
Trust Negotiation for Semantic Web Services

Daniel Olmedilla1, Rub́en Lara2, Axel Polleres2, and Holger Lausen3

1 L3S and University of Hanover, Germany
olmedilla@l3s.de

2 DERI Innsbruck, Austria
{ruben.lara,axel.polleres }@deri.at

3 DERI Galway, Ireland
holger.lausen@deri.ie

Abstract. Semantic Web Services enable the dynamic discovery of services
based on a formal, explicit specification of the requester needs. The actual Web
Services that will be used to satisfy the requester’s goal are selected at run-time
and, therefore, they are not known beforehand. As a consequence, determining
whether the selected services can be trusted becomes an essential issue. In this
paper, we propose the use of the Peertrust language to decide if trust can be
established between the requester and the service provider. We add modelling el-
ements to the Web Service Modeling Ontology (WSMO) in order to include trust
information in the description of Semantic Web Services. In this scenario, we
discuss different registry architectures and their implications for the matchmak-
ing process. In addition, we present a matching algorithm for the trust policies
introduced.

1 Introduction

Semantic Web Services [12] aim at providing automatic support for discovery, com-
position and execution of Web Services by means their explicit semantic annotation,
overcoming the limitations of current Web Service technologies. One of the features of
Semantic Web Services is that the functionality they provide may depend on the invo-
cation of other services that are dynamically located and, therefore, their characteristics
are not completely known at design time. In such a dynamic and open environment,
where the interacting parties can be determined at run-time, trust becomes an essen-
tial issue. As Semantic Web Services provide P2P interactions between services, trust
establishment mechanisms based on a simple client/server approach, in which the re-
quester has to register and/or unconditionally disclose his (maybe private) information
to the provider in order to gain access to the service [4], are not appropriate. How-
ever, some mechanisms must be in place to determine if trust between the requester
and the provider can be reached. Policy languages appear as a solution to bring trust
to Semantic Web Services. A policy is a rule that specifies in which conditions a re-
source (or another policy) might be disclosed to a requester. Related work in [8] uses
a trusted matchmaker where services must register providing not only the services de-
scription but also the policies associated to that service. A user/agent includes its policy
together with its request and the matchmaker filters the available services according to

the requester’s functional goals together with the requester and service compatibility
according to their policies. That match is performed using goals and authorization poli-
cies from the requester and the service providers. However, we believe that there are
two types of policies at any entity: sensitive (and therefore the owner will not disclose
them) and non-sensitive (which might be made public). A centralized matchmaker as-
sumes that all the parties involved will disclose their policies to it. If parties do not fulfill
this requirement, the matchmaker results will not be accurate. In addition, delegation
becomes important when more than one entity is involved while taking a decision. For
example, suppose Alice wants to buy book at Uni-Book store. Uni-Book offers a dis-
count to any student registered at any university in the region of Lower Saxony (e.g,
Hanover University). Alice is a student and she has her student id card but Uni-Book
might want to verify that she did not withdrew after she registered. Therefore, Uni-Book
delegates its authorization decision to Hanover Registrar (the entity in charge of student
registration at Hanover University). Centralized approaches assume that services (and
policies) of Hannover Registrar must be available at the registry together with Uni-
Book services in order to allow delegation. Furthermore, access control is not longer
a one-shot, unilateral affair found in traditional distributed systems or recent proposals
for access control on the Semantic Web [6, 22]. The distributed and open nature of the
Web requires trust to be established iteratively through a negotiation process where the
level of trust increases in each successful iteration. This iterative process has not been
taken into account in previous work on semantic web services.

In this paper, we propose an architecture based on a distributed registry and a match-
making process which provides a solution to the limitations or assumptions described
above. We use the PeerTrust language [4] which provides access control through Trust
Negotiation to determine whether the establishment of an appropriate trust level be-
tween the requester and the provider is possible at discovery time.

Section 2 presents different possible registry architectures that influence what infor-
mation is made available to the matchmaker and under which assumptions. Section 3
briefly describes trust negotiation and the Peertrust policy language. The inclusion of
information disclosure policies in the modeling of Semantic Web Services is discussed
in Section 4. Section 5 presents our implementation of the algorithm for the matching
of trust policies. Finally, conclusions and future work are presented in Section 6.

