
Benchmarking ontology tools. A case study for the WebODE platform

Oscar Corcho, Raúl García-Castro, Asunción Gómez-Pérez

Ontology Group. Departamento de Inteligencia Artificial, Facultad de Informática,
Universidad Politécnica de Madrid, Spain

{ocorcho@fi.upm.es, rgarcia@fi.upm.es, asun@fi.upm.es}

Abstract
As the Semantic Web grows the number of tools that support it increases, and a new need arises: the assessment of these tools in order
to analyse whether they can deal with actual and future performance requirements. In order to evaluate ontology tools’ performance,
the development and use of benchmark suites for these tools is needed. In this paper we describe the design and execution of a
benchmark suite for assessing the performance of the WebODE ontology engineering workbench.

Introduction
In recent years, much effort has been made to develop
ontology editors and ontology tools for creating and
maintaining ontologies with different knowledge models
and with different underlying knowledge representation
paradigms (Gómez-Pérez et al., 2003). Ontology tools are
now used in a wide range of applications and manage
large upper level and general ontologies, natural language
resources like thesauri, etc. Hence, ontology tools should
be evaluated thoroughly in order to analyze whether they
can deal with actual and future performance requirements.
For the time being, little effort has been put on creating
benchmark suites and carrying out performance studies for
ontology technology, while in other fields there is much
work already done. For this reason, we think that there is a
need to construct a benchmark suite for ontology tools.
This benchmark suite will allow evaluating the ontology
management services that these tools provide, possibly
detecting aspects that need optimization in order to allow
for a better performance and integration of this technology
into other information systems.
To carry out this benchmarking study, we have focused on
the WebODE ontology engineering workbench (Arpírez et
al., 2003), analyzing the performance of the public
methods of its API. These methods allow managing the
ontology components defined in the WebODE knowledge
model (concepts, relations, instances, axioms, constants,
bibliographic references and imported terms). Since these
methods are similar in most of the ontology tools, this
study can in the future be easily extended to other
ontology tools, such as Protégé-2000, OntoEdit, KAON,
etc.
In this paper we describe, step by step, how we have
designed and executed a structured benchmark suite in
order to analyze the performance of these methods.

Goals of the benchmarking
The long term goal of benchmarking the WebODE
ontology engineering workbench is to achieve a
continuous improvement in the platform’s quality. There
are other short term goals as:
• Assess the platform’s performance, so as to be able to

detect anomalies in it.
• Monitor the platform, so as to be able to observe the

performance of critical elements and the effects in
performance when making changes in the platform.

• Diagnose future problems of the platform.

Design of the benchmark suite
We have selected the 72 ontology management methods
from WebODE’s API in order to be able to make a
complete analysis. As every service and application
supported by WebODE manages ontologies through its
API methods, knowing these methods’ performance will
let us know the performance of the services and
applications.
As we are interested in the platform’s temporal
performance, the metric will be the execution time of the
methods.
To carry out the study, the data needed will be obtained
from four different scenarios, where the methods will be
executed:
• Over a high load state. In order to be able to detect

performance anomalies.
• Repeatedly over the same load state. To be able to

check the method’s stability.
• Over incremental load states. To know the load-

performance relationship.
• With different input parameters. To check if

changing the method’s input parameters affects its
performance.

Definition of the benchmarks
In order to have a representative and interpretable set of
tests (Williams et al., 2003), the API methods have been
classified into five groups according to the kind of
operation they do: Inserts, Updates, Removes, Selects and
Non basics. This last group consists of methods that use
other methods from the API.
For each selected method, one or more benchmarks have
been defined according to the variation of its input
parameters. So, from the 72 API methods we get 128
different benchmarks.
Each benchmark executes its correspondig method with
the selected input parameters and stores the execution
time of the method.
If the evaluation of the platform is to be effective, the
benchmarks must be characterized accurately (Dongarra et
al., 1987). So, the definition of the benchmarks has been
completed with two execution parameters and an initial
load state.

mailto:{ocorcho@fi.upm.es
mailto:rgarcia@fi.upm.es
mailto:asun@fi.upm.es

Definition of the execution parameters
As the benchmarks must be robust and scalable, allowing
variable and unpredictable input rates and behavior (Bull
et al., 1999; Shirazi et al., 1999), they have been
parameterized according to two parameters:
• Load factor (X). Sets the load factor for each

benchmark’s initial state.
• Number of iterations (N). Sets the number of

consecutive executions of the method in a single
benchmark.

Definition of the load state
Every benchmark must be compared according to the
same situation. So, a common initial load state has been
defined for each benchmark group defined previously.
The initial load state of each individual benchmark has
been defined as the ontology components that must exist
in the platform in order to execute the benchmark with no
errors.
The initial state of each benchmark group is the union of
the initial states of each benchmark in the group. Table 1
shows the initial load state of the Updates group.

