
On the Model Theory of RDF∗

Klaus Schild
Freie Universität Berlin

schild@inf.fu-berlin.de

Abstract

Recently, the base language of the Semantic Web, RDF, has been
given a model theoretic semantics, thus defining its meaning in a rig-
orous way. It is a rather involved and unconventional model theory,
however. In this paper, we are going to enhance the model the-
ory of RDF and investigate its expressive power. In particular, we
show that RDF can be reduced to its first-order fragment and can
be given a comprehensible, conventional model theory with its infer-
ential power unchanged.

1 Introduction

Today’s Web succeeded because it is useful, simple, and scalable. If the
Web violated only one of these three criteria, it certainly would not have
been such a success. The Semantic Web has yet to deliver a similar success
story. It is thus reasonable to evaluate whether the Semantic Web does
meet these necessary criteria for success.

According to Gartner, the semantic Web is currently at a peak of inflated
expectations [10]. There are at least two reasons to interpret this positively
rather than negatively. First, not many technologies make it to the top of
a hype curve, least of all Gartner’s. Second, the trough of disillusionment
ahead should deliver a mainstream applications and, thus, should prove the
Semantic Web’s utility.

∗To appear in S. Bab und T. Noll (eds.): Models and Human Reasoning – Eine
Festschrift fr Bernd Mahr, Wissenschaft & Technik Verlag, Berlin, 2005.

99



100 K. Schild

The scalability of basic Semantic Web standards has recently been inves-
tigated in [7]. The results are mixed. Deciding the equivalence of two
RDF graphs is isomorphism complete,1 while simple entailment between
two RDF graphs is NP-complete (cf. Theorem 4 of [7]). Basic reasoning
in RDF is therefore intractable, so that one cannot expect the Semantic
Web to scale smoothly. The picture is, however, quite different if we con-
sider RDF’s data complexity. Data complexity is based on the assumption
that even if the knowledge base was continuously getting larger, the size
of the queries would certainly not [9]. The requirements on scalability are
thus considerably softened. When considering this weaker notion of data
complexity, RDF turns out to be tractable (cf. Theorem 14 of [7]).

The third criterion is simplicity. RDF certainly enjoys a simple, almost
trivial syntax – at least this is true for the triple notation [6]. It just
consists of triples of the form s p o, called RDF statements. From the
point of view of linguistics, s is a subject, p a predicate, and o an object,
while in terms of predicate logic, s p o is to be read as the statement
p(s, o). A more practical reading is that there is a link of type p leading
from resource s to resource o, so that a set of such triples induce a directed
graph, called an RDF graph.

The predicate p of an RDF statement is always a URI reference, so that
any software program which is aware of the meaning of this very URI is
able to interpret the statement s p o properly. This is the way meaning
is given to RDF graphs. The following simple RDF graph exemplifies this.

Figure 1: A simple RDF statement (Source: [5])

1Thus this problem is as hard to determine as it is to decide whether two arbitrary
graphs are isomorphic or not. There is no known deterministic polynomial time algo-
rithm for deciding graph isomorphism, although the problem has not been shown to be
NP-complete either.



Model Theory of RDF 101

This RDF statement signifies that a resource uniquely identified by
http://www.example.org/staffid/85740 is the creator of the resource
http://www.example.org/index.html. Of course, one can interpret this
RDF statement correctly only if one knows that

http://purl.org/dc/elements/1.1./creator

actually stands for the creator relationship. For a human being, this string
is probably somewhat enigmatic; for a software program, however, this URI
can uniquely identify the relationship commonly associated with the word
creator.

This already describes the core of RDF; only literals and blank nodes are yet
to be introduced. Literals have been included into RDF because sometimes
identifying resources by a full URI is not convenient. This is certainly true
for simple strings like “John Smith” or “27.” In RDF, it is thus admissible
to use simple literals in lieu of URI references. Here is a sample RDF graph
with two literals:

Figure 2: Three RDF Statements with two literals (Source: [5])

In RDF, literals may be used only as objects; it is not permitted to use
them as subjects or predicates. Literals are thus a convenient way to state
simple properties of resources. In some cases, however, identifying any
resource at all may even be inconvenient. Perhaps we would like to make
statements about a creator of a specific resource, although we do not know
the URI of this particular person. In such a case, we may just want to
state that there is a creator whose name is “John Smith” without referring
to the URI of “John Smith.” For this purpose, we can use so-called blank



102 K. Schild

nodes, which are essentially quantified variables. Blank nodes may be used
not only as objects, but also as subjects, while it is not permitted to use
them as predicates.

