perform invocation of services.

• Physical Level. Physical level represents the physical environment used for service
invocation. In our architecture, we use WSDL and SOAP specification. For this

4http://www.naics.com

KWEB/2006/D2.4.10/v2 December 30, 2007 17

3. ARCHITECTURE VIEWS

Process
Hierarchies

Domain-specific
Information

Models

Domain Specific Model (Conceptual Level)

WSDL Service (Physical Level)

To
p-

D
ow

n
A

pp
ro

ac
h

B
ot

to
m

-U
p

A
pp

ro
ac

h

Classifications

Organizational
Business
Processes

Operations

Messages XML Schema

Binding

Endpoint

Grounding
(Lifting mapping)

Grounding
(Lowering mapping)

Non-Functional

Capability

Interface

Ontologies WSMO Ontology

Grounding
(concepts to operations
and messages mapping)

Ontology import or use

WSMO Service Model (Logical Level)

Message
Standards

Standard Public
Processes

Business
Process Re-
engineering

Business
Standards

Organizational
Systems
(Legacy

Systems)

Figure 3.2: Semantic Business Service Modeling Levels

purpose, the grounding must be defined between semantic descriptions and WSDL
descriptions of services. Definition of such grounding can be placed to WSMO
descriptions at the WSMO service interface level or WSDL descriptions using the
recent Semantic Annotations for WSDL (SAWSDL) approach5. The definition of
grounding is dependent on the modeling approach and is discussed in following
paragraph.

A semantic business service is modeled using WSMO service model and all relevant
domain-specific information. As a result, all WSMO service description according to
the WSMO service model and all relevant ontologies (used by the WSMO service) are
defined. A domain expert can reuse already existing domain ontologies or create the
new ontologies based on the information he/she gets from the domain models (databases,

5www.w3.org/2002/ws/sawsdl/

18 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

standards, etc.). Similarly, the WSMO services is modeled based on domain-specific re-
quirements, specifications of back-end systems etc. The important aspect of the modeling
phase is to define grounding from the semantic WSMO service (logical level) to the un-
derlying WSDL description (physical level). In WSMO, grounding is defined for:

1. WSMO service interface and WSDL messages. This type of grounding specifies
a reference for each used concept in the service interface to the input or output
messages used in the WSDL.

2. WSMO Ontologies and XML Schemata. This type of grounding specifies so
called lifting and lowering schema mapping for XML Schema and ontology re-
spectively in order to perform instance transformations during invocation.

With respect to the modeling levels, we further distinguish two modeling approaches to
semantic business services, namely top-down approach and bottom-up approach.

• Top-Down Approach. In the top-down approach, the underlying representation of
the service in WSDL does not exist up-front and thus needs to be created (and ser-
vice implemented) as part of business service creation/modeling phase. In this case
services are implemented the way so that they can process semantic descriptions of
ontologies and services. For the first type of grounding, references of used concepts
of the service interface are defined to the newly created WSDL operations, its input
and output messages. The definition of the second type of grounding is then placed
to the implementation of the service itself. That means, that semantic messages are
directly passed to the service where the lowering is performed6. Inversely, the lift-
ing is performed in the service to the ontology and passed to the middleware where
other processing follows according to the execution semantics definition. More in-
formation about WSMO grounding as described in this paragraph can be found in
[6]. In section 3.1.3 we further show how top-down modeling approach is applied
in our example.

• Bottom-Up Approach. In the bottom-up approach, the underlying representation
of the service in WSDL already exist (together with the implementation of the ser-
vice) and thus needs to be taken into account during business service modeling. The
grounding definition at the service interface is defined the same way as in the top-
down approach. However, the difference exist for the second type of the grounding
definition. Since it is not possible to modify the implementation of the service, the
schema mapping must be performed and defined externally from the WSDL and
service implementation. The schema mapping is thus attached to the WSDL de-
scriptions using SAWSDL specifications (using loweringSchemaMapping and lift-
ingSchemaMapping extension attributes). The location of these mappings is re-
solved by the Communication service and executed during the invocation process.

6This could be done for example by serializing the WSML message to RDF/XML according to the
schema defined in the WSDL

KWEB/2006/D2.4.10/v2 December 30, 2007 19

3. ARCHITECTURE VIEWS

On result, the XML schema created from lowering is passed to the service endpoint
according to the grounding definition of the service interface. Inversely, created in-
stances of the ontology from lifting is used for data for subsequent execution within
the middleware. More information about WSMO grounding using SAWSDL can
be found in WSMO Grounding Working Draft7.

3.1.3 Example of Business Services Modeling

In this section we show how the Blue and Mueller systems from the example in section
2.4 can be modeled using WSMO and WSML formalisms. In this example, we use the
top-down approach to modeling of services (described in section 3.1.2), thus the modeling
involves (1) Web Service Creation when underlying services as Web services with WSDL
descriptions are created, and (2) Semantic Web Service and Goals Creation when semantic
service and goal descriptions are created using WSMO. For our scenario, we create two
services, namely PIP3A4 and CRM/OMS service (we model both systems as one business
service).

• Web Services Creation. This step involves creation of Web services as adapters to
existing systems, i.e. WSDL descriptions for these adapters including XML schema
for messages, as well as binding the WSDL to implemented adapter services. In
our scenario, we use two adapters: (1) PIP3A4 adapter and (2) CRM/OMS adapter.
Apart from connecting Blue’s system and Mueller’s CRM and OMS systems to
the middleware, and possibly resolving communication interoperability issues, they
also incorporate lifting and lowering functionality for XML schema and ontologies
as well as grounding definitions of WSMO services.

• Semantic Web Services and Goals Creation. In order to create Semantic Web ser-
vices and Goals, the ontologies must be created (or reused) together with non-
functional, functional and interface description of services. In addition, a grounding
must be defined from the semantic (WSMO) descriptions to the syntactic (WSDL)
descriptions. Semantic Web Services and Goals are described according to WSMO
Service and WSMO Goal definitions respectively. We create a WSMO Goal as
PIP3A4 service and WSMO Service as CRM/OMS service. Please note that WSMO
Goal and WSMO Service have the same structural definition but differ in what
they represent. The difference is in the use of defined capability and interface –
WSMO Goal describes a capability and an interface required by a service requester
whereas WSMO service describes a capability and an interface provided by a ser-
vice provider. In our scenario, this task is performed by domain experts (ontology
engineers) using WSMT. In this section we further elaborate on this step.

7http://www.wsmo.org/TR/d24/d24.2/

20 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

Creation of Ontologies and Grounding. One possible approach towards creation of
ontologies would be to define and maintain one local domain ontology for Moon’s B2B
integration. This approach would further allow handling message level interoperability
through the domain ontology when lifting and lowering operations would be defined from
underlying message schemata to the domain ontology. Another option is the definition of
independent ontologies by each vendor and its systems. In our case, these are different
ontologies for RosettaNet and ontologies for CRM/OMS systems. The message level
interoperability is then reached through mappings between used ontologies which are
defined during design-time and executed during runtime. Although both approaches have
their advantages and limitations, we will use the latter approach in our scenario. The main
reason is to demonstrate mediators’ aspects to integration of services which are available
as independent and heterogeneous services.