2 Registry architectures

The use of Matchmakers together with service registries has been proposed in order to
allow users/agents to find services that fulfill their goals [11, 17]. Service descriptions
and matchmakers do not usually take into account trust policies during the process of
identifying matching services. However, many useless service invocations (because e.g.
access is denied to him) that do not lead to the user’s expected results can be avoided by
considering trust policies during the matchmaking process. In this section we will only
consider issues purely related to the algorithm of determining if trust can be reached
between the requester and the provider. Existing security architecture proposals for se-
mantic web services involve the use of a matchmaker where both the requester and the
service provider policies must be available [8]. While this approach has several advan-

tages, it is also built on some assumptions that should be reviewed. We believe that
service providers will not disclose sensitive policies to a third entity (and loose control
over them) and therefore, this would reduce the accuracy of the matchmaker, which
can only make use of non-sensitive policies. Even if we assume that the matchmaker is
trusted, many companies would not provide their policies (e.g, a resource protected by
a policy requiring an employee id from Microsoft or IBM might suggest a secret project
between both companies [23]). Consequently, we believe that delegation and negotia-
tion will play an important role on trust and security for Semantic Web Services. In
the delegation process (act of delegating a decision to another entity) two entities are
involved: delegator (the entity that delegates the decision) and the delegatee (the entity
that receives the delegation and takes the decision). Delegation in a centralized match-
maker might not be possible if delegatee’s policies are not available in the matchmaker.
In this section we describe different possible matchmaking architectures according to
where client and server policies are stored (e.g. locally or 3rd party) and where the
matchmaking process is done (client side, server side, trusted matchmaker) and we dis-
cuss their advantages and drawbacks.

2.1 Centralized matchmaking

Typically, service providers must register in a centralized registry/directory (e.g.,
UDDI) where they describe the properties of their services. A potential requester try
to find the appropriate service by looking it up in that registry. If a service that matches
its goals is found, it retrieves the complete information of that service and invokes it.

Trusted matchmaker The scenario presented above directly suggests to have our
trust matchmaker together with the goal matchmaker at the registry and therefore both
tasks might be done at the same time (as depicted in figure 1). This approach is easy to
implement and the fastest (algorithm’s computation is performed locally at the registry
and only matching services are retrieved) but it has some disadvantages. First of all, the
matchmaker must be fully trusted because requester and service providers must provide
their policies (which may include confidential information) in order to find the matches
for the request. This first assumption might be a problem for many users or providers
who do not feel comfortable loosing control of their policies. A solution is to distin-
guish between non-sensitive policies (e.g., a book seller might want or at least does not
mind to publish that it gives a discount to students) and sensitive policies (e.g., in the
policy “in order to access Bob’s health record the requester must be an employee of
the Psychology department of a Hospital” someone could infer that Bob has some psy-
chological problems) and only provide non-sensitive policies to the registry. While this
solution gives more flexibility to users and providers, it also reduces the accuracy of the
matching algorithm. Now some private policies are missing and therefore some possi-
ble matches will not be selected (reduction of recall) and many matches will be selected
although they will not be usable (reduction of precision). The second big disadvantage
is related to delegation. An entity might delegate decisions to other entities (e.g, a client
gets the status of preferred client if he is already a client of our company’s partners). A
centralized matchmaker would then need to have the policies of all the entities which

could be involved in the process (the company’s partners) or to have mechanisms to re-
trieve automatically such information. A possible mechanism could be to expect all the
company’s partners to publish a service that provide access to their policies. Although
this seems to be difficult, if we reached to have such a service at each delegatee entity,
this service must be as well protected with some policies in order to not allow anyone
to retrieve those policies. A list of allowed matchmakers might be provided or a policy
language (e.g., Peertrust) could protect them. In any case, delegation might become a
time consuming task and decrease the performance of the algorithm. Batch processes
or caching might be some possibilities to minimize this problem.

