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E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be



Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas /Informatics and Telematics Institute
Free University of Bozen-Bolzano
Institut National de Recherche en Informatique et en Automatique
University of Manchester
University of Trento
Vrije Universiteit Amsterdam
University of Innsbruck

4



Changes

Version Date Author(s) Changes
0.1 2007.10.15 Rob Shearer creation
1.0 2007.12.31 Rob Shearer Response to reviewer comments



Executive Summary

RDF and OWL together provide a family of ontology languages with syntax and seman-
tics officially endorsed by the World Wide Web Consortium (W3C). Deliverables 2.5.1,
2.5.2, and 2.5.3 addressed rule and query languages compatible with the established RDF
and OWL semantics. Deliverable 2.5.4 analyzed perceived shortcomings of the existing
RDF and OWL recommendations; deliverable 2.5.5 provided a comprehensive proposal
for an extension to OWL which overcomes many of the identified issues while maintain-
ing backwards compatibility with the current language semantics, and deliverable 2.5.6
detailed a further extension which extends RDF and OWL semantics to “fuzzy” or impre-
cise knowledge. Deliverable 2.5.7 presented a number of different surface syntaxes for
encoding knowledge bases interpreted under OWL semantics.

In this deliverable we consider the possibility that the formalisms underlying RDF and
OWL family are not necessarily the most appropriate or convenient framework for knowl-
edge representation in all applications, and that simple syntactic translation (as described
in D2.5.7) is not always possible. We address how knowledge encoded with “incompati-
ble” semantics can be integrated within a single system. In particular, we present

• a hybrid Prolog-OWL architecture which provides the power of logic programming
without eliminating the open-world semantics of OWL,

• a system for combining rules with semantic web knowledge bases based on an
embedding into first-order autoepistemic logic,

• an analysis of the relationship between RDF(S) and standard logic formalisms, in-
cluding F-Logic, first-order logic, and description logics, and

• an architecture for the integration of multiple ontologies which preserves the inde-
pendent semantics of each integrated component.
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Chapter 1

Introduction

Resource Description Format (RDF) [Bec04] and the Web Ontology Language (OWL)
[BvHH+04] are languages defined by the World Wide Web Constortium (W3C) as part of
its Semantic Web activity. Widespread use of RDF and OWL has allowed for interoper-
ability between independently-developed tools and applications. Further, the standardized
formal semantics of these languages provides a foundation for the design of new services
such as query interfaces [PFT+04a, PFT+05] and lay the groundwork for further extension
with additional features for increased expressivity [PFT+04b, GHP+06, SSP06]. Even
without extension, these languages have proven expressive enough to serve as the “im-
plementation language” for a number of different modeling languages presented to users
[PFT+07].

RDF and OWL are not the most expressive languages in existence, however, and tools,
applications, and developer expertise grounded in different knowledge representation for-
malisms can be expected to persist in the marketplace indefinitely. For this reason, wide
adoption of RDF and OWL in novel applications is dependent upon the ability to integrate
these languages with other semantic formalisms. We explore a number of such integra-
tions.

In Chapter 2, we integrate OWL with one of the most successful and most widely
used forms of knowledge representation, namely Prolog, and present a hybrid approach
which layers Prolog on top of OWL in such a way that the open-world semantics of OWL
becomes directly accessible within the Prolog system.

Chapter 3 addresses integration between Semantic Web knowledge bases and rule
systems. In the context of the Semantic Web, several approaches to the combination of
ontologies, given in terms of theories of classical first-order logic, and rule bases have
been proposed. They either cast rules into classical logic or limit the interaction between
rules and ontologies. Autoepistemic logic (AEL) is an attractive formalism which allows
to overcome these limitations, by serving as a uniform host language to embed ontologies
and nonmonotonic logic programs into it. For the latter, so far only the propositional
setting has been considered. We present several embeddings of normal and disjunctive
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1. INTRODUCTION

non-ground logic programs under the stable-model semantics into first-order AEL, and
compare them in combination with classical theories, with respect to stable expansions
and autoepistemic consequences. Our results reveal differences and correspondences of
the embeddings and provide a useful guidance in the choice of a particular embedding for
knowledge combination.

In Chapter 4 we address the relationship between the RDF(S) semantics and the se-
mantics of standard knowledge representation formalisms such as logic programming and
description logics. We consider embeddings of RDF and RDFS in logic. Using these em-
beddings, combined with existing results about various fragments of logic, we establish
several novel complexity results. The embeddings we consider show how techniques
from deductive databases and description logics can be used for reasoning with RDF(S).
Finally, we consider querying RDF graphs and establish the data complexity of conjunc-
tive querying for the various RDF entailment regimes.

Finally, in Chapter 5 we address integration between OWL ontologies with incom-
patible independent interpretations. Several proposals have been put forward to support
distributed agent cooperation in the Semantic Web, by allowing concepts and roles in one
ontology be reused in another ontology. In general, these proposals reduce the autonomy
of each ontology by defining the semantics of the ontology to depend on the semantics of
the other ontologies.

