
Personal Knowledge Management
with Semantic Wikis

Max Völkel1 and Eyal Oren2

1 Institute AIFB, Universität Karlsruhe, Germany
voelkel@aifb.uni-karlsruhe.de

2 DERI Galway, Ireland
eyal.oren@deri.org

Abstract. Managing knowledge is crucial in our economy. We derive re-
quirements on personal knowledge management (finding, reminding, col-
laboration, knowledge re-use and cognitively adequate interfaces) from
cognitive psychological research and analyse the limitations of current
solutions. We introduce a restful, wiki-based, open architecture for se-
mantic personal knowledge management that fulfills the analysed re-
quirements to a high extent and gives the user a uniform way to work
with knowledge on all layers (syntax, structure, formal semantics). We
discuss architectural considerations and describe two implementations.

1 Introduction

Managing and enabling knowledge is key to success in our economy and so-
ciety, [26, p. 6]. Knowledge is fundamentally created by individuals [11, p. 59].
Supporting individuals in their personal knowledge management is therefore cru-
cial. Current tools for personal knowledge management have limitations: analog
approaches are not automated and cannot be searched, digital approaches are
restrictive, do not support ad hoc structures, and do not support associative
browsing.

Our contribution is the application of Semantic Web and wiki technologies
to personal knowledge management, giving individuals personal benefit. In this
approach we do not use wiki technology as a community platform but as a per-
sonal authoring environment. We call the result an SPKM tool, a semantically
enhanced personal knowledge management tool, shown in Fig. 1. Each individual

nonaka

Externalisation

Internalisation

CombinationSPKM
Socialisation

Fig. 1. Semantic Personal Knowledge Management supporting externalisation
(authoring) and internalisation (learning) of personal knowledge.

voelkel@aifb.uni-karlsruhe.de
eyal.oren@deri.org


uses his own SPKM tool as a personal knowledge repository; he benefits person-
ally from this system by having better retrieval and reminding of his knowledge.
His personal wiki is connected to other applications and other wikis; this network
allows individuals to combine their knowledge through sharing and exchanging.

If designed correctly, SPKM tools are easy-to-use and cognitively adequate
for modelling and refactoring knowledge; enable information sharing and reuse
within the personal knowledge space, with other knowledge workers, and with
existing information systems; and enable structured access to personal and col-
laborative knowledge through queries, categorisation, and associative browsing.

This paper is organised as follows. We analyse the situation in Sec. 2: we
describe knowledge management, identify requirements for personal knowledge
management, and discuss existing technical solutions. In Sec. 3 we describe our
conceptual solution that addresses the analysed requirements of personal knowl-
edge management. In Sec. 4 we introduce our architecture that enables this solu-
tion and discuss various architectural issues, and describe existing implementa-
tions of our architecture. We evaluate our architecture against other approaches
in Sec. 5, and we conclude in Sec. 6.

2 Analysis

In this section, we analyse knowledge and knowledge workers, and derive re-
quirements to support these knowledge workers. We shortly discuss limitations
of current personal knowledge management solutions in terms of the require-
ments.

2.1 Personal Knowledge

Knowledge is “justified true belief”[11, p. 21]: it is a personal belief justified
by information. Organisational knowledge management, crucially important in
our knowledge society [21], consists of amplifying the individual knowledge and
crystallising it as part of the organisation.

Individuals are continuously personally committed to knowledge creation
[15,10]. This personal commitment relies on the intentions and autonomy of
individuals [10]. Intention defines the understanding and actions of an individ-
ual, autonomy gives him the self-motivation and freedom to absorb and create
knowledge. Personal autonomy is crucial for knowledge creation.

There are two types of knowledge, tacit knowledge and explicit knowledge
[16]. Explicit knowledge is transmittable: articulated in a formal language and
codified into information. Tacit knowledge has a personal quality and is hard
to formalise; it is embedded in individual experience and consists of insights,
intuition, and skills.

Knowledge is created through conversions between tacit and explicit knowl-
edge [11, p. 62–73], as shown earlier in Fig. 1: (a) different sources of explicit
knowledge can be combined to form new knowledge; (b) tacit knowledge can be

2



externalised into explicit knowledge, through metaphors and codification; (c) ex-
plicit knowledge is internalised into tacit knowledge by acting, doing, and learn-
ing; and (d) tacit knowledge can be transferred through socialisation – without
language, but through observation, imitation, and practise. As socialisation is
often not an option in online environments, externalisation and internalisation
of knowledge become the bottleneck of the knowledge society.