In a nutshell, this is the syntax of RDF. For a detailed description the
reader is referred to [5]. With its graph-based info set, RDF even appears
to be simpler than XML, at the same time being more flexible. Another
argument in favor of RDF’s simplicity is the fact that it tightly integrates
content and vocabulary language: vocabulary information such as subclass
relationship is encoded as RDF statements with the predicate being a spe-
cial URI reference standing for the subclass relationship [5].

On the other hand, RDF suffers from a quite complex formal semantics [8].
This complexity is mainly due to an unconventional distinction between
properties and their extensions; a distinction which in effect eliminates
RDF’s capability to make statements about predicates, which syntacti-
cally is perfectly admissible. Certainly, this approach has deliberately been
adopted in order to avoid the implications of higher-order statements such
as s s s. An incomprehensible semantics, however, can be a main stum-
bling block for the proliferation of a Semantic Web. This is because a
formal semantics is a pivotal part of the specification of the Semantic Web.
Moreover, this unconventional model theory prevents us from re-using a
substantial amount of prior research done in mathematical logic, database
theory, and Knowledge Representation, all typically based on a conven-
tional model theory. We will show now that RDF can be given a com-
prehensible, conventional model theory, while leaving its inferential power
unchanged. Before we delve into details, we have to define the semantics
of RDF as recently specified by the W3C [8].

2 A Model Theory for RDF

This section introduces the semantics for RDF as given in [8], with only
some minor changes. The somewhat lengthy introduction is partly due to
the complexity of the matter itself; however, the introduction also contains
some discussions which will be instrumental in understanding the remainder
of the paper.

To begin with, let U be the set of all URI references, B the set of blank
nodes, and L the set of literals. Let UBL be the union of U, B, and L.



Model Theory of RDF 103

A model theory is usually based on interpretations. An interpretation is
a tuple 〈D,I〉, where D is the universe of discourse and I is a special func-
tion mapping predicates to n-ary relations over D. In the case of RDF, the
universe of discourse is a set of resources denoted by IR, and an interpreta-
tion consists of four rather than just two components. The two additional
components are needed because binary predicates are mapped by a two-
staged process to binary relations over IR, first mapping them to so-called
properties, which are then mapped to binary relations over IR.

Definition 1 An interpretation I is a tuple 〈IR,IP,I,IEXT〉 where:

1. IR is a non-empty set, the elements of which are called resources.

2. IP is a set, the elements of which are called of properties.

3. I is a mapping from UBL into IR union IP such that

(a) literals and blank nodes are mapped into IR and

(b) every literal l is mapped to itself, that is, I(l) = l.

4. IEXT is a mapping from IP into the powerset of IR × IR.

This means that URI references are mapped either to a resource or a prop-
erty, while literals and blank nodes are always mapped to a resource. This
is due to the fact that neither a blank node nor a literal may occur as a
predicate, so that they are always mapped to resources, while a URI refer-
ence can also occur as a predicate, which is always mapped to a property,
as we shall see below. IEXT then maps properties to binary relations over
IR. Here, the above definition deviates from conventional model theory in
that predicates are mapped by a two-staged process to binary relations over
IR (see Fig. 3).

This departure from conventional model theory has deliberately been
chosen in order to distinguish between a property I(p) and its extension
I(IEXT(p)). The binary relation IEXT(I(p)) is the actual meaning of p,
while I(p) can be thought of as a proxy for this binary relation. Nothing
prevents two properties I(p) and I(p′) with I(p) 6= I(p′) from having the
same extension IEXT(I(p)) = IEXT(I(p′)). Philosophically, this means
that the identity of sets (that is, property extensions) is not uniquely
determined by the elements (that is, tuples) which they contain, but by a



104 K. Schild

Figure 3: Two-staged interpretations

special identifier, called property. Hence, there is only a loose relationship
between a property and its extension.

