
1

A-Box Reasoning –
A little Bit Different View

Motivation

Applications
Configuration of complex components 
(e.g. PC with its components)
Query refinement

Characteristics
Interactive
Knowledge (i.e. A-Box) will be “completed”
incrementally



2

ABOX Reasoning 

Instance Retrieval
“Tell me all instances which are subsumed by a query 
Q?”
Needs inferences
Optimized with traditional database queries
(only for role-free A-Boxes)

Instance Realization
“To which classes do an instance I belong to?”

…

Note: Retrieval needs Realization

Retrieval Process
1. Classify Query Q
2. Select Instances 

from subsumed classes
3. Realize instances

from direct parents, if the 
belongs to Q

Cmp. Instance Store for 
role-free A-Boxes

Q



3

Idea: “Decision Tree” for Instances
Specify conditions, which 
allow to realize instance      
from class C to D
Incremental behavior:
Check conditions, when new 
information arrives
Analogies

Data-driven vs. 
goal-driven inference method 
(tableaux method)
Bottom-up vs. Top-down
Constraint Propagation

Conditions
C

D

Example: Specialization of a role filler

See ABOX as a sequences of statements
Ai = { Anja : Woman, child(Anja, Nils), Nils: Man }
Ai+1 = Ai + { Nils : Father }
Conclude in Ai+1:  Anja : Grandmother

∃ child:Parent

Father

child

Ai + { Nils : Father }

Nils

NilsMother

Grandmother



4

It is (theoretical) possible?

Trivial languages (no 
union, no negation): 
sure
Non-trivial languages: 
under investigation

Depends on the 
expressiveness of the 
decision tree

Conditions
C

D

Realization depends on the 
Concept Definition

Necessary:  
[X:C]! ← conditionN

“When can X be realized to C?”
Sufficient: 

[X:C]! → conditionS
“What happen, when X is realized to C?”



5

ConditionN and ConditionS

Conditions are generated from a concept term
First Instance

condition(C → D) = f(D)

Later

condition(C → D) = f(∆)

with D ≡ C ∩ ∆; ∆ is difference between C and D
faster; more understandable and readable

Notation: Querying and Realizing

Querying, 
if an instance X belongs to class C

[X : C]?

If an relation instance belongs to a relation R
[R(X, Y)]?

Realizing, (do it) 
if an instance X belongs to class C

[X : C]!

If an relation instance belongs to a relation R
[R(X, Y)]!



6

Necessary conditions: When can X be realized to C?

f(X:D)X: C ⊇ D

RemarksConditionN f(.)Concept term 

E ⊆ D[R(X,Y1..n) ∧ ∀Yi≠Yj]?⊕ f(Y1..n:E)X: ≤n.R.D ∩ ∀R.E
[R(X,Y1..n) ∧ ∀Yi≠Yj]?⊕ f(Y1..n:D)X: ≤n.R.D

CNfree ≡ ∀R.D[X: CNfree]?X: ∀R.D

Y1..n must not be generated[R(X,Y1..n) ∧ ∀Yi≠Yj]?⊕ f(Y1..n:D)X: ≥n.R.D

Features have an upper 
bound

[F(X) = Y)]? ⊕ f(Y:D)X: ∀F.D
(X: ≤1.R.D ∩ ∀R.E)

DNF: two conditionsf(X: D1) ⊗ f( X: D2)X: D1 ∪ D2

f(X: D1) ⊕ f(X: D2)X: D1 ∩ D2

noopX: C ⊆ D
f(X:D)X: C ≡ D

Y must not be generated (like 
in the tableaux method)

[R(X,Y)]? ⊕ f(Y:D)X: ∃R.D
(X: ≥1.R.D)

CNfree ≡ ¬CN; NNF required[X: CNfree]?X: ¬CN

CN primitive?[X : CN]?X: CN

Remarks (I)
Using concept hierarchy to answer [X:C]?
if E ⊆ C and [X: E]?
X: C ⊆ D (= X: C ≡ D ∩ ∆)
∆ is not known and (can not be) specified; 
X can only be realized to C if [X:E]! and E ⊆ C 
X: ∀R.D
OWA prevents to deduce forall terms because every time an ABOX 
can be extended with a role filler R(X,Y) and Y: ¬D;
X can only be realized to CNfree ≡ ∀R.D with a free concept name 
CNfree in the TBOX
if [X:E]? and E ⊆ CNfree