2.2 Knowledge Layers

We can identify five layers in computerised knowledge processing: raw, address-
able, syntax layer, structure layer and semantic layer.

– on the raw layer resources (e.g. images) are just binary data. They cannot
be interpreted, addressed, or searched.

– on the resource layer resources (e.g. files) have a unique identifier. They can
be addressed, linked to, and possibly retrieved (by resolving their identifier).

– on the syntax layer resources (e.g. emails, text files) can be interpreted (e. g.
encoding, charset) and their syntax can be understood. Their (textual) con-
tent can be indexed and keyword queries are possible.

– on the structure layer resources (e.g. HTML pages, word processor files, or
databases) have a structured format. The structure can be interpreted and
exploited to create a better user interface (e.g. bold text, drag-and-drop,
tree views). Structured queries (e.g. SQL) are possible for known parts of
the data model.

– on the semantic layer the structures of resources are described explicitly
(using formal ontologies). Data structures are self-describing: they are anno-
tated with statements on how to interpret and use them.

These layers can be traversed; the mappings from syntax to structures (parser),
from structures to syntax (user interfaces), and from semantics to structures
(data models), are well explored. The transition from the structural, implicit,
semantics to the semantic, explicit, layer is however less explored.

For example, John might write a document, and mark some section in red;
these markings mean “statements do be discussed with Alice”. If he exchanges
the document he needs to communicate these ad-hoc semantics (discuss with
Alice) implied by structures (red) to the receiver. Currently, he would do so
separately, by email or phone. Such a separate explanation limits automated
knowledge exchange. Conceptual Data Structures (CDS) make the intended se-
mantics of such structures explicit, allowing the receiver to see the semantics
behind John’s markup.

In a similar way, user-perceived document semantics (e. g. the nesting of
items) can be exploited3. This allows documents to be mapped to RDF data
structures and then back to different formats like outlines or slide shows. Tables
are a particular example of structures with semantics, which are quite difficult
to formalise [14].
3 see CDS ontology at http://www.xam.de/2005/12/cds

3

http://www.xam.de/2005/12/cds


2.3 Requirements for personal knowledge management

We can make the different activities in knowledge management more concrete by
examining the requirements to support knowledge workers. Knowledge workers
produce new information by combining an existing body of knowledge [7]. “Ideas
are formed in the minds of individuals and are developed in social interactions”
[10]. This process is not linear but, as shown in Fig. 2, a continuous interplay
between capturing, organising, formalising, and retrieving knowledge.

idea

retrieve

capture

formaliseorganise new insights

idea, thought

Fig. 2. Managing Ideas

Supporting knowledge workers therefore means to support individual internali-
sation (learning) and externalisation (writing), and to support their interaction,
their socialisation, their sharing of knowledge. Since in online collaboration true
socialisation is not an option, knowledge has to be shared explicitly through ex-
ternalisation and internalisation. From the knowledge conversion types we derive
requirements for personal knowledge management (supporting knowledge work-
ers), shown in Fig. 3. We discuss each requirement and identify sub-requirements.

req2

cogntive adequate
collaboration

reminding
finding

knowledge re-usebenefit
vs.

effort

1

2

3
5

4

collaboration
reminding

Externalisation
Internalisation
Combination
Socialisation

Authoring
Finding and Reminding
Knowledge Re-Use
Collaboration

PKM

1
2
3

5
4

Cognitively Adequate

Fig. 3. Main requirements for PKM

Authoring follows from the need to externalise knowledge. To minimise ef-
fort, authoring should be simple and cognitively adequate. Authoring should be
possible on all three knowledge layers (syntax, structure, and semantics), and
should be integrated across these levels. We thus need a uniform access of all
knowledge layers (syntax, structure, semantics). As depicted in Fig. 5, semantic
wikis encompass all knowledge types, offering a uniform way to author and query
unstructured text, structured text, and formal semantic data.

4



Second, we need soft transitions between different knowledge layers, re-
warding every little effort in structuring and formalising knowledge with better
retrieval performance.