The question arises why there has been made this unconventional distinc-
tion between a property I(p) and its extension IEXT(I(p)). The answer
can be found in RDF’s unconstrained syntax: Without this distinction it
would be possible to make statements about a predicate, that is, a state-
ment about a binary relation. Consider the RDF statement s p o. Nothing
prevents us from formulating a second RDF statement of the form p p′ o′,
thus making a statement about the predicate p. With no clear distinction
between a property and its extension, the RDF triple p p′ o′ would indeed
make a statement about a binary relation. From the perspective of the
Semantic Web such a kind of higher-order statement should be avoided.
Assume, for instance, that p′ and o′ is defined as a special vocabulary such
that p p′ o′ forces p to be symmetric. At the end of this chapter we shall
see that RDF actually provides us with the possibility to define p′ and o′

in this way. But then, a local RDF statement p p′ o′ would have a global
consequence, i.e., p being symmetric – a situation which would contra-
dict the openness of the Semantic Web. This is why RDF draws a clear
distinction between properties and their extensions. This very distinction
manifests itself in the interpretation of RDF statements:

Definition 2 An interpretation I = 〈IR,IP,I,IEXT〉 satisfies an RDF
statement s p o iff I(p) ∈ IP and 〈I(s),I(o)〉 ∈ IEXT(I(p)).

This explains how a single RDF statement is to be interpreted. The above
definition, however, does not take into account that blank nodes are actu-
ally existentially quantified variables. The scope of the existential quantifi-
cation is actually the whole RDF graph (that is, a set of RDF statements)
rather than a single RDF statement: If a blank node occurs in two distinct



Model Theory of RDF 105

RDF statements of an RDF graph, it falls within the scope of the same
existential quantifier. The following definition realizes this kind of global
existential quantification.

Definition 3 A variable assignment is a mapping from B into IR. If I =
〈IR,IP,I,IEXT〉 is an interpretation and A: B→ IR is a variable assignment,
then IA denotes the interpretation which is identical with I save for the
fact that for every blank node b, I(b) = A(b). An interpretation I satisfies
a set S of RDF statements iff there is a variable assignment A: B → IR
such that IA satisfies every RDF statement of S.

Now, suppose that I satisfies S, where a URI reference u occurs in S as
a predicate. According to Definition 2, I(u) then yields a property of IP.
If, at the same time, u occurs in S as a subject or object, say, the RDF
statement u p o is in S, then I(u) must also be a resource of IR. This is
because 〈I(u),I(o)〉 must be in IEXT(I(p)), which is a binary relation over
IR. As I(u) is a member of IP, too, IR and IP obviously are not disjoint,
a situation which is perfectly admissible according to Definition 1. As a
matter of fact, whenever a URI reference occurs in S both as a predicate
and as a subject or object, an interpretation I cannot satisfy S without the
intersection of IR and IP being non-empty.

Example 1 Consider the RDF statement s s s. A simple interpretation
which satisfies s s s is as follows:

• IR = 1

• IP = 1

• I(s) = 1

• IEXT(1) = {〈1, 1〉}

According to Definition 2, I satisfies s s s iff I(s) is in IP and 〈I(s),I(s)〉
is in IEXT(I(s)). When substituting 1 for I(s) and {〈1, 1〉} for IEXT(1),
we immediately see that I indeed satisfies s s s.

We are now in a position to define the basic notion of entailment.

Definition 4 Let S and S′ be two sets of RDF statements. S is said to
entail S′ iff every interpretation which satisfies S also satisfies S′.



