
How Much Does It Cost? Applying ONTOCOM
to DILIGENT

Elena Paslaru Bontas1, Christoph Tempich2
1Free University of Berlin, Takustr. 9, 14195 Berlin, Germany

paslaru@inf.fu-berlin.de
2Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

tempich@aifb.uni-karlsruhe.de

October 27, 2005

Abstract

Ontology Engineering is currently advancing from a pure research topic to
real applications. This state of the art is emphasized by the wide range of Euro-
pean projects with major industry involvement and, in the same time, by the ever-
growing interest of small and medium size enterprizes asking for consultancy in
this domain. A core requirement in all of these efforts is, however, the availability
of proved and tested methods which allow anefficientengineering of high-quality
ontologies, be that by reuse, new building or automatic extraction methods. Several
elaborated methodologies, which aid the development of ontologies for particular
application requirements, emerged in the last decades. Nevertheless, in order for
ontologies to be built and deployed at a large scale, beyond the boundaries of the
academic community, one needs not only technologies and tools to assist the en-
gineering process, but also means toestimate and control its overall costs. These
issues are addressed only marginally by current engineering approaches though
their importance is well recognized in the community. Different approaches exist
to estimate costs for engineering processes. We will present the parametric cost
estimation model ONTOCOM and its alignment with the DILIGENT engineering
methodology. Based on the resulting cost function some analytical evaluations of
application scenarios for the DILIGENT model are provided.

1



Contents

1 Introduction 1

2 The ONTOCOM Cost Model 2
2.1 Cost Drivers for Ontology Building . . . . . . . . . . . . . . . . . . 4
2.2 Cost Drivers for Ontology Reuse and Maintenance . . . . . . . . . . 5
2.3 Evaluation of ONTOCOM . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The DILIGENT methodology 7
3.1 General process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 DILIGENT process stages . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Local Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.4 Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.5 Local Update . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Bridging ONTOCOM and DILIGENT 12
4.1 Mapping the activities in DILIGENT to the cost drivers in ONTOCOM 13

4.1.1 Cost drivers relevant for the Centralized Building stage . . . . 14
4.1.2 Cost drivers relevant for the Local Adaptation stage . . . . . . 15
4.1.3 Cost drivers relevant for the Centralized Analysis and Revision

stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.4 Cost drivers relevant for the Local Update stage . . . . . . . . 18

4.2 Changes in the Cost Model . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 The Cost Driver OCPLX (Ontology Complexity) . . . . . . . 19
4.2.2 The Cost Driver DOCU (Documentation Needs) . . . . . . . 22
4.2.3 The Cost Driver OE (Ontology Evaluation) . . . . . . . . . . 23
4.2.4 The Cost Driver OI (Ontology Integration) . . . . . . . . . . 23
4.2.5 The Cost Driver TOOL (Tool Support) . . . . . . . . . . . . . 24

4.3 Changes in the DILIGENT process . . . . . . . . . . . . . . . . . . . 25
4.3.1 Changes to Centralized Build . . . . . . . . . . . . . . . . . 25
4.3.2 Changes to Local Adaptation . . . . . . . . . . . . . . . . . . 27
4.3.3 Changes to Analysis and Revision . . . . . . . . . . . . . . . 33
4.3.4 Changes to Local Update . . . . . . . . . . . . . . . . . . . . 36

5 A Cost Function for DILIGENT Processes 38
5.1 The complete cost function . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 The costs of the Centralized Building phase . . . . . . . . . . 39
5.1.2 The costs of the Local Adaptation phase . . . . . . . . . . . . 40
5.1.3 The costs of the Centralized Analysis and Revision phase . . . 41
5.1.4 The costs of the Local Update phase . . . . . . . . . . . . . . 41

5.2 The reduced cost function . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Applications of the reduced cost function . . . . . . . . . . . . . . . 44

i



5.3.1 1. Scenario: The size of the initial ontology . . . . . . . . . . 45
5.3.2 2. Scenario: Reuse-oriented vs isolated building . . . . . . . 45
5.3.3 3. Scenario: Frequency of board meetings . . . . . . . . . . . 45

6 Data collection and model calibration 46
6.1 Technical realization of the data collection . . . . . . . . . . . . . . . 46
6.2 Calibration method . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Linear combination . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Bayesian Linear Models . . . . . . . . . . . . . . . . . . . . 51

7 Related work 53

8 Conclusions 54

ii



List of Figures

1 Process stages (1-5), actions (1-17) and structures . . . . . . . . . . . 9
2 Process stages (1-5), activities (1-32) and structures . . . . . . . . . . 25
3 Centralized Building: Activity Diagram . . . . . . . . . . . . . . . . 27
4 Local Adaptation: Activity Diagram . . . . . . . . . . . . . . . . . . 29
5 Analysis: Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . 34
6 Revision: Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . 36
7 Local Update: Activity Diagram . . . . . . . . . . . . . . . . . . . . 37
8 ONTOCOM data collection: introductory questions . . . . . . . . . . 47
9 ONTOCOM data collection: cost drivers . . . . . . . . . . . . . . . . 47
10 Data export from phpESP . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



List of Tables

1 Cost Driver LEXP (Language Experience) . . . . . . . . . . . . . . . 4
2 Mapping DILIGENT to ONTOCOM: Centralized Building . . . . . . 14
3 Mapping DILIGENT to ONTOCOM: Local Adaptation . . . . . . . . 16
4 Mapping DILIGENT to ONTOCOM: Centralized Analysis and Revision 18
5 Mapping DILIGENT to ONTOCOM: Local Update . . . . . . . . . . 19
6 The Domain Complexity Cost Driver DCLPX . . . . . . . . . . . . . 21
7 The Conceptualization Complexity Cost Driver CCPLX . . . . . . . . 22
8 The implementation complexity cost driver ICPLX . . . . . . . . . . 22
9 Ratings for Documentation Costs . . . . . . . . . . . . . . . . . . . . 22
10 The Ontology Evaluation Cost Driver OE . . . . . . . . . . . . . . . 23
11 The Ontology Integration Cost Driver OI . . . . . . . . . . . . . . . . 24
12 The Tool Support Cost Driver TOOL . . . . . . . . . . . . . . . . . . 24
13 Simplified cost model factors . . . . . . . . . . . . . . . . . . . . . . 48
14 Delphi result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
15 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
16 Adjusted collected data . . . . . . . . . . . . . . . . . . . . . . . . . 50
17 Correlation matrix for our example . . . . . . . . . . . . . . . . . . . 51
18 Results of the linear regression . . . . . . . . . . . . . . . . . . . . . 51
19 Parameter estimation from experts and based on the data . . . . . . . 51
20 Effort estimation based on expert estimation and historical data . . . . 52
21 Results of the linear regression - alternative . . . . . . . . . . . . . . 53

iv



1 Introduction

Ontology Engineering is currently advancing from a pure research topic to real appli-
cations. This state of the art is emphasized by the wide range of European projects with
major industry involvement and, in the same time, by the ever-growing interest of small
and medium size enterprizes asking for consultancy in this domain. A core requirement
in all of these efforts is, however, the availability of proved and tested methods which
allow anefficientengineering of high-quality ontologies, be that by reuse, new build-
ing or automatic extraction methods. Several elaborated methodologies, which aid the
development of ontologies for particular application requirements, emerged in the last
decades. Nevertheless, in order for ontologies to be built and deployed at a large scale,
beyond the boundaries of the academic community, one needs not only technologies
and tools to assist the engineering process, but also means toestimate and control its
overall costs. These issues are addressed only marginally by current engineering ap-
proaches though their importance is well recognized in the community.

A first attempt to bridge this gap has been made with the ONTOCOM approach
[PBM05b, PBM05a], which is intended to be used as a method to estimate the efforts
involved in building, reusing and maintaining ontologies. Likewise in the adjacent field
of Software Engineering, a discipline in which cost prediction models belong to stan-
dard development environments, ONTOCOM proposes a top-down, parametric cost
estimation method on the basis of pre-defined process stages and cost drivers, whose
impact has been derived in advance by taking into account research and historical data
from previous projects.

ONTOCOM distinguishes among three top-level phases of an ontology engineering
process: 1). the development of a new ontology from scratch in conjunction with 2).
reusing existing ontological sources and 3). the maintenance of ontologies in form
of insertions, deletions and modifications of the initial content. For these categories
cost drivers influencing the required development effort (in terms of person months)
have been identified on the basis of a comprehensive analysis of current engineering
methodologies and related case studies. Every cost driver is associated with effort
multipliers (from very high to very low), depending on the individual characteristics
of the application. A first estimation of the importance factors was performed based
on ex post analysis of different ontology engineering efforts and preliminary expert
validations with very promising results. Nevertheless more empirical data as well as an
in-depth model validation and refinement are essential requirements for the elaboration
of a reliable cost estimation method. The validation of the model [PBM05a] is based
on the quality framework for cost prediction by Boehm [Boe81], which is a list of
required and desirable features for these category of models, showing many similarities
with established frameworks for evaluating the quality of general purpose information
or data models [Epp01].

In this report we describe our experiences during the application of ONTOCOM to
ontology engineering projects following the DILIGENT methodology. This attempt
was motivated by the results of the above mentioned preliminary validation of the
cost model, which made clear that the usability of the model would be significantly
improved if we directly associate the cost drivers to more specific sub-tasks of the on-
tology engineering process, because this alignment would enable the definition of a

1



more precise and in the same time more reliable data extraction procedure. DILIGENT
offers a fine-grained description of steps and activities required to collaboratively de-
velop ontologies in application scenarios which have to cope with both distributed
ontology usage and evolution, and volatile requirements arising during its life cycle.
For this purpose it covers the most important process stages and activities which are
well-recognized to be part of every typical ontology engineering scenario, thus being
an excellent candidate for the refinement of the (yet very high-level) cost estimation
methodology. On the other hand, DILIGENT currently lacks any support to estimate
the effort required by the corresponding engineering process. The decision to exit a
certain stage and enter a new cycle of the process model is not supported adequately.
For this reason, a second goal of aligning ONTOCOM to the engineering methodology
was to extend the latter with a cost estimation dimension in order to examine the ways
costs could be involved as a decision support criteria to justify transitions between
various process stages.

The remaining of this document is organized as follows: after introducing the set-
ting of our work in Sections 2 and 3, we describe the refinement of the cost model
towards applying it to the DILIGENT process model and the changes triggered by this
mapping in each of the models (Section 4). The results of this mapping are used to
specify the cost prediction procedure for concrete DILIGENT case studies in Sections
5 and 6. An overview of related and future work are given in Sections 7 and 8, respec-
tively.

2 The ONTOCOM Cost Model

ONTOCOM is a parametric cost estimation model for ontologies which aims at pre-
dicting the effort invested in building, maintaining and reusing ontologies on the basis
of pre-defined cost drivers. For the definition of the relevant factors, we adopted a com-
bination of three general-purpose cost estimation methodologies [Boe81], which are in
our opinion applicable to Ontology Engineering according to the current state of the art
in the field (see [PBM05a] for an overview of the examined methods). We started with
a top-down approach, by identifying upper-level sub-tasks of the ontology engineering
process and defining the associated costs using a parametric method in correlation with
a human-driven first validation. Expert judgement was used to evaluate the set of cost
drivers associated to each process stage and to specify their start values in the a-priori
model. Initially, we distinguished among three areas, whose costs were to be defined
separately:

Ontology Building includes the typical stages of an ontology engineering
process[FL99]: domain analysis (result: requirements specification), the
conceptualization (result: conceptual model), the implementation (result:
specification of the conceptual model in the selected representation language)
and the ontology population i.e. the generation of instances and their alignment
to the model (result: instantiated ontology).1

1At this point we restrict to manual ontology building activities. Automatic ontology generation methods

2



Ontology Maintenance includes getting familiar with and modifying the ontology
(insert or delete new ontological primitives, re-model parts of the ontology etc.)

Ontology Reuse involves costs for the discovery and re-usage of existing (source)
ontologies in order to generate a new (target) ontology. The latter includes un-
derstanding, evaluating and adapting the former ones to the requirements of the
latter.

This upper-level distribution is of course subject of future refinements in order to
increase the usability of the estimation method in real-world engineering projects. In
particular, the ontology building area should be elaborated in the same top-down man-
ner in order to partition this tedious and complex process down to a level in which the
associated efforts can be reliably predicted. In this case, the cost drivers relevant the
overall ontology building process (see below) are to be aligned (or even re-defined)
to the corresponding sub-phases and activities. In particular, this issue will be further
discussed in Section 4, where we describe the revision of the cost drivers related to
building and reusing ontologies in conjunction with the DILIGENT framework.

Starting from a typical ontology engineering scenario, in which an ontology is
developed—from scratch, by adapting existing knowledge sources, or both—and de-
ployed/maintained by its users, ONTOCOM calculates the necessary person-months
effort using the following equation:

PM = PMB + PMM + PMR (1)

PMB , PMM andPMR represent the person months associated to building, main-
taining and reusing ontologies, respectively and are calculated as:

PMX = SizeX ∗
∏

CDXi (2)

Each of the three development phases is associated withspecificcost factors. Expe-
riences in related engineering areas [Kem87, Boe81] let us assume that the most signif-
icant factor is thesize of the ontologyinvolved in the corresponding process or process
stage. In the formula above the size parameterSizeX is expressed in thousands of
ontological primitives – concept, relations, axioms and instances.2 SizeB corresponds
to the size of the newly built ontology i.e. the number of primitives which are expected
to result from the conceptualization phase. In case of ontology maintenance the size of
the ontology (SizeM ) depends on the expected number of modified items. For reuse
purposes the relevant factorSizeR is the (total) size of the original source(s) after be-
ing tailored to the present application setting. In particular this involves the parts of the
source ontologies which have to be translated to the final representation language, the
ones whose content has to be adapted to the target scope and the fragments directly in-
tegrated. Thecost driversCDXi—whereX stays forB, R andM , respectively—have
a rating level (from very low to very high) that expresses their impact on the develop-
ment effort. For the purpose of a quantitative analysis, each rating level of each cost
driver is associated to a weight (effort multiplier -EM ). In the a-priori cost model a

as those proposed in the area of ontology learning are not considered in this work yet.
2For example for an ontology with 1000 concepts and 100 relationsSize will have the value 1.1.

3



team of 3 ontology engineering experts assigned start values between 0.7 and 1.9 to the
effort multipliers, depending on the perceived contribution of the corresponding cost
driver to the overall development costs.3 These values are subject of further calibra-
tion on the basis of the statistical analysis of real-world project data. Additionally the
values of the a-priori model (i.e. containing non-calibrated values) will be included in
the expert validation process, which will is currently being performed as part of the
mapping between ONTOCOM and the engineering methodology DILIGENT.

In the following we turn to a brief description of the cost drivers in ONTOCOM.4

These parameters were derived after surveying recent literature and from empirical
findings of various case studies in the ontology engineering field. For each cost driver
we specified in detail the decision criteria which are relevant for the model user in
order for him to determine the concrete value of the driver in a particular situation.
For example for the cost driver LEXP—accounting for costs produced by the level of
experience of the engineering team w.r.t. ontology representation languages—we pre-
defined the meaning of the effort multipliers as depicted in Table 1. The values of the
corresponding effort multipliers, which have been specified by human experts, are as
follows: 1.60 (Very Low), 1.30 (Low), 1 (Nominal), 0.90 (High) and 0.80 (Very High)
[PBM05a]. The suitable value should be selected during the cost estimation procedure
and used as a multiplier in equation 2.

Very Low Low Nominal High Very High
LEXP 2 months 6 months 1 year 3 years 6 years
Effort Multipliers 1.60 1.30 1.0 0.90 0.80

Table 1: Cost Driver LEXP (Language Experience)

In several cases the decision criteria associated with a cost driver are more complex
than in the previous example and might be sub-divided into further sub-categories,
whose impact is aggregated to the final value of the corresponding cost driver by means
of weights.