Different forms of knowledge authoring can be positioned on a continuum in
invested effort and returned benefit (see Fig. 4). For example, knowledge written
as free text requires little effort but provides also little benefit, the information is
unstructured and cannot be retrieved and reused efficiently; tagging texts with
keywords requires slightly more effort and provides slightly improved retrieval;
and formal ontology languages require significant authoring effort (authors are
restricted in their possibilities and have to follow specific rules) but also provides
significant benefits: automated support for knowledge retrieval, reuse, and rea-
soning. Note that current systems do not offer soft transitions between different
knowledge types, e. g. there is no benefit from a half-done ontology.

Third, since the marks made by the knowledge worker (such as words, pic-
tograms, but also red underlining or italics) contain much information but are
often only understandable by himself, we need to capture and reproduce all the
marks accurately [7]. This is part of authoring on the syntactical level. Sum-
marising, we have the following requirements:

1. Syntactical authoring 2. Structural authoring
3. Semantic authoring 4. Integrated authoring

Finding and reminding is important for internalisation: one needs to find
knowledge in order to learn about it, and one needs to be reminded (notified)
of forgotten knowledge [27]. Finding involves two phases: recall-directed search
and recognition-based scanning [8]. For search the properties (metadata) of in-
formation are important, for scanning the spatial layout and the physical marks
[7] are important. Querying is thus important, both using full-text keywords and
using metadata, and the results should be displayed for scanning.

Since people are passive in finding information [23], a tool should not rely on
search (pull). It is thus important to automatically present related information
(push) and to allow browsing of the information.

To present related information, knowledge needs to be categorised. Since fil-
ing and categorising is cognitively difficult [27], we need to support both manual
and automatic clustering and classification. However, since it is not clear how
people categorise information [2, p. 295–303], automatic classification should be
adaptive and employ various techniques in parallel. Related items should be
displayed for scanning.

5. Query 6. Associative browsing
7. Clustering 8. Notification

Knowledge reuse enables the combination of existing knowledge into new
knowledge. Reuse includes composing knowledge items out of smaller items; this
composition can be manual (as in copy-and-paste) or synchronised (as views
in databases). Reuse of knowledge also includes applying existing background

5



knowledge to your knowledge base (rules), and reusing (standardised) terminol-
ogy to reach a common ground and enable understanding.

9. Composition 10. Rule execution (inferencing)
11. Terminology reuse

Collaboration enables combining and sharing knowledge. For collaboration a
communication infrastructure (to be able to transport knowledge) is necessary.
The infrastructure should guarantee privacy and security of private data. To
enable collaboration with other (knowledge) tools (emails, word processor, etc.)
interoperability is necessary between these applications. In ongoing collabora-
tions it is important to track and manage context of information [27].

12. Communication 13. Privacy
14. Interoperability 15 Context management

Cognitive adequacy is a general requirement to balance the personal effort
and perceived personal benefit: individuals should have a tool that is adequate
for their personal mental model. Cognitive adequacy can be achieved by adaptive
interfaces that adjust to their user. It is important to grant the user authoring
freedom and not impose constraints on the knowledge organisation [18].

16. Adaptive interfaces 17. Authoring freedom

2.4 Limitations of current solutions

Current solutions for personal knowledge management are: physical piles of pa-
pers and notes, hierarchies in emails and files, and personal information man-
agement (PIM) tools such as Microsoft Outlook.

Physical piles of paper (possibly organised in physical folders) are very com-
mon and suitable for authoring: they capture and reproduce the physical marks,
they allow recognition-based recall, and they maintain the spatial layout of the
knowledge [8]. However, they do not support finding and reminding, knowledge
reuse, or collaboration.

Hierarchical filing (of emails and files) is common in the personal computer.
The information can be browsed and searched (although usually limited to full-
text keyword search). However, hierarchical filing and retrieving is suboptimal
[27]. Furthermore no support is offered for authoring, knowledge reuse, remind-
ing, and collaboration (mostly context management and interoperability are lack-
ing).

PIM tools manage email, calendar, and tasks. They support finding and
reminding very well, but do not offer any support for authoring, knowledge reuse,
and collaboration (again context management and interoperability are lacking).

6



3 Solution

Our solution is an SPKM system consisting of a semantic wiki enhanced in
multiple ways to support all our requirements. In this section we give a high-
level overview of such an SPKM system, in the next section we introduce the
architecture and implementations of our system.

Classical wikis [9] are integrated, easy-to-use hypertext environments [12]
with three defining characteristics “easy contribution”, “easy editing”, and “easy
linking”. They allow simultaneous authoring in different knowledge layers (from
free-text to structure), each layer introduces an increased authoring effort but
also an increased benefit. The importance of flexible authoring methods has been
recognised in knowledge engineering [3].