Service
Providers

Alice

1. User
request

1. Service
registration

3. Registry
results

Registry

1. Service
registration

1. Service
registration

Fig. 1. Centralized Registry and Matchmaker

Local client’s matchmaker A different approach is to have the matchmaker locally at
the client side. It must retrieve all services information (and policies) from the registry
and run the trust policies matchmaking algorithm locally. While this approach allows
the use of all the client’s private policies and certificates/credentials, it still has the dis-
advantage that providers would disclose only their public policies reducing the accuracy
of the algorithm. Furthermore, this approach seems not to be scalable to registries with
a high number of services. Service descriptions and policies must be retrieved from the
registry to the user computer with the corresponding network overload, and this ap-
proach requires a client machine powerful enough to run the algorithm in a reasonable
time.

2.2 Distributed matchmaking

Above we have described how a centralized and trusted registry might store the policies
from users and service providers and the implications for the trust policies matchmaking
process. It turned out that many disadvantages appear when relying on such an archi-
tecture. In this section we propose an alternative architecture where service providers

do not need to register at a specific registry and, most important, they do not need to
provide their policies to any third entity (trusted or not).

In [21] such an architecture is described where centralized registries are replaced by
a Peer-to-Peer network. Whenever a new service provider wants to offer its services, it
must just join the network. This approach allows service providers not to loose control
over the descriptions of their services and, in our context, not to disclose private infor-
mation within their policies to other entities. We propose to follow such an architecture
and allow different agent to provide users access to the service descriptions from the
providers. A user might then send a query together with his policies to an agent he
trusts in4. The agent sends the same query to the network. This query is distributed to
the peers on the network and each peer on the network applies a matching algorithm.
Whenever a peer has matches, it sends them back to the agent which joins the results
and give them to the user. This architecture is depicted in Figure 2.

Alice

Agent

Distributed
Registry

2. Anonymous
request

1. User
request

2. Anonymous
request

2. Anonymous
request

3. Provider
results

3. Provider
results

3. Provider
results

4. Registry
results

Fig. 2. Distributed Registry and Matchmaker

In this context there are several issues that must be solved. The user might not want
that each provider knows about his policies. The agent plays an important role here. It is
not only a mediator between the user and the distributed registry, but it is also in charge
of making the query anonymous so that the providers do not know the real owner of the
query they receive (making the policies anonymous too). A second problem is that we
moved the matching algorithm to the service provider side. The question that then arises
is how to proceed if the provider returns matches that are not real matches. Although
the possibility of a provider faking the match results does exist, the provider would not

4 Here it is important to note that different groups of users might use different trusted agents
(e.g., the university might set up an agent for its students and professors while a company
could use a different one)

benefit from that behaviour, because those false matches will lead to failed invocations.
With false matches a service provider only obtains extra, unnecessary and unsuccessful
invocations.

The advantages of this architecture are summarized as follows:

– Distributed registry service.A distributed registry service allows service providers
to keep control over the description of their services as well as the policies associ-
ated to them. Additionally, we gain the nice properties of distributed environments
like e.g. no single point of failure and better scalability .

– Distributed matchmaking.The matching algorithm might be computationally ex-
pensive. In a distributed architecture the computation time is shared by the different
providers improving performance and scalability.

– Privacy kept on service provider policies.We believe that it is not realistic to ask
service providers to disclose their (maybe very sensitive) policies to a centralized
registry (even if it is trusted). In a distributed approach, servers keep those policies
locally and private.

3 Peertrust and Trust Negotiation

In the previous sections we have mentioned policies and their importance to improve the
matchmaking process. Although a policy language (REI,[7]) was already used in [8],
in this paper we use the Peertrust language instead because it is especially designed
to enable delegation and trust negotiation. WS-Policy [2] cannot be directly used for
our purposes, as it does not describe trust policies but a general framework to describe
policies for Web Services. Describing Peertrust policies in this framework will be con-
sidered in the future.

Peertrust consists on a set of guarded distributed logic programs. The Peertrust lan-
guage [14] is a policy language based on Definite Horn clauses with some extensions
to provide e.g. delegation. Rules are of the form

lit0 ← lit1, . . . , litn

In the remainder of this section, we concentrate on the syntactic features that are unique
to the PeerTrust language and we will consider only positive authorizations.