2.1 Cost Drivers for Ontology Building

For the ontology building area we defined a list of cost drivers, which are, similar to
[B. 97], divided into three groups:

• Product-related cost drivers account for the influence of ontology character-
istics on the overall costs: i) Instance (DATA) to capture the effects that the
instance data requirements have on the overall process, ii) Ontology Complex-
ity (OCPLX) to express those ontology features which increase the complexity
of the engineering outcomes, iii) Required Reusability (REUSE) to capture the
additional effort associated with the development of a reusable ontology, and
iv) Documentation match to life-cycle needs (DOCU) to state for the additional
costs caused by very detailed documentation requirements.

3A list of the values is available in [PBM05a].
4See [PBM05a] for a detailed explanation of the approach.

4



• Project-related cost drivers relate the dimensions of the engineering process and
its characteristics to the overall costs: i) Support tools for Ontology Engineering
(TOOL) to measure the effects of using ontology management tools in the engi-
neering process, and ii) Multisite Development (SITE) to mirror the usage of the
communication support tools in a location-distributed team.

• Personnel-relatedcost drivers emphasize the role of team experience, ability
and continuity w.r.t. the effort invested in the process: i) Ontologist/Domain Ex-
pert Capability (OCAP/DECAP) to account the perceived ability and efficiency
of the single actors involved in the process (ontologist and domain expert) as
well as their teamwork capabilities, ii) Ontologist/Domain Expert Experience
(OEXP/DEEXP) to measure the level of experience of the engineering team
w.r.t. performing ontology engineering activities, iii) Language/Tool Experience
(LEXP/TEXP) to measure the level experience of the project team w.r.t. the
representation language and the ontology management tools, and iv) Personnel
Continuity (PCON) to mirror the frequency of the changes in the project team.

2.2 Cost Drivers for Ontology Reuse and Maintenance

Additionally to project and personnel cost drivers (as described in Section 2.1)
we defined a set of further 4 cost drivers to deal with the characteristics of on-
tology reuse and maintenance, as reported by recent case studies in these areas
[PBMT05, UHW+98, RVMS99, UCH+98]:

• Ontology Understanding(OU)accounts for the efforts required to get familiar
with the ontologies to be used, a task which is a pre-condition to ontology evalu-
ation and maintenance. It depends on ontology properties such as representation
language or size and on the level of experience of the ontology engineer w.r.t.
this ontology[PBM05a].

• Ontology Evaluation(OE) accounts for the additional efforts related to the eval-
uation phase given a satisfactory ontology understanding level (e.g. for testing
the source ontologies against a specific set of requirements or for documenting
the approach).

• Ontology Modification/Translation(OM/OT) are factors reflecting the costs
involved by adapting the source ontologies to the new setting (e.g. inserting,
deleting ontology concepts) and by translating to a target representation lan-
guage, respectively.

2.3 Evaluation of ONTOCOM

The parametric approach described in this report is currently being validated towards
a reliable method for estimating the costs of ontology engineering. The most impor-
tant evaluation criterium is of course the reliability of its predictions, which however
depends on the amount of accurate project data used to calibrate the model (i.e. adjust
the values of the modifiers and identify eventual correlated cost drivers). On the other

5



hand, a comprehensive evaluation of the model should go beyond the evaluation of its
functionality (i.e. the accuracy of its estimations) and also address issues related to its
usability in typical ontology engineering scenarios, as suggested in common quality
frameworks for information systems (such as [PS04, MSBS03, HLW99, KLS95]; see
[Epp01] for a comprehensive survey on this topic).

For a comprehensive evaluation of the model we rely on the quality framework
for cost models by Boehm, which was adapted to the particularities of ONTOCOM
and Ontology Engineering. Parts of this framework are used in to assess the quality
of the a-priori and the a-posteriori cost models, respectively (see below). According
to this differentiation, the evaluation of the cost model is performed in two steps: in
the first one we evaluate the relevance of the mentioned cost drivers for the purpose of
predicting costs arisen in ontology engineering projects; the remaining aspects of the
framework relate to its capability of reliably fulfilling its goal (i.e. that of estimating
engineering efforts) and will be applied in a second step on the a-posteriori model
resulting from the calibration of the preliminary one.

The original quality framework by Boehm [Boe81] consisted of the 10 features,
which we divided into two categories, depending on their relevance to the a-priori
and the a-posteriori model, respectively. The meaning of the quality criteria has been
adapted to the scope of ONTOCOM.

A-priori evaluation :

definition : has the model clearly defined the costs it is estimating and the costs
it is excluding? Does the estimate include the cost of management, training,
domain analysis, conceptualization, implementation, testing, maintenance?
Does the model clearly define the decision criteria used to specify the rat-
ings of the cost drivers? Does the model use intuitive and non-ambiguous
terms to denominate the cost drivers it involves?

objectivity : does the model avoid allocating most of the cost variance to poorly
calibrated subjective factors? Are the cost drivers defined using objective
decision criteria, which allow an accurate assignment of the corresponding
cost driver ratings?

constructivenesscan a user tell why the model gives the estimates it does?

detail : does the model easily accommodate the estimation of new process mod-
els or is it conceived for a particular ontology engineering process? Does
it give accurate phase and activity breakdowns? Does the model take into
consideration factors related to the main tasks of the engineering process?
Do these sub-tasks correspond to the process model applied in your engi-
neering process? Which phases should be further covered by the model in
order to increase its usability?

stability : do small differences in inputs produce small differences in output
cost estimates?

scope : does the model cover the class of projects whose costs you want to esti-
mate? Is it representative for a wide class of ontology engineering projects?

6



ease of use: are the model inputs and options easy to understand and specify?
Is it easy for you to assess a rating to a cost driver based on the associated
decision criteria?

prospectiveness: does the model avoid the user of information which will not
be well known until the project is complete? Can the model be applied in
early phases of the project as well?

parsimony : does the model avoid the use of highly redundant factors or factors
which make no appreciable contribution to the results?

A-posteriori evaluation :

all items of the former category, plus

fidelity , since this requirement will definitely not be fulfilled after collecting
reliable data from previous projects used to refine the values of the cost
drivers and to discover eventual correlations between them.

The features assigned to the first category will be used as criteria for the refinements
resulting from the application of the cost model to DILIGENT, as described in Section
4.

2.4 Current Limitations

As mentioned above the approach we described in this section is intended as a first
draft towards a reliable cost estimation method for ontology engineering projects. The
relevance of the cost drivers and their quality in terms of scope and granularity will be
assessed during the first step of the model evaluation procedure. In particular the fac-
tors describing the development of new ontologies should be further refined in order to
realistically reflect the efforts invested in ontology building, which is well-recognized
as a tedious and challenging process. Mapping these cost drivers to a fine-grained
process model such as that proposed by the DILIGENT methodology is an excellent
opportunity to prove their expedience in the described context. Finally the usability of
the model is directly related to the collection of real-world project data, which are of
course indispensable for the calibration of the values required for the parametric predic-
tion equation. The case studies currently being carried out according to the DILIGENT
methodology will provide valuable information w.r.t. this second issue.

3 The DILIGENT methodology

This section summarizes the current status of the DILIGENT process model (Fig. 1),
which gives the necessary context for the detailed mapping between the engineering
activities involved in the process and the ONTOCOM cost factors (Section 4).

Scenario In a distributedontology development scenario there are several experts,
with different and complementary skills, involved in collaboratively building the same
ontology. Virtual Organizations, Open Source and Standardization efforts are typical

7



examples of such distributed scenarios, in which geographically dispersed experts be-
longing to different competing organizations come together for the achievement of a
common goal. In these cases, developers are typically also users and, although some
users are not directly involved in changing the ontology, they indirectly participate at
the development process by using the ontology. This collaboration can take place in
many forms – for instance in our particular case we used a peer-to-peer platform to
support collaboration. While not fully substituting the human contributions, automated
agents or tools can be used in parts of the process – ontology learning tools can, for
instance, aid the ontology developers by extracting potential ontological information in
terms of concepts, taxonomies relations or instances from designated texts.

3.1 General process

TheDILIGENT process [PSST04] supports its participants, in collaboratively build-
ing one shared ontology. The process consists of five main activities: (I)build , (II)
local adaptation, (III) analysis, (IV) revision, (V) local update. The process starts by
havingdomain experts, users, knowledge engineersandontology engineersbuild ing
an initial ontology. It suggests that the team involved in building the initial ontology
should be relatively small, in order to more easily find a small and consensual first
version of the shared ontology. It does not require completeness of the initial shared
ontology w.r.t. the domain. Once the first prototype is made available, users can start
using andlocally adapting it for their own purposes. Typically, due to new business
requirements, as well as user and organizational changes, their local ontologies evolve.

A central board of ontology stakeholdersanalyzesthe local ontologies and the re-
quests and tries to identify similarities in users’ ontologies. The board should regularly
revise the shared ontology, so that local ontologies do not diverge too far from the
shared ontology. Therefore, the board should have a well-balanced and representative
participation of the different kinds of participants involved in the process, knowledge
providers, domain experts, ontology engineers and users. Once a new version of the
shared ontology is released, users canupdate their ownlocal ontologies to better use
the knowledge represented in the new version.

The last four stages of the process are performed in a cyclic manner, while a new
cycle is triggered by the release of a new shared ontology.

3.2 DILIGENT process stages

In order to facilitate the ontology engineering process we analyzed the different process
stages in detail, identifying the (i) major roles, (ii) input, (iii) decisions, (iv) actions (v)
output information (vi) and tools that occur in each stage. In Fig. 1 we sketch our results
as before the alignment with the ONTOCOM cost model. A more detailed description
of all items depicted in Fig. 1 can be found in [STV04]. However, as the activities have
undergone a major restructuring due to the alignment with the ONTOCOM cost model
we present a detailed description of the changes occurred at the activity level in Section
4.3.

8



3.2.1 Build

The building stage is based on existing ontology engineering methodologies
[GPFLC03, SS02].

Roles, Input, Output, Decisions, Actions: as in existing engineering methodologies
[GPFLC03, SS02].

Tool support: Building is supported by existing ontology editors like [SEA+02,
NFM00].

Once an initial ontology is (1)built and released, users will start to adapt it locally
for their own purposes.

3.2.2 Local Adaptation

Roles: The actors involved in the local adaptation step are the users of the ontology.
They use the ontology e.g., to retrieve documents – or even data with a more complex
structures such as entire projects – related to certain topics modeled in the ontology.
The main objective of the actors involved in this process stage is not necessarily infor-
mation gathering, but fulfilling setting-specific tasks by means of the ontology.

Input: The local information space in form of existing databases, ontologies or folder
structures and documents, as well as the current version of the shared ontology can be
used as input for the local adaptation phase.

Output: The output of the process step is a locally changed ontology, which better
reflects needs of the local users. Each change is supported by arguments explaining

11. Formalization 
of relevant 
changes

12. Aggregation 
of arguments

13. Documen-
tation

Local
Adaptation

Analysis Revision
Local 

Update

2. Understand 
shared 
ontology

3. Identify 
communalities

4. Map equivalent

5. Identify missing

6. Change locally
7. Organize local 

knowledge

8. Gather 
updated 
ontologies

9. Analyze 
changes 
conceptually

10. Decide on 
changes to be 
made

14. Distribution of 
the new 
ontology

15. Tagging of the 
old ontology

16. Local inclusion 
of the update

17. Alignment of old 
and new 
versions

Build

1. Small group 
builds initial 
shared 
ontology 
according 
established 
methodologies

- Locally 
changed 

Ontologies
- Arguments

Initial
shared

Ontology

Shared 
ontology fits? Sufficient? 

List of 
conceptual 
changes

Documented 
new shared 

ontology

Most important 
changes? 

Consensual 
formalization? Update? 

Local 
ontology 

merged with 
new shared 

one

Figure 1: Process stages (1-5), actions (1-17) and structures

9



the reasons for performing it. Note that changes are not propagated to the shared on-
tology. The change requests are submitted to the central board, which examines them
in the analysis stepand, on the basis of the provided arguments propagates the most
significant one in therevision step.

Decisions: The actors should decide which changes they want to make to their on-
tology. Hence, they should decide if and where new concepts are needed and which
relations a concept should have. They should further provide reasons why they made
certain decisions. To evaluate the decisions we propose to calculate the ratio between
available information and the information which can be classified according to the
adapted ontology. The proportion should ideally be high. Further classifications should
be specific. Local concepts which could not be aligned with shared concepts should be
introduced as local adaptations.

Actions: To achieve the desired output the user takes different actions namely (2)Un-
derstand the shared ontology, (3) Identify the communalities between own and shared
conceptualization, (4) Map equivalent conceptualizations of different actors, (5) Iden-
tify missing conceptualizations, (6) Change conceptualizationand finally (7)Organize
local knowledge according to the conceptualization. The last three actions of the pro-
cess are performed in a cyclic manner until a new common ontology is available and the
entire process step starts again. The single actions performed manually would require a
grounded understanding of ontologies and their underlying formal representation. We
cannot expect such knowledge from all actors participating in the process. The process
should rather be integrated seamlessly in the environment the user works in. Hence we
now indicate for each of the actions the available technology to support the actors.

Tool support: Building is supported by existing ontology editors like [SEA+02,
NFM00]. In [LET04] we described how existing structures on local machines can
be utilized to facilitate the creation of ontologies. The tool supports thus actions (3)
and (5). We have further integrated ontology mapping to support step (4) [ES04]. (6)
is a manual step. (7) is currently a manual step, too, but it could be supported by
semi-automatic classificationcf. e.g.[HSC02].

3.2.3 Analysis

In this stage the board (cf. the description of DILIGENT in Sec. 7) analyzes incoming
requests and observations of changes. The frequency of consecutive analysis stages
could be determined based on the frequency and volume of changes to the local on-
tologies.

Roles: In the analysis stage we can distinguish among three roles played by board
members: (i) The domain expert decides which changes to the common ontology are
relevant for the domain and which are relevant for smaller communities only. (ii) Rep-
resentatives of the users explain different requirements from the usability perspective.
At this stage, work is conducted at a conceptual level. (iii) The ontology engineers
analyze the proposed changes from a knowledge representation point of view foresee-
ing whether the requested changes could later be formalized and implemented (in the
revision step, see below).

Decisions: The board must decide which changes to introduce into the new shared

10



ontology at the conceptual level. Metrics to support this decision could be (i) The
number of users who introduced a change in proportion to all users who made changes.
(ii) The number of queries including certain concepts. (iii) The number of concepts
adapted by the users from previous rounds.

Input: The analysis stage takes as input the ontology changes proposed and/or made
by the participating actors. To be able to understand the change requests, users should
provide their reasons for each request. Both manual and automated methods can be
used in the previous stages. Besides of arguments by ontology stakeholders, one may
consider rationales generated by automated methods, e.g. ontology learning. The argu-
ments underlying the proposed changes constitute an important input for the board to
achieve a well-balanced decision about which changes to adopt.

Actions: To achieve the desired output the board takes different actions namely (8)
Gather locally updated ontologies and corresponding arguments, (9) Analyze the in-
troduced changesand (10)Identify changes presumably relevant for a significant share
of all actors.

Output: The result is a list of the major changes to be introduced that were agreed by
the board. Hence, all changes which should not be introduced into the shared ontology
are filtered. In this stage it is not required to decide upon the final modeling of the
shared ontology.

Tool support: In [PSST04] we presented an extension to an ontology editor, which
provides support for actions (8) and (9) and (10). (8) Ontologies can be collected
from the users in a peer-to-peer system. Different sorting and grouping mechanisms
help the board to analyze the introduced changes systematically. The identification of
relevant changes is in the end a community process. Here we support decision making
by structured argumentation support as described in [TPSS05].

3.2.4 Revision

Roles: The ontology engineer judges the changes from an ontological perspective,
more exactly at a formalization level. Some changes may be relevant for the common
ontology, but may not be correctly formulated by the users. The domain experts should
judge and decide wether new concepts/relations should be introduced into the common
ontology even so they were not requested by the users.

Input: The input for the revision phase is a list of changes at a conceptual level which
should be included into the ontology.

Decisions: The main decisions in the revision phase are of formal nature. All in-
tended changes identified during the analysis phase should be included into the com-
mon ontology. In the revision phase the ontology engineer decides how the requested
changes should be formalized. Evaluation of the decisions is performed by comparing
the changes on conceptual level with the final formal decisions. The differences be-
tween the original formalization by the users and the final formalization in the shared
ontology should be minimal.