As shown in Fig. 4, semantic wikis enhance classical wikis with the ability
to author and use formal semantics: in the same wiki style of free text editing,
semantic statements can be added. They can describe the page or parts thereof
semantically. A semantic wiki thus offers a uniform way to work with all knowl-
edge layers, as shown in Fig. 5: they allow users to structure and annotate their
data but they do not force them to do so.

Using enhanced wiki syntax (plain-text with few markup commands and few
semantic annotation commands) has several benefits: (a) most users are used to
text typing and avoid familiarising with yet another user interface; (b) existing
skills for text manipulation (e. g. copy and paste of text blocks) are leveraged
to edit a document structure; (c) users refine interactively the input until the
result matches the intended structure; (d) wikis allow soft transitions between
knowledge layers including free-text, therefore no knowledge of any syntax is
required to start authoring; (e) wiki syntax has little layout options, forcing the
user to focus on the structure and the content; (f) text is in general a faster
method of entering semi-structured information than graphical approaches.

The SPKM system builds upon semantic wikis, and enhances them to sup-
port all our requirements. Using enhanced wiki syntax we allow authoring on
all knowledge layers. A powerful search (both keyword search and structural

Effort

Be
ne

fit

Tags, Annotations

XML, Structures

Free Text

sweetspot

Formal 
Ontology

Degree of Formal Semantics

D
eg

re
e 

of
 S

tr
uc

tu
re RDF

Annotated
Documents

XML

Free Text
Tagging

Wiki Pages

Formal
OntologyWeb Pages

Email Semantic Wikis

granularity

Fig. 4. Semantic wikis handle a con-
tinuous spectrum of knowledge types.

Effort

Be
ne

fit

Tags, Annotations

XML, Structures

Free Text

sweetspot

Formal 
Ontology

Degree of Formal Semantics

D
eg

re
e 

of
 S

tr
uc

tu
re RDF

Annotated
Documents

XML

Free Text
Tagging

Wiki Pages

Formal
OntologyWeb Pages

Email Semantic Wikis

granularity

Fig. 5. Semantic Wikis for Uniform
Authoring, Re-Use and Retrieval

7



queries) allows finding information. Part of the user interface shows items re-
lated to the current information, allows associative browsing. The system au-
tomatically analyses and clusters the information to find related items. One
can set reminder dates to pages (or define sophisticated reminder rules) and be
notified of these events.

All information is stored in a content repository that can apply rules with
background knowledge, and one is supported in reusing existing terminology.
SPKM systems can be connected to each other forming a network of knowledge;
this network allows sharing knowledge with others. The interface of the SPKM
system can be personalised to each user and adapt to his preferences.

4 Architecture

arch

Page Server

Content Store

xml/wiftext/html

UI
Parser

RDF/XML

WIF

Text

Semantic Layer

Structure Layer

Syntax Layer

WIF

Analyser
RDF/XML

WIF

Fig. 6. Overview of the System Architecture

Our proposed system architecture is depicted in Fig. 6. The architecture adheres
to the rest architectural style [4, Ch. 5] for reasons of extensibility, entry barrier
level, distribution, and scalability [4, Ch. 4].

We identify five main components. The components are connected through
HTTP and exchange data in plain text, Wiki Interchange Format (WIF), and
RDF. The user interface displays pages for viewing; it requests pages from the
page server, which in turn retrieves them from the content store. When the user
edits or creates wiki pages (using a text-based wiki syntax), the parser converts
the pages into WIF, and the page server stores the page using the content store
(which takes care of versioning etc.).

We now explain the components, the data formats, and related issues, and
present concrete implementations of the architecture.

4.1 Components

User interface displays pages to the users. The user interface receives one or
more pages (e.g. the page content, a navigational menu, a set of related items,
and a calendar) from the page server, combines them, and renders them on the
screen.

Some important considerations for the user interface are:

8



– The user interface should enable navigation to related items (information
related to the current view): given that people use navigation and orienteer-
ing rather than direct search [23], we must allow users to passively discover
related information. We discuss several methods to discover related items in
Sec. 4.5.

– The user interface should be adaptive to the user. Adaptivity can be explicit
(users state their preferences, such as hiding some sections of the page and
amplifying others) or implicit (tracking all user actions to detect user prefer-
ences). The user interface could also show a session navigation history, and
other personalised navigation.