We assume that all ontologies are not available up-front and they need to be created
by an ontology engineer. The engineer takes as a basis the existing standards and sys-
tems, namely RosettaNet PIP3A4 and CRM/OMS schemata, and creates PIP3A4 and
CRM/OMS ontologies respectively. When creating ontologies, the engineer describes
the information semantically, i.e. with richer expressivity as opposed to the expressivity
of underlying XML schema. In addition, the engineer captures the logic of getting from
XML schema level to semantics introduced by ontologies by lifting and lowering rules
executed on non-semantic XML schema and ontologies respectively. These rules are part
of grounding definition between WSMO and WSDL descriptions and physically reside
within adapters. In listing 3.1, example of the lifting rules and resulting WSML instance
is shown for extract of a RosettaNet PIP3A4 message.

/∗ Lifting rules from XML message to WSML ∗/
...
instance PurchaseOrderUID memberOf por#purchaseOrder

por#globalPurchaseOrderTypeCode hasValue ”<xsl:value−of select=”dict:
GlobalPurchaseOrderTypeCode”/>”

por#isDropShip hasValue
IsDropShipPo<xsl:for−each select=”po:ProductLineItem”>

por#productLineItem hasValue ProductLineItem<xsl:value−of select=”position()”/>
</xsl: for−each>

<xsl:for−each select=”core:requestedEvent”>
por#requestedEvent hasValue RequestedEventPo

</xsl: for−each>
<xsl:for−each select=”core:shipTo”>

por#shipTo hasValue ShipToPo
</xsl: for−each>
<xsl:for−each select=”core:totalAmount”>

por#totalAmount hasValue TotalAmountPo
</xsl: for−each>

...

/∗ message in WSML after transformation ∗/
...
instance PurchaseOrderUID memberOf por#purchaseOrder

por#globalPurchaseOrderTypeCode hasValue ”Packaged product”
por#isDropShip hasValue IsDropShipPo
por#productLineItem hasValue ProductLineItem1
por#productLineItem hasValue ProductLineItem2
por#requestedEvent hasValue RequestedEventPo
por#shipTo hasValue ShipToPo

KWEB/2006/D2.4.10/v2 December 30, 2007 21

3. ARCHITECTURE VIEWS

por#totalAmount hasValue TotalAmountPo
...

Listing 3.1: Lifting from XML to WSML

Creation of Functional and Non-Functional Descriptions. WSMO functional de-
scription (modeled as WSMO service capability) contains the formal specification of
functionality that the service can provide, which is definition of conditions on service “in-
puts” and “outputs” which must hold before and after the service execution respectively.
Functional description for our back-end systems contains conditions that input purchase
order data must be of specific type and contain various information such as customer id,
items to be ordered, etc. (this information is modeled as preconditions of the service). In
addition, the service defines its output as purchase order confirmation as well as the fact
that the order has been dispatched. Functional description of service is used for discov-
ery purposes in order to find a service which satisfies the user’s request. Non-functional
properties contain descriptive information about a service, such as author, version or in-
formation about Service Level Agreements (SLA), Quality of Services (QoS), etc. In our
example, we use the non-functional properties to describe user preference for service se-
lection. In our case, the Blue company wants to buy and get shipped a product for the
cheapest possible price which is encoded in the WSMO goal description.

Creation of Interfaces and Grounding. Interfaces describe service behavior, modeled
in WSMO as (1) choreography describing how service functionality can be consumed
by service requester and (2) orchestration describing how the same functionality is ag-
gregated out of other services (in our example we only model choreography interfaces
as we currently do not use WSMO service orchestration). The interfaces in WSMO are
described using Abstract State Machines (ASM) defining rules modeling interactions per-
formed by the service including grounding definition for invocation of underlying WSDL
operations. In our architecture and with respect to types of interactions between service
requester/provider and the middleware (see section 3.2.2), we distinguish two types of
choreography definitions, namely late-binding choreography and execution choreogra-
phy. Listing 3.2 shows a fragment depicting these two choreographies for the CRM/OMS
service. The first choreography, marked as DiscoveryLateBindingChoreography, de-
fines the rule how to get the quote for the desired product from purchase order request
(in here, the concept PurchaseQuoteReq must be mapped to corresponding informa-
tion conveyed by the purchase order request sent by the Blue). This rule is processed
during the service discovery and the quote information obtained is used to determine
whether a concrete service satisfies the request (e.g. if the requested product is avail-
able which is determined through quote response). The second choreography, marked
as ExecutionChoreography, defines how to get information about customer from the
CRM system. Decision on which choreography should be used at which stage of execu-
tion (i.e. service discovery or conversation) is determined by the choreography namespace

22 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

(in the listing this namespace is identified using prefixes dlb# for discovery late-binding
and exc# for execution respectively). In general, choreographies are described from
the service point of view. For example, the rule in line 21 says that in order to send
SearchCustomerResponse message, the SearchCustomerRequest message must be
available. By executing the action of the rule (add(SearchCustomerResponse)), the
underlying operation with corresponding message is invoked according to the grounding
definition of the message which in turn results in receiving instance data from the Web
service.

/∗ late−binding choreography for service discovery stage ∗/
choreography dlb#DiscoveryLateBindingChoreography

stateSignature
in mu#purchaseQuoteReq withGrounding { ... }
out mu#PurchaseQuoteResp withGrounding { ... }

forall {?purchaseQuoteReq} with (
?purchaseRequest memberOf mu#PurchaseQuoteReq
) do

add(# memberOf mu#PurchaseQuoteResp)
endForall

...

/∗ execution choeography for service execution stage ∗/
choreography exc#ExecutionChoreography

stateSignature
in mu#SearchCustomerRequest withGrounding { ... }
out mu#SearchCustomerResponse withGrounding { ... }

transitionRules MoonChoreographyRules
forall {?request} with (

?request memberOf mu#SearchCustomerRequest
) do

add(# memberOf mu#SearchCustomerResponse)
endForall

...

Listing 3.2: CRM/OMS Choreography

Creation of Ontology Mappings. Mappings between used ontologies must be defined
and stored in the middleware repositories before execution. In listing 3.3, the mapping
of searchString concept of the CRM/OMS ontology to concepts cusomterId of the
PIP3A4 ontology is shown. The construct mediated(X, C) represents the identifier of
the newly created target instance, where X is the source instance that is transformed, and
C is the target concept we map to [9]. Such format of mapping rules is generated from
the ontology mapping process by the WSMT ontology mapping tool.

axiom mapping001 definedBy
mediated(X, o2#searchString) memberOf o2#searchString :−
X memberOf o1#customerId.

Listing 3.3: Mapping Rules in WSML

KWEB/2006/D2.4.10/v2 December 30, 2007 23

3. ARCHITECTURE VIEWS

3.2 Process View

Processes reflect the behavior of the architecture through which stakeholders interact with
the middleware and with business services. Similarly as in section 3.1, we distinguish two
types of processes, namely (1) middleware processes and (2) business processes.

3.2.1 Business Processes

Business processes are actual processes provided by the architecture and facilitated by
the middleware in concrete business settings. The primary aim of the architecture is to
facilitate so called late-binding of business services (which results in business processes)
and provide the functionality for execution and conversation of services within a particular
business process with data and process mediation applied where necessary. In section
3.2.2, the late-binding and execution phases is described in detail.

3.2.2 Middleware Processes

Middleware processes are designed to facilitate the integration of business services using
middleware services. Middleware processes are described by a set of execution seman-
tics. As described in previous sections, execution semantics define interactions of various
middleware services which establish particular middleware processes for specific pur-
poses, and which provide a particular functionality in a form of business processes to
stakeholders. Each middleware process is started by invocation of particular external in-
terface (implemented by the communication component) and can be interfaced through
other external interfaces during execution. A number of execution semantics can exist in
the middleware which can facilitate the design-time and run-time operations.