In our previous example, Alice is a student and she wants to buy a book at Uni-
Book. Uni-Book has a policy where it states which requirements any buyer must fullfil.
The policy looks:

discount(BookTitle) $ Buyer←
studentId(Buyer) @ University @ Buyer,
validUniversity(University),
studentId(Buyer) @ University.

Uni-Book’s policies could be much more complex, but this simple policy will help
us to introduce the syntax of the Peertrust language. Three conditions must be fullfiled
before any buyer gets a discount at Uni-Book (represented in the body of the policy).
Starting with the simplest one, the second condition checks if a university is a valid

university in order to get the discount (if it belongs to the region of Lower Saxony).
The following is a list of Lower Saxony universities which are valid universities in our
context.

validUniversity(”Hanover University”).
...
validUniversity(”Bremen University”).

In the third condition,@ Issuerrepresents a delegation process on Issuer. In this
case, Uni-Book delegates on the university the proving of the buyer’s student status (if
she is still a student or if she registered and afterwards withdrew). In addition, theIssuer
argument can be a nested term containing a sequence of issuers, which are evaluated
starting at the outermost layer. In the first condition, two ”@” are nested, which means
that when Uni-Book receives the request from Alice, it asks her to prove that she is a
student at a university and this proof must contain a digital credential signed by the uni-
versity. In our case, University of Hanover issued a digital credential to Alice when she
registered (like credentials in real life where the university issues a student card to reg-
istered students). As Alice already possesses this credential, she sends it to Uni-Book.
If she had not had it, she should have had to send a request to ”Hanover University”
(which in this case would bestudentId(”Alice”) @ ”Hanover University”) to get such
a credential.

On the head of the policy above, a symbol ”$” appears. This$ Requesterrepresents
the party that sent us the query to allow parties to include the party that sent the query
into the policy. TheRequesterargument can be nested, too, in which case it expresses a
chain of requesters, with the most recent requester in the outermost layer of the nested
term.

Summarizing, when Alice requests Uni-Book for a discount on a book, Uni-Book
asks Alice to prove that she is a student in a university. Alice is a student at Hanover
University so she discloses her credential (signed by University of Hanover) to Uni-
Book. Uni-Book checks that the university is a valid university and sends a request to
Hanover University in order to check if Alice is still a student there (she has not with-
drew after her registration). If Hanover University answers that Alice is still a student,
she will get the discount.

Using theIssuerandRequesterarguments, we can delegate evaluation of literals
to other parties and also express interactions and the corresponding negotiation process
between parties. In this paper we will not use other features of the Peertrust language
like local rules and signed rules, guardsandpublic and private predicates. For more
details, we refer to [14] for a detailed description.

Continuing with our example, Uni-Book requires Alice to prove that she is a stu-
dent at a university. However, Alice is not willing to disclose her student id card to
anyone who requests it. Contrary, she will disclose her credential only to entities that
are members of the ”Better Business Bureau”. Therefore she has the following policy:

student(’Alice’) $ Requester←
member(Requester) @ ’Better Business Bureau’ @ Requester.

Describing policies on both sides (Alice and Uni-Pro) allows a negotiation process
where at each iteration trust is increased. After Uni-Book proves Alice that it belongs

to the Better Business Bureau, Alice knows enough to disclose her student card what
makes the negotiation succeed and, therefore, Alice gets the discount. After several
iterations (where also other entities like Hannover University might be involved) the
level of trust is enough to perform the transaction.

4 Application to Semantic Web Services

A Web Service provider can act as requester for other services in order to provide its
declared functionality. In the general case, a provider will specify subgoals that have to
be accomplished in order to achieve its overall functionality. These subgoals are defined
in the orchestration of the service, which in addition describes related issues such as the
control flow and data flow among the subgoals. These subgoals have to be resolved at
run-time, and actual Web Services that fulfill the defined subgoals have to be located. In
general, the actual Web Services that will be used to provide the functionality required
by the requester can be located at run-time based on a formal, explicit definition of the
requester requirements. Therefore, an essential aspect to determine what services are
applicable to fulfill the requester’s goal is to be able to decide which candidate services
can be trusted.

