
Enabling real world Semantic Web applications
through a coordination middleware

Robert Tolksdorf, Lyndon Nixon, Elena Paslaru Bontas, Duc Minh Nguyen,
Franziska Liebsch

tolk, nixon, paslaru, nguyen@inf.fu-berlin.de, franziska@adestiny.de

Free University of Berlin
Institute for Computer Science

AG Networked Information Systems
Takustr. 9, D-14195 Berlin, Germany

http://nbi.inf.fu-berlin.de

Abstract. In a real world scenario Semantic Web applications must be
capable to cope with the large scale, distributed, heterogeneous, unre-
liable and insecure environment of the World Wide Web if they are to
truly represent added value to Web users. This includes issues of persis-
tent storage, efficient reasoning, data mediation, scalability, distribution
of data, fault tolerance and security. In this paper we present a coordina-
tion middleware for the Semantic Web and demonstrate its relevance to
these vital issues for Semantic Web applications by elaborating a typical
use case from the traffic management domain.

1 Introduction

The Semantic Web research effort is focused on providing suitable knowledge
representation models and techniques for the large scale distributed environ-
ment of the Web. However there is less consideration for the particular require-
ments of applications which will be implemented to work with these models and
techniques in order to provide intelligent Semantic Web-based functionality to
users. Such applications must be equally capable to cope with the large scale, dis-
tributed, heterogeneous, unreliable and insecure environment of the World Wide
Web if they are to truly represent added value to Web users. This includes issues
of persistent storage, efficient reasoning, data mediation, scalability, distribution
of data, fault tolerance and security.

In this paper 1 we present a coordination middleware for the Semantic Web
and demonstrate its relevance to these vital issues for Semantic Web applications.
We introduce a typical use case in which an intelligent traffic management system
must support coordinated access to a knowledge base for a large number of
agents. Through a requirements analysis and a consideration of the state of the
art we note that current approaches can not adequately support such an use
1 This work is partially supported by the EU Network of Excellence KnowledgeWeb

(FP6-507482)



case and propose a new solution based on the Linda coordination model [8]. Our
design and implementation approach for a ’Semantic Web Space’ is described,
and the operation of the ’Semantic Web Space’ is illustrated through examples
from the intelligent traffic management use case.

2 Overview of the scenario

The Semantic Web is being evaluated and tested in a number of application
fields in which it is expected that semantic enhancements can lead to added
value for users and implementers. These fields include Web Services [17, 21, 3, 7,
18, 19], Grid Computing [10, 4, 5] and Multi-Agent Systems [24, 12, 9, 3].

In this paper we introduce a sample use case in the field of Multi-Agent
Systems. We chose a traffic management scenario as it is a typical application
domain for multi-agent systems which requires particular communication ca-
pabilities with support for coordination between a large number of agents. A
generic scenario in this field proposes a large number of agents, both mobile (ve-
hicular) and static (traffic controllers such as traffic lights or message systems),
sending and receiving data to and from a central data store. Typically such a
system, built according to the principles of multi-agent systems, has a high level
architecture similar to the one illustrated in Figure 1.

C

Road Sensor

C

Road Sensor

C

Road Sensor

Traffic Data

Traffic Management System

Route Data

Message 
System

Fig. 1. Architecture of common traffic management systems

Multiple sensor agents collect and send traffic data to the system which is
stored in a back-end database. In combination with route data, the system is
able to interpret the data and send messages to traffic controlling agents such
as traffic lights and message systems at certain locations in order to control the
traffic flow (e.g. relieve congestion by holding back traffic or divert traffic around
a bottleneck). In addition to this, mobile agents (i.e. vehicles) could access the
system to request routing information. The system would not only calculate the
possible routes from A to B on the basis of the back-end route data, but also
take into account available traffic data to determine the best route at the time



of request based on quantitative criteria such as estimated journey length and
duration. We expect both traffic and route data to be expressed in very low
level terms, e.g. spatial position expressed using GPS coordinates and traffic
conditions expressed using numeric measurements.