Actions: To achieve the desired output the user takes different actions namely (11)
Formalization of the requested changes, (12)Aggregation of argumentsand (13)Doc-

11



umentation. Judging entailsEvaluationof the proposed changes from a knowledge
representation/ontological point of view.

Output: The revision phase ends when all changes are formalized and well docu-
mented in the common ontology.

Tool support: For the revision phase we do not envision any special tool support
beyond the one provided by classical ontology engineering environments.

3.2.5 Local Update

Roles:The local update phase involves only the ontology users. They perform different
actions to include the new common ontology into their local system before they start a
new round of local adaptation.

Input: The formalized ontology including the most relevant change request is the input
for this step. We also require as an input the documentation of the changes. For a better
understanding the user can request a delta to the original version.

Output: The output of the local update phase is an updated local ontology which
includes all changes made to the common ontology. However, we do not require the
users to perform all changes proposed by the board. The output is not mandatory, since
the actors could change the new ontology back to the old one in the local adaptation
stage.

Decisions:The user must decide which changes he will introduce locally. This depends
on the differences between the own and the new shared conceptualization. The user
does not need to update his entire ontology. This stage interferes a lot with the next
local adaptation stage.

Actions: To achieve the desired output the user takes different actions namely (14)
Distribution of the new ontology to all actors, (15)Tagging of the old ontologyto allow
for a roll back, (16)Local inclusion of the updated versionand (17)Alignment of old
and new versions.

Tool support: Changes cannot be introduced without the agreement of the users. From
a usability point of view multiple releases of the shared ontologies occurring with high
frequency might be perceived as disturbing by certain users, especially in the case in
which they are not actively involved in the evolution of the shared ontology. In case
of equivalent but local conceptualizations it must be possible to change to the common
one. From a technical point of view this stage is supported by tools like KAONcf.
[MMS03]. We do not exclude the possibility of conflicts. Unresolved conflicts, though,
will reduce the utility of the ontology, as this is globally inconsistent. Dealing with this
sensitive issue is an ongoing research topic in the Semantic Web community, while first
solutions have already emergedcf. [HvHH+05].

4 Bridging ONTOCOM and DILIGENT

The main objective of this work is to integrate the mentioned cost model ONTOCOM
to ontology engineering processes performed according to the DILIGENT engineering
methodologies. Mapping the two models is mainly aimed at validating and refining

12



the existing cost estimation strategy on the basis of real-world ontology development
case studies. In order to increase the usability of the cost model and to collect high
quality data necessary for its calibration we examined the relevance of the pre-defined
cost drivers w.r.t. the process sub-tasks and actions and precisely define the ways the
data is to be collected. This task resulted in an adaptation of the estimation model
and the process model since missing parts could be identified. Further on we adapted
the high-level parametric effort estimation equation from ONTOCOM to the DILI-
GENT scenario in order to be able to apply the model to the case studies currently
being performed in the basis of this engineering methodology. The necessary data is
to be collected from the case study partners in the near future and will provide first
estimations of the envisioned total development costs and revise the cost model. The
calibrated cost estimation model will allow its users to estimate in each process stage
the future effort necessary to build and maintain the ontology. Cost-related information
might be a significant decision factor for obtaining a feasible trade-off between start-
up/maintenance efforts and ontology utility. The last part of this section reports on
our experiences in trying to determine optimal relation between the initial effort, the
utility and the maintenance effort implied by a concrete DILIGENT-based ontology
development project.

To summarize, bridging the two models was performed according to the following
steps, which will be further elaborated in the remaining of this section:

1. Alignment of the cost drivers with the DILIGENT process stages

2. Definition of the cost function and of data collection procedure in terms of the
process model

3. Examination of the potential process decision support in terms of costs

The data collection and the subsequent calibration of the cost model according to the
outcomes of this task will be performed in the near future in terms of the procedure
described below.

4.1 Mapping the activities in DILIGENT to the cost drivers in ON-
TOCOM

In order to realistically estimate the costs induced by particular DILIGENT processes
the general cost model introduced in 2 has to be customized to the activities and the
stages of the engineering methodology. As introduced in section 3 the DILIGENT pro-
cess is divided into five main stages, where each stage contains a number of sequential
or parallel activities. The ONTOCOM to DILIGENT mapping assigns product, per-
sonnel and project cost drivers to the corresponding engineering activities. Tables 2
to 5 summarize the results of this mapping (for simplification purposes the costs as-
sociated to the analysis and revision phases were joined to a single overview table).
Note that the changes occurred at the cost model level as a result of its alignment to the
engineering methodology have been printed in the tables below in italics.

13



DILIGENT process Cost factor
DILIGENT

phase
DILIGENT activity Product Factors Personal Project

Centralized
Building

Domain analysis Complexity of the
domain analysis

OCAP, DECAP
OEXP, DEEXP
TEXP, PCON

TOOL

Conceptualization
and implementation
of shared ontology

Complexity of the
conceptualization
(DOCPLX), REUSE,
OU, OE, OT, OM,
Ontology Integration
(OI)

OCAP, DECAP
OEXP, DEEXP,
LEXP, TEXP PCON

TOOL

Evaluation of shared
ontology

Ontology evaluation
(OE)

OCAP, DECAP
OEXP, DEEXP,
LEXP, TEXP, PCON

TOOL

Documentation DOCU OCAP, DECAP
OEXP, DEEXP,
TEXP, PCON

TOOL

Table 2: Mapping DILIGENT to ONTOCOM: Centralized Building

4.1.1 Cost drivers relevant for the Centralized Building stage

The calculation of the expected costs for the centralized building stage (cf. table 2)
depends on all cost drivers except the ones for Ontology Maintenance and Required
Development Schedule (SCED). We can leave out the cost driver for maintenance as it
is part of subsequent stages to keep the ontology updated. The cost driver SCED is left
out since we are currently only interested in the estimation of person month rather than
the complete project duration. This applies also for the subsequent process stages.

The cost drivers for ontology reuse should be considered only if the board decides
to utilize existing ontologies to build the initial shared ontology.

We found out that the initial proposal in the DILIGENT process model to reduce
the centralized building to only one activity was too coarse. Hence, we introduced four
activities to capture this phase more accurately. Splitting up the building process into
those activities led us to the conclusion that the cost driver for ontology complexity
was too broadly defined. As a consequence, this cost driver was divided into three
separate new ones, namely one for the complexity of the domain analysis, one for the
complexity of the conceptualization and finally one for the implementation complexity.

Similarly, the cost model so far did not define any cost driver for the integration
of different ontologies. From a process point of view integrating ontologies with each
other is a rather time consuming task. Furthermore the cost driver for tool support
covered only the tools available to formalize the ontology. Experience suggests, that
for each activity different supporting tools are available. The cost driver for tool support
should therefore be interpreted as an average of the quality of the available tools for
each activity. Finally, the evaluation process for the resulting ontology was not covered

14



by any cost driver.
Even though the process defines a separate activity for the provision of arguments,

we concluded that no extra costs driver is needed to calculated the respective effort,
because it is already covered by the documentation cost driver.

4.1.2 Cost drivers relevant for the Local Adaptation stage

The cost drivers relevant to estimate the costs of the local adaptation stage (cf. table
3) are to a large extent the same as those associated to the previous stage. While the
personnel factors relate to the capabilities of the domain experts, the main difference
of this stages compared to the Centralized Building one is the application of the cost
drivers to a multitude of sites and ontologies, while different users belonging to differ-
ent sites are involved in different activities performed on the shared, the locally adapted
and the externally adapted ontologies respectively. The sizes of these ontologies are put
into relation with different groups of cost drivers when considering the calculation of
the resulting costs. All users follow the process defined in the Local Adaptation stage,
therefore each of them incurs some effort to understand, adapt and use the ontology. As
the usage and customization of the shared ontology is theoretically inconceivable with-
out it being previously understood by its users, one major cost category of the Local
Adaptation phase is of course related to the Ontology Understanding effort multiplier
in conjunction with the size of the currently shared ontology. Further on the modifi-
cation of the shared ontology depends on the number of changes performed together
with the corresponding effort multipliers for ontology maintenance in ONTOCOM.
Additionally to the original cost model DILIGENT foresees an activity in which new
requirements are specified, which is mapped to a cost driver in the ontology building
category. If the users decide to adopt externally developed ontologies to conceptualize
their local changes (i.e. instead of newly implementing them in their local ontology)
the corresponding activities imply additional costs, as described in the ontology reuse
category in ONTOCOM. Note that there are no costs for the translation of the ontolo-
gies to be reused since it is assumed that all ontologies in the application scenario are
formalized in the same representation language. When calculating the cost estimation
for the adaptation phase we recommend to use average values for the aforementioned
effort multipliers instead of indicating separate values for each site.

In the previous version of the DILIGENT process model six activities were defined
for the Local Adaptation stage. We decided to homogenize the granularity of the ac-
tivities foreseen for this process stage in accordance with existing ontology building
methodologies. The scope ofUnderstand shared ontologywas therefore broadened
by adding evaluation aspects and is now calledLocal analysis of shared
ontology emphasizing the different location between creation and usage of the on-
tology. The activitiesIdentify communalitiesand Identify missingwere merged and
renamed toSpecification of new requirements . The activityMap equiv-
alent is now part of theOntology instantiation and theIntegration of
reused local ontologies to the shared ontology . Organize local
knowledgeis also included in the newOntology instantiation activity. The
use of the ontology is not an explicit activity in the current version of the methodology,
but since it is a major source for the detection of new requirements we introduced it as

15



DILIGENT process Cost factor
DILIGENT

phase
DILIGENT activity Product Factors Personal Project

Local
adaptation

Local analysis of
shared ontology

OU, OE DECAP, DEEXP,
LEXP, TEXP, PCON

TOOL

Specification of new
requirements

Complexity of the do-
main analysis (DOC-
PLX)

DECAP, DEEXP,
LEXP, TEXP, PCON

TOOL

Ontology utilization DECAP, DEEXP,
LEXP, TEXP

TOOL

Ontology instantia-
tion

DATA OEXP, DEEXP,
OCAP, DECAP,
TEXP, LEXP, PCON

TOOL

Local analysis of ad-
ditional (local) on-
tologies

OU, OE, number of
sites

DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Customization of rel-
evant local ontolo-
gies

OM, number of sites DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Integration of reused
local ontologies to
the shared ontology

Ontology integration
(OI)

DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Modification of
shared ontology

OM DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Argument provision
Evaluation of new lo-
cal ontology

Ontology evaluation
(OE)

DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Documentation DOCU DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Table 3: Mapping DILIGENT to ONTOCOM: Local Adaptation

Ontology utilization .
The local adaptation of the shared ontology, originally performed in the

Change locallyactivity, was spread along four new activitiesLocal analysis
of additional ontologies , Customization of relevant
ontologies , Integration of reused local ontologies to the
shared ontology and Modification of shared ontology to account
for the different ways of realizing it. In case ontologies from other users are reused we
now use the terminology established in the literature for these purposes. Note that this
is a different activity than the modification of the shared ontology, since it implies for
instance the comprehension and evaluation of ontologies developed at different sites
in the local context.

In compliance with established ontology engineering methodologies we further in-
troduced the activitiesArgument provision , Evaluation of new local

16



ontology and Documentation , which were initially not supported by DILI-
GENT to a satisfactory extent.

4.1.3 Cost drivers relevant for the Centralized Analysis and Revision stage

From an cost estimation point of view the centralized analysis and revision stage (cf.
table 4) resembles the building stage, while the former involves both the currently
shared and the locally used ontologies. Each of these ontologies is associated with
different categories of cost drivers. As the original shared ontology is already known
to the board, there are no additional costs to understand it. The board examines in
turn the changes submitted by the users. The number of SITEs, as well as the average
number of changes introduced by the users will thus influence the costs. In the analysis
and revision stage all requirements derive from user requests, thus we do not incur
costs for domain analysis. The local ontologies from the users are available and no
search effort is needed to obtain them. The costs for ontology modification depend on
the actual changes introduced by the board.

W.r.t. the personnel cost drivers we need to distinguish between the average expe-
rience of the users and the experience of the board, while the latter is rated higher than
the former when it comes to ontology engineering.

In the original version of the process we defined six activities for the central-
ized analysis. The activityGather updated ontologiesis now broader and includes
the collection of all relevant information from the users, such as arguments and in-
formal change requests. It is calledInformation collection from users .
Similarly we renamed the activityAnalyze changes conceptuallyto Analysis
of obtained information accounting for the different ways change requests
can be made. We have further introduced a controlling activity,Control of
previously shared ontology , in order to establish a feedback loop in our
process.

The activity Decide on changes to be madeis better described as
Specification of new requirements . Existing methodologies de-
scribe the activityFormalization of relevant changesas four separate activities:
Customization of relevant local ontologies , Integration
of reused local ontologies , Integration of reused local
ontologies to the shared ontology and Modification of
shared ontology . On the one hand the board will reuse the local ontolo-
gies from the users to extend the shared ontology on the other hand user can request
changes informally which than lead to modifications of the shared ontology.

We further introduced explicitly the activity forArgument provision and for
theEvaluation of new shared ontology .

The activitiesAggregation of argumentsandDocumentationare unchanged, though
they were renamed toArgumentation aggregation andDocumentation ,
respectively.

In order to separate activities performed centrally or locally the last activity of this
stage is theDistribution of new shared ontology which was previously
an activity of the Local Update stage.

17



DILIGENT process Cost factor
DILIGENT

phase
DILIGENT activity Product Factors Personal Project

Centralized
Analysis and
Revision

Information collec-
tion from users

SITE

Analysis of obtained
information

OU, OE, number of
sites

OEXP, OCAP,
LEXP, TEXP, PCON

TOOL

Control of previously
shared ontology

OEXP, OCAP,
TEXP, PCON

TOOL

Specification of new
requirements

OCAP, OEXP,
LEXP, TEXP, PCON

TOOL

Customization of rel-
evant local ontolo-
gies

OM, number of sites DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Integration of reused
local ontologies to
the shared ontology

Ontology integration
(OI)

DEEXP, DECAP,
TEXP, LEXP, PCON

TOOL

Modification of
shared ontology

, OM, REUSE OCAP, OEXP,
LEXP, TEXP, PCON

TOOL

Argument provision
Argumentation
aggregation
Evaluation of new
shared ontology

Ontology evaluation
(OE)

OCAP, OEXP,
LEXP, TEXP, PCON

TOOL

Documentation DOCU OCAP, OEXP,
TEXP, PCON

TOOL

Distribution of new
shared ontology

SITE

Table 4: Mapping DILIGENT to ONTOCOM: Centralized Analysis and Revision

4.1.4 Cost drivers relevant for the Local Update stage

For the last stage in the DILIGENT process, the Local Update (cf. table 5) we need less
cost drivers than for the previous stages. The relevant sizes are the number of changes
introduced by the board and the number of sites. As in previous stages the personnel
and management cost drivers remain unchanged. We have identified the three product
cost drivers Ontology Understanding, Ontology Evaluation and Ontology integration
as relevant for this stage.

The activity Distribution of the new ontologywas moved to the previous stage.
The activitiesTagging of the old ontologyand Local inclusion of the updatein the
old version of the process model are technically motivated. Though technically nec-
essary, methodologically they are rather part of theIntegration of new and
old version activity as defined in the new version. This covers also theAlignment
of old and new versions. Before the actual integration of the new version with the old

18



DILIGENT process Cost factor
DILIGENT

phase
DILIGENT activity Product Factors Personal Project

Local update
Control of new
shared ontology

DECAP, DEEXP,
TEXP

TOOL

Local analysis of
changes in the new
shared ontology

OU, OE DECAP, DEEXP,
LEXP, TEXP, PCON

TOOL

Integration of new
and old version

Ontology integration
(OI)

DECAP, DEEXP,
LEXP, TEXP, PCON

TOOL

Table 5: Mapping DILIGENT to ONTOCOM: Local Update

version can be processed we introduced aControl new shared ontology ac-
tivity to allow for feedback to the users. Furthermore we left the decision whether to up-
date to the new version explicitly to the user. TheLocal analysis of changes
in the new shared ontology is the basis for this decision.