Consequently, trust information must be part of the description of Semantic Web
Services, and this information has to be exploited during the discovery process in order
to determine matching services.

We use the Web Service Modelling Ontology (WSMO)-Standard v0.3 [18] as the
modelling means to describe Semantic Web Services and we situate the information
disclosure policies into the appropriate modelling elements in order to exploit it dur-
ing the discovery process [9]. Our main reasons to choose WSMO instead of other
proposals such as OWL-S [16], IRS-II [13] or METEOR-S [20] are: 1) It allows the
use of arbitrary logical expressions in the description of the service functionality, thus
providing more complete descriptions than the other approaches, and 2) It uses logic
programming (F-Logic [10]) to describe the logical expressions used in the description
of the service, which makes possible, in the future, the alignment of the trust policies
described in the Peertrust language and the functionality descriptions in WSMO.

In WSMO-Standard, goals describe the objectives that a client may have, while
capabilities describe the functionality of the service. A requester describes his goal by
specifying its postconditions (the state of the information space that is desired) and
effects (the state of the world that is desired). Capabilities also describe postconditions
of the service (the information results of its execution) and effects (the state of the
world after its execution). With this information, the discovery process can match the
requester’s goal against the available service capabilities and determine what services
provide the required functionality.

However, the service capability also needs to describe what information the Web
Service requires to provide its service (preconditions) and its assumptions. Therefore,
the preconditions is where the policies described in the previous sections come into
play. The Web Service will state in its preconditions what information the requester
has to disclose (including credentials) to gain access to the service. Credentials can
be described using the ontology described in [3] and included in the preconditions of

the service. In addition to enumerate all the information items that the service requires
for its execution, we add the Peertrust expressions that describe the exact policies the
service employs. Since in WSMO-Standard preconditions are described via axiom def-
initions, we need to extend this description to add the relevant policies. Figure 3 depicts
our modelling in F-Logic [10]. A precondition includes any number of axiom defini-
tions and any number of policies (encoded as strings that represent a Peertrust formula).
Notice that we use F-Logic, as it is the language used in WSMO-Standard to describe
preconditions.

precondition [
 axiom =>> axiomDefinition,
 policies =>> string
]

Fig. 3. Definition of precondition

By modelling preconditions in this way in the service capability, we capture both the
information that the service requires from the requester and what policies apply to gain
access to the service. Therefore, we are modelling not only the functional description
of the service in terms of preconditions, assumptions, postconditions and effects but
also what are the policies that describe what information the requester must disclose
in order to be trusted by the provider. As discussed in Section 2, the provider might
not want to make these policies available. For this reason, we propose to follow the
distributed architecture described in Section 2.2, where the policies are kept private
at the provider side. In addition, we have to model at requester’s side the information
disclosure policies of such requester i.e. what information he is willing to disclose and
under what conditions.

The description of the requester’s information disclosure policies is modelled in F-
Logic in figure 4. A policy contains a set of information items, for which the actual data
(an ontology instance) to be disclosed and the disclosure policy (a Peertrust formula)
are specified. Information items that are unconditionally disclosed will have an empty
Peertrust formula. Notice that the data disclosed can be an instance of any ontology
concept, including a credential.

infoDisclosurePolicy [
 infoItems =>> infoItem [
 data => ontologyInstance,
 peerTrustExpression => string
]
]

Fig. 4. Definition of requester’s information disclosure policies

Having such information disclosure policies described at the requester side and the
preconditions at the provider side, all the declarative elements needed to determine if
the trust establishment is possible are in place. We know the conditions the requester
must fulfill to be trusted by the provider (described using Peertrust in the preconditions
definition), and what information the requester will disclose and under what conditions.
Using the respective Peertrust policies and the matching algorithm described in sec-
tion 5 we can determine if trust can be reached.

It is important to notice that what we determine is whether trust can be reached
between the requester and the provider based on published policies. The actual inter-
change of messages (credentials) to really establish trust at invocation time, and the
modelling of the service choreography [19] for that interchange is out of the scope of
this paper.