For purposes of describing various forms of execution semantics, we distinguish fol-
lowing two phases of the middleware process.

1. Late-binding Phase allows to bind service requester (represented by a goal def-
inition) and a service provider (represented by a service definition) by means of
intelligence of middleware using reasoning mechanisms and with process and data
mismatches resolved during binding. In general, late-binding performs a binding of
a goal and a service(s) (which includes web service and service discovery, media-
tion, selection, etc.).

2. Execution Phase allows to execute and perform conversation of previously binded
goal and a service by processing of their interfaces and with data and process me-
diation applied where necessary.

Both late-binding and execution phases follow a strong decoupling principle where ser-
vices are described semantically and independently from requester’s goal. In some cases

24 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

which are dependent on particular application domain, the validation of results from the
late-binding phase needs to be performed. We discuss this validation later in section 3.2.4.

Middleware process which runs in the middleware system are initiated by a service
requester and can be interfaced with the service requester/provider during run-time. Thus,
the external integration between service requester/provider and the middleware and its
middleware processes must be solved. For this purpose we define communication styles,
entrypoint types and interaction types through which this external integration can be built.

• Communication Styles. The interactions between service requesters and the mid-
dleware or the middleware and service providers and vice-versa can happen (1) syn-
chronously or (2) asynchronously. During synchronous communication, all data is
sent in one session when the result/response is sent within the same session. During
asynchronous communication, the data is sent in one session whereas the response
is sent back in other (newly created) session. Asynchronous communication also
allows multiple interactions with the middleware/service requester or provider can
happen over time for which one session does not need to be allocated.

• Entrypoint Types. There are two types of entrypoints which can be implemented
by the middleware for external communication, (1) execution entrypoint entrypoint,
and (2) data entrypoint. The execution entrypoint identifies each middleware pro-
cess (execution semantics) which exists in the middleware system. By invoking the
execution entrypoint by a service requester, the relevant process starts in the mid-
dleware system. The data entrypoint is used by service requester for interfacing
the middleware process during its execution in order to provide some data for the
execution asynchronously.

• Interaction Types. There are two types of interactions between service requester/provider
and the middleware, namely (1) late-binding interactions, and (2) execution inter-
actions. Late-binding interactions allow service requester or provider to interact
with the middleware in order to get or provide some information for the middle-
ware process during late-binding phase. Execution interactions allow to exchange
information between service requester and service provider in order to facilitate
conversation between them. Execution interactions happen through the middleware
(which provide the added value of mediation functionality during service execu-
tion).

3.2.3 Example of External Integration

In figure 2.2, the above aspects of integration between service providers and service re-
questers are illustrated. The service requester (Blue) initiates the middleware process
through invocation of the execution entrypoint (marked as a in the figure) and sending a
goal representing its request (these is late-binding interaction marked as 1 in the figure).

KWEB/2006/D2.4.10/v2 December 30, 2007 25

3. ARCHITECTURE VIEWS

In the middleware, the discovery component tries to find appropriate services from the
service repository. During the discovery-time, the middleware might interact with po-
tential services in order to retrieve additional information in order to decide on a match
between requester’s goal and the service (these are late-binding interactions marked as
2 in the figure). Through these interactions, concrete instance data can be be retrieved
from the service requester in order to complete the discovery process. Such data could
convey information about price or product availability which cannot be directly included
in service descriptions (usually from practical reasons). These interactions must conform
to the late-binding interface of respective WSMO service (see listing 3.2 for example of
late-binding interface in section 3.1.3). Finally, the execution and conversation between
service requester and discovered services is performed (these are execution interactions
marked as 3 in the figure).

3.2.4 Execution Semantics

In this section we define a set of execution semantics which facilitate so called goal-based
invocation of services. In particular, as depicted in figure 3.3 we define three basic types
of execution semantics, called AchieveGoal execution semantics, RegisterGoal execution
semantics, and Optimized AchieveGoal execution semantics. The execution semantics
described here involve both late-binding and execution phases.

Each execution semantics is initiated with the WSMO goal provided as the input. We
further distinguish two basic variants for each execution semantics. For the first variant,
the execution semantics expects the abstract goal and for the second variant the execution
semantics expects the concrete goal. The abstract goal contains no instance data in its def-
inition (instance data is provided separately from the goal definition either synchronously
or asynchronously) whereas concrete goal contains instance data directly embedded in its
definition (directly as part of WSMO capability definition). Since the abstract goal and
instance data is required for the processing of the goal, the refinement of the goal must be
first performed when the concrete goal is supplied (see 1.2, 2.2, and 3.2 branches in the
figure 3.3). During the refinement, the reasoning about goal definition is performed with
result of the new abstract goal and instance data defined separately which both correspond
to the original concrete goal definition.

AchieveGoal Execution Semantics. For the execution semantics AchieveGoal (see branches
1.1 and 1.2 in the figure 3.3), (1) web services discovery, (2) service discovery, (3) service
selection, (4) validation and (5) execution is performed. During the web service discov-
ery, matching of the abstract definition of the goal with abstract definitions of potential
services (previously published in repositories) which can fulfill the goal is performed. A
number of possible set-theoretic relationships is evaluated between the goal and web ser-
vices, namely exact match, plug-in match, subsumption match, intersection match, and

26 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

Web Service
Discovery
(Abstract)

Service
Discovery
(Instance)

Orchestration

Abstract Goal

Candidate Services

Selection

Candidate Services

Goal and Selected Service

1.1
Start

End

Goal Refinement

Concrete Goal

Abstract Goal

1.2
Start

Instance Data

Instance Data

Information
Retrieval

Service

Abstract
Goal + Data

Concrete
Goal

Web Service
Discovery
(Abstract)

Abstract Goal

Candidate Services

2.1
Start

Goal Refinement

Concrete Goal

Abstract Goal

Abstract
Goal

Concrete
Goal

2.2
Start

Tuples
<G, {W1, …, Wn}>

Get Services
for Goal

Abstract Goal

Candidate Services

3.1
Start

Goal Refinement

Concrete Goal

Abstract Goal

Abstract
Goal + Data

Concrete
Goal

3.2
Start

Candidate Services

Instance Data

Instance Data

Service
Interface

Goal
Interface

AchieveGoal Execution Semantics RegisterGoal Execution Semantics AchieveGoal Execution Semantics
(optimized)

Ex
ec

ut
io

n
La

te
-B

in
di

ng

Validation

Figure 3.3: Execution Semantics

disjnontness [5]. When the match is found8, the next step is to check whether the goal
and its data also satisfy a concrete form of the abstract service. For this purpose, possible
interactions with the service can happen in order to retrieve additional data to complete
the discovery process (see late-binding interactions in figure 2.2. Such data cannot be
usually included in static service descriptions and needs to be retrieved during discovery-
time (e.g. data about price or product availability). On result, a set of candidate services
which satisfy the goal is passed to the selection component which, based on additional
criteria (e.g. quality of service), selects the best service which best satisfies user pref-
erences (these preferences are included as part of the goal definition in non-functional
descriptions). The process of web service discovery, followed by service discovery may
or may not lead to the discovery of service that can fully meet the users functional and
non-functional requirements, when it comes to selecting a service on behalf of the user.
For this purpose, it is important to ensure that user can validate the results from the late-
binding phase, e.g. approve the selected service, relax his/her requirements, etc. This
process is part of the general validation of the late-binding phase as described in the next
paragraph. After that, the execution is started between the selected service and the goal

8For the match we consider exact match only; the other cases are subject of composition.