4.2 Changes in the Cost Model

Applying the pre-defined ONTOCOM cost drivers to the DILIGENT engineering pro-
cess model revealed several shortcomings of the former w.r.t. two dimensions: the
insufficient coverage of some of the available cost drivers and the lack of support for
tasks such as ontology merging and integration. Additionally to the adjustment of the
model according to these findings, the expert values used by the a-priori cost estima-
tion formula were adapted on the basis of the expertise provided by the DILIGENT
engineering team.

We now turn to a detailed description of the model refinements arisen during the
integration of the two models.

4.2.1 The Cost Driver OCPLX (Ontology Complexity)

The mapping between the DILIGENT process stages and the available product-based
cost drivers made clear that the original cost driver coping with the complexity of the
product to be developed (i.e. the ontology) was not covering all aspects of the ontol-
ogy building process to a satisfactory extent. As already assumed by the authors, from
a product perspective, distinguishing between three high-level phases (building, reuse
and maintenance) has proved to be insufficient for the needs of real-world settings.
Though the OCLPX cost driver, which was initially intended to cover the costs arisen
from this activity, already mentioned some of the most important factors in this field,
the DILIGENT ontology engineers evaluated its impact in the current form as too lim-
ited compared to the impact of other, less relevant and less complex cost drivers such
as REUSE or DOCU (see [PBM05a] for a detailed description of the cost drivers).
Consequently we divided the original OCPLX cost driver into three new parameters
partially covering the overall complexity of the target ontology. The division in three

19



complexity areas was performed at the process level. This design decision is justified
through the assumption that the complexity of the final ontology is implicitly related the
complexity of the underlying building process, in particular the phases domain anal-
ysis, conceptualization and implementation, given a certain competence level of the
personnel and sufficient project experience. The decision criteria for assigning a spe-
cific rating level to the new cost drivers were mainly derived from the ones originally
proposed for the OCLPX driver. Additionally new criteria related to the availability of
useful knowledge sources during the domain analysis phase and to the ontology im-
plementation were introduced (see below). We now turn to a description of the new
complexity parameters:

• Domain complexity (DCLPX)

• Conceptual complexity (CCPLX)

• Implementation complexity (ICPLX)

The domain complexity driver states for the efforts additionally arisen in the engi-
neering project by the particularities of the ontology domain and its analysis during
ontology building. The decision which concepts will be included and in which form
they will be represented in an ontology depends not only on the intrinsic domain to be
modeled (e.g., tourism), but rather on the application domain. The latter also involves
the technical setting and the characteristics of the application in which the ontology
is designed to be integrated to. As a third decision field we introduced the sources
which could be eventually used as additional domain descriptions and thus as an aid
for the domain analysis and the subsequent conceptualization. The global value for the
DCLPX driver is a weighted sum of the aforementioned areas, which are depicted in
Table 6.

In order to realistically classify the complexity of the domain analysis phase in
terms of the pre-defined ratings we identified characteristics of the three areas which
usually influence this measure. For the domain category, we considered the scope
(narrow, moderate, wide), the commonality of the knowledge (be that common-sense
knowledge or expert knowledge) and the connectivity of the domain. The latter is
expressed in the number of interdependencies between domain concepts with ranges
again among three levels (low, moderate and high), while the scope is a feature which
is related to the generality, but also to the perceived amount of knowledge comprised
per default in a certain domain. For example a domain such as some department of an
organization is considered narrower than a domain describing a university, while the
scope of the economics domain is of course classified as wide. The three criteria are
prioritized according to common practices in the ontology engineering area, so that the
connectivity of the domain is considered decisive for establishing the rating of this cost
factor.

The complexity of the requirements which are to be taken into consideration when
building an ontology is characterized here by the total number of requirements avail-
able in conjunction with the rate of conflicting ones and the rate of usability require-
ments, since the latter are seen as a fundamental source of complexity for the building

20



Rating Scale DOMAIN
Very Low narrow scope, common-sense knowledge, low connectivity
Low narrow to moderate scope, common-sense or expert knowledge, low connectivity
Nominal moderate to wide scope, common-sense or expert knowledge, moderate connectivity
High moderate to wide scope, common-sense or expert knowledge, high connectivity
Very High wide scope, expert knowledge, high connectivity

REQUIREMENTS
Very Low few, simple req.
Low small number of non-conflicting req.
Nominal moderate number of req., with few conflicts, few usability req.
High high number of usability req., few conflicting req.
Very High very high number of req. with a high conflicting degree, high number of usability req.

INFORMATION SOURCES
Very Low high number of sources in various forms
Low competency questions and text documents available
Nominal some text documents available
High some unstructured information sources available
Very High none

Table 6: The Domain Complexity Cost Driver DCLPX

process.5

Finally the availability of information sources guiding the engineering team during
the building process or offering valuable insights in the domain to be modeled can be
a major success factor in ontology engineering. When deciding upon the impact of the
information sources on the effort required to perform the domain analysis activity we
suggest considering the number, the type and the form of the sources.

The conceptualization complexity accounts for the impact of the structure of the
conceptual ontology (taxonomy, conceptual graph etc.) and of help techniques such as
modeling patterns on the overall engineering costs. On the other side, the existence of
certain naming and modeling constraints might cause cost increases (see Table 7).

As mentioned in [PBM05a] one of the basic assumptions in ONTOCOM is that the
most significant factor for estimating the costs of ontology engineering projects is the
size of the conceptual model, while the implementation issue is regarded to be a matter
of tools, since a manual encoding of a conceptualization in a particular formal repre-
sentation language is not common practice. However the original ONTOCOM model
did not pay any attention to the semantical differences between the conceptual and the
implementation level, differences which might appear in situations in which the usage
of a specific representation language is mandatory. In this case the implementation of
the ontology requires a non-trivial mapping between the knowledge level of the con-
ceptualization and the paradigms beyond the used representation language. The costs

5Usability requirements express the constraints imposed by a particular characteristics of the ontology
user community w.r.t. its content or content representation.

21



Rating Scale Conceptualization
Very Low concept list
Low taxonomy, high number of patterns, no constraints
Nominal properties, general pattern available, some constraints
High axioms, few modeling pattern, considerable number of constraints
Very High instances, no patterns, considerable number of constraints

Table 7: The Conceptualization Complexity Cost Driver CCPLX

Rating Scale Implementation
Low The semantics of the conceptualization compatible to the one of the impl. lang.
Nominal Minor differences between the two
High Major differences between the two

Table 8: The implementation complexity cost driver ICPLX

arisen during this mapping are stated in the driver ICPX (implementation complexity),
whose ratings are illustrated in Table 8. For simplification reasons we restricted the
range of the ratings to 3 (from low to high).

To summarize the complexity of the target ontology in ONTOCOM is taken into
account by means of three cost drivers, associated with the efforts arisen in the domain
analysis, conceptualization and implementation phase. We analyzed features which
are responsible for cost increases in these fields – independently of the size of the final
ontology, the competence of the team involved or the setting of the current project –
and aligned them to ratings from very low to very high for quantification purposes.

4.2.2 The Cost Driver DOCU (Documentation Needs)

The DOCU measure is intended to state the additional costs caused by detailed docu-
mentation requirements. Likewise COCOMOII we differentiate among 5 values from
very low (many lifecycle needs uncovered) to very high (very excessive for lifecy-
cle needs) as illustrated in Table 9. In the original cost model DOCU was defined as

Very Low Low Nominal High Very High
many LC some LC right-sized to excessive for very excessive

DOCU needs needs LC needs LC needs for LC needs
uncovered uncovered

Table 9: Ratings for Documentation Costs

a building cost driver. During the model evaluation during its integration to the DILI-
GENT framework this driver was found to be relevant to top-level phases distinguished
by the model i.e. also for reuse and maintenance.

22



4.2.3 The Cost Driver OE (Ontology Evaluation)

In the current cost model ontology evaluation is only regarded as part of the reuse
phase. Our mapping to the DILIGENT methodology revealed that ontology evaluation
is in fact performed before reusing external ontologies, but also after building a new
ontology. Hence we broadened the the scope of the evaluation factor to building and
reuse while keeping most of the original meaning (Table 10). While in a reuse situation
the effort required for the evaluation of an ontology was monitored separately as the
one implied for its comprehension, in the building case the level of the cost driver
is determined autonomously of other cost factors by considering the level of activity
required to test a preliminary ontology against its requirements specification document
and for documentation purposes.

Rating Scale Ontology Evaluation

Very Low small number of tests, easily generated and reviewed
Low moderate number of tests
Nominal high number of tests
High considerable tests, easy to moderate to generate and review
Very High extensive testing, difficult to generate and review

Table 10: The Ontology Evaluation Cost Driver OE

4.2.4 The Cost Driver OI (Ontology Integration)

The most important ONTOCOM revision arisen as a result of the mapping to DILI-
GENT was the definition of cost driver for ontology reuse processes, which measures
the costs produced by integrating different ontologies to a common framework. The
integration step is assumed to be performed on ontologies sharing the same represen-
tation language – the efforts required for this activity are covered by the OT (Ontology
Translation) cost driver [PBM05a]. As criteria influencing its complexity we identified
the following:

• overlapping degree among ontologies to be integrated: it is assumed that this
issue is proportional to the effort required by the integration, since it is directly
related to the number of mappings between ontological entities.

• type of mappings between ontological primitives: 1 to 1 mappings are more
easily discovered than multiple one (1 to n or n to m)

• integration quality, in terms of precision (rate of correct mappings) and recall
(rate of mappings discovered): higher quality requirements imply automatically
increased efforts to perform the integration task.

• number of ontologies: it is clear that the integration effort is directly proportional
to the number of sources to be integrated

According to these considerations the ratings for the OI cost drivers were defined as
depicted in Table 11 below.

23



Rating Scale Ontology Integration
Very Low 1-1 mappings, approx. 50% precision and recall required,

barely overlapping, 2 ontologies
Low 1-1 mappings, approx. 60% precision and recall required,

barely overlapping, 2 ontologies
Nominal 1-n mappings, approx. 70% precision and recall required,

some overlapping, 2 ontologies
High 1-n mappings, approx. 80% precision and recall required,

high overlapping, more than 2 ontologies
Very High n-m mappings, approx. 95% precision and recall required,

high overlapping, more than 2 ontologies

Table 11: The Ontology Integration Cost Driver OI

Rating Scale TOOL
Very Low High quality tool support, no manual intervention needed
Low Few manual processing required
Nominal Basic manual intervention needed
High Some tool support
Very High Minimal tool support, mostly manual processing

Table 12: The Tool Support Cost Driver TOOL

4.2.5 The Cost Driver TOOL (Tool Support)

In the current cost model tool support is limited to the support of the reasoning, build-
ing and maintenance activities in the process. However, product factors like domain
analysis, integration and others can and should also be supported by tools. Instead of
pre-defining the types of tools which are usually involved in an engineering project
independently of the process phases in which these tools come into operation, we take
account of the different levels of tool support for the different phases by one general-
purpose cost driver and calculate the final value as the average tool support across the
entire process.

Therefore the ratings for tool support are re-defined on a more general level, as
shown in Table 12 below.

The rating of the cost driver should be specified for each of the most prominent
process phases, while the importance of the corresponding phase is expressed in terms
of weights. The global TOOL value for a specific project is calculated as a normalized
sum of the weighted local values. For the DILIGENT methodology one should specify
the tool support level for the following sub-tasks: domain analysis, conceptualization,
implementation, ontology understanding and evaluation, ontology instantiation, ontol-
ogy modification, ontology translation, ontology integration and documentation.

24



4.3 Changes in the DILIGENT process

The mapping between the cost model and the DILIGENT process revealed some prob-
lems w.r.t. the current definition of the process activities (Section 4.1). The process
activities were not defined at the same conceptual or granularity level. For instance,
the previous model contained activities such asUnderstand shared ontology (2)and
Map equivalent conceptualizations of different actors (4). While the first one requires
a deep conceptual understanding of the ontology, the second activity describes the tech-
nical conclusions from the previous one. We decided to define all activities on the same
conceptual level and provide technical requirements of solutions within those activities.
The roles, input and output factors and decisions were not changed. The new process
model is depicted in figure 2.

4.3.1 Changes to Centralized Build

As aforementioned the build phase in the DILIGENTprocess model was so far under-
specified, as we assumed that this step would be performed according to established
engineering methodologies. In order to achieve a homogeneous description of the pro-
cess activities from a granularity point of view we decided to further specify this phase
at the same level of detail as the subsequent ones. As summarized in [GPFLC03]

Local
Adaptation

6. Local analysis of shared 
ontology

7. Specification of new 
requirements

8. Ontology utilization

9. Ontology instantiation

10.Local analysis of additional 
ontologies

11.Customization of relevant 
ontologies

12.Integration of reused local 
ontologies to the shared 
ontology

13.Modification of shared 
ontology

14.Argument provision

15.Evaluation of new local 
ontology

16.Documentation

Build

1. Domain analysis

2. Conceptualization 
and implementation 
of shared ontology

3. Evaluation of shared 
ontology

4. Documentation

5. Argument provision

- Locally 
changed 

Ontologies
- Arguments

Initial
shared

Ontology

Shared 
ontology fits? Sufficient? 

Analysis

17.Information collection from 
users

18.Analysis of obtained 
information

19.Control of previously shared 
ontology

20.Specification of new 
requirements

21.Customization of relevant 
local ontologies 

22.Integration of reused local 
ontologies

23.Integration of reused local 
ontologies to the shared 
ontology

24.Modification of shared 
ontology

25.Argument provision

List of 
conceptual 
changes

Most important 
changes? 

List of 
conceptual 
changes

Most important 
changes? 

26.Evaluation of new 
shared ontology

27.Documentation
28.Argumentation 

aggregation

29.Distribution of new 
shared ontology

Revision

Documented 
new shared 

ontology

Consensual 
formalization? 

Documented 
new shared 

ontology

Consensual 
formalization? 

Local 
Update

30.Control new shared 
ontology

31.Local analysis of 
changes in the new 
shared ontology

32.Integration of new and 
old version

Update? 

Local 
ontology 

merged with 
new shared 

one

Update? 

Local 
ontology 

merged with 
new shared 

one

Local 
ontology 

merged with 
new shared 

one

Figure 2: Process stages (1-5), activities (1-32) and structures

25



the available methodologies separate the building process in different activities, while
each of the methodologies focuses on different aspects. For our purposes and for the
alignment with the cost model we separated ontology building into the four activities
Domain analysis, Conceptualization and implementation of shared ontology, Evalua-
tion of shared ontology, Argument provisionandDocumentation.

Domain analysis In our case the domain analysis covers all tasks necessary to con-
ceptualize the ontology. We thereby assume that the result of the feasibility study for
the project was positive. A detailed definition on the execution of a feasibility study
can be found in the OTK methodology [SAB+03, SS02]. The domain analysis itself
covers tasks as defined in the specification phase in METHONTOLOGY [GPFLC03].
In the OTK methodology this activity is performed in the kickoff phase. We empha-
size that the domain analysis includes the definition of modules covering sub domains
in order to keep the building trackable. Competency questions are a good possibil-
ity to capture detailed requirements. An interesting special case occurs when existing
ontologies should be reused. Here, domain analysis involves also the identification
and selection of the reusable ontologies [PM00]. METHONTOLOGY introduces also
management activities supporting the building process. These are of course necessary
during the entire building process. However, as our process explicitly assumes only
loose control we leave the level of management to the participants and their particular
requirements. Knowledge acquisition is foreseen as a parallel activity to the building
process in METHONTOLOGY. We acknowledge that knowledge acquisition is per-
formed in all stage of the process but rather regard it as an implicit activity rather than
an explicit one.

Conceptualization and implementation of shared ontology In contrast to other
methodologies we subsume conceptualization and implementation of the ontology as
one activity. As most building processes are supported by ontology editors, the actual
implementation is mostly done automatically. For the applicant of the methodology
the separation seems thus artificial. Conceptualization and implementation covers the
tasks essential to build the shared ontology.