After modelling the elements above, a relevant issue is determining how the match-
maker can access the information described by the requester and the provider. In the
distributed architecture proposed in section 2.2, the description of the services is kept
on the provider, and the (anonymous) request is sent by the user agent to the peers.
In this approach, the matchmaking process is performed at every provider and the re-
sults returned to the user agent. Therefore, the provider policies will be available to the
matchmaker, as the matchmaking process will take place on the provider’s side. How-
ever, not only the requester’s goal but also its information disclosure policies or the
subset relevant for this goal i.e. the information that the requester is willing to disclose
(under certain conditions) to achieve the goal has to be submitted to the peers by the
user agent, as these policies are necessary to determine whether trust can be reached
between the parties.

An obvious drawback of this approach is that the requester might be willing to
disclose a big set of information that is not sensitive, and submitting this information
to all the peers creates an information overload. Therefore, we propose an alternative
solution in which the matchmaker requests to the user agent that submitted the query the
information it needs to satisfy the service requirements. The user agent will have access
to the requester information disclosure policies, and will send back to the matchmaker
the relevant information together with the relevant (anonymous) policies. To do so, the
user agent will expose a Web Service that receives the requests from the matchmakers
and send back the appropriate policies. This service will only be accessible to providers
that are part of the P2P network of providers, that are assumed to be trusted.

5 Algorithm implementation

In this section we present our implementation of an algorithm that performs the match-
ing of trust policies. Each of the service providers has this algorithm and it runs it locally
whenever a new request (query hereafter) from an agent arrives.

We limit ourselves to the evaluation of the policies described in previous sections i.e.
the matching of the Peertrust policies described for the requester and the provider. For
more details about matching services with requests we refer the reader to [9] and [11].

Guarded distributed logic programs can be evaluated in many different ways.
This flexibility is important, as different registries, and even different service providers

within the same registry, may prefer different approaches to evaluation. As we pro-
vide explicit delegation in our policies the service provider might include other enti-
ties (peers) to delegate decisions. We will present a simple evaluation algorithm for
PeerTrust that is based on the cooperative distributed computation of a proof tree, with
all peers employing the same evaluation algorithm. The algorithm assumes that each
peer uses a queue to keep track of all active proof trees and the expandable subqueries
in each of these trees. The proof trees contain all information needed, including used
rules, credentials and variable instantiations. Peers communicate with one another by
sending queries and query answers to each other.

The following sketch of the algorithm uses EITHER:/OR: to express a non-
deterministic choice between several possible branches of the algorithm.

Let TreeList denote the structure with all active proof trees
SetTreeList := []
Let Tree denote the structure holdingQuery$Requester andProof

both of which may still contain uninstantiated variables
Loop

EITHER:
ReceiveTree: a query to answer / a goal to prove
Add New Tree(Tree, TreeList)

OR:
ReceiveAnswer(Tree)
Add Answers(Answer(Tree),TreeList)

OR:
ReceiveFailure(Tree) from peer
SendFailure(Tree) to Requester
RemoveTree(Failure(Tree), TreeList)

OR:
Processa Tree(TreeList)

end Loop

At each step a peer can receive a new query from another peer, receive answers,
learn that there are no answers for a query it previously sent to a peer, or selects one of its
active trees for processing . If this tree is already complete, the answers can be returned
to the peers who requested this evaluation. If the tree contains subqueries which still
have to be evaluated, the peer selects one of them and tries to evaluate it.

Processa Tree(TreeList)
Let NewTrees denote the new proof trees
SetNewTrees := []
SelectTree(Tree, TreeList, RestOfTreeList)
IF all subqueries inTree are already evaluated
THEN

Send(Answer(Tree)) to Requester
TreeList := RestTreeList

ELSE
SelectSubquery (SubQuery,Tree)
IF SubQuery can be evaluated locally
THEN

Loop while new local rules are found
ExpandSubQuery into its subgoals
UpdateTree(Tree,NewSubgoals)
Add Tree(Tree,NewTrees)

End loop
ELSE //if it is a goal with an “@ Issuer” suffix,

// indicating remote evaluation
IF peer hasSigned Rule(SubQuery)

Loop while new signed rules are found
ExpandSubQuery into its subgoals
UpdateTree(Tree,NewSubgoals)
Add Tree(Tree,NewTrees)

