

Motivation

- Applications

Configuration of complex components (e.g. PC with its components)

Query refinement

- Characteristics
\square Interactive
\square Knowledge (i.e. A-Box) will be "completed" incrementally

ABOX Reasoning

- Instance Retrieval
\square "Tell me all instances which are subsumed by a query Q?"
\square Needs inferences
\square Optimized with traditional database queries (only for role-free A-Boxes)
- Instance Realization
\square "To which classes do an instance I belong to?"
■ ...

Idea: "Decision Tree" for Instances

- Specify conditions, which allow to realize instance \bigcirc from class C to D
- Incremental behavior: Check conditions, when new information arrives
- Analogies
\square Data-driven vs.
goal-driven inference method (tableaux method)
\square Bottom-up vs. Top-down
\square Constraint Propagation

Example: Specialization of a role filler

- See $A B O X$ as a sequences of statements
$\square A_{i}=\{$ Anja : Woman, child(Anja, Nils), Nils: Man \}
$\square A_{i+1}=A_{i}+\{$ Nils: Father $\}$
\square Conclude in $\mathrm{A}_{\mathrm{i}+1}$: Anja : Grandmother

Realization depends on the Concept Definition

■ Necessary:
$\mathrm{X}: \mathrm{C}] \leftarrow$ condition $^{\mathrm{N}}$
"When can X be realized to C ?"

- Sufficient:
$[\mathrm{X}: \mathrm{C}]!\rightarrow$ condition $_{S}$
"What happen, when X is realized to C ?"

Condition ${ }^{\mathrm{N}}$ and Conditions

- Conditions are generated from a concept term
- First Instance

$$
\text { condition }(C \rightarrow D)=f(D)
$$

- Later

$$
\text { condition }(\mathrm{C} \rightarrow \mathrm{D})=\mathrm{f}(\Delta)
$$

with $\mathrm{D} \equiv \mathrm{C} \cap \Delta ; \Delta$ is difference between C and D faster; more understandable and readable

Notation: Querying and Realizing

- Querying,
\square if an instance X belongs to class C [$\mathrm{X}: \mathrm{C}$]?
\square If an relation instance belongs to a relation R $[\mathrm{R}(\mathrm{X}, \mathrm{Y})$]?
- Realizing, (do it)
\square if an instance X belongs to class C [$\mathrm{X}: \mathrm{C}]$!
\square If an relation instance belongs to a relation R [$\mathrm{R}(\mathrm{X}, \mathrm{Y})$]!

Necessary conditions: When can X be realized to C?		
Concept term	Condition ${ }^{\mathrm{f}} \mathrm{f}$.)	Remarks
$\mathrm{X}: \mathrm{C} \subseteq \mathrm{D}$	noop	
$\mathrm{X}: \mathrm{C} \equiv \mathrm{D}$	$\mathrm{f}(\mathrm{X}: \mathrm{D})$	
$\mathrm{X}: \mathrm{C}_{\supseteq} \mathrm{D}$	$\mathrm{f}(\mathrm{X}: \mathrm{D})$	
X: CN	[$\mathrm{X}: \mathrm{CN}$]?	CN primitive?
$\mathrm{X}: \mathrm{D}_{1} \cap \mathrm{D}_{2}$	$f\left(X: D_{1}\right) \oplus f\left(X: D_{2}\right)$	
$\mathrm{X}: \mathrm{D}_{1} \cup \mathrm{D}_{2}$	$f\left(X: D_{1}\right) \otimes f\left(X: D_{2}\right)$	DNF: two conditions
X: $\neg \mathrm{CN}$	[$\mathrm{X}: \mathrm{CN}_{\text {free] }}$]?	$\mathrm{CN}_{\text {free }} \equiv \neg \mathrm{CN}$; NNF required
$\begin{aligned} & \hline X: \exists R . D \\ & (X: \geq 1 . R . D) \\ & \hline \end{aligned}$	$[R(X, Y)] ? \oplus f(Y: D)$	Y must not be generated (like in the tableaux method)
X: \forall R.D	[$\mathrm{X}: \mathrm{CN}_{\text {free] }}$]?	$\mathrm{CN}_{\text {free }} \equiv \forall \mathrm{R} . \mathrm{D}$
$\begin{aligned} & \mathrm{X}: \forall \mathrm{F} . \mathrm{D} \\ & (\mathrm{X}: \leq 1 . \mathrm{R} . \mathrm{D} \cap \forall \mathrm{R} . \mathrm{E}) \end{aligned}$	$[F(X)=Y)] ? \oplus f(Y: D)$	Features have an upper bound
$\mathrm{X}: \geq \mathrm{n}$. R.D	$\left[R\left(X, Y_{1 . . n}\right) \wedge \forall Y_{i} \neq Y_{j}\right] ? \oplus f\left(Y_{1 . . n}: D\right)$	$Y_{1 . . n}$ must not be generated
X: \leq n.R.D	$\left[R\left(X, Y_{1 . . n}\right) \wedge \forall Y_{i} \neq Y_{j}\right] ? \oplus f\left(Y_{1 . . n}: D\right)$	
$\mathrm{X}: \leq$ n.R.D $\cap \forall$ R.E	$\left[R\left(X, Y_{1 . n}\right) \wedge \forall Y_{i} \neq Y_{j}\right] ? \oplus f\left(Y_{1 . n}: E\right)$	$\mathrm{E} \subseteq \mathrm{D}$