KWEB/2006/D2.4.10/v2 December 30, 2007 27

3. ARCHITECTURE VIEWS

by processing of goal and service interfaces.

Validation Late-binding phase enables to increase automation in service provisioning
processes. Services used to deliver overall functionality are not known prior to the ex-
ecution time however it is important to ensure that results from the late-binding phase
could be verified before their adoption. In SESA, the validity of the late-binding phase
can be ensured using combination of user approval and (2) service analysis methods. The
service analysis allows to provide information based on the service usage and quality an-
swering questions such as ”how often does the service fail?”, ”how often given service is
used in the given context?”, ”how often the service was aborted by the user?” etc. With
help of this information, late-binding phase can be approved or refined by a user. The
user is notified about the late-binding results, e.g. what he/she is searching for cannot
be fully satisfied when he/she has the possibility to relax some of his/her functional or
non-functional requirements. This can be especially important when many services are
available but with a lower quality than desired by the user. By selecting less function-
ality the user may find services of higher quality and on the other hand by relaxing the
non-functional quality the user may find services with more functionality. Choosing a
strategy for validation of the late-binding phase strongly depends on application domain
where SESA is deployed. In highly-sensitive domains such as eHealth where results of
late-binding phase are crucial with their real-world effects, the manual validation of the
late-binding phase is necessary. Ultimately, the late-binding might not necessarily be val-
idated by user (e.g. in domains where the risk margin can be higher such as eTourism)
when analysis of late-binding results can be done automatically based on advertised func-
tionality and QoS properties of services.

RegisterGoal Execution Semantics. This execution semantics allows to register a goal
definition in the middleware when pre-processing in terms of abstract discovery of the
goal and potential services is performed off-line separated from the goal-based invocation.
This approach reflects the fact that the matching process, which involves reasoning, is
time consuming and will hardly scale. From this reason, the abstract goal is matched with
possible service candidates from the service repository and the result in a form of tuples
< G, {W1, ...,Wn} > is stored in the repository of the middleware. G represents the
abstract description of the goal and a set {W1, ...,Wn} represents a list of candidate web
services where each web service Wi match the goal description G.

Optimized AchieveGoal Execution Semantics. This execution semantics performs
goal-based invocation of service where goal has been previously registered with the Reg-
isterGoal execution semantics. In this case, the goal and its candidate services is first
found in the goal repository. The result is passed to the instance discovery where further
processing is performed as described in the original AchieveGoal execution semantics.
Such approach can significantly improve the performance of goal-based invocation as the

28 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

major burden of the processing, namely abstract discovery, is performed off-line during
goal registration.

Execution. AchieveGoal execution semantics described above ends with orchestration
between bound service requester and service provider. In chapter 4 we define this phase
in detail.

3.3 Technology View

In this section we describe the technology for the middleware system, in particular the
technology and implementation of execution management service of the middleware Core.
The execution management service is responsible for the management of a platform and
for orchestrating the individual functionality of middleware services according to defined
execution semantics through which it facilitates the overall operation of the middleware.
In here, middleware services are implemented as functional components (also called ap-
plication components) of the middleware system.

The execution management service takes the role of component management and
coordination, inter-component messaging and configuration of execution semantics. In
particular, it manages interactions between other components through the exchange of
messages containing instances of WSMO concepts expressed in WSML and provides the
microkernel and messaging infrastructure for the middleware. The execution manage-
ment service implements the middleware kernel utilizing Java Management Extensions
(JMX) as described in [4]. It is responsible for handling following three main functional
requirements: (1) Management, (2) Communication and Coordination, and (3) Execution
Semantics.

3.3.1 Management

It is common for middleware and distributed computing systems that management of their
components becomes a critical issue. In the design of the middleware, we have made a
clear separation between operational logic and management logic, treating them as or-
thogonal concepts. By not separating these two elements, it would become increasingly
difficult to maintain the system and keep it flexible. In figure 3.4, an overview of the in-
frastructure provided by the management execution service to its components is depicted.
This infrastructure primarily allows to manage and monitor the system. In the core of the
management lies a management agent which offers several dedicated services. The most
important one is the bootstrap service responsible for loading and configuring functional
component. In here, the management agent plays the role of a driver which is directly

KWEB/2006/D2.4.10/v2 December 30, 2007 29

3. ARCHITECTURE VIEWS

built into the application. The execution management service in addition employs self-
management techniques through scheduled operations, and allows administration through
a representation-independent management and monitoring interface. Through this inter-
face, a number of management consoles can be interconnected, each serving different
management purposes. In particular, terminal, web browser and eclipse management
consoles have been implemented.

Figure 3.4: Component Management in the Middleware Execution Management Service

Similarly as in state-of-the art middleware systems, the execution management ser-
vice hosts a number of subsystems that provide services to components and enable inter-
component communication. In addition, the service provides a number of other services
including pool management which takes care of handling component instances, and log-
ging, transport and lifecycle services. The execution management service also exploits the
underlying (virtual) machine’s instrumentation to monitor performance and system health
metrics. Although some general metrics can be captured for all components, the compo-
nent metric monitoring allows to capture metrics specific to some components which re-
quire custom instrumentation. Such customization can be achieved by extending the con-
figuration for the instrumentation of a specific component which is done independently
from the implementation of the component itself.

With respect to the distributed principle of the architecture, the execution manage-
ment service may act as a facade to distributed components. However, the preferred way

30 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

to distribution is to organize the system as federations of agents. Each agent has its own
execution management service and a particular subset of functional components. In or-
der to hide the complexity of the federation for the management application, a single
agent view is provided, i.e. single point of access to the management and administration
interfaces. This is achieved by propagating requests within the federation via proxies,
broadcasts or directories. A federation thus consists of a number of execution manage-
ment services, each of them operating a kernel per one machine and hosting a number of
functional components.

3.3.2 Communication and Coordination

The middleware avoids hard-wired bindings between components when the inter-component
communication is based on events. If some functionality is required, an event representing
the request is created and published. A component subscribed to this event type can fetch
and process the event. The event-based approach naturally allows event-based communi-
cation within the middleware. As depicted in 3.5, the exchange of events is performed via
Tuple Space which provides a persistent shared space enabling interaction between com-
ponents without direct exchange of events between them. This interaction is performed
using a publish-subscribe mechanism.

Figure 3.5: Execution Semantics, Communication and Coordination in the Middleware

The Tuple Space enables communication between distributed components running on
both local as well as remote machines while at the same time components are unaware of
this distribution. For this purpose, an additional layer provides components with a mech-
anism of communication with other components which shields the actual mechanism of
local or remote communication. The Tuple Space technology used in the middleware
is based on Linda[3] which provides a shared distributed space where components can
publish and subscribe to tuples. Subscription is based on templates and their matching
with tuples available in the space. The space handles data transfer, synchronization and
persistence. The Tuple Space can be in addition composed of many distributed and syn-
chronized Tuple Space repositories. In order to maximize usage of components available

KWEB/2006/D2.4.10/v2 December 30, 2007 31

3. ARCHITECTURE VIEWS

within one machine, instances of distributed Tuple Space are running on each machine
and newly produced entries are published locally. Before synchronization with other dis-
tributed Tuple Spaces, a set of local template rules is executed in order to check if there
are any local components subscribed to the newly published event type. It means that by
default (if not configured otherwise), local components have priority in receiving locally
published entries.