We propose a new framework for managing autonomy in a set of cooperating ontolo-
gies (or ontology space). In this framework, each language entity (concept/role/individual)
in an ontology may have its meaning assigned either locally with respect to the semantics
of its own ontology, to preserve the autonomy of the ontology, or globally with respect to
the semantics of any neighbouring ontology in which it is defined, thus enabling semantic
cooperation between multiple ontologies.

In this way, each ontology has a “subjective semantics” based on local interpretation
and a “foreign semantics” based on semantic binding to neighbouring ontologies. We
study the properties of these two semantics and describe the conditions under which en-
tailment and satisfiability are preserved. We also introduce two reasoning mechanisms
under this framework: “cautious reasoning” and “brave reasoning”. Cautious reasoning
is done with respect to a local ontology and its neighbours (those ontologies in which its
entities are defined); brave reasoning is done with respect to the transitive closure of this
relationship. This framework is independent of ontology languages. As a case study, for
Description Logic ALCNwe present two tableau-based algorithms for performing each
form of reasonings and prove their correctness.

2 31 December, 2007 KWEB/2007/D2.5.8/v1.0



Chapter 2

Any-World Access to OWL from Prolog

2.1 Introduction

The Web Ontology Language OWL has been recommended by the W3C in 2004 for
the representation of ontologies, and its usage is spreading rapidly ever since. One of
the design issues for OWL has been that it is decidable and based on the open world
assumption, and these two properties – which are both inherited from description logics
– have served it well in the last two years.

However, with these design decisions come also some drawbacks as they limit ex-
pressiveness of OWL in ways which make working with it cumbersome at times. Even
more, due to decidability of the language some things cannot be expressed at all in OWL.
Efforts are therefore under way to extend OWL with more expressive features, and there
is a growing body of work with proposals and studies how to do this best.

The corresponding research can roughly be classified into two different approaches.
The first approach deals with extensions of OWL while adhering as much as possible
to the conceptual frame of mind spanned by description logic research. The second ap-
proach is based on establishing hybrid systems which combine OWL with other estab-
lished knowledge representation formalisms in such a way that either approach is encom-
passed in full, possibly using two different reasoning engines, but allowing for informa-
tion flow between the subsystems. The work which we present in this chapter is of the
hybrid kind.

The particular integration which we report on, is based on the following rationales.

• OWL has not been designed to be a stand-alone programming language. OWL
ontologies should rather be viewed as declarative knowledge bases, which require
programming in some other language for accessing the knowledge and further pro-
cessing it. It is a natural choice to use a logic-based declarative programming lan-
guage for this purpose.

3



2. ANY-WORLD ACCESS TO OWL FROM PROLOG

• One of the most requested-for extensions of OWL is the ability to formulate rules,
in some established rules language.

• It becomes more and more apparent that closed-world features are required along-
side the open-world character of OWL.

Our hybrid system addresses the formulated needs by interlacing OWL with one of the
most prominent and historic approaches to logic-based knowledge representation, namely
with Prolog. Our system layers Prolog on top of OWL by allowing the querying of OWL
ontologies via a standard OWL reasoner. A tight integration is achieved by interpreting
the answers given by the OWL reasoner in an open-world fashion, and by processing this
answer within Prolog in the same open-world fashion. This is achieved by means of the
so-called any-world semantics due to Loyer and Straccia [LS05].

Technically speaking, the integration is achieved via a hybrid semantics for a language
which incorporates calls to an OWL reasoner into standard logic programming. This hy-
brid semantics is based on the any-world semantics. Algorithmization and an implemen-
tation of the approach is provided by means of a transformation of logic programs under
the any-world semantics into standard Prolog, in this case realised using SWI-Prolog.

Besides the aforementioned rationales for our approach, we thus arrive at a system
with the following additional features.

• Modularity: The user can develop her programs based on Prolog programming
and need not deal with the evaluation of OWL-based reasoning and knowledge. It
is possible to offer restricted or controlled access to third party knowledge-bases
without problems.

• Maturity: We incorporate the KAON2 reasoner and thus offer the performance of a
state-of-the-art DL-reasoner to the logic programming world. The logic program-
ming environment can be handled with little more than basic Prolog knowledge.

• Conformity with standards: Available OWL knowledge bases can be used directly.
As we do not need one big formal system comprising both approaches, these can
be used with no or only little maintenance to do.

• Bridge between ontology language paradigms: One of the most prominent alterna-
tives to OWL for ontology representation is F-Logic [KLW95b, AL04], which can
be used both as an ontology language and as a programming language. As F-Logic
in its basic form is basically Prolog extended with further syntactic features, our
approach can be used directly for realising a hybrid OWL/F-Logic system.

The structure of the chapter is as follows. In Section 2.2, we review the basic facts we
need about the any-world semantics and about OWL in order to make this chapter rela-
tively self-contained. In Section 2.3, we prove a theorem which gives the formal rationale
for our algorithmisation. In Section 2.4 we discuss the implemented system which we

4 31 December, 2007 KWEB/2007/D2.5.8/v1.0
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provide. In Section 2.5 we give an extended example which shows the possibilities of our
approach. In Section 2.6 we discuss related work, and we conclude in Section 2.7.