The Semantic Web and multi-agent systems have been identified as being
complementary [12, 24]. In particular adding semantics to Web Services is likened
to intelligent agent-based approaches [9, 3]. In this context, the agents are seen as
self-contained applications which exhibit characteristics typical of applications
on the (Semantic) Web: they are many, distributed, dynamic, heterogeneous and
non-persistent. Hence we extend the traditional traffic management use case
with semantics by expressing traffic and route data unambiguously in terms of a
shared, common conceptualization of the domain, i.e. an ontology. This permits
reasoning over the knowledge of the traffic management system to deduce new
information which is of use to agents.

In the extended scenario we add ontology-based knowledge about vehicles,
roadways and points of interest. Mobile agents are identified according to their
location and vehicle type and can request routing information to specific points
of interest. Hence the traditional traffic management system functionality is
extended by the semantics and efficiently supported through Linda-like coordi-
nation. Traffic control can then take into account use cases such as restrictions
on vehicle type (e.g. that a tractor can not travel on a motorway) and support
queries based on reaching some specified type of service (e.g. such as a petrol sta-
tion) in the most efficient means possible (e.g. inferring when and where traffic
conditions are best).

3 Requirements for Semantic Web Technologies

As underlined in the previous section the usage of Semantic Web technologies in
multi-agent systems provides significant advantages especially when these sys-
tems are enhanced with semantically represented domain information which can
be used as shared vocabulary among agents or for inference purposes. However
besides appropriate Web-compatible representation languages Semantic Web
technologies need a powerful middleware for information management and agent
communication, which is able to deal with typical characteristics of Web-based
applications. We identified several requirements for an efficient Sematic Web
middleware:

– a decentralized and distributed architecture, in order to allow agents to pub-
lish and retrieve information efficiently and effectively.

– scalability as a central issue because of the dimensions and the dynamics of
the Web-based multi-agent scenario.

– a high-level of abstraction to cope with inherent heterogeneity problems.
– support for asynchronous interaction among agents and between agents and

the middleware. Interaction should be uncoupled in space and time in order
to allow agents to publish and retrieve traffic information in a flexible and
efficient manner.



A second category of requirements relates directly to the representation and pro-
cessing of scenario-relevant domain knowledge; there is a need for representation
languages which are able to describe ’static’ domain knowledge, like types of
traffic agents, points of interests, traffic conditions. Appropriate representation
languages should be provided to formalize ’dynamic’ information e.g. recent traf-
fic flow conditions, current events related to specific points of interest. Reasoning
engines able to deal with the two types of knowledge are indispensable for the
realization of intelligent multi-agent systems.

4 Semantic Web Technologies Today

This section analyzes the state of the art in Semantic Web research w.r.t. the
use scenario requirements from Section 3. The Semantic Web [1] aims to provide
automated information access based on machine-processable semantics of data.
The first steps in this direction have been made through the realization of ap-
propriate representation languages for Web knowledge sources like RDF(S) and
OWL and the increasing dissemination of ontologies, that provide a common
basis for annotation and support automatic inferencing for knowledge genera-
tion. A Description Logics-based language like OWL can be used to represent
the so-called ”static” domain knowledge required by the traffic management sce-
nario (see Section 7). However formalizing ”dynamic” knowledge like temporal
information requires more expressive representation techniques which are not
supported in a standardized manner by the Semantic Web Community. Rule
languages for the Semantic Web have been proposed in several approaches [14,
15], but the interoperation between the (OWL-based) ontology layer and the
consecutive rule layer is still an open issue.

The storage and processing of traffic information should be realized using a
high-level, distributed middleware which permits agents to insert and retrieve
information in an flexible and efficient manner. Such a middleware copes with the
heterogeneity of specific storage systems for Semantic Web data [2, 11, 13] and
offers a simple interface for the agents to get access to the information. Currently
Semantic Web technologies do not address these aspects in a satisfactory manner.

Communication and interoperation are crucial characteristics of our scenario.
Currently interaction in Semantic Web applications is based on the classical
client-server model and message exchange requiring strong coupling in terms
of reference and time. The communication needs to be addressed to the com-
municating parties and it is synchronous. As mentioned in Section 3 the traffic
management scenario as well as a much broader area of multi-agent applications
or Web Services [6] require different communication paradigms to realize the
envisioned Semantic Web.

As a conclusion of this section we underline that Semantic Web technologies
do not cover the requirements of real world Web-based multi-agent systems to
a satisfactory extent. We propose a ’Semantic Web Space’ with an underlying
tuplespace paradigm as a possible solution for an open, distributed, scalable
midlleware for the Semantic Web (see Section 6).