Through the infrastructure provided by the execution management, components im-
plementations are separated from communication. This infrastructure is made available
to each component implementation during instantiation of the component carried out by
the execution management service during the bootstrap process. Through the use of JMX
and reflection technology, this can occur both at start-up as well as after the system is
up and running. The communication infrastructure has the responsibility to interact with
the transport layer (a Tuple Space instance). Through the transport layer, component sub-
scribe to an event-type template. Similar mechanism applies when events are published
in the Tuple Space. In order to enable a component to request functionality from another
component a proxy mechanism is used. When a component need to invoke other compo-
nent’s functionality, the proxy creates the event for this purpose and publishes it on the
Tuple Space. At the same time, the proxy subscribes to the response event and takes care
of the correlation. From the perspective of the invoking component, the proxy appears as
the component being invoked. This principle is the same as one used by Remote Method
Invocations (RMI) in object-oriented distributed systems.

3.3.3 Execution Semantics

Execution Semantics enable a combined execution of functional components as illustrated
in figure 3.5. Execution semantics defines the logic of the middleware which realize the
middleware behavior. The execution management service enables a general computation
strategy by enforcing execution semantics, operating on transport as well as component
interfaces. It takes events from the Tuple Space and invokes the appropriate components
while keeping track of the current state of execution. Additional data obtained during ex-
ecution can be preserved in the particular instance of execution semantics. The execution
management service provides the framework that allows execution semantics to operate
on a set of components without tying itself to a particular set of implementations. In
particular, execution management service takes care of the execution semantics lifecycle,
management and monitoring.

Figure 3.6 depicts how components are decoupled from the process (described in the
execution semantics) by means of wrappers. Based on an execution semantics definition,
these wrappers will only be able to consume and produce particular types of events. The
wrappers are generated and managed by the execution management service in order to
separate components from the transport layer for events. One wrapper raises an event
with some message content and another wrapper can at some point in time consume this

32 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

event and react to it.

Events and Notification Distribution/Delivery Mechanism

Data Mediation Wrapper
(implements repository

interface)

Process Mediation Wrapper
(implements data mediation

interface)

Choreography Wrapper
(communication and process

mediation interface)

Communication Wrapper

events
notifications

events
notifications

events
notifications

events
notifications

Data Mediation Process Mediation Orchestration Communication

Middleware Execution Management Service

Figure 3.6: Component’s Wrappers and Event Messaging

KWEB/2006/D2.4.10/v2 December 30, 2007 33

Chapter 4

Execution Semantics for Execution
Phase

In this section we define the exacution semantics for the execution phase of the SESA.
This execution semantics is triggered as a result of the late-binding phase as described in
section 3.2.2.

4.1 Definitions

4.1.1 Information Semantics

Information Semantics is the formal definition of some domain knowledge used by the
service in its input and output messages. We describe the information semantics as an
ontology defining the terminology of the domain together with a knowledge base as the
instantiation of the ontology. Formally, the information semantics is a structure

O = (C, R, E, I) (4.1)

with a set of classes (unary predicates) C, a set of relations (binary and higher-arity predi-
cates) R, a set of explicit instances of C and R called E (extensional definition), and a set
of axioms called I (intensional definition) that describe how new instances are inferred.

34

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

4.1.2 Behavioral Semantics

Behavioral Semantics is a description of the public and the private behavior of a service.
For our work we only use the public behavior (called choreography1) as a description of
a protocol which must be followed by a client in order to invoke the service. We describe
a choreography as a public process, i.e. from the service point view, all the messages
are sent in to the service from the network and all the messages are sent from the service
out to the network. We define the choreography X (read: chi) of the service using the
Abstract State Machine (ASM) as[12]

X = (Σ, L), (4.2)

where Σ ⊆ ({x} ∪ C ∪ R ∪ E) is the signature of symbols, i.e. variable names {x}
or identifiers of elements from C, R, E of some information semantics O; and L is a
set of rules. Further, we distinguish dynamic symbols denoted as ΣI (input), and ΣO

(output) and static symbols denoted as ΣS . While the static symbols cannot be changed
by the service invocation, the dynamic symbols correspond to input and output data of
the service which can be changed by the invocation. Each rule r ∈ L defines a state
transition r : rcond → reff where cond is defined as an expression in logic L(ΣI ∪ ΣS)
which must hold in a state before the transition is executed; eff is defined as an expression
in logicL(ΣI∪ΣO∪ΣS) describing how the state changes when the transition is executed.

4.1.3 Grounding

Grounding defines a link between semantic descriptions of services and the underlying
technology used for the services invocation (such as how and where the service can be
accessed). Although the semantic descriptions are independent on the underlying technol-
ogy, we use grounding to WSDL for on-the-wire message serialization (WSDL binding),
physical Web service access (WSDL service and endpoint) and communication (SOAP).

For purposes of grounding definition for a WSDL description we denote the WSDL
schema as S and the WSDL interface as N . Further, we denote {x}S as a set of all
element declarations and type definitions of S, and {o}N as a set of all operations of N .
Each operation o ∈ {o}N may have one input message element m ∈ {x}S and one output
message element n ∈ {x}S .

There are two types of grounding used for information and behavioral semantics. The
first type of grounding specifies references between input/output symbols of a choreog-
raphy X = (Σ, L) and input/output messages of respective WSDL operations {o}N with
schema S. We define this grounding as

1Please note, that our notion of the choreography is different from the one used by the Web Service
Choreography Description Language (WS-CDL) http://www.w3.org/TR/ws-cdl-10/

KWEB/2006/D2.4.10/v2 December 30, 2007 35

4. EXECUTION SEMANTICS FOR EXECUTION PHASE

ref (c, m) (4.3)

where m ∈ {x}S , c ∈ Σ and ref is a binary relation between m and c. Further, m is the
input message of operations in {o}N if c ∈ ΣI or m is the output message of operations
in {o}N if c ∈ ΣO.

The second type of grounding specifies transformations of data from schema S to
ontology O = (C, R, E, I) called lifting and vice-versa called lowering. We define this
grounding as

lower(c1) = m and lift(n) = c2, (4.4)

where m, n ∈ {x}S , c1, c2 ∈ (C ∪R), lower is a lowering transformation function trans-
forming the semantic description c1 to the message m, and lift is a lifting transformation
function transforming the message n to the semantic description c2. Please note that both
definitions in Eq. 4.3 and Eq. 4.4 are associated either with WSDL or semantic descrip-
tions. For example, [6] defines the grounding associated with WSMO semantic service
model and [12] describes the grounding associated with WSDL descriptions using the
Semantic Annotations for WSDL and XML Schema (SAWSDL) specifications[7].

Both types of grounding definitions are used when processing the choreography rules
and performing the communication with the service (see Section 4.2) while following the
underlying definition of WSDL operations and their Message Exchange Patterns (MEPs).
Table 4.1 shows basic choreography rules for four basic WSDL 2.0 MEPs2, (in-out,
in-only, out-only, out-in) and corresponding WSDL operations. In here, the symbols
c1, . . . , c6 refer to identifiers of semantic descriptions defined as part of input or output
state signature ΣI or ΣO of some choreography X (see Eq. 4.2), the symbols msg1, . . . ,
msg6 refer to some XML Schema elements used for input/output messages of operations,
ref (c, m) denotes the existence of grounding definition between a semantic description c
and a message m (see Eq. 4.3), and w is the prefix for URI http://www.w3.org/
ns/wsdl. Please note that a complex rule may exist in the choreography covering more
then one invocation and thus combining multiple MEPs in one rule.

4.1.4 Data Mediation

When the information semantics of the two services is different, i.e. different ontologies
are used, the communication cannot take place and the data mediation needs to be per-
formed. The data mediation transforms every incoming message from the terms of the
sender’s information semantics (the source) into the terms of the receiver’s information
semantics (the target).