Note: Precompilation is needed; TBOX reasoning is needed a priori



7

Remarks (II)
X: ¬CN 
Let the TBOX reasoning determine the conditions, if X belongs to a 
negated concept. X can only be realized to CNfree ≡ ¬CN with a free 
concept name CNfree in the TBOX
if [X:E]? and E ⊆ CNfree

Note: Concept terms has to be transformed to NNF
X: ∃R.D (X: ≥1.R.D)
Role filler must not be generated (like in the tableaux method),
because only when the role filler is present in the ABOX some 
additional information can be associated to the role filler which can 
be used for the realization;
BUT: then inconsistencies can not be detected; example

ABOX = { X: ∀R.¬D , X: ∃R.D }

Sufficient conditions: 
What happened when X is realized to C?

noopX: C ⊇ D

noop[X : C]?

RemarksConditionS g(.)Concept term 

[R(X,Y)]? → g(Y:D), otherwise nothing!X: ≤n.R.D

[R(X,Y)]? → g(Y:D), otherwise nothing!X: ∀R.D
[R(X,Y)]? → g(Y:D), otherwise nothing!X: ≥n.R.D

INCOMPLETE!!!Not possible!X: D1 ∪ D2

g(X: D1), g(X: D2)X: D1 ∩ D2

g(X:D)X: C ⊆ D
g(X:D)X: C ≡ D

Inconsistency can not be 
detected

[R(X,Y)]? → g(Y:D), otherwise nothing!X: ∃R.D
(X: ≥1.R.D)

CNfree ≡ ¬CN; NNF required[X: CNfree]?X: ¬CN

CN primitive![X : CN]! X: CN



8

Example

Grandmother ≡ Mother ∩ ∃child:Parent
Grandmother ⊆ ∃married-with:Grandfather

[X:Grandmother]! ← [X:Mother]? ⊕ [child(X,Y)]? ⊕ [Y:Parent]?

[X:Grandmother]! → [married-with(X,Y)]? ⊕ [Y:Grandfather]!

f,g

[X:Grandmother]! ← [X:Mother]? ⊕ [child(X,Y)]? ⊕ [Y:Parent]?
[X:Grandmother]! → [married-with(X,Y)]? ⊕ [Y:Grandfather]!

Anja:Mother

[X:Grandmother]! ← [X:Mother]? ⊕ [child(X,Y)]? ⊕ [Y:Parent]?
[X:Grandmother]! → [married-with(X,Y)]? ⊕ [Y:Grandfather]!

Anja:Mother, 
married-with(Anja, Knut)

[X:Grandmother]! ← [X:Mother]? ⊕ [child(X,Y)]? ⊕ [Y:Parent]?
[X:Grandmother]! → [married-with(X,Y)]? ⊕ [Y:Grandfather]!

Anja:Mother, 
married-with(Anja, Knut), 
child(Anja, Nils)

[X:Grandmother]! ← [X:Mother]? ⊕ [child(X,Y)]? ⊕ [Y:Parent]?
[X:Grandmother]! → [married-with(X,Y)]? ⊕ [Y:Grandfather]!

Anja:Mother, 
married-with(Anja, Knut), 
child(Anja, Nils), Nils:Father

[X:Grandmother]! ← [X:Mother]? ⊕ [child(X,Y)]? ⊕ [Y:Parent]?
[X:Grandmother]! → [married-with(X,Y)]? ⊕ [Y:Grandfather]!

Anja:GrandMother, 
married-with(Anja, Knut), 
child(Anja, Nils), Nils:Father

Anja:GrandMother, 
married-with(Anja, Knut), 
child(Anja, Nils), Nils:Father, 
Knut:Grandfather

[X:Grandmother]! ← [X:Mother]? ⊕ [child(X,Y)]? ⊕ [Y:Parent]?
[X:Grandmother]! → [married-with(X,Y)]? ⊕ [Y:Grandfather]!

0

1

2

3

4

5

6

ABOX “Decision Tree”



9

TODO

Concrete Domains 
Seems to be simple because restricted to 
tests about integers and strings ?

Roles
Hierarchy, Domain, Range
Inverse Relations

Inconsistence checking possible with 
dummy (skolem) individuals?

Thank you for your 
attention



10

Requirements for “Decision Tree”

Formalism for representing the decision 
tree

More powerful than normal decision trees?!
Difference Operator for extracting the 
difference between parent C and child D