5 Linda and TupleSpaces

Before describing the key concepts of the Semantic Web Space we introduce the
foundations of our approach, the coordination language Linda and the tuplespace
paradigm, and discuss how they fulfill the requirements mentioned in Section 3.

The coordination language Linda [8] has its origins in parallel computing and
was developed as a means to inject the capability of concurrent programming
into sequential programming languages. It consists of a shared data space (the
tuplespace) which contains data (the tuples) and coordination operations (the
coordination primitives) that are applied in the shared data space.

The tuplespace is a shared data space which acts as an associative memory2

for a group of agents. A tuple is an ordered list of typed fields and retrieval is
governed by matching tuples against a template which is a tuple containing both
literals and typed variables. A match occurs when the template and the tuple
are of the same length and the field types and the value of constant fields are
identical. For example, if a tuplespace contains the tuple

("Bobby Bear", GBP, 25.18)

then it will match a template such as

("Bobby Bear", GBP, ?amount)

with the value 25.18 being bound to the variable ’amount’ 3.
The coordination primitives are a small yet elegant set of operations that

permit agents to emit a tuple into the tuplespace (operation out) or associatively
retrieve tuples from the tuplespace either removing those tuples from the space
(operation in) or not (operation rd). Both retrieval operations are blocking, i.e.
they return only when a matching tuple is found. In this way Linda combines
synchronization and communication in an extremely simple model with a high
level of abstraction.

The following features of Linda have been mentioned as attractive for pro-
gramming open distributed applications [20]:

– It uncouples interacting processes both in space and in time. In other words,
the producer of a tuple and the consumer of that tuple do not need to know
one another’s location nor exist concurrently.

– It permits associative addressing, which means that data is accessed in terms
of what kind of data is requested, rather than which specific data is refer-
enced.

– It supports asynchrony and concurrency as an intrinsic part of the tuplespace
abstraction.

– It separates the coordination implementation from characteristics of the host
platform or programming language.

2 Associative retrieval implies that tuples are not addressed by ID or address, but by
their content.

3 But there will be no match with (”Polly Panda”, GBP, ?amount), (”Bobby Bear”,
EUR, ?amount) or (”Bobby Bear”, GBP, ?amount, ”DiscountStock”).



Several Linda implementations as well as extensions of the core concept have
emerged in the last decades. We mention in particular XMLSpaces [23] which
is our extension of the basic Linda model to support the manipulation of XML
documents within tuple fields.

6 Semantic Web Space

The Semantic Web Space is a middleware platform intended to fulfil the re-
quirements of reliability, scalability, self-organization, coordination w.r.t. the
open distributed system of the Web. We plan to make an initial prototypical
implementation as an extension of our tuplespace platform XMLSpaces.

Semantic Web-based systems make use of access to knowledge stores dis-
tributed on the Web to acquire and infer knowledge required for specific tasks.
These knowledge stores must handle parallel access from multiple, heterogeneous
systems, coordinating responses with other systems (e.g. that resolve ontological
mismatches). Applying tuplespaces to the open global environment of the Web
raises new requirements, some of which have already been mentioned in other
work [6, 16]:

– The naming of spaces, semantics and structure in describing the information
content of the tuples. Otherwise tuples can not be distinguished from one
another in terms of their contents when they have the same number of fields
and field order.

– The nesting of tuples. Web data models such as XML permit the nesting of
elements within a single document. Likewise Web-based information should
be able to explicitly show where one unit is contained within another.

– A reference mechanism. The Web uses URIs as a global mechanism to
uniquely address resources.

– A separation mechanism. Distributed applications which have independent
naming schemes may use the same names for their tuplespaces, semantics or
structure. On the Web, vocabularies can be kept separate – even when using
the same terms – using the namespaces mechanism.

– Richer typing. Tuple values are typed according to the core data types. How-
ever this is not precise enough in a large scale environment with dynamically
changing information. Richer typing can support validation and correct in-
teraction with tuplespaces.