2http://www.w3.org/TR/wsdl20-adjuncts/#meps

36 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

MEP and Rule WSDL Operation
in-out:
if c1 then add(c2)
c1 ∈ ΣI , ref (c1, msg1)
c2 ∈ ΣO, ref (c2, msg2)

<operation name="oper1" pattern="w:in-out">
<input messageLabel="In" element="msg1"/>
<output messageLabel="Out" element="msg2"/>

</operation>
in-only:
if c3 then no action
c3 ∈ ΣI , ref (c3, msg3)

<operation name="oper2" pattern="w:in-only">
<input messageLabel="In" element="msg3"/>

</operation>
out-only:
if true then add(c4)
c4 ∈ ΣO, ref (c4, msg4)

<operation name="oper3" pattern="w:out-only">
<output messageLabel="Out" element="msg4"/>

</operation>
out-in:
if true then add(c5)
if c5 ∧ c6 then no action
c5 ∈ ΣO, ref (c5, msg5)
c6 ∈ ΣI , ref (c6, msg6)

<operation name="oper4" pattern="w:out-in">
<output messageLabel="Out" element="msg5"/>
<inpput messageLabel="In" element="msg6"/>

</operation>

Table 4.1: MEPs, Rules and WSDL operations

The agent performing data mediation has to automatically perform the transformation
of the exchanged messages. Since the interoperability problems can greatly vary in their
nature and severity, automatic solution for the detection and solving of data mismatches
are not feasible in a business scenario due to the lower-then-100% precision and recall of
the existing methods3. As a consequence, alignments between heterogenous ontologies
have to be created at design-time and used by the data mediation engine at run-time.

An alignment consists of a set of mappings expressing the semantic relationships that
exist between the two ontologies. Technically, the mappings are expressed as rules which
concretely specify the semantics of mappings present in alignments. In particular, a map-
ping can specify that classes from two ontologies are equivalent while corresponding rules
use logical expressions to unambiguously define how the data encapsulated in an instance
of one class can be encapsulated in instances of the second class. Formally, we define an
alignment A between two ontologies Os = (Cs, Rs, Es, Is) and Ot = (Ct, Rt, Et, It) as

As,t = (Os, Ot, Φs,t) (4.5)

where Φs,t is the set of mappings m of the form

m =< εs, εt, γεs , γεt > (4.6)

3The ”Ontology Alignment Evaluation Initiative 2006” [2] shows that the best five systems’ scores vary
between 61% and 81% for precision and between 65% and 71% for recall.

KWEB/2006/D2.4.10/v2 December 30, 2007 37

4. EXECUTION SEMANTICS FOR EXECUTION PHASE

where εs, εt represent the mapped entities from the two ontologies while γεs , γεt represent
restrictions (i.e. conditions) on these entities such as εs ∈ Cs ∪ Rs, εt ∈ Ct ∪ Rt while
γεs and γεt are expressions in L(Cs ∪Rs ∪ Es) and L(Ct ∪Rt ∪ Et), respectively.

Please note, that in order to execute the mappings, they need to be grounded to exe-
cutable rules expressed in a logical language for which a reasoning support is available.
Using this grounding, the reasoner becomes the execution engine of these rules. We
implement this grounding using the WSML language. Consequently, the set of rules
ρs,t = ΦG

s,t is obtained by applying the grounding G to the set of mappings Φ. Every
mapping rule mr ∈ ρs,t has the following form:

mr :

{x}∧
i=1..n

mrhead
i ←

{x}∧
i=1..n

mrbody
i (4.7)

where

mrhead ∈ {x′ instanceOf ε | ε ∈ Ct and x′ ∈ {x}} ∪ (4.8)
{ε(x′, x′′) | ε ∈ Rt and ε(x′, x′′) ∈ Et and x′, x′′ ∈ {x}}

mrbody ∈ {x′ instanceOf ε | ε ∈ Cs and x′ ∈ {x}} ∪ (4.9)
{ε(x′, x′′) | ε ∈ Rs and ε(x′, x′′) ∈ Es and x′, x′′ ∈ {x}} ∪
{γs | γs ∈ L(Cs ∪Rs ∪ Es ∪ {x})} ∪
{γt | γt ∈ L(Ct ∪Rt ∪ Et ∪ {x})}

A mapping rule is formed of a head and a body. The head is a conjunction of logical
expressions over the target elements and it constructs the instances of the target ontology
which represent the result of the mediation. The body is formed of a set of logical ex-
pressions over the source entities which represent the data to be mediated, plus a set of
logical expressions representing conditions over both the source and the target data. In
the above definitions, {x} stands for the set of variable used by the mapping rule and x′

and x′′ are two particular variables. It is important to mention that the variables are used
in such a way to assure that there are no unsafe rules generated (i.e. in the head there are
no variables that do not appear in the body).

4.1.5 Process Mediation

Process Mediation handles the interoperability issues which occur in descriptions of chore-
ographies of the two services. In [1], Cimpian defines five process mediation patterns:

a. Stopping an unexpected message: when one service sends a message which is not
expected by the other service, the mediator stops the message.

38 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

b. Inversing the order of messages: when one service sends messages in a different
order than the the other service expects them to receive, the mediator ensures that
messages are supplied in proper order.

c. Splitting a message: when a service sends a message which the other service ex-
pects to receive in multiple different messages, the mediator splits the message and
ensures that all messages are supplied to the service.

d. Combining messages: when a service expects to receive a message which is sent
by the other service in multiple different messages, the mediator combines those
messages and ensures that the combined message is supplied to the service.

e. Generating a message: when one service expects to receive a message which is
not supplied by the other service, mediator generates the message and supplies the
message to the service.

The patterns are implemented using an algorithm by processing the both choreographies,
i.e. evaluating choreography rules and the information semantics of the both services. In
sections 4.2 and 4.3 we show how the algorithm fulfils the patterns (a) – (d). In order to
fulfill the pattern (e), the algorithm should be aware of the intention of the messages. For
example, if the algorithm is able to distinguish control interactions (e.g. acknowledge-
ments) among all the interactions happening between the both services, it could generate
an acknowledgment message (assuming the algorithm would be able to assess that a mes-
sage to be acknowledged was successfully received by the other service). Since we do not
give semantics to message interactions, we currently do not address the pattern (e) in our
work.

4.2 Algorithm

The algorithm for the execution model manages the conversation between two services
with applied data and process mediation. Each such a service contains description of
information and behavioral semantics, WSDL definition and the grounding according to
the definitions in the previous section. These services are usually supplied as a result from
the late-binding phase. The Figure 4.1 depicts the main steps of the execution phase. The
algorithm requires inputs and uses internal structures as follows:

Input:

• Service W1 and service W2. Each such a service W contains the ontology (infor-
mation semantics) W.O (Eq. 4.1), the choreography W.X (Eq. 4.2) with set of
rules W.X.L, WSDL description and grounding (Eq. 4.3, 4.4). In addition, for a
rule r ∈ W.X.L, the condition rcond is a logical expression with set of semantic
descriptions {c}, and the effect reff is a logical expression with set of actions {a}.

KWEB/2006/D2.4.10/v2 December 30, 2007 39

4. EXECUTION SEMANTICS FOR EXECUTION PHASE

For each element a we denote its action name as a.action with values delete or add
and a semantic description as a.c.

• Mappings Φ between W1.O and W2.O.