– The user interface should support structural editing : splitting and joining
pages into more granular entities, changing structural levels of content.

Parser transforms wiki syntax (that may differ in each wiki) into the neutral
WIF that captures the structure of the wiki text. The parser interprets knowledge
on the syntax layer and transforms it into the structure layer.

Each deployment of an spkm system can choose a different wiki syntax by
plugging in a different parser component. We introduce the notion of an open
parser, a (publicly) accessible rest service that receives wiki text and returns
WIF. We have implemented several parsers that transform a specific augmented
wiki syntax into WIF. With a number of open parsers readily available, per-
sonalising the wiki amounts to simply specifying the location of the preferred
parser.

In an SPKM context users will often use ad-hoc, personal, syntactical conven-
tions, e.g. “@@” to indicate a todo item (c. f. Sec. 2.2). These ad-hoc conventions
can be parsed with an adaptive parser (learning from examples [5]). Such an
adaptive parser would be architecturally identical to ordinary parsers.

Page Server mediates between the content store (RDF store) and the other
components. It can store and retrieve wiki pages (in WIF syntax). It encapsulates
the business logic of a wiki, and hides the RDF internals of the content store.

Content Store is the persistence component. The content store should store
both RDF data and binary data, and support versioning and access control.
The content store4 could reuse existing RDF stores, binary databases, RDF
versioning techniques [25], and RDF access control [22]. All functionality should
be uniformly accessible over HTTP, as shown in Fig. 7.

Analysers are non-standard components that analyse and integrate data on
either the structural layer or the semantic layer. Users are often unaware of
important information related to the item they are just dealing with. Related
items are either items that are similar to the current item, or belong to the same
category as the current item.
4 see http://www.stoRDF.org for an effort to create such a content store.

9

http://www.stoRDF.org


Possible ways to compute similarity or classification are vector space models
(using cosine similarity), reasoning, data mining, clustering (e.g. on creation
date), link topology analysis, or statistical analysis (e.g. Bayesian classification).
All these methods bring the fuzziness of the real world back into the hard-edged
RDF world.

Interoperability with other systems is a crucial element of the architecture. Other
systems can interact directly on the content store (exposing their data as RDF)
or via the PageServer (exposing their data as wiki pages). For non-semantic
applications, direct interoperability on the content store requires “lifting” onto
the semantic level, for which Semantic Desktop adaptor frameworks [20] can be
used.

4.2 Connectors

The single connector in the architecture is HTTP5. Optimisations can be em-
ployed if the components run in the same execution environment (which is rea-
sonable in a personal desktop system).

4.3 Data Formats

Three types of data are exchanged: plain text in wiki syntax, wiki pages in WIF
syntax, and RDF data in RDF/XML. This section describes these data formats.

Pages are written in plain text (content type: text/plain) by the user and
transformed into WIF by the parser; the syntax of the wiki text depends on the
parser.

RDF is used in communication with the content store, by the page server
(that translates this into WIF for the other components) and by some analyser
(that need direct access to the data for querying). RDF/XML (content type:
application/rdf+xml) is a standardised serialisation format for RDF.

WIF describes wiki pages but abstracts from specific wiki syntaxes; it can
therefore be used as interchange format between wiki engines. WIF describes
both the structural level and the semantical level of pages, but allows ordinary
(non-semantic) wikis to ignore the semantic level.

For the structural data we use XHTML, a standardised structural docu-
ment format. Ordinary wikis already export HTML and could therefore straight-
forwardly export XHTML. The only wiki data that is not natively encoded in
XHTML is the nature of hyperlinks: in XHTML all links are equal, but wikis
distinguish internal and external links. These link types can however (in a mi-
croformats6 inspired approach) be encoded in the class attribute of the link
element.

5 http://www.w3.org/Protocols/rfc2616/rfc2616.html.
6 http://www.microformats.org.

10

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.microformats.org


For the semantical data we use RDF/A7, a proposal for embedding RDF
data in XHTML documents. The resulting XHTML documents can also be
processed by ordinary (non-semantic) wikis by ignoring the RDF statements.

WIF is transported as application/xhtml+xml.