Argument provision In existing ontology building methodologies the capturing of
the argumentation during the construction was neglected. In the field of Software
Engineering capturing of arguments during the requirements analysis has been well-
researched in the last decade. We have introduced an argumentation model tailored
for the specific requirements of ontology building and maintenance [TPSS05]. In our
process the explanation of the design principles underlying the conceptual model is of
particular interest, since not all users are necessarily involved in the first building pro-
cess but are allowed to change the ontology in later stages. Therefore, the arguments
in favor and against certain design decisions must be captured to allow the users of the
ontology to extend and change the shared ontology adequately.

Evaluation of shared ontology Ontology evaluation is not a mature area of ontology
engineering yet. However several approaches proposes partial solutions for the evalu-

26



ation issue, from a general-purpose or a usage-related perspective. Approaches in the
first category introduce methods to evaluate ontology content, i.e. the quality of the
conceptual model [GP01, GW02, UHW+98]. Assessing the usability of an ontology
in a target application context is addressed for example in OntoMetric [LTGP04], a
framework for selecting appropriate ontologies. Additionally to these categories, we
find approaches aiming at evaluating the a-posteriori usage of an ontology for a specific
task such as semantic annotation of texts.

Documentation Ideally the documentation step should be performed in parallel to
the aforementioned activities, in order to ensure an efficient process quality control and
improve the reusability of the prototypical ontology, which is subject of further changes
on the basis on its usage in a variety of environments in the distributed setting. Likewise
Software Engineering it is crucial that the documentation is performed not only at the
implementation level, but during the entire building process, including domain analysis
and evaluation. Additionally to standard documentation procedures, in our process it is
helpful to capture the participants in the original building process, who were involved
in the initial design decisions.

4.3.2 Changes to Local Adaptation

New shared ontologies are made available to users either by push or pull mechanisms.
The users deciding to utilize a new version of the shared ontology first get familiar with

Centralized 
Building

Domain analysis

Evaluation of shared 
ontology

Argument provision
Conceptualization and 

implementation of 
shared ontology

Documentation Argument provision
Conceptualization and 

implementation of 
shared ontology

Documentation

Figure 3: Centralized Building: Activity Diagram

27



the shared ontology in order to be able to use it correctly. In the next step they may
interact with the ontology in parallel in a threefold manner, depending on the concrete
application setting. Some users will use the ontology only for retrieving information
either locally or from other participants. Others will also actively instantiate the ontol-
ogy with their own information. Performing both activities the user may detect missing
conceptualizations in the shared ontology. This and the analysis of shared ontology can
result in the local definition of new requirements for the shared ontology.

Conceptualizing the new requirements incorporates activities as they are known
from classical ontology engineering. Ontology users might decide to integrate existing
ontologies (originating from different local parties involved in the process) to the local
one or to conceptualize the desired changes from scratch. As other users, in particular
the board, should be able to understand these changes, argument provision becomes
crucial. Documentation is the last activity in the process. We acknowledge though that
documentation was rarely done in most of our case studies. Figure 4 visualizes the
dependencies between the single activities.

To achieve the desired output the user takes different activities namelyLocal analy-
sis of shared ontology Specification of new requirements Ontology utilization Ontology
instantiation Local analysis of additional (local) ontologies Customization of relevant
(local) ontologies Integration of reused (local) ontologies to the shared ontology Mod-
ification of shared ontology Argument provision Evaluation of new local ontology
Documentation

The evaluation of the adapted shared ontology might suggest that not all local re-
quirements are met yet, thus we define a cyclic behavior inside the process stage. The
single activities performed manually would require a grounded understanding of on-
tologies and their underlying formal representation. We cannot expect such knowledge
from all actors participating in the process. The process should rather be integrated
seamlessly in the environment the user works in.

Local analysis of shared ontology The goal of this activity is to understand the
ontology. An ontology is a conceptualization of the real world. It should furthermore
be the result of a common agreement w.r.t. modeling issues. A completely shared
ontology can never be engineered, since different people have varying interpretations of
the real world. Therefore it is necessary as a first action to relate the own interpretation
of the world to the shared conceptual model. Thus the user should learn where the
different concepts are located in the ontology and how they are interrelated with other
concepts. The ontology can be very complex, thus comprehension of the ontology
depends mainly on its presentation. Different technologies can be used to provide the
user with a context-sensitive view on the ontology to reduce complexity.

After completing this activity the user is able to instantiate the ontology and to use
it to answer her information needs. It is not necessary that the user understands the
entire ontology immediately. The analysis can be performed gradually. However for
the parts the user modifies, instantiates or uses in subsequent activities she must first
understand what these parts are about.

In order to understand the shared ontology the user should first look at the differ-
ent modules (implicitly) defined in the ontology. She can then consult the definitions

28



of the concepts and read the available documentation. The arguments underlying the
conceptualization may also be helpful.

As a guideline the user should start to understand the concept hierarchy before
looking at the relations between the concepts. Defined axioms and inference rules
are likely to be regarded last, because their understandability assumes a satisfactory
comprehension level of the concepts, taxonomy and interconceptual relations. The
meaning of the instances defined in the shared ontology may serve as good examples.

The analysis of the shared ontology is followed by three alternative activities. The

Local 
Adaptation

Local analysis of 
shared ontology

Ontology InstantiationOntology utilization
Specification of new 

requirements
Ontology InstantiationOntology utilization

Specification of new 
requirements

Evaluation of new local 
ontology

Documentation

Local analysis of 
additional (local) 

ontologies
Argument provision

Modification of shared  
ontology

Local analysis of 
additional (local) 

ontologies
Argument provision

Modification of shared  
ontology

Customization of 
relevant local 

ontologies

Integration of reused 
local ontologies to the 

shared ontology

Figure 4: Local Adaptation: Activity Diagram

29



user might organize her local knowledge according to the ontology, modify it in order
to improve its usability in the local context or use it to retrieve knowledge from the
system. Hence, the underlying ontology can actually change depending wether the
user has modified it in any of the parallel activities.

Ontology utilization This activity summarizes the general utilization of the ontol-
ogy as a means to query and gather local and remote information. Depending on the
restrictions imposed by privacy laws, the utilization can be automatically monitored in
order to detect usage patterns. Frequency of use of certain entities in the ontology can
enable the board to enhance the quality of the conceptual model. In case users miss
concepts when formulating their information needs new requirements emerge.

The activity continues during the entire local adaptation step and is not proceeded
by other activities.

Ontology instantiation Ontology instantiation also known as ontology population is
the activity of classifying the available knowledge in terms of the ontology. The local
information is one source of available knowledge6 Other sources are the participants in
the process and external providers. With this activity all participants contribute to the
collective knowledge available in the system. Users also integrate knowledge they have
retrieved from third parties into their own knowledge base. Relations between own
and other conceptualizations beyond the already shared ontology might be detected
during the integration of external knowledge. This activity includes also the provision
of mappings between equivalent conceptualizations from different users.

The local and remote information may contain knowledge which cannot be for-
malized in the shared ontology and thus can lead to the specification of new local
requirements. Depending on the ontology and the objective of system, information can
be organized thematically. In our case studies the ontology comprised a topic hierar-
chy. Which knowledge is finally encoded in the ontology depends on the design of
the ontology and the user needs. We have observed also different instantiation styles.
Some users are very enthusiastic and instantiate the ontology very quickly other are
more reluctant and shy away from the initial extra effort.

The activity continues during the entire local adaptation step and is not proceeded
by other activities.

Specification of new requirements During the local adaptation phase, the more im-
portant activities from an ontology engineering perspective occur when the user real-
izes that the shared ontology does not conform to the requirements of the local ap-
plication setting and should thus be modified towards these additional requirements.
The objective of this activity is to identify and specify the requirements which lead to
modification of the ontology.

The task(s) the ontology is involved in play(s) an important role in identifying the
requirements. The possibilities are wide-ranging. As already mentioned in the build
phase trained ontology engineers can use ORSD documents to capture the require-
ments in this phase [Sur03]. Other methods to identify requirements have also been

6In our case studies the local information consisted of documents, contacts, emails, Web bookmarks etc.

30



mentioned in conjunction with traditional ontology building efforts.7 Requirements
can be derived from competency questions as it was suggested in [GF95]. Existing
ontologies might be the driver for new requirements as well. In our case study the
identification of requirements through the analysis of existing folder structures was
particularly useful. It is important to note that requirements can also come from other
users – one participant in the process captures the requirements of other users as a
representative.

The user must decide weather to implement the requirements consulting other
users, adapting the local ontology on his own or to submit the requirements to a repre-
sentative.

Local analysis of additional (local) ontologies Depending on the ontology devel-
opment scenario the user might have access to other parties’ ontologies and integrate
their local adaptations in his own application ontology as a resource saving alternative
to a new build. This activity is related to the activities defined in ontology building
by reuse. As described above in the reuse setting ontology engineers must thoroughly
examine the candidate ontologies. The ontology engineer should for example consider
which conceptualizations must be change, removed, relocated, which definitions and
documentations must be changed etc. Note that the translation of the ontologies in-
volved in this reuse attempt is not an issue in DILIGENT, which assumes the usage of
a unique representation language for the shared and local ontologies in the distributed
scenario.

Reusing existing ontologies is a feasible alternative for both technically versed on-
tology engineers, which follow established reuse methodologies to fulfill this task, and
eventually less experienced ontology users. The users should analyze the external on-
tologies in a straightforward manner. The shared ontology allows for examining only
certain parts of the ontology and consider only them for reuse. Furthermore, users
reuse other ontologies although they might not exactly fit their requirements, since
they do not agree building it on their own. If small modifications of the shared ontol-
ogy are needed to meet the user requirements then users will not consider other local
ontologies.

In any case the result of the activity is the decision from whom to reuse which parts
of the remote local ontologies.

Customization of relevant local ontologies The goal and the content of this activity
depend on the result of evaluating external ontologies w.r.t. their local suitability. In
the extreme fusion case the reused ontology serves only as an input to be completely
reorganized. In the case of integration parts of the remote ontologies can be reused
unchanged. Depending on the reuse level the remote ontologies might be subject of
more or less radical customization measures. However, a lower customization effort
will help the board to find reuse patterns.

7The users in our case study were mainly missing topics to be able to classify their documents in a
enough fine granular manner. In this case the requirements analysis was less structured and mainly driven
by the users experiences during the instantiation of the ontology.

31



The result of this activity is an ontology which can be integrated with the local
shared ontology.

Integration of reused local ontologies to the shared ontology Finally the reused
remote ontologies should be locally aligned to the shared ontology. This may result in
the modification in their shared ontology. Again generalization or refinements can be
necessary in order to integrate the reused ontologies.

Additionally to the traditional reuse activity the integration involves also a map-
ping task. The users keep a direct reference to the reused conceptualizations, with the
beneficial consequences that they can access the remote users data and that the board
can recognize communalities between different users, and utilize this knowledge when
changing the shared ontology.

The result of this activity is an locally adapted shared ontology with adaptations
based on remote users ontologies. The origin of the adaptations is stored in mappings
between the reused and local ontologies.

Modification of shared ontology The modification of the shared ontology is another
option to adapt it to the local requirements. Modifications range from small changes
e.g.adding a new concept or relation to a complete restructuring of the shared ontol-
ogy. The local requirements can also implicate that an entire new module should be
integrated into the shared ontology.

The user should decide which parts of the ontology should be changed and how to
implement the desired changes. The changes the user introduces may point to missing
abstractions in the existing model.

Furthermore this activity starts from similar assumptions as they were described in
the Sensus methodology [SPKR96]. The shared ontology represents far more knowl-
edge than the user actually needs. This implies that the user will remove a number of
conceptualizations from the shared ontology and maintain only a smaller part. In this
case the board has the challenging task to decide which parts of the shared ontology
should be removed because they are not needed and which parts are e.g. to general to
be used but helpful for inter-user communication.

This activity includes the conceptualization as well as the implementation of the
required changes.

As a result of this activity the local ontology fulfills the local requirements.

Argument provision As far as possible the user should track the reasons why certain
modeling decisions were performed in a certain way. We propose the provision of
arguments according to a specific model [TPSS05, PTS04] to capture these decisions.
The model defines the process of providing arguments and several kinds of arguments,
and aids decision making. While the latter is particularly relevant to collaborative
ontology engineering, the first two aspects will help the board to understand the users
decisions.

Arguments can range from simple usage examples (e.g., some document could not
be classified using the ontology, some query could not be answered by the ontology
to a satisfactory extent) to twisted argumentations trading-off the pro’s and con’s of a

32



decision. The more expressive the argumentation is, the easier it will be for the board
to understand the reasons for the decisions and to integrate the newly submitted change
requests to the shared ontology. Additionally, users intending to reuse the conceptu-
alization – as aforementioned in the previous, reuse-oriented activities – are provided
considerable support to comprehend and use the corresponding ontology correctly.

Evaluation of new local ontology The evaluation procedure is divided into three
categories. The syntactic, semantic and pragmatic evaluation of the new local ontology.
As the user utilizes the ontology mainly to organize his own knowledge the pragmatic
evaluation is predominant in this activity. She can quickly realize wether the proposed
way of organizing her knowledge in the shared ontology is sufficient to capture her
local knowledge. The user requirements change with time, hence a sufficient local
ontology can become insufficient after some time. In this case the user will start the
process again and capture the emerging requirements.

Documentation As far as possible the user should document the changes introduced
into the shared ontology. Documentation includes the meta data provision like, when
a change was performed, who has performed the change, if the change was done on
request from an other user etc. Furthermore, brief description of the added conceptual-
izations will facilitate the boards task.

4.3.3 Changes to Analysis and Revision

The board meets regularly in order to include emerging requirements into the shared
ontology. To achieve the desired output the board takes different activities namelyIn-
formation collection from users Analysis of obtained information Control of previously
shared ontology Specification of new requirements Customization of relevant local on-
tologies Integration of reused local ontologies to the shared ontology Modification of
shared ontology Argument provision Argumentation aggregation Evaluation of new
shared ontology DocumentationandDistribution of new shared ontology.

We now detail each one of the proposed activities:

Information collection from users Before the board can identify new requirements
it collects the local ontologies from all participants, the respective argumentation,
change requests provided by other means, usage information and finally mapping in-
formation.

Depending on the deployed application the gathering of the locally updated ontolo-
gies can be more or less difficult. It is important that the board has access to the local
changes from users to be able to analyze them.

This activity reminds of the classical reuse approach in which candidate ontologies
must be gathered. In contrast to the classical reuse approach the ontologies which must
be integrated into the shared ontology is given. Furthermore the domain and application
scenario are already defined. Usage information for the ontology is available, hence
the relevance for the shared ontology is easier to determine. No translation must be
performed in order to integrate the ontologies.

33



Control of previously shared ontology The goal of this activity is to examine the
changes introduced in the last cycle. Specifically the board checks how many users
have integrated the proposed changes and the tasks the shared ontology was used for.
The board can detect if the users accept the common conceptualizations, if the analysis
methods are appropriate and if the users understand and agree with the view of the
board.

Specification of new requirements New requirements for the shared ontology can
be obtained by analyzing the change requests, the changes in the local ontologies and
the arguments provided by the users.

Analysis of obtained information It might also be interesting not only to analyze
the final user ontology, but also its evolution. However, with an increasing number of
participants this in-depth analysis might be unfeasible. Since analysis takes place at
the conceptual level, reverse engineering is usually an important technique to get the
conceptual model from the formalized model [GPFLC03].

Centralized 
Analysis

Analysis of the 
obtained information

Information collection 
from users

Specification of new  
requirements

Control of previously 
shared ontology

Specification of new  
requirements

Control of previously 
shared ontology

Argument Provision
Customization of 

relevant local 
ontologies

Modification of shared  
ontology

Argument Provision
Customization of 

relevant local 
ontologies

Modification of shared  
ontology

Integration of reused 
local ontologies to the 

shared ontology

Figure 5: Analysis: Activity Diagram

34



The number of change requests may be huge and also contradictory. First the board
must identify the different areas in which changes took place. Within analysis the board
should bear in mind that changes of concepts should be analyzed before changes of
relations and these before changes of axioms. Good indicators for changes relevant to
the users are (i) overlapping changes and (ii) their frequency. Furthermore, the board
should analyze (iii) the queries made to the ontology. This should help to find out
which parts of the ontology are frequently used. Since actors instantiate the ontology
locally, (iv) the number of instances for the different proposed changes can also be used
to determine the relevance of certain adaptations.