Remarks (I)

- Using concept hierarchy to answer [X:C]? if $\mathrm{E} \subseteq \mathrm{C}$ and $[\mathrm{X}: \mathrm{E}]$?
- $\mathrm{X}: \mathrm{C} \subseteq \mathrm{D}(=\mathrm{X}: \mathrm{C} \equiv \mathrm{D} \cap \Delta)$
Δ is not known and (can not be) specified;
X can only be realized to C if $[X: E]$! and $E \subseteq C$
- $\mathrm{X}: \forall \mathrm{R} . \mathrm{D}$

OWA prevents to deduce forall terms because every time an ABOX can be extended with a role filler $R(X, Y)$ and $Y: \neg D$; X can only be realized to $\mathrm{CN}_{\text {free }} \equiv \forall R$. D with a free concept name $\mathrm{CN}_{\text {free }}$ in the TBOX
if $[\mathrm{X}: E]$? and $\mathrm{E} \subseteq \mathrm{CN}_{\text {free }}$
\square Note: Precompilation is needed; TBOX reasoning is needed a priori

Remarks (II)

- $\mathrm{X}: \neg \mathrm{CN}$

Let the TBOX reasoning determine the conditions, if X belongs to a negated concept. X can only be realized to $\mathrm{CN}_{\text {free }} \equiv \neg \mathrm{CN}$ with a free concept name $\mathrm{CN}_{\text {free }}$ in the TBOX if $[\mathrm{X}: E]$? and $\mathrm{E} \subseteq \mathrm{CN}_{\text {free }}$
\square Note: Concept terms has to be transformed to NNF

- $\mathrm{X}: \exists \mathrm{R} . \mathrm{D}(\mathrm{X}: \geq 1 . \mathrm{R} . \mathrm{D})$

Role filler must not be generated (like in the tableaux method), because only when the role filler is present in the ABOX some additional information can be associated to the role filler which can be used for the realization;
BUT: then inconsistencies can not be detected; example

```
ABOX = { X: }\forall\textrm{R}.\negD,X: \existsR.D 
```

Sufficient conditions: What happened when X is realized to C ?

Concept term	Condition ${ }_{\text {s }} \mathrm{g}($.	Remarks
[$\mathrm{X}: \mathrm{C}]$?	noop	
$\mathrm{X}: \mathrm{C} \subseteq \mathrm{D}$	$\mathrm{g}(\mathrm{X}: \mathrm{D})$	
$\mathrm{X}: \mathrm{C} \equiv \mathrm{D}$	$g(X: D)$	
$\mathrm{X}: \mathrm{C}_{\supseteq} \mathrm{D}$	noop	
X: CN	[$\mathrm{X}: \mathrm{CN}$]!	CN primitive!
$\mathrm{X}: \mathrm{D}_{1} \cap \mathrm{D}_{2}$	$g\left(X: D_{1}\right), g\left(X: D_{2}\right)$	
$\mathrm{X}: \mathrm{D}_{1} \cup \mathrm{D}_{2}$	Not possible!	INCOMPLETE!!!
$\mathrm{X}: \neg \mathrm{CN}$	[$\mathrm{X}: \mathrm{CN}_{\text {free] }}$?	$\mathrm{CN}_{\text {free }} \equiv \neg \mathrm{CN}$; NNF required
$\begin{aligned} & \mathrm{X}: \exists \mathrm{R} . \mathrm{D} \\ & (\mathrm{X}: \geq 1 . \mathrm{R} . \mathrm{D}) \end{aligned}$	$[R(X, Y)] ? \rightarrow \mathrm{~g}(\mathrm{Y}: \mathrm{D})$, otherwise nothing!	Inconsistency can not be detected
X: \forall R.D	$[R(X, Y)]$? $\rightarrow \mathrm{g}(\mathrm{Y}: \mathrm{D})$, otherwise nothing!	
$x: \geq n . R . D$	$[R(X, Y)]$? $\rightarrow \mathrm{g}(\mathrm{Y}: \mathrm{D})$, otherwise nothing!	
X: $\leq n . R . D$	$[R(X, Y)]$? $\rightarrow \mathrm{g}(\mathrm{Y}: \mathrm{D})$, otherwise nothing!	

Example

> Grandmother \equiv Mother $\cap \exists$ child:Parent
> Grandmother \subseteq ヨmarried-with:Grandfather

$[\mathrm{X}:$ Grandmother $]!\leftarrow[\mathrm{X}:$ Mother $] ? \oplus[$ child $(\mathrm{X}, \mathrm{Y})] ? \oplus[\mathrm{Y}:$ Parent $] ?$
$[\mathrm{X}:$ Grandmother $]!\rightarrow[$ married-with $(\mathrm{X}, \mathrm{Y})] ? \oplus[\mathrm{Y}:$ Grandfather $]!$

TODO

- Concrete Domains
\square Seems to be simple because restricted to tests about integers and strings?
- Roles
\square Hierarchy, Domain, Range
\square Inverse Relations
- Inconsistence checking possible with dummy (skolem) individuals?

Requirements for "Decision Tree"

- Formalism for representing the decision tree

More powerful than normal decision trees?!

- Difference Operator for extracting the difference between parent C and child D