In a Semantic Web Space we represent RDF statements as tuples and the RDF
graph as a tuplespace. Each tuple in the tuplespace has three fields typed
rdfs:Resource, rdf:Property and rdfs:Resource, modelling the RDF triple. All
RDF resources are represented in tuple fields by URIs. In order to support rich
typing, tuple fields are also typed using URIs identifying classes constrained by
an (RDFS/OWL) ontology. In other words, each field value in the tuplespace
is associated to a RDF type. We consider three RDF modelling primitives in
particular in terms of their representation within a Semantic Web Space. (See
also [22]).



– Blank nodes are nodes in the RDF graph which do not have any form of
URI identification. However associations tied to the same blank nodes must
be both maintained in the tuplespace as well as represented by clients writing
tuples or to clients reading tuples. We propose an extended RDF type called
BlankNode, which can be instantiated in a tuple and given an internal unique
URI value for representing that blank node in the local tuplespace, playing
the role of ”blank node identifier”.

– Containers and collections are special RDF objects which represent sets
of resources. We propose that the members of rdfs:Container typed resources
(rdf:Bag, rdf:Alt, rdf:Seq) are represented by a resizable array datatype, and
that the members of a collection (rdf:List) are represented by a closed array
datatype. In the tuplespace the container or collection can be referenced as a
blank node or by an URI, and is related to its members through a statement
with the rdfs:member property.

– Reification is the means by which a statement can be made about another
statement in RDF. For this, RDF uses its own vocabulary (rdf:Statement,
rdf:subject, rdf:predicate, rdf:object) to identify a statement with an URI so
that it can be used as a subject or object of another statement. We propose
the use of nested tuples to represent reification in the tuplespace. In this way
a statement (as a tuple) can be the value of a field in another tuple. Nested
tuples are considered as instances of the RDF type rdf:Statement with an
internal or global URI as identifier.

In order to retrieve a tuple from the tuplespace new matching relations shall be
implemented based on ontological reasoning on classes and properties. Different
URIs may refer to the same concept, and different concepts may be identifiable
as sub- or super-types of the given concept. Matching should be possible at
different levels of precision and should have access to and make use of ontological
knowledge to determine the relationships between classes and instances in the
tuplespace. A mapping between a RDF/OWL query language and tuplespace
templates must be defined (see Section 7)

7 System design

The requirements analysis of the traffic management scenario (see Section 2)
revealed that Semantic Web technologies do not currently cover some significant
aspects related to coordination and scalability. For the realization of real world
Semantic Web-based systems, one needs powerful middleware technologies to
cope with these typical characteristics of open distributed infrastructures as the
Web. In this section we propose an extension of the Semantic Web enhanced
traffic management scenario into tuplespace computing. The Linda model for
coordination is suited to this scenario, as it provides the basic requirements of
the system: a common data store, support for multiple agents and their inter-
action, coordination of that interaction and decoupling from time and space. A
new architecture is proposed (Figure 2) in which the agents interact directly



with the data store using the simple Linda co-ordination primitives4. The func-
tionality of the system is also abstracted into external agents who interact with
the data store. This not only is a basis for modularizing the traffic management
system and hence supporting reusability and updatability but also makes system
knowledge directly available to any interested (and access-enabled) agents. Sim-
ple agent operations (reading some knowledge from the system) are then stan-
dardized (through Linda) and supported from the tuplespace platform without
requiring any specific functionality to be executed from the traffic management
system.

Semantic Web Space

GPS Route Data

GPS-to-road mapper

Traffic Control SystemTraffic Routing System

Route 
Knowledge

Traffic 
Knowledge

C

Road SensorC

Road Sensor

Message 
System

Vehicle 
Ontology

Roadway 
Ontology

Points of 
Interest 

Ontology

Reactive/deductive rules

Fig. 2. Tuplespace-enhanced architecture of a traffic management system

To illustrate the use of ontologies and tuple-space functionality we consider
three use cases: (1) A vehicle requests a route not to a specific location but to a
point of interest (2) Routing takes into account the characteristics of the vehicle
(3) Routing takes into account characteristics of the route being proposed.

7.1 Point of interest Use Case: Getting to the nearest Esso station

In this use case, low level routing data is not sufficient to meet the routing re-
quest. The system needs to be able to understand what the user is asking for
4 Extensions to this primitive set will be considered later. At this stage we consider

that ’in’ and ’rd’ operations retrieve all matching tuples without addressing further
in this paper the ’multiple read’ problem.