4.4 SPKM Core Ontology

For storage, querying and exchange on the RDF layer, we define a core SPKM
ontology, as depicted in Fig. 8. This ontology8 is kept simple while capturing all
relevant aspects of wiki pages: title, content, hyperlinks, authors, and versions.
The ontology is linked to WikiOnt [6] and SWIFT9, and can be extended by
applications to include e.g. more fine-grained descriptions of the content.

To distinguish between the wiki page itself, and the concept that it is talking
about, we need two different URIRefs (because we want to make statements
about both). We postfix the URL of the page with a “#” to denote the concept.
The RDF data has to state the relationship between the page URL and the con-
cept URIRef explicitly, using e.g. rdfs:seeAlso. Note that the concept URIRef
is syntactically not a valid URL. It is not a location, it cannot be dereferenced
and no document can be placed there; it only denotes a concept10.

storage

RDF Store

Versioning

Access Control

WebDAV, Subversion

xml/wif

User Management

Binary Store

SPARQL

Versioning

Access Control

Uniform, 
HTTP-based Protocol

for Queries and Updates

Fig. 7. A Uniform Storage Component

Page
title : rdfs:Literal
content : rdf:Resource
linksTo : rdf:Resource
modificationDate : rdfs:Literal
reminderDate : rdfs:Literal

User
name: rdfs:Literal

modifiedBy

previousVersion

Fig. 8. SPKM Core Ontology

4.5 Faceted Triple Browsing

The user interface displays related items (related to the current page). One ap-
proach for viewing and navigating related items is faceted browsing [28], in which
the information space is partitioned in conceptual dimensions that constrain the
currently visible elements of the information space. For example, a collection of

7 http://www.w3.org/2001/sw/BestPractices/HTML/.
8 http://www.xam.de/2005/12/spkmcore
9 http://www.xam.de/2005/08/swift.

10 http://xamde.blogspot.com/2005/11/uri-crisis-solved.html.

11

http://www.w3.org/2001/sw/BestPractices/HTML/
http://www.xam.de/2005/12/spkmcore
http://www.xam.de/2005/08/swift
http://xamde.blogspot.com/2005/11/uri-crisis-solved.html


art works can consist of facets such as type of work, time periods, artist names,
geographical locations, etc. To implement faceted browsing one normally needs
a schema that defines the facets. But in browsing arbitrary RDF we cannot rely
on having a schema definition of the data.

We therefore introduce faceted triple browsing, a technique for partitioning,
displaying, and navigating arbitrary schemaless RDF data. In the wiki we show
the current page, and show the list of related pages in a sidebar. If that list is too
long, facets and their result size are displayed instead, expanding on demand.
This works recursively for subsets by chaining selected facets as a conjunctive
query. We calculate a list of facets in two steps: first we find sets of related
statements, take their union, and then render this set with facets.

1. the related statements for a given resource r are the following three sets:
incoming links rin = (∗, ∗, r), property-links rp = (∗, r, ∗), and outgoing links
rout = (r, ∗, ∗). The union S of these three sets contains every statement that
mentions r.

2. the facets for the set S are calculated by grouping similar statements, as
follows

(a) for every statement a = (s, p, o) ∈ S,
i. we perform six queries, leading to six sets related to a: (s, p, ∗),

(s, ∗, o), (∗, p, o), (s, ∗, ∗), (∗, p, ∗), (∗, ∗, o).11
ii. each query with more than one result collects all statements in S that

are related to each other (and to a), they thus form a facet, based
on the query pattern. Therefore for each query with more than one
result we create a facet consisting of the query results, label it with
the non-wildcard parts of the query, and add it to the set F of facets
for S.

(b) we remove all duplicate facets from F (duplicates occur since step 2a is
repeated for each statement in S).

4.6 Implementations

We currently have to independent implementations of our architecture, Semper-
Wiki [13] and SemWiki [24].

SemperWiki is a desktop application, implemented in Ruby using the Gtk
windowing toolkit. SemperWiki is designed as a personal wiki that focuses on
usability and desktop integration. Since all components are hosted on one ma-
chine the components communicate using a native protocol. SemperWiki offers
faceted browsing of related data, supports arbitrary queries and database-like
views, and integrates existing web ontologies into the personal wiki.

SemWiki is a browser-based application, that can be hosted locally (as a per-
sonal wiki) or on a server (as a public wiki). The components communicate using
HTTP and can be fully distributed. Pages are built out of resources, snippets

11 The statement a itself and the pattern (∗, ∗, ∗) do not lead to interesting results.

12



of wiki text, or queries. Rendering is done by applying XSLT stylesheet trans-
formations to the structural data (WIF), and resulting XHTML is displayed by
a standard web browser. SemWiki allows for simple browsing of arbitrary RDF
and has an intuitive query mechanism.