Customization of relevant local ontologies After analyzing the changes and assign-
ing them according to the concrete ontology modules they address, the board has to
identify the most relevant changes. Based on the provided arguments the board must
decide which changes should be introduced. Depending on the quality of the argu-
ments the board itself might argue about different changes. For instance, the board
may decide to introduce a new concept that better abstracts several specific concepts
introduced by users, and connect it to the several specific ones. Therefore, the final
decisions entail some form of evaluation from a domain and a usage point of view.

Integration of reused local ontologies to the shared ontology The customized
reused local ontologies must be integrated with shared ontology. Here again it might
be necessary to include abstractions or refinements into the shared ontology in order to
be able to integrate the reused ontologies adequately.

Modification of shared ontology Similar to established methodologies the requested
changes must be formalized with respect to the expressivity of the ontology. We will
not go into detail with this step since it is already described in methodologies referred
to in the related work section.

Argument provision As described above we have conceived an argumentation
framework to support the discussion taking place in collaborative ontology engineer-
ing. The board is also supported in making decisions.

Evaluation of new shared ontology The board will evaluate the shared ontology
from an syntactic and semantic perspective.

Argumentation aggregation As arguments play a major role in the decision process
we expect that the changes which are eventually included into the common ontology
are supported by many arguments. One of the reasons for keeping track of the argu-
ments is to enable users to better understand why certain decisions have been made
with respect to the ontology. Hence, the user should be able to retrieve the most con-
vincing arguments made to introduce a certain change. Here the board aggregates the
arguments exchanged during their discussion and makes them more accessible.

35



Documentation With the help of the arguments, the introduced changes are already
well documented. However, we assume that some arguments might only be under-
standable for the domain expert and not for the users. Hence, we expect that the
changes should be document to a certain level. In particular it should be documented
who supported certain conceptualizations and the alternatives.

Distribution of new shared ontology Analogously to step 3.2.3 the shared ontol-
ogy must be distributed to the different participants. Depending on the overall system
architecture different methods can be applied here.

4.3.4 Changes to Local Update

As a result of the revision stage the participants in the process are aware of the new
version of the shared ontology. They must now decide which parts - if any - they
use from the new shared ontology. Switching from one ontology to an update incurs
effort for understanding the new parts and partly reorganizing the local knowledge

Revision

Argumentation 
aggregationDocumentation

Argumentation 
aggregationDocumentation

Evaluation of new 
shared ontology

Distribution of  new 
shared ontology 

Specification of new  
requirements

Figure 6: Revision: Activity Diagram

36



base. The gains of updating are lower communication effort and actual information.
The incentives for the user to update are higher the more change requests to the shared
conceptualizations are included in the shared ontology. Thus the user controls how
many of the own proposals are included in the new version and in which way they are
implemented. Furthermore the user analyzes all changes to the shared ontology and
decides whether to finally integrate the new version with her local ontology.

This stage can be divided into the three activitiesControl of new shared ontology
Local analysis of changes in the new shared ontologyandIntegration of new and old
version.

Control of new shared ontology Likewise the board controlling the acceptance of
the shared ontology the user controls the implementation of her own proposals. The
user controls whether the proposed changes are implemented in the new shared ontol-
ogy at all, conceptually or as proposed. This allows the user to judge which of her
proposal are interesting for the community. Furthermore she learns how the board
translates the proposals into conceptualizations in the shared ontology.

Local analysis of changes in the new shared ontologyThe user changes locally to
the new shared ontology only if her benefits predominate the effort of updating. The
analysis of the introduced changes inform her wether the changes effect her or not.

Technically this step requires the construction of an delta view on the ontology.

Local 
Update

Local analysis of 
changes in the new 

shared ontology

Control of new shared 
ontology

Integration of new and 
old version

Figure 7: Local Update: Activity Diagram

37



Integration of new and old version The result of the analysis is the decision to inte-
grate completely or partially the new shared ontology with the existing local ontology.
The new shared ontology may contain refinements of existing model. In this case the
user should consider to adapt her instantiations with respect to the refinements. The
outcome of the controlling activity allows the user to decide which restructuring she
must perform in order to stay in line with the new model. The new version can also
be a model for knowledge which was previously not covered by the shared ontology.
In this case the existing local knowledge can be the source for the population of the
ontology in the next stage.

From a technical point of view we could identify several requirements from the
case study. Acceptance and usability of the process model largely depends on the ease
of translation from old to new versions. As in other systems the possibility to switch
automatically between the different versions of the ontology enhances user experience.
The system must support the user to easily integrate the new version into his local
system. It must be guaranteed that all annotations made for the old version of the
ontology are available in the new version.

The user should be enabled to use from now on the shared model instead of his
own identical model. Furthermore, the board might have included a change based on
arguments the user was bringing forward, but has drawn different conclusions. Here
the user can decide whether he prefers the shared interpretation. Other option might
emerge in the course of the case studies.

To ensure user satisfaction, the system must enable the user to return to his old
version of the ontology at any time. The user might realize that the new updated version
of the common ontology does not represent his needs anymore and thus want to leave
the update cycle out. To reach a better acceptance this must be possible and is foreseen
in the methodology. The user can always balance between the advantages of using a
shared ontology or using his own conceptual model.

5 A Cost Function for DILIGENT Processes

In Section 4 we described the mapping between the ONTOCOM cost model and the
DILIGENT methodology, which aimed at defining the role the cost drivers listed in the
former play w.r.t. the efforts invested in individual phases and activities of the latter.
On the basis of this mapping and the changes triggered by this task in both models we
customized the general person month equation in ONTOCOM to the particularities of
DILIGENT processes. The resulting function was further simplified in order to allow
the elaboration of optimization criteria in DILIGENT, which we assumed to be useful
as decision support for state transitions in the incremental engineering cycle.

5.1 The complete cost function

The general-purpose ONTOCOM equations 3 and 4

PM = PMB + PMM + PMR (3)

38



PMx = Sizex ∗
∏

CDxi (4)

which assume a linear engineering process, in which an ontology is built from
scratch, by reuse or both and is further maintained by its users, were adapted to the
cyclic model of DILIGENT as in equation 5 below:

PM = PMCB +
n∑

i=1

(PMLAi
∗mi + PMCARi

+ PMLUi
∗mi) ∗ pi, (5)

wherePMCB , PMLAi
, PMCARi

andPMLUi
are the person months necessary

for the initial building phase and for the local adaptations, centralized analysis and
revision and local updates in cyclei, respectively. Note thati iterates over the number
of cyclesn and that in every cycle the number of sites participating at the process is
considered through the variablemi. Finally, we introduced the parameterp (p > 0) as a
learning rate between consecutive cycles in the process model. Usually we can assume
thatp ≤ 1, which means that the team involved in the project improves its experience
level and is able to solve the same tasks more efficiently (i.e. with less costs) from
one building cycle to another. However, while the positive learning rate is intended to
reflect the changes occurring on the effort multiplier level between consecutive cycles,
the size of the resulting ontologies (i.e. the size of the locally modified ontologies in
the local adaptation phase, the size of the shared ontology obtained after a new board
meeting and the size of the final locally updated one) vary from development cycle to
development cycle. This observation justifies the usage of the indexi in the second part
of equation 5 for the person months variablesPMLAi , PMCARi andPMLUi , since
their values are vary with the size of the ontologies involved.

We elaborated the detailed cost functions for each of the 4 enumerated process
stages: centralized building, local adaptation, centralized analysis and revision and
local updates.

5.1.1 The costs of the Centralized Building phase

PMCB = SizeCBB ∗
∏

PRODCBB ∗
∏

PERS ∗ TOOL +

SizeCBR ∗
∏

PRODCBR ∗
∏

PERS ∗ TOOL (6)

The efforts required by the centralized building phase are divided into the ones
invested in building a new ontology and the ones invested in reusing external ones.
The product effort multipliers are as follows:

∏
PRODCBB = DCPLX ∗ CCPLX ∗ ICPLX ∗REUSE ∗

DOCU ∗OE ∗OI (7)

39



∏
PRODCBR = OU ∗OE ∗OI ∗OT ∗OM ∗DOCU (8)

In case of the personnel factors the multiplier values is computed as in 9.

∏
PERS = OCAP ∗DECAP ∗OEXP ∗DEEXP ∗

PCON ∗ LEXP ∗ TEXP (9)

Note that the reused sizeSizeCBR should be calculated as the sum over all single
ontologies reused, while the reuse equation contained in 6 was simplified in comparison
to the original one in ONTOCOM [PBM05a].

5.1.2 The costs of the Local Adaptation phase

PMLA = SizeLAS ∗
∏

PRODLAS ∗
∏

PERSLAS ∗ TOOL +

SizeLAM ∗
∏

PRODLAM ∗
∏

PERSLAM ∗ TOOL +

SizeLAR ∗
∏

PRODLAR ∗
∏

PERSLAR ∗ TOOL (10)

The first part of the equation calculates the effort required to evaluate and use the
shared ontology (SizeLAS is the size of the shared ontology). The rest accounts for the
additional efforts arisen if external ontologies (i.e. developed locally at different sites)
are analyzed for being reused in the local context or if the shared ontology needs to be
modified (SizeLAM is the modified size).

∏
PRODLAS = DATA ∗OU ∗OE ∗OI ∗DOCU

∏
PERSLAS = DEXP ∗DECAP ∗ LEXP ∗ TEXP ∗ PCON (11)

Note that in the product equation we include the DATA driver to measure the costs
of the instantiation of the ontology, while the personnel equation incorporates exclu-
sively factors related to domain experts.

If the shared ontologies need to be refined in order to fulfill local needs, the ontol-
ogy users may decide between reusing existing ontologies, which have been developed
by other users in the network, or by performing the desired modifications themselves.
For the first case the effort multipliers are listed in equation 12. The second one is
addressed by 13.

∏
PRODLAR = OU ∗OE ∗OM ∗OI ∗DOCU

∏
PERSLAR = DEXP ∗DECAP ∗ LEXP ∗ TEXP ∗ PCON (12)

40



Again the parameterSizeLAR is understood as the total size of the reused on-
tologies. Integration costs arise, of course only in case external ontologies are reused
(instead of separately modifying the shared ontology, the local adaptation may resort
to existing modifications fulfilling the same requirements).

∏
PRODLAM = OM ∗OI ∗DOCU

∏
PERSLAM = DEXP ∗DECAP ∗ LEXP ∗ TEXP ∗ PCON (13)

5.1.3 The costs of the Centralized Analysis and Revision phase

PMCAR = SizeCARR ∗
∏

PRODCARR ∗
∏

PERSCARR ∗ TOOL ∗ SITE +

SizeCARM ∗
∏

PRODCARM ∗
∏

PERSCARM ∗ TOOL ∗ SITE(14)

In this equation the first part computes the efforts needed to evaluate the changes
performed locally, while the second part of the formula states for the efforts invested
in executing these modifications. Note thatSizeCARR is the total size of the local
ontologies. The parameter SITE accounts for eventual additional costs produced by
the distributed setting. Again we elaborate the product and personnel multipliers (Eq.
15 and 16).

∏
PRODCARR = OU ∗OE ∗OI ∗DOCU ∗OE

∏
PERSCARR = OEXP ∗OCAP ∗ LEXP ∗ TEXP ∗ PCON (15)

∏
PRODCARM = OM ∗OI ∗DOCU ∗OE ∗REUSE

∏
PERSCARM = OEXP ∗OCAP ∗ LEXP ∗ TEXP ∗ PCON (16)

In the equations above the Ontology Evaluation (OE) multiplier appears repeat-
edly, since the board necessitates an evaluation of the submitted ontologies and a final
evaluation of the new shared ontology.

5.1.4 The costs of the Local Update phase

PMLU = SizeLUR ∗
∏

PRODLUR ∗
∏

PERSLUR ∗ TOOL +

SizeLUI ∗OI ∗DOCU ∗
∏

PERSLUI (17)

The parameterSizeLUR designates the size of the “incoming” shared ontology,
which is merged with the previous local one. For this reason,SizeLUI is the sum of

41



the two sizes involved in the merging process, the size of the new shared ontology plus
the one of the existing local ontology.

∏
PRODLUR = OU ∗OI ∗OE ∗DOCU

∏
PERSLUR = = DEXP ∗DECAP ∗ LEXP ∗ TEXP ∗ PCON (18)

∏
PERSLUI = = DEXP ∗DECAP ∗ LEXP ∗ TEXP ∗ PCON (19)

Equations 5 to 18 offer the parametric setting necessary for estimating the person
month effort invested in arbitrary DILIGENT processes. However, as aforementioned,
the costs’ dimension might be additionally used as a decision support factor on achiev-
ing an optimal distribution between centralized and local building phases during the
ontology life cycle. In order to achieve this goal we need a reduced cost function – on
the basis of the one elaborated in this section – which allows us to identify the most
important dependencies between the major parameters of the process, as these depen-
dencies are likely to be responsible for the realization of an optimal configuration of
central and local building phases. This configuration is to be discovered in terms of the
free parameters of the reduced formula.

5.2 The reduced cost function

For the derivation of the reduced formula we start with the general DILIGENT cost
equation 5 and consider the first level formulae for the corresponding person months
calculations.

PM = xnew ∗ Enew + xreused ∗ Ereused +

+
n∑

i=1

(mi ∗ xlasi ∗ Elas + mi ∗ xlami ∗ Elam + mi ∗ xlari ∗ Elar +

+ xcarri ∗ Ecarr + xcarmi ∗ Ecarm +
+ mi ∗ xluri ∗ Elur + mi ∗ xluii ∗ Elui) ∗ pi (20)

where thexks represent the sizes of the corresponding and theEks the multipliers.
Note that the variation of the ontologies’ size in each cycle is captured by thei indexa-
tion, while the variation of the cost driver values is modeled through the exponentially
growing learning rate.

Let a be the average number of local changes submitted in every cyclei = 1 . . . n,
b be the average number of changes initiated by the board pro cycle andc the number
of locally accepted changes. Further on letxlai be the size of a local ontology, which
is submitted to the board after cyclei, xsi the size of the shared ontology obtained in
the same cycle, andxlui the size of the local ontology at the end of the cycle. The
dependencies between the three sizes are as follows:

42



xlai
= xsi−1 + a,∀i = 1 . . . n, xs0 = x

xsi = xsi−1 + b,∀i = 1 . . . n, xs0 = x

xlui = xsi + c, ∀i = 1 . . . n (21)

If x is the size of the shared ontology in the first cycle (x = xnew + xreused), then

xlai
= x + (i− 1) ∗ b + a,∀i = 1 . . . n, xs0 = x

xsi
= x + i ∗ b,∀i = 1 . . . n

xlui = x + i ∗ b + c, ∀i = 1 . . . n (22)

A simplification of the DILIGENTcost function is achieved if we reduce the effort
multipliers related to the central board and to the user communities to single parameter
with average values. That is, we abandon the difference between the effort multipliers
involved in single activities of each process stage (e.g. the local analysis activity in the
local adaptation phase), we obtain the formula below, in whichE is again responsible
for the centralized setting, whileF represents average the local settings:

PM = x ∗ E + M ∗ F ∗
n∑

i=1

(x + (i− 1) ∗ b + M ∗ a) ∗ pi +

+ M ∗ F ∗
n∑

i=1

(x + i ∗ b + c) ∗ pi +

+ E ∗
n∑

i=1

(M ∗ (x + (i− 1) ∗ b + a) + b) ∗ pi (23)

In formula 23 we also assume a constant number of sitesmi = M and an initial
size of the ontologyx.