(i.e. what is an Esso petrol station) and have access to the information about
it (i.e. where Esso petrol stations are located). Hence we must extend the sys-
tem with an ontology for points of interest and a knowledge base which defines
instances of the location types in the ontology and tie them to physical loca-
tions (co-ordinates). Once the system resolves the locations, it can calculate the
alternative routes and suggest the best route on the basis of distance/expected
duration. This knowledge could be expressed within the system in a structured
way (e.g. records in a database) but without the logical model that would sup-
port reasoning over a request.

For example, there might not be an Esso petrol station anywhere nearby.
The user is requesting Esso because he has a loyalty card, but this card is valid
at Total petrol stations too (for the purposes of this scenario we suppose that
they are brands of the same company). So with that knowledge the system could
infer that the user won’t mind being directed to a Total station if it is nearby.
When none of these brands are close, the system should also be able to infer
that the user will then accept being directed to some other station (he loses out
on loyalty points but at least he can still buy petrol).

For example, a small ontology of petrol stations can be formalized in De-
scription Logics as follows:
PetrolStation v ∃belongsTo.Company
Company v ∃hasCustomerProgram.CustomerProgram
Company(Esso)
Company(Total)
CustomerProgram(PayBack)
hasCustomerProgram(Esso, PayBack)
hasCustomerProgram(Total, PayBack)

An agent requesting this route sends a message with its location and a state-
ment ”find me the route to an Esso petrol station” like this5:

(1) Out(#agent876[tms:Agent],loc:isAt,
"long=04657459345&lat=47856486475"[geo:GPS])

(2) Out(#agent876[tms:Agent],loc:routeRequest,
(?X[poi:PetrolStation],poi:belongsTo,poi:Esso))

– Note that the variable ?X in (2) is constrained not only by its type but also
as a subject in a nested template to the matches made to that template. In
other words, ?X is matched to instances which are of type poi:PetrolStation
AND which belong to the company Esso.

– As a result a set of tuples are inserted in which the object of the route
request is a Esso petrol station. In other words the nested template sent by
the agent acts as a representation of a set of matching instances.

5 A QName represents a class or instance in an ontology, a term in speech marks is
a literal, a value beginning with a hash is an internal ID, a value beginning with a
question mark is a variable and a value in square brackets is the field type.



It would be the role of the system functionality in the Traffic Routing System
to monitor for a tuple with a loc:routeRequest property (i.e. a routing request)
(3) and when a match is returned to query in the tuple space for the GPS location
of the requesting agent (4) and the desired point of interest (5) through these
templates:

(3)Rd(?A[tms:Agent],loc:routeRequest,?P[poi:PointOfInterest])
(4)Rd(?A[tms:Agent],loc:isAt,?START[geo:GPS])
(5)Rd(?P[poi:PointOfInterest],loc:isAt,?END[geo:GPS])

Within the Traffic Routing System the possible routes between the GPS
coordinate values tied to the variable ?START and the variable ?END can be
calculated. The selected route (e.g. based on distance) would be inserted into
the tuplespace (6) and read by the agent who is now monitoring for a tuple with
the loc:RouteResponse property and the agent ID as subject. It is proposed that
the route is expressed as a RDF sequence of GPS co-ordinates, i.e. the agent can
retrieve the reference to the Sequence instance and can then read over time the
co-ordinates to guide it to the point of interest.

(6) Out(#agent876[tms:Agent],loc:routeResponse,#route876[rdf:Seq])

Through the additional ontological information it is possible to reason over
alternative possibilities for the route which still fulfil the user’s request:

– It could be expressed that in the matching rule that a match on an Esso
petrol station, Total petrol station or an IFP petrol stations should also
match on instances belonging to the other two companies. This could be
done by stating that any petrol station whose company has the Payback
customer program is to be matched equally.

– It is proposed to enable in the matching procedure an optional support
for supersumption, i.e. permit a match on a superset in the event of there
being no matches on a subset of the class. In this case, given that the Esso
petrol station is considered a subset of all petrol stations (the property of
belonging to Esso being considered a class restriction)we could support that
in the event of no suitable petrol station being available a route is proposed
to some other petrol station.

By associating characteristics of the user to points of interest, we can support
routing information tailored to the needs of the user e.g. that a tourist will prefer
a slower route that takes in more tourist sights than the fastest route available.