5 Evaluation

It is not easy to evaluate an architecture; we could evaluate specific tools for
personal knowledge management with our implementations, but that would not
give the complete picture.

We therefore compare our architecture with other frameworks, namely the
semantic desktop Gnowsis [19] and Haystack [17], classical PIM tools such as
Microsoft Outlook, and wiki such as MediaWiki and TWiki. We compare these
frameworks qualitatively based on our requirements in Sec. 2.3, the results are
shown in Fig. 9. Due to space considerations we can not compare them in more
detail.

Syntactical 

Structural 

Semantic 

Integrated 

Query 

Associative browsing 

Clustering 

Notification 

Composition 

Rule execution 

Terminology re-use

Communication 

Privacy 

Interoperability 

Context management 

Adaptive interfaces 

Authoring freedom 
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

PIM tools ++ + -- -- ++ -- -- + -- + -- + ++ + + + --
Semantic Desktop 1) ++ ++ + + - -- -- + + ++ + +
Classical Wiki ++ ++ -- + - ++ -- -- + -- + - + -- -- + ++
SPKM ++ ++ ++ ++ ++ ++ ++ + ++ + + + + ++ + ++ ++

Authoring Finding and Reminding Knowledge Re-UseCollaboration Cognitive Adequateness

 Fig. 9. Comparing SPKM to Related Approaches

PIM tools suffer from their fixed schemas for data types (req. 15) and the fact
that one cannot compose or browse items (req. 10, 6). They have good communi-
cation with PDAs and exchange servers (req. 12-14), but limited communication
with other applications.

Semantic Desktop systems interlink data objects across applications (req.
12, 14), and allow users to browse desktop items in an associative, cognitively
adequate way (req. 6). However, these systems do not offer authoring of semi-
structured data.

Classical wiki systems do exactly that: they allow for simultaneous authoring
of free text and semi-structured data (req. 1, 2, 4). Wiki systems have limited

1 Since the authoring capabilities of a Semantic Desktop depend on the integrated
applications, we do not consider it a property of the Semantic Desktop system itself.

13



reuse of existing knowledge outside the wiki, and not offer reminding function-
ality, and do not provide interoperability with existing applications.

An SPKM tool can be seen as the missing piece in Semantic Desktop systems:
it fills the authoring gap and offers universal access and simultaneous authoring
of personal, structured, unstructured and semantic knowledge.

6 Conclusion

In this paper we have presented our SPKM architecture and implementations for
semantic personal knowledge management. The requirements for personal knowl-
edge management that we have derived are: finding and reminding, collaboration,
knowledge re-use and cognitively adequate interfaces. These requirements show
the limitations of current solutions.

Our solution is based on enhanced semantic wikis, for their authoring flexi-
bility and ease-of-use. Our solution addresses these requirements and gives the
user a uniform way to work on all knowledge layers. We have presented our open
and scalable architecture that allows the integration of existing wikis and other
applications, and have introduced our implementations.

Acknowledgements This research was partially supported by the European Com-
mission under contract FP6-507482 (KnowledgeWeb), and is based upon works
supported by the Science Foundation Ireland under Grants No. SFI/02/CE1/I131
and SFI/04/BR/CS0694. The expressed content is solely the view of the authors.

References

1. S. Decker, J. Park, D. Quan, and L. Sauermann, (eds.). The Semantic Desktop –
Next Generation Information Management & Collaboration Infrastructure. Galway,
Ireland, 2005. Cited in 13 and 18.

2. M. W. Eysenck and M. T. Keane. Cognitive Psychology: A Student’s Handbook.
Psychology Press (UK), August 2000. Cited in 2.3.

3. D. Fensel et al. Integrating semiformal and formal methods in knowledge-based
systems development. In Proc. of the Japanese Knowledge Acquisition Workshop
(JKAW-94), pp. 73–89. Hitachi, Japan, 1994. Cited in 3.

4. R. T. Fielding. Architectural styles and the design of network-based software ar-
chitectures. Ph.D. thesis, University of California, Irvine, 2000. Cited in 4.

5. S. Gerke. Interaktives Erkennen von Textstrukturen durch Maschinelles Lernen.
Studienarbeit, Institute AIFB, University of Karlsruhe, 2005. Cited in 4.1.