Uses:

• Symbols M1 and M2 corresponding to the processing memory of the choreogra-
phy W1.X and W2.X respectively (a memory M is a populated ontology W.O
with instance data). The content of each memory M determines at some point in
time a state in which a choreography W.X is. In addition, each memory has meth-
ods M.add and M.remove allowing to add or remove data to/from M and a flag
M.modified indicating whether the memory was modified. The flag M.modified is
set to true whenever the method M.add or M.removed is used.

• Symbols D1 and D2 corresponding to the set of data to be added to the memory
M1 and M2 after the choreography is processed. Each D has a method D.add for
adding new data to the set.

• A symbol A corresponding to all actions to be executed while processing the chore-
ography. Each element of A has the same definition as the element of the rule effect
reff . A has methods A.add and A.remove for adding and removing actions to/from
the set.

• A symbol o corresponding to a WSDL operation of a service and symbols m, n
corresponding to some XML data of the message (input or output) of the operation
o.

States 1, 2, 7: Initialize, Control, End
1: M1 ← ∅; M2 ← ∅
2: repeat
3: M1.modified ← false; M2.modified ← false
4: D1 ← processChoreography(W1, M1)
5: D2 ← processChoreography(W2, M2)
6: if D1 6= ∅ then
7: Dm ← mediateData(D1, W1.O, W2.O, Φ)
8: M1.add(D1); M2.add(Dm)
9: end if

10: if D2 6= ∅ then
11: Dm ← mediateData(D2, W2.O, W1.O)
12: M1.add(Dm); M2.add(D2)
13: end if
14: until not M1.modified and not M2.modified

40 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

5: receive

2: Control
3: process

Choreography

6: mediateData

mediate data

data mediated4: send

process
choreography

send

control
1: Initializecontrol

7: Endend

receive

new data

sent

Figure 4.1: Control State Diagram for the Execution Model

After the initialization of the processing memory M1 and M2 (line 1), the execution gets
to the control state when the whole process is managed. It can process choreographies
(state 3), mediate the data (state 6) or end the execution (state 7). The execution ends
when no modifications of the processing memories M1 or M2 has occurred.

State 3: D = processChoreography(W ,M)

1: A← ∅; D ← ∅
2: {Performing rule’s conditions and sending data}
3: for all r in W.X.L : holds(rcond , M) do
4: A.add(reff)
5: for all c in rcond : c ∈ W.X.ΣI do
6: send(c,W)
7: end for
8: end for
9: {Performing delete actions}

10: for all a in A : a.action = delete do
11: M.remove(a.c)
12: A.remove(a)
13: end for
14: {Receiving data and performing add actions}
15: while A 6= ∅ do
16: c← receive(W)
17: if c 6= null then

KWEB/2006/D2.4.10/v2 December 30, 2007 41

4. EXECUTION SEMANTICS FOR EXECUTION PHASE

18: for all a in A: (a.action = add and a.c = c) do
19: D.add(c)
20: A.remove(a)
21: end for
22: end if
23: end while
24: return D

The algorithm executes each rule of the choreography which condition holds in the mem-
ory by processing its condition and effect, i.e. the algorithm collects all data to be added
to the memory or removes existing data from the memory. The whole process is divided
into three major steps as follows.

• Performing rule’s conditions and sending data (lines 2-8): the effect of the rule
which condition satisfies the content of the memory (line 3) is added to the set of
effects A (line 4). Then, for each input symbol of the rule’s condition (line 5), the
algorithm sends the data to the service (line 6, see State 4).

• Performing delete actions (lines 9-13): all effects with delete action are per-
formed, the data of the effect is removed from the memory (line 11) while such
effects are removed from A (line 12).

• Receiving data and performing add actions (lines 14-24): When there are effects
to be processed in A and the new data is received from the service (line 16), it is
checked if the new data corresponds to some of the add effect from A. In this case,
the data is added to the set D (line 19) and the effect is removed from A (line 20).

The result of the algorithm is the set D containing all new data to be added to the memory
M . The actual modification of the memory M with the new data is performed in State
2. The algorithm assumes that definition of the choreography rules are consistent with
WSDL operations and their MEPs while at the same time no failures occur in services.
In lines 14-23 the algorithm waits for every message to be received from the service for
every add action of the rule’s effect. If the definition of the rules was not consistent with
WSDL description, the algorithm would either ignore the received message which could
in turn affect the correct processing of the choreography (in case of missing add action)
or wait infinitely (in case of extra add action or a failure in a service). For the latter,
the simplest solution would be to introduce a timeout in the loop (lines 14-23), however,
we do not currently handle these issues in the algorithm. They will be the subject of our
future work.

State 4: send(c,W)

1: m← lower(c)
2: for all o of which m is the input message do

42 December 30, 2007 KWEB/2006/D2.4.10/v2

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

3: send m to W
4: end for

In order to send the data c the algorithm first retrieves a corresponding message definition
according to the grounding and transforms c to the message m using the lowering trans-
formation function (line 1). Then, through each operation of which the message m is the
input message, the algorithm sends the m to the service W .

State 5: c = receive(W)

1: if receive m from W then
2: c← lift(m)
3: return c
4: else
5: return null
6: end if

When there is a new data from the service W , the data (message m in XML) is lifted
to the semantic representation using lifting transformation function associated with the
message (line 2), and the result is returned. In the opposite case, the null is returned.

State 6: cm = mediateData(c, Os, Ot, Φ)

1: ε← getTypeOf (c)
2: εm ← null
3: for all m =< εs, εt, γεs , γεt >∈ Φ where ε = εs do
4: if isMoreGeneral(εt, εm) then
5: εm ← εt

6: end if
7: ρ← ρ ∪ {mG}
8: end for
9: if εm = null then

10: return null
11: end if
12: cm ← getDataForType(εm, ρ)
13: return cm

The first step in the mediation process is to determine the type of the data to be me-
diated. If this data is a concept instance the algorithm determines its concept. After that,
the set of mappings is navigated in order to determine the type of the target, mediated
data. Since there could be more mappings from a given source entity to the several other
target entities, it is necessary to determine the most general entity to mediate the source
data to. Also while traversing the set of mappings, each of them is grounded to WSML
and transformed in a set of logical mapping rules. Finally, by using a reasoner engine
all the data of the selected target type is retrieved based on the source data and the set of

KWEB/2006/D2.4.10/v2 December 30, 2007 43

4. EXECUTION SEMANTICS FOR EXECUTION PHASE

mapping rules.

From the implementation point of view, several optimizations could be applied to this
algorithm. First, the mappings rules could be cached in order to avoid their regeneration
every time when a new request for data mediation is coming. Second only the mappings
and mapping rules that refer to the input source data could be processed in order to reduce
the volume of rules that need to be evaluated.

4.3 Discussion on Data and Process Mediation

The data mediation ensures that all new data coming from one service is translated to
the other’s service ontology. Thus, no matter from where the data originates the data is
always ready to use for the both services. From the process mediation point view, the data
mediation also handles the splitting of messages (pattern c) and combining the messages
(pattern d). Since the mediated data is always added to the both memories (see State 2,
lines 8, 12 and the next paragraph for additional discussion) the patterns a) and b) are
handled automatically through processing of the choreography rules. In particular, the
fact that a message will be stopped (pattern a) means that the message will never be used
by the choreography because no rule will use it (the message remains in the memory until
the end of the algorithm). In addition, the order of messages will be inverted (pattern b)
as defined by the choreography rules and the order of ASM states in which conditions of
rules hold. This means that the algorithm automatically handles the process mediation
with help of data mediation through rich description of choreographies when no central
workflow is necessary for that purpose.