106 K. Schild

This definition looks exactly as the definition of entailment in conventional
first-order logic; however, the underlying notion of an interpretation does
divert from conventional logic. This deviation might appear minor. As a
matter of fact, it prevents us from re-using the substantial amount of work
on mathematical logic, Knowledge Representation, and database theory,
which are all typically based on a conventional model theory. It is exactly
this deviation from conventional logic which also considerably complicates
the overall Semantic Web stack. As proclaimed by Berners-Lee, any upper
layer of this stack (like a powerful ontology language) is to be expressed
within RDF, the base language of the Semantic Web [1]. In a nutshell,
this means that any extension of RDF is to be encoded within RDF itself
by defining a special vocabulary obeying a special built-in meaning. This
is exactly the way RDF Schema is defined [8]. This approach, however,
forces each extension not only to use RDF’s syntax, but also its semantics:
The meaning of an extension’s special vocabulary must be given in terms
of the two-staged interpretation of Definition 1, on which only additional
constraints can be imposed. This may cause severe problems as the case
OWL has demonstrated clearly [3].

RDF has its own special vocabulary which is treated in exactly the same
way as the vocabulary of any extension of RDF would be handled. We con-
sider here only ref:type, rdf:Property, rdf:subject, rdf:predicate,
and rdf:object. For a complete treatment the reader is referred to Chap-
ter 3.1 of [8].

We begin with rdf:type, which is a shorthand for

http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

This URI can be thought of as denoting the instance or membership re-
lationship between a resource and a class. Although an interpretation as
introduced in Definition 1 does not involve the notion of a class, a resource
of IR can be anything, including a class or a set. This is why an RDF
statement of the following type does make sense:

(1) http://.../object123 rdf:type http://.../MotorVehicle.

A natural interpretation of rdf:type would be as follows:

IEXT(I(rdf:type)) = {〈e,S〉 ∈ IR × IR: S is a set and e ∈ S}.



Model Theory of RDF 107

However, this is actually not the way rdf:type is interpreted. This is
because of RDF statements of the type

(2) rdf:type rdf:type rdf:type.

According to Definition 2, an interpretation I satisfies the RDF statement
(2) iff 〈I(rdf:type),I(rdf:type)〉 is in IEXT(I(rdf:type)). With the above
interpretation of IEXT(I(rdf:type)) put into effect, this would imply that
I(rdf:type) is a set which contains itself. In order to avoid the implications
of such expressions, a more indirect interpretation of rdf:type is chosen
instead. Before we show how this is done, we first introduce rdf:Property,
which is a shorthand for

http://www.w3.org/1999/02/22-rdf-syntax-ns#Property.

This URI can be thought of as denoting the set of all binary relations over
IR. One can phrase, e.g.,

(3) http://.../has-color rdf:type rdf:Property.

For the sake of brevity, we do not use a full URI here. Anyway, this triple
states that http://.../has-color is an instance of rdf:Property and
thus denotes a binary relation. In [8], rdf:type and rdf:Property are
simultaneously given meaning by imposing the following constraint:

(C1) x is in IP iff 〈x,I(rdf:Property)〉 ∈ IEXT(I(rdf:type)).

This defines each property x of IP as a special kind of a resource, namely
one whose value of the I(rdf:type) property is I(rdf:Property). The if-
direction of (C1) means that from the RDF statement (3) we can infer that
I(http://.../has-color) is a property of IP. The only-if-direction of (C1)
means that from an RDF statement of the type

(4) http://.../object123 http://.../has-color yellow

we can infer (3).

An immediate consequence of (C1) is that IP is a subset of IR. According to
Definition 1, IEXT maps each property of IP to a binary relation over IR,
so that IEXT(I(rdf:type)) is a binary relation over IR as well. Therefore,
we can deduce from (C1) that x is in IR whenever x is in IP, so that IP
is in fact a subset of IR. Note also that, when writing IEXT(I(rdf:type)),
we implicitly state that I(rdf:type) is in IP because IEXT maps prop-
erties of IP to binary relations over IR. Hence, from (C1) we can infer



108 K. Schild

that 〈I(rdf:type),I(rdf:Property)〉 is a member of IEXT(I(rdf:type))
and that I also satisfies the following RDF statement:

(A1) rdf:type rdf:type rdf:Property.

Observation 1 If an interpretation I meets (C1), then I satisfies (A1)
as well.

This conflicts with the fact that [8] introduces (A1) as a basic axiom, at the
same time imposing (C1). It is also worthwhile to mention that the opposite
direction of Observation 1 does not hold: An interpretation which satisfies
(A1) does not necessarily meet (C1). Roughly speaking, (C1) means that
each resource used in some RDF statement as a predicate is an instance
of rdf:Property, while (A1) forces only rdf:type to be an instance of
rdf:Property.