6. A. Harth, et al. Wikiont: An ontology for describing and exchanging wikipedia
articles. In Proc. of Wikimania 2005 – The First Int. Wikimedia Conf. Jul. 2005.
Cited in 4.4.

7. A. Kidd. The marks are on the knowledge worker. In CHI ’94: Proc. of the
SIGCHI conf. on Human factors in computing systems, pp. 186–191. ACM Press,
1994. Cited in 2.3, 2.3, and 2.3.

8. M. Lansdale. The psychology of personal information management. Applied Er-
gonomics, 19(1):55–66, 1988. Cited in 2.3 and 2.4.

14

http://knowledgeweb.semanticweb.org/


9. B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley, 2001. Cited in 3.

10. I. Nonaka. A dynamic theory of organizational knowledge creation. Organization
Science, 5(1):14–37, Feb. 1994. Cited in 2.1 and 2.3.

11. I. Nonaka and H. Takeuchi. The Knowledge-Creating Company. Oxford University
Press, New York, 1995. Cited in 1 and 2.1.

12. H. Obendorf. The indirect authoring paradigm - bringing hypertext into the web.
J. Digit. Inf., 5(1), 2004. Cited in 3.

13. E. Oren. SemperWiki: a semantic personal wiki. In Decker et al. [1]. Cited in 4.6.
14. A. Pivk, P. Cimiano, and Y. Sure. From tables to frames. Journal of Web Seman-

tics, 3(2):132–146, Oct. 2005. Cited in 2.2.
15. M. Polanyi. Personal Knowledge: Towards a Post-Critical Philosophy. Routledge

& Kegan Paul Ltd, London, 1958. Cited in 2.1.
16. M. Polanyi. Tacit Dimension. Routledge & Kegan Paul Ltd, London, 1966. Cited

in 2.1.
17. D. Quan, D. Huynh, and D. R. Karger. Haystack: A platform for authoring end

user semantic web applications. In Int. Semantic Web Conf., pp. 738–753. 2003.
Cited in 5.

18. J. Rohmer. Lessons for the future of Semantic Desktops learnt from 10 years of
experience with the IDEALIANCE semantic networks manager. In Decker et al.
[1]. Cited in 2.3.

19. L. Sauermann. The gnowsis semantic desktop for information integration. In
Wissensmanagement, pp. 39–42. 2005. Cited in 5.

20. L. Sauermann and S. Schwarz. Gnowsis adapter framework: Treating structured
data sources as virtual RDF graphs. In Int. Semantic Web Conf., pp. 1016–1028.
2005. Cited in 4.1.

21. P. M. Senge. The Fifth Discipline. Currency, January 1994. Cited in 2.1.
22. M. Sibler. Semantische Zugriffskontrolle - Rechtemanagement mit Ontologien und

Regeln. Master’s thesis, AIFB Karlsruhe, Jul. 2005. Cited in 4.1.
23. J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger. The perfect search

engine is not enough: a study of orienteering behavior in directed search. In CHI
’04: Proc. of the SIGCHI conf. on Human factors in computing systems, pp. 415–
422. ACM Press, 2004. Cited in 2.3 and 4.1.

24. M. Völkel. SemWiki – a RESTful distributed wiki architecture. Proc. of the
WikiSym 2005 (demo session), 2005. Cited in 4.6.

25. M. Völkel, et al. SemVersion - versioning RDF and ontologies. KnowledgeWeb
Deliverable D2.3.3.v1, Institute AIFB, University of Karlsruhe, Jun. 2005. Cited
in 4.1.

26. E. Wenger, R. Mcdermott, and W. M. Snyder. Cultivating Communities of Prac-
tice. Harvard Business School Press, March 2002. Cited in 1.

27. S. Whittaker and C. Sidner. Email overload: exploring personal information man-
agement of email. In CHI ’96: Proc. of the SIGCHI conf. on Human factors in
computing systems, pp. 276–283. ACM Press, 1996. Cited in 2.3, 2.3, and 2.4.

28. K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image
search and browsing. In CHI ’03: Proc. of the SIGCHI conf. on Human factors in
computing systems, pp. 401–408. ACM Press, 2003. Cited in 4.5.

15


	Personal Knowledge Managementwith Semantic Wikis
	Max Völkel and Eyal Oren