7.2 Vehicle Use Case: Routing a slow-moving truck

Again in this use case the low level data is insufficient. The current routing
calculation is based on a simple determination of possible routes from A to B,
and selection based on internal calculation (e.g. the shortest distance). However
road and vehicle metadata is a relevant input to the route deduction process, as



e.g. a slow-moving vehicle should not travel on a motorway or a high load on a
road with a low bridge crossing over it.

In this case, two ontologies are required: one for vehicle types and charac-
teristics, and another for road types and characteristics. These ontologies then
also are able to define what is logically consistent or inconsistent. A system
processing possible routes with this information can then reject anything which
contradicts its ontological knowledge.

For example, we could model the following ontological knowledge for a vehicle
and a road:
Truck v V ehicle
V ehicle

.= ∃hasCharacteristic.V ehicleProperty
SlowMoving v V ehicleProperty
HighLoad v V ehicleProperty
(a) Truck v ∃hasCharacteristic.SlowMoving
Truck v ∃hasCharacteristic.HighLoad
Motorway v Roadway
Roadway

.= ∃hasCharacteristic.RoadProperty
V ehicle v ∃travels.Roadway
LowBridge v RoadProperty
HighSpeed v RoadProperty
(b) Motorway v ∃hasCharacteristic.HighSpeed
(c) ∃hasCharacteristic.SlowMoving u ∃hasCharacteristic.HighSpeed v ⊥
∃hasCharacteristic.HighLoad u ∃hasCharacteristic.LowBrodge v ⊥

When generating a route for an agent the Traffic Routing System can check
if the roadways travelled along in the route is consistent with the agent in terms
of their characteristics. Note the requirement here for a GPS-to-road mapping
component which is able to provide the necessary translation between GPS co-
ordinates (which can be interpreted by the traffic management system) and
roadway instances (which are understood by the Semantic Web Space). For a
given route then the agent provides its characteristics (1) and an individual
roadway in the route (2).

(1)Out(#agent876[tms:Agent],owl:sameAs,#truck876[veh:Truck])
(2)Out(#truck876[veh:Truck],loc:travelTo,

"long=04657459367&lat=47856486511"[geo:GPS])

Note that the Traffic Routing System is only able to send tuples with GPS
co-ordinates (as that is all that it understands). The GPS-to-road mapping is
triggered by the GOS-to-road mapping agent monitoring for tuples stating that
vehicles travel in some GPS co-ordinates (3), removing this tuple (2) and insert-
ing into the tuple space a new tuple (4) with a Roadway instance value.

(3)In(?WHO[veh:Vehicle],loc:travelTo,?GEO[geo:GPS])
(4)Out(#truck876[veh:Truck],loc:travelTo,#road378645[road:Motorway])



Note that this statement is now inconsistent, referring to the ontological
statements above: #agent876 is a particular instance of a truck, thus it can be
inferred that it is slow moving (a), and is travelling onto a motorway. Since a
slow moving vehicle can not travel on a motorway (b,c), #agent876 can not
travel on a motorway.

The Traffic Routing System is informed that the statement it provided to
the tuplespace (2) is logically false. A possible means to achieve this is that the
Linda coordination primitives are extended to include the idea of checking the
truth of a tuple. Then a ”rdiftrue” or ”iniftrue” can be used to retrieve a tuple
if and only if the statement made in the tuple can be held to be logically true
i.e. ontologically correct. Here the Traffic Routing System has inserted into the
tuple space a set of possible roadways and now ins-if-true those tuples with a
Roadway instance. A logically false tuple like the one above will not be read by
the system, hence that possible route will not be considered any further.

InIfTrue(#truck876[veh:Truck],loc:travelTo,?RD[road:Roadway])

Vehicle and road metadata can be extended according to what is possible to
determine from sensors or acquire from users. For example, rather than static
characteristics of a vehicle such as its type, we could include information about
the remaining petrol in the tank or the existence of children among the passen-
gers, and hence in the route deduction include a petrol station along the route
and prefer one with facilities for children such as a play area.