Finally, we introduce the remainder of the RDF vocabulary, rdf:subject,
rdf:predicate, and rdf:object, which are to be expanded similarly as
rdf:type and rdf:Property. This special RDF vocabulary is mainly used
for reification. Reification means that we can encode an RDF statement
such as (1) also as follows:

X rdf : subject http : //.../object123
X rdf : predicate rdf : type
X rdf : object http : //.../MotorVehicle

Here, X is a blank node. Together these three RDF statements are to
be read as follows: There is a resource (that is, a statement) whose
subject, predicate, and object is http://.../object123, rdf:type, and
http://.../MotorVehicle, respectively. We require that any interpreta-
tion satisfies the following three axioms:

(A2) rdf:subject rdf:type rdf:Property

(A3) rdf:predicate rdf:type rdf:Property

(A4) rdf:object rdf:type rdf:Property

Note that (A2)-(A4) are actually redundant whenever rdf:subject,
rdf:predicate, and rdf:object are used in some RDF statements as
predicates. To be more accurate, we state the following proposition:



Model Theory of RDF 109

Observation 2 Let S be a set of RDF statements in which rdf:subject,
rdf:predicate, and rdf:object each occur as a predicate. Then every
interpretation which satisfies S and for which (C1) holds, satisfies (A2)-
(A4) as well.

The proof is analogous to the argument given above supporting Observa-
tion 1. The presupposition that rdf:subject, rdf:predicate as well as
rdf:object occur as a predicate is actually needed here. If one of these,
say, rdf:subject, were not used as a predicate, then I(rdf:subject) would
not necessarily be a property of IP, preventing (C1) from being applied to
I(rdf:subject). In other words, the only reason why, in addition to con-
straint (C1), axioms (A2)-(A4) are needed is the possibility to infer that
rdf:subject, rdf:predicate, and rdf:object are properties, even if they
are not used as predicates.

It should be noted that this semantics of rdf:subject, rdf:predicate,
and rdf:object is actually very weak. If r(s p o) denotes the reifica-
tion of an RDF statement s p o analogous to the reification given above,
then neither r(s p o) rdf-entails s p o nor, vice versa, s p o rdf-entails
r(s p o). In fact, r(s p o) does not have any logical relationship with
s p o (see also Chapter 3.3.1 of [8]).

We have already used the notion of rdf-entailment, which remains to be
formally defined . The definition comes in two parts:

Definition 5 An interpretation which meets (C1) and satisfies (A2)-(A4)
is called an rdf-interpretation.

Definition 6 Let S and S′ be two sets of RDF statements. S is said to
rdf-entail S′ iff every rdf-interpretation which satisfies S, satisfies S′ as well.

This is the semantics of RDF. Some details have been omitted, in particular
typed literals and some more special RDF vocabulary; however, this does
not affect any of the results given in this paper.

3 Reducing RDF to its First-Order Fragment

We have seen that the distinction between properties I(p) and their exten-
sion I(IEXT(p)) has deliberately been drawn in order to avoid the impli-
cations of higher-order statements. This means that the semantics of RDF



110 K. Schild

has been defined in such a way that higher-order capabilities are effectively
eliminated. In this section, we are going to show that this approach indeed
achieves its goal: despite of its appearance, RDF is essentially first order
in nature. We begin with defining what we mean by RDF’s higher-order
capabilities.

Definition 7 Let S be a set of RDF statements. S is said to be higher
order if there is a URI reference which appears in S both as a predicate
and as subject or object; otherwise S is first order.

Example 2 The following sets of RDF statements are higher order:

1. { s s o } and

2. { s p o, p p′ o }.

Let P be a distinguished subset of U. This set of URI references is to
be used only as predicates; URI references from P must not occur in an
RDF statement as a subject or object. We can think of P as special URI
references exclusively reserved for predicates. One possibility might be
that the URI references of P are distinguished by a unique suffix such as
#predicate.