In our algorithm we always add all the data to the both choreographies and not only
the data which could be of potential use, i.e. the data could be used when evaluating
a rule’s condition. However, since we use the language which allows for the intentional
definitions (axioms) which are part of the information semantics and the memory, the data
might affect the evaluation of the rule indirectly through such axioms. The evaluation of
the potential use of data would thus require a logical reasoning and would influence the
scalability and the processing time. On the other hand, we do not expect a significant
overhead when storing such additional data, however, we leave the evaluation for the
future work.

44 December 30, 2007 KWEB/2006/D2.4.10/v2

Chapter 5

Evaluation

In order to evaluate the architecture and its implementation we focus on major aspects of
semantic-based systems which lie in flexibility and adaptivity of integration processes of
heterogeneous services. With this respect, the presented in this article and its implemen-
tation together with implementation of the example from section 2.4 has been evaluated
in the SWS Challenge1 series of workshops. The SWS Challenge is an initiative led
by a Semantic Web Services providing a standard set of increasingly difficult problems,
based on industrial specifications and requirements. Entrants to the SWS Challenge are
peer-evaluated to determine if semantically-enabled integration approaches reduce costs
of establishing and maintaining the integration between independent systems. In each
SWS challenge workshop, the entrants first address introduced initial scenario of partic-
ular problem (e.g. mediation, discovery) in a testing environment prepared by the SWS
Challenge organizers. The organizers then introduce some changes to back-end systems
of the testing environment when the adaptivity of solutions is evaluated – solutions should
handle introduced changes by modification of declarative descriptions rather than code
changes. This evaluation is done by a methodology, developed by the SWS Challenge
organizers and participants, which identifies following so called success levels.

• Success level 0 indicates a minimal satisfiability level, where messages between
middleware and backend systems are properly exchanged in the initial scenario.

• Success level 1 is assigned when changes introduced in the scenario require code
modifications and recompilation.

• Success level 2 indicates that introduced changes did not entail any code modifica-
tions but only declarative parts had to be modified.

• Success level 3 is assigned when changes did not require either modifications to
code or the declarative parts, and the system was able to automatically adapt to the
new conditions.

1http://www.sws-challenge.org

45

5. EVALUATION

Our implementation of the scenario from section 2.4 and its evaluation has been done
in two stages separating (1) mediation problem (data and process mediation) and (2) dis-
covery problem of the example described in section 2.4. The implementation of the me-
diation problem has been evaluated in Budva, Montenegro2 where it has been shown how
it adapts to data and process changes in the back-end systems. For data mediation we had
to make some changes in code due to forced limitations of existing data mediation tools
(success level 1). For process mediation we needed to change only description of service
interfaces (choreographies) according to the changes in back-end systems (success level
2). The implementation of the discovery problem has been evaluated in Athens, USA3

where it has been shown how it successfully addresses the discovery of services based
on location, weigth and price, scoring success level 2. All this information had to be
gathered from the service requester during discovery-time through late-binding discovery
service interface and integrated with the discovery process. No changes in code or in the
descriptions of the services were required only the Goal request had to be changed .

2http://sws-challenge.org/wiki/index.php/Workshop Budva
3http://sws-challenge.org/wiki/index.php/Workshop Athens

46 December 30, 2007 KWEB/2006/D2.4.10/v2

Chapter 6

Conclusion and Future Work

This work is the second version of the architecture for the Semantic Web Services which
aims at establishing the grounds for joint work on Semantic Service Oriented Architecture
(SESA) and in particular exploited in the OASIS Semantic Execution Environment Tech-
nical Committee (OASIS SEE TC). In the second deliverable we have revised the first
version of the architecture based on the communication with various groups involved in
the architecture within various EU funded projects and strengthen this way the architec-
ture grounds. In this work we defined a number of views through which the architecture is
described, namely global view identifying a number of layers from the global viewpoint
on the architecture, service view identifying various types of services and describing these
services in detail, process view describing processes which are both provided as well as
facilitated by the architecture, and technology view revealing details of the technology
used for implementation of the architecture and its middleware system in particular. We

In our future work we plan to enhance the functionality of the architecture and its mid-
dleware system by incorporating composition and orchestration. Such functionality will
add additional complexity to the processes run in the middleware. We also plan to work on
the lightweight descriptions of services with focus on SAWSDL W3C recommendation
as well as augmantation of service descriptions for REST services.

47

Bibliography

[1] Emilia Cimpian and Adrian Mocan. Wsmx process mediation based on choreogra-
phies. In Business Process Management Workshops, pages 130–143, 2005.

[2] Jérôme Euzenat, Malgorzata Mochol, Pavel Shvaiko, Heiner Stuckenschmidt,
Ondřej Šváb, Vojtěch Svátek, Willem Robert van Hage, and Mikalai Yatskevich.
Results of the Ontology Alignment Evaluation Initiative 2006. In Proceeding of In-
ternational Workshop on Ontology Matching (OM-2006), volume 225, pages 73–95,
Athens, Georgia, USA, November 2006. CEUR Workshop Proceedings.

[3] D Gelernter, N. Carriero, and S. Chang. Parallel Programming in Linda. In Pro-
ceedings of the International Conference on Parallel Processing, 1985.

[4] Haselwanter, Thomas. WSMX Core - A JMX Microkernel. PhD thesis, University of
Innsbruck, 2005.

[5] Uwe Keller, Rubén Lara, Holger Lausen, Axel Polleres, and Dieter Fensel. Auto-
matic location of services. In ESWC, pages 1–16, 2005.

[6] Jacek Kopecký, Dumitru Roman, Matthew Moran, and Dieter Fensel. Semantic web
services grounding. In AICT/ICIW, page 127, 2006.

[7] Jacek Kopecky, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Semantic
annotations for wsdl and xml schema. IEEE Internet Computing, 11(6), 2007.

[8] David Martin et al. Owl-s: Semantic markup for web services. Member submission,
W3C, 2004. Available from: http://www.w3.org/Submission/OWL-S/.

[9] Adrian Mocan, Emilia Cimpian, and Mick Kerrigan. Formal model for ontology
mapping creation. In International Semantic Web Conference, pages 459–472, 2006.

[10] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Semantic Web Services: Meteor-S
Web Service Annotation Framework. In 13th International Conference on World
Wide Web, pages 553–562, 2004.

[11] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology. Applied Ontologies, 1(1):77 – 106, 2005.

48

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

[12] Tomas Vitvar, Jacek Kopecky, and Dieter Fensel. WSMO-Lite: Lightweight Seman-
tic Descriptions for Services on the Web. In ECOWS, 2007.

[13] Tomas Vitvar, Adrian Mocan, Mick Kerrigan, Michal Zaremba, Maciej Zaremba,
Matthew Moran, Emilia Cimpian, Thomas Haselwanter, and Dieter Fensel.
Semantically-enabled service oriented architecture: Concetps, technology and ap-
plication. Service Oriented Computing and Applications, 2(1):129–154, 2007.

[14] Tomas Vitvar, Maciej Zaremba, and Matthew Moran. Dynamic discovery through
meta-interactions with service providers. In ESWC, 2007.

[15] Tomas Vitvar, Michal Zaremba, Matthew Moran, Maciej Zaremba, and Dieter
Fensel. Sesa: Emerging technology for service centric environments. IEEE Soft-
ware, 24(6):56–67, 2007.

[16] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A qos-aware selection
model for semantic web services. In ICSOC, pages 390–401, 2006.

KWEB/2006/D2.4.10/v2 December 30, 2007 49