End loop
ELSE

SendRequest(SubQuery) to Issuer)
UpdateStatus(Tree, waiting)

END IF
END IF
IF no local or remote expansion forSubQuery was possible

Send(Failure(Tree)) to Requester
ELSE

Add New Trees
(NewTrees,RestTreeList,NewTreeList)

END IF
TreeList := NewTreeList

END IF

Expansion of subqueries is done either locally (using the peer’s rules and signed
rules) or by sending the subquery to a remote peer (in case of delegation). Many queries
per proof can be active (i.e., awaiting answers and being processed) at any time. Each
new query from a remote peer starts a new proof tree while answers from remote peers
are “plugged into” existing proof trees. An example of a query expansion in a proof
tree is depicted in figure 5, where a tree is expanded into two and then three trees. Each
tree structure contains at least root and leaves, plus any additional information from
the proof, including credentials, that we want to keep and/or return to the requester. If
one proof tree for the original query is completed, then the negotiation is over and the
requester obtains access to the desired resource.

This algorithm can be extended and improved in many different ways. For example,
it can be made more efficient and effective at run time by generalizing the definition of
a query, allowing iteration through a set of query answers, allowing intensional query
answers, support for caching of query answers, and prioritization of rules a la [5]. Al-
ternatively, the algorithm can be revamped in ways that will allow different peers to
choose different evaluation algorithms, along the lines of [23], or to provide provable
guarantees of completeness and termination, as offered by the algorithms of [23]. No
matter what revisions are made, however, at its heart any evaluation algorithm will be
working to construct a certified proof tree.

2

TreeList
G

G G1|B1.
G G2|B2.

1

TreeList

Query = G

G

3

G

G1 G3|B3.
G1 G4|B4.

TreeList

G2 B2

G

G1 B1

G

G1 B1

G

G2 B2

G

B3 B1

G

G3 B4 B1

G

G4

TreeList

Fig. 5. Resource access control scenario

6 Conclusions and future work

Semantic Web Services bring dynamism to current Web Service technologies, and the
actual services that will be employed to satisfy a goal are determined at run time. There-
fore, requesters interact with services that they do not know beforehand, and they have
to determine if they can trust such services. In this context, modelling trust information
in Semantic Web Services becomes necessary. In this paper, we include trust policies
in WSMO-Standard, together with the information disclosure policies of the requester,
using the Peertrust language. Peertrust provides the means to perform trust negotiation
and delegation. As the matchmaker needs to have access to the requester and provider
policies, in order to match not only the requester functional requirements but also trust
information, the architecture of the registry and matchmaker becomes a relevant issue.
We have proposed a distributed registry and matchmaker architecture that allows the
service providers to keep their policies private, thus not forcing them to disclose sen-
sitive information. It also improves the efficiency and scalability of the solution. We
have also implemented an algorithm that matches the requester and provider Peertrust
policies to determine if trust between them can be established. Future work includes
the integration of this algorithm with the functional matching algorithm (matching of
the requester goal and the service capability) in our P2P network (Edutella, [15]). We
are also studying the possibility of extending our work to Web Services on Grid envi-
ronments. Some previous work on using Peertrust on Grid environments can be found
in [1]. At this point, we use strings to model the Peertrust formulas in the description of
the service and in the description of the requester information disclosure policies. How-
ever, Peertrust expressions can be modelled directly as F-Logic formulas, extending
their semantics to include Peertrust features such as delegation. As part of the integra-
tion of the functional matching and the trust matching algorithms, we plan to model
Peertrust expressions as F-Logic formulas. We will also investigate other possibilities
to better integrate policies in WSMO. Finally, we plan to refine the approach we pro-
pose to give the provider access to use the requester’s information disclosure policies,
in which we assumed the providers requesting access to these policies is trusted.

Acknowledgments This research is partially funded by the projects ELENA
(http://www.elena-project.org, IST-2001-37264), REWERSE (http://rewerse.net, IST-
506779), Knowledge Web (http://knowledgeweb.semanticweb.org/, FP6-507482), DIP
(http://dip.semanticweb.org/, FP6-507683) and SWWS (http://swws.semanticweb.org/,
IST-2001-37134).