Definition 8 Let f be a function mapping U \ P into P such that for every
u, v in U \ P with u 6= v, f(u) 6= f(v). For every set S of RDF statements, we
define fo(S) to be the set of RDF statements obtained from S by replacing
every predicate p in S by f(p).

Example 3

1. fo({ s s o }) = { s f(s) o }
2. fo({ s p o, p p′ o }) = { s f(p) o, p f(p′) o }

If a set S of RDF statements does not involve any URI reference from
P, then fo(S) is first order. This is because f replaces each predicate with
special URI references from P. As S is free of any URI reference from P, URI
references from P occur in fo(S) only as predicates. Thus no URI reference
can occur in fo(S) as a predicate and at the same time as a subject or
object, which means that fo(S) is actually first order.

Now, for the main theorem of this paper.



Model Theory of RDF 111

Reduction Theorem 1 Let S and S ′ be two sets of RDF statements which
do not involve any URI reference from P. Then S rdf-entails S ′ iff fo(S)
rdf-entails fo(S ′).

Recall that fo(S) and fo(S′) are first order. The theorem thus states that
RDF can be reduced to its first-order fragment while leaving its inferential
power unchanged.

Example 4 Consider two sets of RDF statements S = { s s o } and S′ =
{ s s o′ }. If neither S nor S′ involves any URI reference from P, then both
fo(S) and fo(S′) are first order. By Reduction Theorem 1, S rdf-entails S′

iff { s f(s) o } rdf-entails { s f(s) o′ }.

Proof of Reduction Theorem 1. We first show that S rdf-entails S′ if fo(S)
rdf-entails fo(S′). Assume the contrary, that is, fo(S) rdf-entails fo(S′) but
S does not rdf-entail S′. We will show that this assumption leads to a con-
tradiction. As S does not rdf-entail S′, there must be an rdf-interpretation
I = 〈IR,IP,I,IEXT〉 which satisfies S but not S′). By assumption, neither
S nor S′ involve any URI reference from P. Without loss of generality, we
can hence assume that I is not defined on P. Let us define an extension I ′
= 〈IR,IP,I′,IEXT′〉 of I as follows:

• For every x of UBL \ P, I′(x) = I(x).

• For every p of P, I′(f(p)) = I(p).

• For every p of P, IEXT′(I′(f(p))) = IEXT(I(p)).

Note that f(p) is a member of P and thus neither appears in S nor in
S′. This means that the redefinition of I′(f(p)) and IEXT′(I′(f(p))) does
not affect the interpretation of S and S′. Hence, it can be shown that I ′
satisfies fo(S) but not fo(S′). But then, fo(S) does not rdf-entail fo(S′). T
This contradicts the assumption above.

We now show that S entails S′ only if fo(S) entails fo(S′). Again assume
the contrary, that is, S entails S′ but fo(S) does not entail fo(S′). We will
show that this assumption leads to a contradiction, too. As fo(S) does not
entail fo(S′), there must be an interpretation I which satisfies fo(S) but
not fo(S′)). Let I ′ be the interpretation I except that for every predicate
p in S and S′ we have:

IEXT′(I′(p)) = IEXT(I(f(p))).



112 K. Schild

Note that only IEXT′(I′(p)) is redefined, while I′(p) is left unchanged, i.e.,
I′(p) = I(p). Observe also that p neither appears in fo(S) nor in fo(S′)
as a predicate. This is because in fo(S) and fo(S′) every predicate p is
replaced by f(p). Therefore, the redefinition of IEXT′(I′(p)) does not affect
the interpretation of fo(S) and fo(S′). It can be shown that I ′ satisfies fo(S)
but not fo(S′). But then, fo(S) does not rdf-entail fo(S′), contradicting the
assumption above. 2

4 A Conventional Model Theory for RDF

We have learned so far that RDF can be reduced to its first-order fragment
without sacrificing any bit of inferential power. There is, however, another
reading of Reduction Theorem 1. It can also be interpreted in such a way
that the semantic distinction between properties and their extensions can
be lifted to the level of syntax. Consider again

fo({ s p o, p p′ o }) = { s f(p) o, p f(p′) o }.