Table 1: Initial load state of the Updates group

Execution of the benchmark suite
The benchmarks have been implemented with Java, using
only standard libraries and with no graphical components,
in order to have a portable benchmark suite.
Once defined and implemented, each benchmark has been
run several times with different number of iterations
(N=10, 50, 75, 100, 200, 300, 500, 1000, 2000, 3000,
4000, and 5000) and with increasing load factors (X=10,
50, 75, 100, 200, 300, 500, 1000, 2000, 3000, 4000, and
5000). As with a load factor of 5000 we have obtained
enough data to be able to differentiate the methods’
performance and their behavior, the benchmarks haven’t
been executed with higher load factors.
The execution results have been stored in a hierarchical
measurement data library, in order to be able to access
them easily.

Analysis of the results
First of all, we have to bear in mind that the conclusions
obtained after analyzing the results are usually temporary
limited (Gray, 1993). As the methods in the API will

undergo changes, these results just inform us about
WebODE’s current performance, not its future one.
The data obtained after running the benchmarks is the
measurement of the execution times of the methods. As
this data can’t be used directly, it must be transformed to
obtain analyzable data.
From the raw results we can obtain:
• Graphs that show the behavior through time of the

methods.
• Statistical values worked out from the execution

times of the methods.
Statistical values obtained are central tendency measures
(mean, median and mode), variation measures (variance
and standard deviation), and Pearson’s correlation which
will show us the linear strength of the determinations.
Also, we have calculated the percentage of measurements
out of interval and estimated the function determined by
the execution times through simple regression.
In the graphs, we can see periodically peaks representing
high execution times, due to tasks from the systems that
run under the platform, like Java or Oracle. That’s why we
have worked with a “smoothed” version of the graphs, so
they are easier to analyze. In order to smooth the graphs,
only the medians of the values from each pixel interval
have been drawn.

Updates group
1 ontology with X term references

1 concept with X class attributes
X instance attributes
X synonyms

X concepts with 1 class attribute
1 instance attribute
1 synonym

X constants
X formulas
X groups

X ontologies with 1 term reference
1 concept
1 constant
1 formula
1 group

The original graph from benchmark1_1_14 (which adds
values to class attributes using the method
addValueToClassAttribute) can be seen in Figure 1 and its
smoothed graph appears in Figure 2.

Figure 1: Original graph from benchmark1_1_14

Figure 2: Smoothed graph from benchmark1_1_14
Let us see now the analysis for each scenario proposed
above:

Running over a high load state
In order to compare the performance of the different
methods, we have analyzed the median of its execution
time when running the benchmarks over the maximum
load state (X=5000), with the maximum number of
iterations (N=5000).
Table 2 shows the median of the execution times of the
Updates’ group of benchmarks.

Benchmark Method Median
benchmark1_2_09 updateInstanceAttribute 201.0 ms.
benchmark1_2_10 updateInstanceAttribute 191.0 ms.
benchmark1_2_11 updateSynonym 120.0 ms.
benchmark1_2_12 updateSynonym 110.0 ms.
benchmark1_2_14 updateConstant 110.0 ms.
benchmark1_2_17 updateGroup 100.0 ms.
benchmark1_2_18 updateGroup 100.0 ms.
benchmark1_2_07 updateClassAttribute 80.0 ms.
benchmark1_2_08 updateClassAttribute 80.0 ms.
benchmark1_2_13 updateConstant 60.0 ms. Figure 5: Graph from benchmark1_1_18 (the execution

time increases through iterations)
Table 2: Execution times of the Update´s group of

benchmarks Running over incremental load states
Only 14 methods (19%) of the whole benchmark suite
have an execution time greater than 250 ms. In order to compare the performance of the different

methods when increasing the load, we have analyzed the
function defined by the medians of the execution times of
each benchmark from a minimal initial state (X=10) to a
maximum one (X=5000), with the maximum number of
iterations (N=5000).

In every case, the percentage of values out of interval is
very low (less than 2%), which is an acceptable value.
Pearson’s correlation coefficient shows what can be seen
to the naked eye, that there is little linear strength between
the values, because of the numerous peaks in the
execution times. Although some of the estimated functions are constant,

like the one shown in Figure 6, most of them have a
positive slope as can be seen in Figure 7. Only in 11
methods (15%), this slope is greater than 0.02. Running repeatedly over the same load state

In order to compare whether there is a variation in the
performance when running a method repeatedly, the key
factor is the behavior of the functions defined by the
execution times when running the benchmarks over the
maximum load state (X=5000), with the maximum
number of iterations (N=5000).