References

1. J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett. Negotiating trust on the grid.
In Proc. of 2nd Workshop on Semantics in P2P and Grid Computing, New York, 2004, May
2004.

2. D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam,
M. Nottingham, C. von Riegen, and J. Shewchuk. Web services policy framework (ws-
policy). http://www-106.ibm.com/developerworks/library/ws-polfram/, May 2003.

3. G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml web services:
Annotation and matchmaking. InProceedings of the 2nd International Semantic Web Con-
ference, Sanibel Island, Florida, USA, Oct. 2003.

4. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. InProc. of the 1st European Semantic Web Symposium, Heraklion, Greece, May 2004.

5. B. Grosof. Representing e-business rules for the semantic web: Situated courteous logic
programs in RuleML. InProceedings of the Workshop on Information Technologies and
Systems (WITS), New Orleans, LA, USA, Dec. 2001.

6. L. Kagal, T. Finin, and A. Joshi. A policy based approach to security for the semantic web.
In Proceedings of the 2nd International Semantic Web Conference, Sanibel Island, Florida,
USA, Oct. 2003.

7. L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing environment.
In 4th IEEE International Workshop on Policies for Distributed Systems and Networks (POL-
ICY 2003), Lake Como, Italy, June 2003.

8. L. Kagal, M. Paoucci, N. Srinivasan, G. Denker, T. Finin, and K. Sycara. Authorization
and privacy for semantic web services. InAAAI 2004 Spring Symposium on Semantic Web
Services, Stanford University, Mar. 2004.

9. U. Keller, R. Lara, A. Polleres, and H. Lausen. Inferencing support for semantic web
services: Proof obligations. http://www.wsmo.org/2004/d5/d5.1/v0.1/, Apr. 2004. WSML
working draft.

10. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object oriented and frame-based
languages.Journal of the ACM, 42(4):741–843, 1995.

11. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. InProceedings of the 12th International Conference on the World Wide Web,
Budapest, Hungary, May 2003.

12. S. McIlraith, T. Son, and H. Zeng. Semantic web services.IEEE Intelligent Systems, Special
Issue on the Semantic Web, 16(2):46/53, March/April 2001.

13. E. Motta, J. Domingue, L. Cabral, and M. Gaspari. Irs-ii: A framework and infrastructure
for semantic web services. In2nd International Semantic Web Conference (ISWC2003).
Springer Verlag, October 2003.

14. W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: automated trust negotiation for peers
on the semantic web. Technical Report, Oct. 2003.

15. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér, and
T. Risch. Edutella: A P2P networking infrastructure based on RDF. InProceedings of the
11th International World Wide Web Conference (WWW2002), Hawaii, USA, June 2002.

16. OWL-S services coalition. OWL-S: semantic markup for web services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, November 2003.

17. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web services
capabilities. In I. Horrocks and J. Handler, editors,1st Int. Semantic Web Conference (ISWC),
pages 333–347. Springer Verlag, 2002.

18. D. Roman, H. Lausen, and U. Keller. Web service modeling ontology - standard.
http://www.wsmo.org/2004/d2/v0.3/, Mar. 2004. WSMO working draft.

19. D. Roman, L. Vasiliu, C. Bussler, and M. Stollberg. Choreography in wsmo.
http://www.wsmo.org/2004/d14/v0.1/, Apr. 2004. WSMO working draft.

20. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web services
standards. In1st International Conference on Web Services (ICWS’03), pages 395–401, June
2003.

21. U. Thaden, W. Siberski, and W. Nejdl. A semantic web based peer-to-peer service registry
network. Technical report, Learning Lab Lower Saxony, 2003.

22. G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Semantic web
languages for policy representation and reasoning: A comparison of KAoS, Rei and Ponder.
In Proceedings of the 2nd International Semantic Web Conference, Sanibel Island, Florida,
USA, Oct. 2003.

23. T. Yu, M. Winslett, and K. Seamons. Supporting Structured Credentials and Sensitive Poli-
cies through Interoperable Strategies in Automated Trust Negotiation.ACM Transactions on
Information and System Security, 6(1), Feb. 2003.