7.3 Route Use Case: Checking the traffic on the whole route

Finally in this use case we integrate the traffic conditions data being fed into the
tuple space from the road sensors. In a traditional traffic management system,
this data is processed by the application at a low level and results communicated
to traffic control agents such as message boards or traffic lights. For example,
where traffic is registered as being at a standstill diversions are placed into effect
or where congestion is identified traffic may be held back.

The important aspect of traffic control data is that it is dynamically changing
in real time. In a routing situation where vehicles are to be routed to their desired
destination while taking into account real time changes in traffic conditions, the
coordination functionality of the tuplespace is necessary. We consider a scenario
where vehicle agents are constantly updating their position, are being routed to
a particular destination, and are seeking to always take the fastest-moving route.

In this case, the Traffic Routing System carries out a further selection phase
after checking all possible roadways for logically consistency (e.g. that no tractor
is sent onto the motorway). From the set of logically consistent roadways, traffic
condition data is retrieved and the system selects the roadway with the fastest-
moving traffic. This is done by retrieving the instance of a traffic sensor at the
given roadway and matching on the tuple which states the current traffic speed
reported from that sensor e.g.:

Rd((?R[tr:trafficSensor],loc:isAt,#road0857[road:Street]),
tr:hasTrafficSpeed,?I[xsd:integer])



The agent could then perform the remaining functionality of checking which
street has the fastest moving traffic. Hence the traffic management system can
perform intelligent routing in that:

– 1. The mobile agent updates the tuple space with its current location
– 2. The traffic router updates the tuples containing the potential routes to

the agents desired destination
– 3. Mobile agent and route characteristics are used to identify logical incon-

sistencies in routes, which are ignored by agents by using a ”truth” test
– 4. From the remaining route possibilities, the agent selects the quickest route

using traffic conditions also being expressed in the tuple space.

As all the knowledge for the routing and traffic management is being stored in
the tuple space, agents can act upon the ’overall’ view of the data even when some
data is spatially or temporally disjoint (i.e. the originating agent is no longer
available or the inserted tuple was placed into the space at an earlier timepoint).
For example, in the Linda model the rd operation is blocking, meaning the
template only returns when a match is found. This can be used by an agent to
wait for a notification when the entire route is good to take:

Rd((?R[tr:trafficSensor],loc:isAt,(#route876[rdf:Seq],
rdfs:member,?ST[road:Roadway])),tr:hasTrafficCondition,
"GOOD"[tr:trafficCondition])

Note that the agent can access all roadways in a route in that a route is
modelled as a RDF sequence and hence all its members can be accessed through
the rdfs:member property. Additionally, the traffic condition with the controlled
vocabulary value ”GOOD” exists to simplify reasoning over the traffic statistics
being generated from the traffic sensors. Statements with these conditions could
be inserted from the Traffic Control System inferred from the traffic statistics
that it reads from the tuple space. A possible extension would be to consider
points of interest in the vicinity of the route and events associated with them that
lead to changes in traffic conditions. Then the inference by the Traffic Control
System could be extended to include predicted conditions based on where and
when the agent will be travelling. For example, the major routes to and from
a football stadium are likely to be busier at times shortly before and after a
football game. Events could be integrated from other sources on the Web like
a football league schedule. A similar case would be to permit the insertion of
traffic announcements from other sources such as accidents (from the emergency
services) or building works (from the public roads department), and to be able
to reason on the consequences for traffic on nearby roadways (e.g. if a given road
is being closed off, traffic on a parallel route will shortly increase) and include
this reasoning in the routing calculations. Importantly this use case raises the
need for extensions with spatial and temporal ontologies and rules as well as
probabilistic logic.



8 Conclusions and Future Work

In this paper we presented the usage of the tuplespace paradigm as Semantic
Web middleware for a traffic management system. Tuplespaces are a good alter-
native to common information management and interaction models on the Web,
since they allow agents to publish and retrieve information in an uncoupled man-
ner in terms of space and time. By extending tuplespaces to represent Semantic
Web knowledge we allow Semantic Web applications to store and exchange in-
formation in a decentralized and distributed manner, while taking advantage of
the powerful coordination mechanism of Linda. However the realization of Se-
mantic Web enhanced tuplespaces means not only enabling RDFS(S) and OWL
data to be represented in terms of tuples, but also a revision of the classic Linda
model w.r.t. the meaning of its primitives. A redefinition of Linda primitives in
the context of the Semantic Web Space is subject of future work.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, 5 2001.

2. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architec-
ture for storing and querying RDF and RDF schema. In The Semantic Web -
ISWC2002, 2002.

3. Paul Buhler and José M. Vidal. Semantic Web Services as Agent Behaviors. In
B. Burg, J. Dale, T. Finin, H. Nakashima, L. Padgham, C. Sierra, and S. Will-
mott, editors, Agentcities: Challenges in Open Agent Environments, pages 25–31.
Springer-Verlag, 2003.

4. Mario Cannataro and Domenico Talia. The Knowledge Grid. CACM, 46(1):89–93,
2003.

5. D. De Roure and J.A. Hendler. E-Science: the Grid and the Semantic Web. IEEE
Intelligent Systems, 19(1):65–71, 2004.

6. D. Fensel. Triple-based computing. http://www.wsmo.org/2004/tp-computing/,
June 2004.

7. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2), 2002.

8. David Gelernter and Nicholas Carriero. Coordination Languages and their Signif-
icance. Communications of the ACM, 35(2):97–107, 1992.

9. Nicholas Gibbins, Stephen Harris, and Nigel Shadbolt. Agent-based semantic web
services. In Proceedings of the twelfth international conference on World Wide
Web, pages 710–717. ACM Press, 2003.

10. Carole Goble and David De Roure. The Semantic Grid: Myth Busting and Bridge
Building. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI-2004), Valencia, Spain, 2004.

11. S. Harris and N. Gibbins. 3store:Efficient Bulk RDF Storage. In Proceedings of the
First International Workshop on Practical and Scalable Semantic Systems, 2003.

12. J. Hendler. Agents and the Semantic Web. ”IEEE Intelligent Systems, 16(2), 2001.
13. I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The Instance Store: DL reasoning

with large numbers of individuals. In Proceedings of the 2004 Description Logic
Workshop (DL 2004), 2004.



14. Ian Horrocks and Peter F. Patel-Schneider. A Proposal for an OWL Rules Lan-
guage. In the Thirteenth International World Wide Web Conference (WWW 2004),
pages 723–731. ACM, 2004.

15. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. Available at http://www.w3.org/Submission/SWRL/, 2004.

16. B. Johanson and A. Fox. Extending Tuplespaces for Coordination in Interactive
Workspaces. Journal of Systems and Software, 69(3):243–266, 2004.

17. R. Lara, H. Lausen, S. Arroyo, J. de Bruijn, and D. Fensel. Semantic Web Services:
description requirements and current technologies. In International Workshop on
Electronic Commerce, Agents, and Semantic Web Services, In conjunction with the
Fifth International Conference on Electronic Commerce (ICEC 2003), Pittsburgh,
PA, 2003.

18. Enrico Motta, John Domingue, Liliana Cabral, and Mauro Gaspari.
IRS-II: A Framework and Infrastructure for Semantic Web Services.
http://www.cs.unibo.it/ gaspari/www/iswc03.pdf, 2003.

19. OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, November 2003.

20. Davide Rossi, Giacomo Cabri, and Enrico Denti. Tuple-based Technologies for Co-
ordination. In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert
Tolksdorf, editors, Coordination of Internet Agents: Models, Technologies, and Ap-
plications, chapter 4, pages 83–109. Springer Verlag, 2001. ISBN 3540416137.

21. Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, and John Miller. Adding Se-
mantics to Web Services Standards. In Proceedings of the International Conference
on Web Services (ICWS’03), 2003, June 2003.

22. R. Tolksdorf, L. Nixon, F. Liebsch, N. Duc Minh, and E. Paslaru Bontas. Semantic
Web Spaces (Technical Report TR-B-04-11). Technical report, Free University of
Berlin, 2004.

23. Robert Tolksdorf and Dirk Glaubitz. Coordinating Web-based Systems with Docu-
ments in XMLSpaces. In Proceedings of the Sixth IFCIS International Conference
on Cooperative Information Systems (CoopIS 2001), number LNCS 2172, pages
356–370. Springer Verlag, 2001.

24. Yououng Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan. Using Seman-
tic web technology in Multi-Agent systems: a case study in the TAGA Trading
agent environment. Proceeding of the 5th International Conference on Electronic
Commerce, September 2003.