If n →∞ then the formula 23 is further transformed to

PM ≈ x ∗ E + M ∗ F ∗ (2x + M ∗ a + c) ∗ 1
1− p

+

+ M ∗ F ∗ b ∗ p2 + p

(1− p)2
+

+ E ∗ (M ∗ (x + a) + b) ∗ 1
1− p

+

+ E ∗M ∗ b ∗ p2

(1− p)2
(24)

43



5.3 Applications of the reduced cost function

In order to come up with an approximation of the cost function corresponding to DILI-
GENT engineering processes we start with equation 24 and isolate the terms depending
on the involved cost driversE andF :

PM ≈ E ∗ (x +
1

1− p
∗ (M ∗ (x + a) + b) + M ∗ p2

(1− p)2
∗ b) +

+ F ∗M ∗ ((2x + M ∗ a + c) ∗ 1
1− p

+ b ∗ p2 + p

(1− p)2
) (25)

The formula above is used to analytically describe alternative engineering scenarios
in DILIGENT. We illustrate the usage of the cost function as an objective means for
decision support for the following tasks:

• the identification of a specific engineering strategy: The DILIGENTmethodol-
ogy foresees a two-step engineering approach in which a first part of the shared
ontology is jointly developed by domain experts and engineers, while the rest
of the ontology evolves according to the needs of its users. Cost information
might be useful to identify the sweet spot between the effort invested in central-
ized building and the remaining phases. A second engineering decision relates
to the possibility of taking into consideration external parties’ ontologies (i.e.
local versions of the shared ontology available at external sites) while perform-
ing modifications. A first possibility is to modify the shared ontology according
to the local requirements and submit potentially locally relevant change requests
independently of the requirements of other user communities across the network.
In the second, reuse-oriented scenario the users first try to map their own require-
ments to local ontologies emerging across the network and to reuse these local
ontologies instead of introducing new change requests. The decision on one of
the alternatives could be documented by means of cost information.

• the identification of the optimal meeting frequency: For an optimal process exe-
cution one needs decision criteria to estimate the frequency of the board meetings
and implicitly a rate for the amount of submitted and approved changes to the
shared ontology. Since every new board meeting is related to (basic) costs for the
centralized analysis and the local updates too frequent meetings are expected to
produce an overload both on the side of the ontology engineers and of the users.

In order to analytically describe the aforementioned scenarios, we consider a sim-
plified version of the DILIGENT process, in which the costs of the local updates are
negligible. In this case, equation 25 is transformed to

PM ≈ E ∗ (x +
1

1− p
∗ (M ∗ (x + a) + b) + M ∗ p2

(1− p)2
∗ b) +

+ F ∗M ∗ ((x + M ∗ a) ∗ 1
1− p

+ b ∗ p2

(1− p)2
) (26)

44



5.3.1 1. Scenario: The size of the initial ontology

In order to analyze the impact of the initial size of the ontology on the overall costs
required to create an ontology of a given final size we compare the costs defined in
equation 26 with the ones implied by an initial ontology of sizex+α. In this situation,
we assume that the number of changes required by the users decrease with the size of
the initial ontology with a parameterβ. A large initial ontology is profitable if

E ∗M ∗ (α− β) + F ∗M ∗ (α−M ∗ β)− α ∗ F ∗M > 0 (27)

Inequality 27 is equivalent toE ∗ (α− β) > F ∗M ∗ β, which means that increas-
ing the size of the ontology is profitable as long as the costs arisen by this activity for
analysis and evaluation do not overcome the costs required to originally build the addi-
tional concepts. The last inequality will be not fulfilled for a sufficiently high number
of sitesM , which implies that we need to start with a small shared ontology in case we
need to handle a high number of sites. In case the number of sites is sufficiently low,
the satisfiability of the inequality is influenced by the ratio between the productivity of
the board and of the ontology users.

5.3.2 2. Scenario: Reuse-oriented vs isolated building

In order to detect the impact of local ontology reuse on the overall costs, we proceed in
a similar manner as in the first scenario by comparing the difference arising from mod-
ifying a number ofα concepts instead of trying to reuse them from external sources.
By replacing the number of changesa in 26 with a + α we obtain that reusing exist-
ing conceptualizations is profitable only ifE ∗M ∗ α + F ∗M ∗ α > F ∗M2 ∗ α.
Again, reuse is more feasible for scenarios with a relatively low number of sites. IfM
is sufficiently high, the inequality above is not satisfied anymore.

5.3.3 3. Scenario: Frequency of board meetings

In order to analyze the optimal frequency of board meetings, which influence the
number of submitted and accepted changes (the frequenter the meetings are, the less
changes are submitted pro cycle). Ifα is the difference between the number of sub-
mitted changes for a higher number of development cycles,β is the difference at the
level of approved changes – the costs for local updates are ignored – then the difference
implied by these three parameters w.r.t. the person months efforts in two consecutive
cycles is determined from equation 23 as:

PMi ∗ P − PMi+1 = M ∗ F ∗ ((i− 1) ∗ β + M ∗ α− bi+1 +
+ E ∗ (M ∗ (i− 1) ∗ β −M ∗ bi+1 + M ∗ α + β) (28)

In this casePMi∗P−PMi+1 > 0 if (i−1)∗β+α > bi+1 andM ∗α+(i−1)∗β >
bi+1. The latter is satisfied for a sufficiently high number of sitesM , while the former
depends on the parameteri. If β + α > bi+1 increasing the number of meetings is
feasible independent on the number of sites or on the learning rate.

45



6 Data collection and model calibration

In this report we demonstrated the ways the generic cost estimation model ONTOCOM
was applied to the ontology engineering methodology DILIGENT. The alignment of
the model to this particular methodology also revealed the limitations of the model
w.r.t. a complete coverage of ontology engineering aspects. As a consequence the es-
timation model was refined with cost drivers such as ”Ontology Integration”. In the
same time, the alignment can be seen as a significant step towards the final validation
of ONTOCOM, which is performed according to the quality framework described in
Section 2. However, the usability of the model in real-world settings is primarily de-
pendent on the accuracy of its results, achieved after calibrating the a-priori parameter
values on the basis of historical project data. For this purpose, we analyzed the techni-
cal means which can be used for the calibration and produced an online questionnaire
for the collection of the data. These two issues are described in the remaining sections.

6.1 Technical realization of the data collection

For the realization of an online tool for data collection we made use of the Open Source
survey software PhpESP (available athttp://sourceforge.net/projects/
phpesp/ ), which offers basic functionality for the generation of public surveys. The
data collection procedures is foreseen as a set of questions by which the user is required
to provide introductory information about a specific project (i.e. an ontology) and
to specify the values of the parameters included in the cost model. As a result of
the survey, the data is stored in a relational database and is exported to a statistical
component in order to be used for the calibration of the model.

Figure 8 depicts the introductory section of the data collection survey, while Figure
9 shows an excerpt related to the cost drivers ”DATA” and ”DCPLX”. For each cost
driver[PBM05a] we provide a short explanation of the scope and associated decision
criteria, which are intended to be used to aid the data provider in specifying the rating
value of the driver. Finally we can export the collected data as shown in figure 10 and
calibrate the model.

A current version of the survey is available online athttp://kompass.mi.
fu-berlin.de/phpESP/public/survey.php?name=ontocom2final_
260905 .

6.2 Calibration method

The data collected in the survey is used to calibrate the ONTOCOM cost estimation
model. Before we explain the methods used to calibrate the model, we need to empha-
size the restrictions of any calibration. (1) Due to the number of cost drivers we need
a high number of observations to calibrate the model in a statistically significant way.
Any calibration with less than approximately 300 data points will not be significant
from a statistical point of view. Thus any calibration can only be seen as an indication
of the direction. (2) Experience in other fields with cost estimation models suggests,
that a calibration for a particular company or project team yields more accurate esti-
mations than a general purpose calibration. Our calibration can therefore only serve

46



as an example for the calibration process, rather than an accurate model calibration.
Nevertheless, the calibration is useful, as project teams can compare their estimations
against a general average as provided by us. (3) A calibration uses historical data to
estimate future outcomes. Although the average and the variation observed in the his-
torical data may also be observed in future projects, any specific project can still require

Figure 8: ONTOCOM data collection: introductory questions

Figure 9: ONTOCOM data collection: cost drivers

47



Parameter Description
A adjustment parameter
Size The size of the ontology
DCPLX(CDX1) Effort multiplier for domain complexity
OE(CDX2) Effort multiplier for final ontology evaluation

complexity
REUSESize Size of the reused ontology
OU Reused ontology understandability

Table 13: Simplified cost model factors

significantly more or less effort to build the ontology than the predicted one.
The number of cost drivers defined in ONTOCOM is too high, to work through a

conclusive example. In order to explain the calibration method to refine the ONTO-
COM cost model we introduce a very simple cost model. For the simplified cost model
we provide a complete example.

Our simplified cost model consist of six factors as listed in table 13.

AdSizeX = SizeX − (1−%reuse) ∗REUSESize ∗OU (29)

PMX = A ∗AdSizeX ∗
2∏

i=1

CDXi (30)

Figure 10: Data export from phpESP

48



Rating DCPLX OE OU
E1 E2 Av. E1 E2 Av. E1 E2 Av.

very low 0,6 0,8 0,7 0,6 0,8 0,7 0,6 0,8 0,7
low 0,7 0,9 0,8 0,7 0,9 0,8 0,7 0,9 0,8

nominal 1 1 1 1 1 1 1 1 1
high 1,1 1,3 1,2 1,1 1,3 1,2 1,1 1,3 1,2

very high 1,8 2,0 1,9 1,8 2,0 1,9 1,8 2,0 1,9

Table 14: Delphi result

For our simplified cost model the Delphi method resulted in the following expert
estimations for our effort multipliers (in table 14, the estimation of the experts are
abbreviated withE1 andE2, respectively. Average values are termed byAV.).

We collected data from six ontology building projects. The results are summarized
in table 15 (RSIZE is the size of the reused ontologies, while the DCPLX columns
correspond to the three decision components defined for the cost driver Domain Anal-
ysis Complexity, as introduced in Section 4).

DCPLX
Ontology SIZE PM % newly build req. con. info. RSIZE OU OE
swpatho1 1300 5 20 5 1 4 1040 2 5

opjk 700 2,6 100 5 4 5 5
ArguOnto 200 2 100 4 2 4 2

COS 75 2,5 100 5 3 3 5
OMV 300 2,5 100 3 2 4 3
VDO 1400 0,5 100 4 4 4 1

Number Rating
1 very low (VL)
2 low (L)
3 nominal (N)
4 high (H)
5 very high (VH)

Table 15: Data collection

The collected data is than adjusted in order to apply the calibration. In this step the
ratings for the domain complexity are averaged and the size of the reused ontology and
the final size are combined 16.

The data collected from real projects can now be used to calibrate our model. Linear
regression is the adequate method to find the adjusted parameters. We reformulate
equation 30 in order to apply later on linear regression and introduce a parameterβi as
an exponent for the cost drivers.βi is a scaling factor, by which the existing parameters
should be scaled in order to fit the model. We recall thatα is factor to represent a

49



Ontology AdSize PM DCPLX OE
swpatho1 635 5 3 5

opjk 700 2,6 5 5
ArguOnto 200 2 3 2

COS 75 2,5 4 5
OMV 300 2,5 3 3
VDO 1400 0,5 4 1

Table 16: Adjusted collected data

learning rate, in other case also used to model economies of scale.

PMX = A ∗AdSizeα
X ∗

2∏

i=1

CDβi

Xi (31)

We apply the logarithm to equation 31 and can now apply a classical linear regres-
sion to our data to estimateβi. This step is only possible if our data is distributed
exponentially, thus we have significantly more data points with a low number of enti-
ties than with a high number of entities. We omit this test for our example, but will do
so for the final calibration.

ln(PMX) = ln(A) + α ∗ ln(AdSizeX) +
2∑

i=1

βi ∗ ln(CDXi) (32)

The resulting matrix of data points can be used to calculate the covariance matrix
and the correlation matrix. In particular the correlation matrix is helpful, to identify
cost drivers which are highly correlated and can thus be integrated into one. For the
sack of completeness we have listed the results of the correlation analysis in table 17.
The analysis of the correlation matrix reveals that for our limited data set the total effort
for building the ontology is highly correlated with the extend of the ontology evalua-
tion activity. Furthermore domain complexity and ontology evaluation are correlated.
Surprisingly, the size of the ontology and the required effort to build it are inversely
correlated, which implies the larger the ontology becomes the less effort one has to
spend building it. This result shows, that an estimation model, calibrated only based
on historical data could in fact be misleading. We survey several methods to overcome
this problem later.

In table 18 we have summarized the results of the linear regression. Applying the
results to the parameters we get new parameters according to table 19 (Av. means
“Average”).

We can now compare the predicted effort according to our model before and after
its calibration. As recognized before some of the results of the linear regression are
counter intuitive. Different options exist to overcome this problem.

50



AdSize DCPLX OE PM
AdSize 1,00
DCPLX 0,27 1,00

OE -0,25 0,41 1,00
PM -0,40 -0,09 0,74 1,00

Table 17: Correlation matrix for our example

A DCPLX OE α
mi 0,84 -1,37 1,48 -0,03

s(mi) 1,79 1,34 0,70 0,30

Table 18: Results of the linear regression

6.2.1 Linear combination

The expert ratings found in the Delphi experiment are a-priori estimations for our pa-
rameters and incorporate knowledge about the underlying activities. Using only his-
torical data to calibrate the model would thus waste this knowledge. A natural solution
is to combine the values estimated by the experts with the parameters found from the
historical data. In the literature a combination which weights the expert values with
90% and the values from the linear regression with 10% is proposed.

6.2.2 Bayesian Linear Models

The linear combination of expert estimations and historical data is not optimal. The
combination should take into account the number of data points used for the lin-
ear regression and the variance observed in the expert rating as well as in the data
points. A factor which all experts have given the same rating, while the linear re-
gression results in a high variance should be influenced less by the data than by
the experts. Bayesian analysis is a way to achieve the desired outcome. [?] pro-
vides an exhaustive explanation of the application of Bayesian analysis for cost es-
timation models. As Bayesian analysis requires methods which go beyond the stan-
dard statistical functions offered by eg. Microsoft Excel software packages such as
produced in the Bayesian inference Using Gibbs Sampling (BUGS) projecthttp:

Rating DCPLX OE A α
Delphi Data Av. Delphi Data Av. Delphi Data Av. Delphi Data Av.

VL 0,7 1,63 0 0,7 0,59 0 1 2,31 0,98 -0,03
L 0,8 1,36 0 0,8 0,72 0 1 2,31 0,98 -0,03
N 1 1 1 1 1 1 1 2,31 0,98 -0,03
H 1,2 0,78 0 1,2 1,31 0 1 2,31 0,98 -0,03

VH 1,9 0,41 0 1,9 2,59 0 1 2,31 0,98 -0,03

Table 19: Parameter estimation from experts and based on the data

51



//www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml must be used. An Ex-
cel packagehttp://www.jstatsoft.org/v14/i05/v14i05.pdf for the
BUGS software exists8.

Later on we consider to offer an online service which calibrates the model auto-
matically when new information is available. In this case a PHP based service might
be useful9.

For our purposes we can weight the parameters based on the variance of the linear
regression parametersmi. In this case the weight of parameter is calculated as in
equation 33.

CDnew
Xi = CDexpert

Xi ∗ (1− 1
s(mi)2 + 1

) + CDdata
Xi ∗ 1

s(mi)2 + 1
(33)

As the Bayesian analysis is a very sophisticated method, our data however is still
very limited we opt for the linear combination of expert and estimated parameters. In
table 20 we compare the accuracy of our estimations w.r.t. different parameter settings.
As accuracy we define the percentage of estimations, which lie within a certain range
of the actuals.