In most cases, execution times remain constant through
time (like in Figure 3), in some cases the execution time
diminishes (like in Figure 4), although this is not worrying
because performance increases. But, there are 4 methods
(5%) whose execution time increases through time with a
slope greater than 0.02 (like in Figure 5). Figure 6: Graph from the medians of benchmark1_2_04

(the estimated function is constant)

Figure 3: Graph from benchmark1_2_09 (the execution
time remains constant through iterations)

Figure 7: Graph from the medians of benchmark1_4_10
(the estimated function’s slope is positive)

Besides, Pearson’s correlation coefficient values show a
high linear relation, meaning that the evolution through
time of the execution times behaves linearly.

Running with different input parameters
In order to compare the performance of the different
methods when changing its input parameters, we have
analyzed the behavior of the benchmarks that use the
same method when running over the maximum load state
(X=5000), with the maximum number of iterations
(N=5000). Figure 4: Graph from benchmark1_3_10 (the execution

time decreases through iterations) In general, the method’s performance is not sensible to
parameter changes. The only exceptions are 12 methods

(16%) whose execution times differ significantly when
changing input parameters.
There are two kinds of variations: the execution times
behave differently over time, like in Figure 8 where the
benchmarks that execute the method
addValueToClassAttribute are shown, or their values are
very different, as the benchmarks that use the method
getClassAttribute which appear in Figure 9.

Figure 8: Graphs from benchmark1_1_14 and
benchmark1_1_15 (execution times behave differently)

Figure 9: Graphs from benchmark1_4_11 and
benchmark1_4_12 (execution times are very different)

Development of improvement
recommendations

Once the data has been analyzed, the next step is the
development of improvement recommendations. These
recommendations include those methods whose execution
times:
• Are higher than 250 ms.
• Increase over time with slope greater than 0.02.
• Increase when augmenting load with slope greater

than 0.02.
• Vary when modifying its input parameters.
So, improvement recommendations include 21 of the 72
WebODE’s API methods (29%).

Adapt the system
From the improvement recommendations obtained after
the analysis of the results, the WebODE’s development
team has identified the changes that must be implemented
in the platform in order to improve its performance.
After rerunning the benchmark suite, we have checked the
decrease of the execution times in the improved methods.
For example, the study showed that the methods that
manage instance attributes (addValueToInstanceAttribute,
removeValueFromInstanceAttribute, getInstanceAttribute
and getInstanceAttributes) were among the slowest. After

optimizing a SQL query from an internal piece of code
used by these methods, their overall performance
improved as can be seen in Table 3.

Benchmark Before After Improvement

benchmark1_1_18 600 ms. 461 ms. 23%
benchmark1_1_19 471 ms. 371 ms. 21%
benchmark1_3_12 390 ms. 331 ms. 15%
benchmark1_3_13 281 ms. 240 ms. 14%
benchmark1_4_15 280 ms. 230 ms. 17%
benchmark1_4_16 300 ms. 250 ms. 16%

Table 3: Execution times before and after improving
instance attribute management

Conclusions and future work
After benchmarking the WebODE ontology engineering
workbench:
• We have identified the slowest methods, the

bottlenecks and the performance anomalies of the
platform.

• We have determined precisely the platform’s
performance.

In the future, we plan to:
• Extend benchmarking to other ontology tools

(OntoEdit, Protégé-2000, KAON, etc.).
• Include other metrics to measure properties like

correctness, stability, etc.
• Carry out a synthetic study about the performance of

services and applications that use WebODE.

Acknowledgements
This work is partially supported by the IST project
KnowledgeWeb (IST-2004-507482) and by the IST
project Esperonto (IST-2001-34373).

References
Arpírez J.C., Corcho O., Fernández-López M., Gómez-

Pérez A. (2003). WebODE in a nutshell. AI Magazine.
24(3) (pp. 37--47). Fall 2003.

Bull J.M., Smith L.A., Westhead M.D., Henty D.S.,
Davey R.A. (1999) A Methodology for Benchmarking
Java Grande Applications. EPCC. June 1999.

Dongarra J., Martin J.L., Worlton J. (1987) Computer
benchmarking: paths and pitfalls. IEEE Spectrum, Vol.
24, N. 7 (pp. 38--43). July 1987.

Gómez-Pérez A., Fernández-López M., Corcho O. (2003).
Ontological Engineering. Springer-Verlag. November
2003.

Gray J. (1993). The Benchmark Handbook for Database
and Transaction Systems (2nd Edition). Morgan
Kaufmann.

Shirazi B., Welch L., Ravindran B., Cavanaugh C.,
Yanamula B., Brucks R., Huh E. (1999). DynBench: A
Dynamic Benchmark Suite for Distributed Real-Time
Systems. IPDPS 1999 Workshop on Embedded HPC
Systems and Applications, San Juan, Puerto Rico, April
1999.

Williams L.G., Smith C.U. (2002). Five Steps to Solving
Software Performance Problems.
http://www.perfeng.com.