Here, p can be thought of as denoting the property I(p), whereas f(p) and
f(p′) represent the property extensions I(IEXT(p)) and I(IEXT(p′)), respec-
tively. The mapping f thus represents the distinction between properties
and their extension on the level of syntax.

This raises the following question. We already tell a property and its exten-
sion apart on a syntactic level. So, do we still need a two-staged interpreta-
tion, which was solely introduced for the purpose of this very distinction?
The answer is clearly no. To see why, let us recall how S = { s p o,
p p′ o } is interpreted: According to Definition 2 and 3, an interpretation
I = 〈IR,IP,I,IEXT〉 satisfies S iff

1. I(p) and I(p′) are both in IP,

2. 〈I(s),I(o)〉 is in IEXT(I(p)), and

3. 〈I(p),I(o)〉 is in IEXT(I(p′)).

Among other things, this means that, whenever used as a predicate, p
denotes the property extension IEXT(I(p)). This is the way how p is in-
terpreted in the first RDF statement s p o. Otherwise, if p is used as a
subject or object, it denotes the property I(p). This happens to be the case



Model Theory of RDF 113

in the second RDF statement p p′ o. Now, I satisfies fo(S) = { s f(p) o,
p f(p′) o } iff

1. I(f(p)) and I(f(p′)) are both in IP,

2. 〈I(s),I(o)〉 is in IEXT(I(f(p))), and

3. 〈I(p),I(o)〉 is in IEXT(I(f(p′))).

This means that, even if I maps URI resources directly to binary relations
over IR, we nevertheless do not get involved in the complications of a set
containing itself. As a matter of fact, if I maps URI resources directly to
binary relations over IR, we have:

1. I(f(p)) and I(f(p′)) are both in IP,

2. 〈I(s),I(o)〉 is in I(f(p)), and

3. 〈I(p),I(o)〉 is in I(f(p′)).

But then, the first of these conditions become superfluous, too, in that in
this case I(f(p)) and I(f(p′)) yield a binary relation over IR rather than
properties of IP. As a result, we then have:

1. 〈(s),I(o)〉 is in I(f(p)) and

2. 〈I(p),I(o)〉 is in I(f(p′)).

This is exactly the way a conventional model theory would look like. So,
let us replace the two-staged interpretation by a notion of an interpretation
which is perfectly in line with conventional model theory.

Definition 9 An interpretation I is a tuple 〈IR,I〉 where:

1. IR is a non-empty set, the elements of which are called resources.

2. I is a mapping from UBL into IR such that

(a) UBL \ P is mapped into IR,

(b) every literal l is mapped to itself, that is, I(l) = l, and

(c) P is mapped into the powerset of IR × IR.



114 K. Schild

Definition 10 An interpretation I = 〈IR,I〉 satisfies an RDF statement
s p o iff 〈I(s),I(o)〉 ∈ I(p).

All other definitions remain unchanged. The constraint (C1), however, has
to be modified slightly in that we do not have the set IP at our disposal
any more. A proper reformulation of (C1) is as follows:

(C1′) If p is used as a predicate, then 〈I(p),I(rdf:Property)〉 ∈ I(rdf:type).

Equivalently, we can impose the following axiom for every p used as a
predicate:2

(AC1) p rdf:type rdf:Property.

The version of rdf-entailment which is based on this variant of an interpre-
tation is called rdf-entailment with a conventional model theory. If S and
S′ are two sets of RDF statements, we write S |=rdf S′ iff S rdf-entails S′ in
the sense of this variant.

Reduction Theorem 2 Let S and S ′ be two sets of RDF statements which
do not involve any URI reference from P. Then S rdf-entails S ′ iff fo(S)
|=rdf fo(S ′).

This means that RDF can be given a conventional model while leaving its
inferential power unchanged. The proof is similar to that of Reduction
Theorem 1.

5 Conclusions

Higher-order statements (such as statements about predicates) are perfectly
admissible in RDF. These higher-order statements, however, do not have
any logical consequences. As a matter of fact, we have shown that RDF
can be reduced to its first-order fragment, which means that this fragment
of RDF has the very same inferential power as full RDF. We have also seen
that the first-order fragment of RDF can be given an equivalent semantics
which is perfectly in line with the model theories known from standard first-
order logic, relational databases, and Knowledge Representation. Thus the

2A reasonable (though stronger) alternative is imposing axiom (AC1) for every p in
P, no matter whether p actually appears in some RDF statement or not.