Name of the
Ontology

PM
actual

Expert Linear
90%
expert

Linear
20%
expert

Linear 0%
expert

Simple
Bayesian

Accuracy
30% 50% 30% 50% 30% 50% 30% 50% 30% 50%
0,17 0,17 0,0 0,67 0,33 1,0 0,17 1,0 0,33 0,83

Estimations
swpatho1 5 1,2 3,6 4,5 4,8 4,0
opjk 2,6 2,5 6,4 3,2 2 3,7
ArguOnto 2 0,2 1,5 1,4 1,4 1,5
COS 2,5 0,2 4,5 4,2 4 4,0
OMV 2,5 0,3 1,9 1,9 1,9 1,9
VDO 0,5 1,2 1,4 1,0 0,8 1,1

Table 20: Effort estimation based on expert estimation and historical data

Alternative calculation

As we have already observed from the correlation matrix, size and effort are invers
correlated. This has unintended effects on the estimated learning rate. In order to
overcome this problem from the beginning, we can assume a learning rate of 1, thus

8Further examples can be found athttp://www.biostat.umn.edu/˜sudiptob/pubh5485/
BayesianLinearModelText.pdf

9http://www.devshed.com/c/a/PHP/Implement-Bayesian-inference-using-PHP-Part-1/

52



A DCPLX OE
mi -5,20 -3,29 2,48

s(mi) 0,68 2,60 1,37

Table 21: Results of the linear regression - alternative

we do not assume any learning. This changes eq. 31 slightly and thus 32 as shown in
eq. 34

ln(
PMX

AdSizeX
) = ln(A) +

2∑

i=1

βi ∗ ln(CDXi) (34)

In this case the results of the linear regression are as shown in table 21

Future path

We have demonstrated with a simplified example the process of calibration for
the ONTOCOM model. As we are now gathering more data of real world ontology
building efforts we will soon be in a position to calibrate the complete model. The
calibration will probably result in an adaption of the cost drivers. Some cost drivers
might be highly correlated and can thus be joined. Others might have such a big impact
on the final estimation that they can be divided into more than one cost driver. As
soon as more accurate date is available we will continue and report the results of the
calibration.

7 Related work

As mentioned in the introduction of this report estimating costs is a fundamental re-
quirement for a wide-scale dissemination of ontologies in business contexts. How-
ever, though the importance of cost issues is well-recognized in the community,
no cost estimation model for ontology engineering is available so far. Cost esti-
mation methods have a long-standing tradition in more mature engineering disci-
plines such as software engineering or in industrial production. Approaches in these
areas[Boe81, Kem87, Ste95] offered us valuable information about methods which can
be applied to define and evaluate ONTOCOM.

Established methodologies for ontology engineering focus on the centralized devel-
opment of static ontologies, i.e. they consider the iteration between ontology construc-
tion/modification and utilization only in passing (see for instance [GPFLC03, SSSS01]
for a review of the methods). Further on, these methodologies do not adress eco-
nomical aspects of engineering processes, such as cost management, cost reduction or
cost benefit analysis. Methodologies such asMETHONTOLOGY [GPFLC03] or the
OTK Methodology[SS02] can be considered representative for the current state of the

53



art in this field. They offer guidance for building ontologies either from scratch, for
reusing other ontologies as they are, or for re-engineering them. They divide ontology
engineering processes into several stages which produce an evaluated ontology for a
specific domain.Holsapple et al.[HJ02] focus their methodology on the collaborative
aspects of ontology engineering while still aiming at a static ontology. A knowledge
engineer defines an initial ontology which is extended and modified based on the feed-
back from a panel of domain experts.HCOME is a methodology which integrates
argumentation and ontology engineering in a distributed setting [KVA04]. It supports
the development of ontologies in a decentralized setting and allows for ontology evo-
lution. It introduces three different spaces in which ontologies can be stored: In the
Personal Spaceusers can create and merge ontologies, control ontology versions, map
terms and word senses to concepts and consult the top ontology. The evolving personal
ontologies can be shared in theShared Space. TheShared Spacecan be accessed by all
participants. In the shared space users can discuss ontological decisions. After some
discussion and agreement, the ontology is moved into theAgreed space. However, they
have not reported that their methodology had been applied in a case study neither do
they provide any detailed description of the defined process stages.

8 Conclusions

In the last couple of years we witness a change of focus in the area of ontologies and
ontology-based information systems: while the application of ontologies was restricted
for a long time to academia projects, in the last ten years ontologies have become in-
creasingly relevant for commercial applications as well. A first prerequisite for the
successful introduction of ontologies in the latter setting is the availability of proved
and tested Ontology Engineering methodologies, which break down the complexity of
typical engineering processes and offer guidelines to monitor it. Existing methodolo-
gies have proven to fulfill these requirements. A further prerequisite is, however, the
availability of cost information for the ontology building effort so that the project ini-
tiator can compare the estimated costs against the prospected utility of the ontology.
Research in this field is not very advanced yet, but ONTOCOM is an initial attempt in
this direction.

In this report we have described the ONTOCOM cost estimation model and the
DILIGENT ontology engineering methodology. ONTOCOM is a parametric cost esti-
mation model, which assumes a linear relation between the size of an ontology and a
serie of cost drivers which are determined according to the project setting. The model
can be applied in the early project phases (such as the feasibility study) in order to
compute an estimation of the effort (expressed in person months) arisen by building,
reusing or maintaining ontologies. DILIGENT is a methodology for the distributed,
loosely controlled and evolving engineering of ontologies,

We have shown that the cost model ONTOCOM can be aligned to a specific ontol-
ogy engineering process such as DILIGENT, which covers all major phases of ontology
engineering, such as building, reuse and maintenance. The alignment process was ben-
eficial for both models as missing cost drivers were identified within ONTOCOM and
activities in the DILIGENT process stages could be generalized and extended. As a

54



result ONTOCOM incorporates now 25 cost drivers which cover efforts for ontology
building, reuse and maintenance, divided into three categories: product, personnel and
project cost drivers. The five DILIGENT process stages are now defined at a finer and
more homogeneously grained level and are subdivided into 32 activities.

The cost function specific for DILIGENT process was defined according to the
ONTOCOM model and the alignment of the cost drivers to the activities they have an
impact on. The cost function was then simplified in order to enable the usage of cost
information as decision support for three engineering scenarios, which were specified
during this work: 1.) finding the optimal size of the initial ontology, 2). the extension of
reuse at the local sites, and 3). the optimal frequency of board meetings. In summary,
our analytical investigations on the basis of the simplified cost function revealed that
the decisions should depend on the number of sites the ontology is used at, and the
capabilities of the ontology engineers and its users respectively.

In order to calibrate the ONTOCOM model, thus to find the right parameters for the
different cost factors, we set-up an online survey to collect data from existing ontology
engineering projects. So far the survey was utilized to capture data from 22 projects.
To minimize misinterpretations of the cost drivers and their ratings, the authors of this
report interviewed members of the corresponding engineering teams and entered the
data themselves. Up-to-now the data collection covers historival projects at our insti-
tutes (Free University of Berlin, University of Karlsruhe) and the EU project SEKT.
Data collection from the Knowledge Web project and other organizations will follow.

Although the number of collected data points is still insignificant, we can already
draw some preliminary conclusions and point to future research issues. The inter-
viewed persons could describe their experiences during the ontology building effort
with the proposed cost drivers, which demonstrates the usability of the cost model
for the intended class of engineering projects. The alignment to the elaborated DILI-
GENT methodology definitely contributed to a large extent to this satisfactory cover-
age. Nevertheless future alignments with other ontology engineering methodologies
are expected to help us complete and refine ONTOCOM’s list of cost drivers.
Further on our experiences so far suggest that the complexity of ontology evaluation
has a significant impact on the overall project costs. Consequently, this indicates that
better support for ontology evaluation could yield important benefits. Another poten-
tial cost-relevant parameter appears to be the number of domain experts from different
domains, building a single shared ontology. The extension of the model with this coor-
dinate, which is not supported by the current version, is subject of future investigations.

Beyond cost estimation, the list of cost drivers was found helpful for ontology
engineers to breakdown activities related to a specific ontology building process during
the feasibility study.

With this T-REX exchange we could not only improve the existing models for cost
estimation and ontology building but also identify new research questions. Furthermore
with the integration of the results in the two European projects SEKT and Knowledge
Web we can also guarantee that the models are evaluated in real world case studies and
reach an audience beyond the research community.

55



Aknowledgements This work has been partially supported by the European Network
of Excellence “KnowledgeWeb-Realizing the Semantic Web” (FP6-507482), as part of
the KnowledgeWeb researcher exchange programT-REX , and by the European project
“Sekt-Semantically-Enabled Knowledge Technologies”(EU IST IP 2003-506826). We
want to thank all the people who agreed to contribute to the ONTOCOM data collec-
tion.

References

[B. 97] B. W. Boehm, C. Abts, B. Clark and S. Devnani-Chulani. COCOMO II
Model Definition Manual, 1997.

[Boe81] B. W. Boehm.Software Engineering Economics. Prentice-Hall, 1981.

[Epp01] M. J. Eppler. The Concept of Information Quality: An Interdisciplinary
Evaluation of Recent Information Quality Frameworks.Studies in Com-
munication Sciences, 1:167–182, 2001.

[ES04] Marc Ehrig and Steffen Staab. QOM - quick ontology mapping. InProc.
of the 3rd ISWC, 2004.

[FL99] M. Ferńandez-Ĺopez. Overview of methodologies for building ontolo-
gies. In Proceedings of the IJCAI-99 Workshop on Ontologies and
Problem-Solving Methods: Lessons Learned and Future Trends. CEUR
Publications, 1999.

[GF95] M. Grueninger and M. Fox. Methodology for the design and evaluation
of ontologies, 1995.

[GP01] A. Gmez-Prez. Evaluation of ontologies.International Journal of Intel-
ligent Systems, 16(3), 2001.

[GPFLC03] A. Gómez-Ṕerez, M. Ferńandez-Ĺopez, and O. Corcho.Ontological En-
gineering. Springer, 2003.

[GW02] N. Guarino and C. Welty. Evaluating Ontological Decisions with Onto-
Clean.Communications of the ACM, 45(2):61–65, 2002.

[HJ02] C. W. Holsapple and K. D. Joshi. A collaborative approach to ontology
design.Communications of the ACM, 45(2):42–47, 2002.

[HLW99] K. T. Huang, Y. W. Lee, and R. Y. Wang.uality Information and Knowl-
edge. Prentice Hall, 1999.

[HSC02] Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna. S-CREAM –
Semi-automatic CREAtion of Metadata.Expert Update, Special Issue -
Intelligent Services for The Knowledge Lifecycle, 2002.

56



[HvHH+05] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stucken-
schmidt, and York Sure. A framework for handling inconsistency in
changing ontologies. InProceedings of the Fourth International Seman-
tic Web Conference (ISWC2005), NOV 2005.

[Kem87] C. F. Kemerer. An Empirical Validation of Software Cost Estimation
Models.Communications of the ACM, 30(5), 1987.

[KLS95] J. Krogstie, O. I. Lindland, and G. Sindre. Defining Quality Aspects for
Conceptual Models. InProceedings of the IFIP8.1 working conference
on Information Systems Concepts ISCO03: Towards a Consolidation of
Views, 1995.

[KVA04] K. Kotis, G. A. Vouros, and J. Padilla Alonso. HCOME: tool-
supported methodology for collaboratively devising living ontologies. In
SWDB’04: 2. Int. Workshop on Semantic Web and Databases, 2004.

[LET04] Steffen Lamparter, Marc Ehrig, and Christoph Tempich. Knowledge ex-
traction from classification schemata. InProc. of the Int. Conf. on On-
tologies, Databases and Applications of SEmantics (ODBASE). Springer,
2004.

[LTGP04] A. Lozano-Tello and A. Gomez-Perez. ONTOMETRIC: A Method to
Choose the Appropriate Ontology.Journal of Database Management,
15(2), 2004.

[MMS03] A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and dis-
tributed ontologies on the semantic web.The VLDB Journal, 12(4):286–
302, Nov 2003.

[MSBS03] D. L. Moody, G. Sindre, T. Brasethvik, and A. Solvberg. Evaluating the
quality of information models: empirical testing of a conceptual model
quality framework. InProceedings of the 25th International Conference
on Software Engineering ICSE03, 2003.

[NFM00] N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protéǵe-
2000: Combining interoperability and flexibility. InProc. of the 12th Int.
Conf. on Knowledge Engineering and Knowledge Management: Meth-
ods, Models, and Tools (EKAW 2000). Springer, 2000.

[PBM05a] E. Paslaru Bontas and M. Mochol. A cost model for ontology engineer-
ing. Technical Report TR-B-05-03, Free University of Berlin, April 2005.

[PBM05b] E. Paslaru Bontas and M. Mochol. Towards a Cost Estimation Model
for Ontology Engineering. InProceedings of the Berliner XML Days
Conference, 2005.

[PBMT05] E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies in On-
tology Reuse. InProceedings of the 5th International Conference on
Knowledge Management IKNOW05, 2005.

57



[PM00] H. S. Pinto and J. Martins. Reusing ontologies. InAAAI 2000 Spring
Symposium on Bringing Knowledge to Business Processes, pages 77–84,
2000.

[PS04] R. Price and G. Shanks. A Semiotic Information Quality Framework. In
Proceedings of the International Conference on Decision Support Sys-
tems DSS04, 2004.

[PSST04] H. S. Pinto, S. Staab, Y. Sure, and C. Tempich. OntoEdit empowering
SWAP: a case study in supporting DIstributed, Loosely-controlled and
evolvInG Engineering of oNTologies (DILIGENT). In1st European Se-
mantic Web Symposium, ESWS 2004. Springer, May 2004.

[PTS04] H. Sofia Pinto, Christoph Tempich, and Steffen Staab. Diligent: To-
wards a fine-grained methodology for distributed, loosely-controlled and
evolving engingeering of ontologies. In Ramon Lopez de Mantaras and
Lorenza Saitta, editors,Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI 2004), August 22nd - 27th, pages 393–397,
Valencia, Spain, AUG 2004. IOS Press.

[RVMS99] T. Russ, A. Valente, R. MacGregor, and W. Swartout. Practical Experi-
ences in Trading Off Ontology Usability and Reusability. InProceedings
of the Knowledge Acquisition Workshop KAW99, 1999.

[SAB+03] Y. Sure, H. Akkermans, J. Broekstra, J. Davies, Y. Ding, A. Duke,
R. Engels, D. Fensel, I. Horrocks, V. Iosif, A. Kampman, A. Kiryakov,
M. Klein, T. Lau, D. Ognyanov, U. Reimer, K. Simov, R. Studer, J. van
der Meer, and F. van Harmelen.On-To-Knowledge: Semantic Web–
Enabled Knowledge Management, chapter 13, pages 278–301. Springer-
Verlag”, 2003.

[SEA+02] York Sure, Michael Erdmann, Juergen Angele, Steffen Staab, Rudi
Studer, and Dirk Wenke. OntoEdit: Collaborative Ontology Develop-
ment for the Semantic Web. InProc. of the 1st ISWC, 2002.

[SPKR96] B. Swartout, R. Patil, K. Knight, and T. Russ. Toward distributed use of
large-scale ontologies. InProceedings of the 10th Knowledge Acquisition
Workshop (KAW’96), Banff, Canada, November 1996.

[SS02] Y. Sure and R. Studer. On-To-Knowledge methodology. InOn-To-
Knowledge: Semantic Web enabled Knowledge Management. J. Wiley
and Sons, 2002.

[SSSS01] S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure. Knowledge processes
and ontologies.IEEE Intelligent Systems, 16(1), 2001.

[Ste95] Stewart, R. D. and Wyskida, R. M. and Johannes, J. D.Cost Estimator’s
Reference Manual. Wiley, 1995.

58



[STV04] Y. Sure, C. Tempich, and Z. Vrandečić. D7.1.1. SEKT methodology:
Survey and initial framework. SEKT deliverable 7.1.1, Institute AIFB,
University of Karlsruhe, 2004.

[Sur03] Y. Sure. Methodology, Tools and Case Studies for Ontology based
Knowledge Management. PhD thesis, University of Karlsruhe, 2003.

[TPSS05] C. Tempich, H. S. Pinto, Y. Sure, and S. Staab. An argumentation ontol-
ogy for DIstributed, Loosely-controlled and evolvInG Engineering pro-
cesses of oNTologies (DILIGENT). InSecond European Semantic Web
Conference, ESWC 2005. Springer, 2005.

[UCH+98] M. Uschold, P. Clark, M. Healy, K. Williamson, and S. Woods. An Ex-
periment in Ontology Reuse. InProceedings of the 11th Knowledge Ac-
quisition Workshop KAW98, 1998.

[UHW+98] M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology
Reuse and Application. InProceedings of the International Conference
on Formal Ontology and Information Systems FOIS98, pages 179–192,
1998.

59