Model Theory of RDF 115

semantics of RDF can be considerably simplified, with its inferential power
left unchanged.

A practical consequence of this observation might be the proliferation of
a suitable first-order sublanguage of RDF. Let us call this sublanguage
SimpleRDF. SimpleRDF is identical with RDF save for the fact that the
set U of URI references is divided into two disjoint sets: U \ P and P. The
URI references of P are to be used as predicates only, whereas those of U
\ P may be used as subjects and objects only. These two disjoint subsets
should have exactly the same cardinality, so that it is possible to define
pairs of URI references, u ∈ U \ P and u′ ∈ P, which uniquely correspond
to each other. That is to say, if u′ is used as a predicate, we immediately
know that this URI reference corresponds to the URI reference u used as
a subject or object. This might be realized by defining P as the subset of
URI references which have a special suffix such as #predicate appended
to them.

The resulting variant would obviously be first order in nature and thus
can be given a simple, conventional model theory, while having the same
inferential power as full RDF with its original two-staged semantics. This
is an immediate consequence of Reduction Theorem 2.

It is this conventional model theory which puts us in a position to explore
the expressive power of SimpleRDF. In fact, the expressive power of two
logics can be compared only if they do have the same model theory (or
at least the same semantics). In its original version, the expressive power
of RDF thus simply cannot be compared with those of standard logics.
For SimpleRDF, however, it can be done. It is not hard to verify that
SimpleRDF is a strict sublanguage of the Schönfinkel-Bernays class with
prefixes of the form ∃...∃∀...∀ [4]. This holds even with axioms of the type
(AC1) and those of RDF Schema taken into account. One immediate conse-
quence is the fact that a set S of RDF statements, possibly including RDF
Schema expressions, too, is satisfiable iff S is satisfied by an interpretation
〈IR, I〉 such that IR contains at most n elements. Here, n is the number
of URI references, blank nodes, and literals occurring in S [4]. Hence, we
can safely ignore infinite models and consider only models of linear size. In
other words, without loss of generality, we may assume a proper domain-
closure axiom for RDF and RDF Schema. This is an example of re-using
prior work on mathematical logic. Many other results are yet to be dis-
covered, and not only in the realm of mathematical logic, but also in such
areas as relational database theory and Knowledge Representation. We



116 K. Schild

shall present some of these results elsewhere. Of course, this is approach is
admissible only if a conventional model theory is employed.

References

[1] Berners-Lee, Semantic Web – XML 2000,
http://www.w3.org/2000/Talks/1206-xml2k-tbl, 2000.

[2] Berners-Lee, Hendler, and Lassila, The Semantic Web: A new form of
Web content that is meaningful to computers will unleash a revolution
of new possibilities, Scientific American, 2001.

[3] Horrocks and Patel-Schneider, Three theses of representation in the
Semantic Web, In Proc. of the Twelfth International World Wide Web
Conference, 2003.

[4] Lewis, Complexity Results for Classes of Quantificational Formulas,
Journal of Computer and System Sciences, 21: 317–353, 1980.

[5] Manola and Miller (Eds.), RDF Primer, http://www.w3.org/TR/rdf-
primer, 2004.

[6] Klyne and Carrol (Eds.), Resource Description Framework (RDF):
Concepts and Abstract syntax, http://www.w3.org/TR/rdf-concepts,
2004.

[7] Gutirrez, Hurtado, and Mendelzon, Foundations of Semantic Web
Databases. In Proc. of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, 95–106, 2004.

[8] Hayes (Ed.), RDF Semantics, http://www.w3.org/TR/rdf-mt, 2004.

[9] Vardi, The complexity of relational query languages (Extended Ab-
stract), In Proc. of the fourteenth annual ACM symposium on Theory
of computing, 137–146, 1982

[10] COMPUTERWOCHE, vol. 33, 2004.