2.2 Preliminaries

2.2.1 The Any-World semantics

We review the any-world semantics due to Loyer and Straccia [LS05] in some details as
it is crucial for understanding our work.

Bilattices

The any-world semantics is based on a truth-space which is a so-called bilattice [Gin88].
This is a potent mathematical structure which particularly provides two partial orders,
which permit to represent (logical) truth and the knowledge contained in these truth-values
separately.

Formally, a lattice 〈L,≤〉 is a non-empty set L with a partial order ≤, where each
subset of L containing two elements has a supremum and infimum regarding ≤ (also
known as meet and join). It is a complete lattice iff every subset has supremum and
infimum regarding ≤. We write x < y for x ≤ y and x 6= y where x, y ∈ L.

A bilattice 〈B,≤t,≤k〉 is a non-empty set B with two partial orders, the truth-order
≤t and the knowledge-order ≤k, both of which give B the structure of a complete lattice.
Due to completeness, the greatest and least element regarding either of the orders always
exists and is unique [Gin88]. The greatest element regarding ≤t is denoted true, the
least element false. Regarding ≤k, the greatest element is >, the least ⊥. Meet and
join under ≤t which are denoted ∧ and ∨, correspond to the well-known two-valued con-
junction and disjunction regarding the values true and false. Under≤k meet and join
are denoted⊗ and⊕, where x⊗y extracts the maximum knowledge that is expressed both
in x and y whereas x ⊕ y unites the knowledge of x and y. Our approach is particularly
based on the smallest non-trivial bilattice known as FOUR [Bel77] which is depicted
in Figure 2.2.1. Indeed, although bilattice-based semantics is generally formulated for
arbitrary bilattices, FOUR is currently the only such lattice of practical relevance, and
will entirely suffice for our purposes.

An operator • on a lattice is called monotone when x1 ≤ y1 and x2 ≤ y2 implies
x1 • x2 ≤ y1 • y2. We suppose for all bilattices here considered that all of the operators
∧,∨,⊗,⊕ are monotone w.r.t. both the knowledge- and the truth-order; this is called the
infinitary interlacing condition. We furthermore assume that all bilattices are infinitary
distributive i.e. that all distributive laws connecting the aforementioned lattice operators
hold. Finally, we assume that all lattices have a negation, which is an operator denoted
¬ that inverses the truth order, does not inflict the knowledge order and satisfies ¬¬x =

KWEB/2007/D2.5.8/v1.0 31 December, 2007 5



2. ANY-WORLD ACCESS TO OWL FROM PROLOG

-

6

⊥

>

false true

≤t

≤k

Figure 2.1: The bilattice FOUR

x. These assumptions are standard and generally known to be unproblematic in a logic
programming context.

Logic programs

We extend logic programs from the common case and include not only connectives for
disjunction, conjunction and negation but for all the operators of a bilattice: ∧,∨,⊗,⊕
and ¬. So the knowledge order and its operators are not only a tool of analysis and
semantics as used for example in [Fit93] but can be used explicitly to determine how the
program treats information from the perspective of knowledge. A logic program is based
on a set P of predicates, V of variables, C of constants and F of functions. A term is
either an element of V or C or of the form f(t1, . . . , tn) where f ∈ F and all t1, . . . , tn
are terms. The ground terms forming the Herbrand universe are all the terms that can
be built from elements of C and F . An atom is of the form p(t1, . . . , tm) where p ∈ P
and all t1, . . . , tm are terms. The ground atoms forming the Herbrand base are all the
atoms that can be built from the Herbrand universe. A literal is of the form A or ¬A
where A is an atom. Furthermore we allow the elements of the bilattice as literals. A
formula is either any literal, or of the form ϕ1 • ϕ2 where ϕ1 and ϕ2 are formulas and •
is one of the four lattice operators ∧,∨,⊗,⊕, or one of the expressions ∀ϕ respectively
∃ϕ where ϕ is a formula. A rule is of the form p(x1, . . . , xm) ← ϕ(x1, . . . , xm) where
p ∈ P , x1, . . . , xm ∈ V and ϕ is a formula. We call p the head and ϕ the body of the
rule. We suppose that the free variables in ϕ are among {x1, . . . , xm} and are universally
quantified. A logic program P is a finite set of rules. Not allowing terms in the heads of
rules is not a restriction, e.g. the rules (taken from [LS05]):

p(s(x))← p(x)

p(0)← true

can be rewritten (using a predicate eq defining equality) as:

p(y)← ∃x(eq(y, s(x)) ∧ p(x))

p(x)← eq(x, 0)

6 31 December, 2007 KWEB/2007/D2.5.8/v1.0
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With ground(P ) we denote all ground instances of members of P over the Herbrand
universe.

Interpretations of logic programs

Let B be a bilattice. An interpretation of a logic program on B is a mapping I from
ground atoms to members of B. It is extended to formulas as follows: I(b) = b where
b ∈ B; I(ϕ1 • ϕ2) = I(ϕ1) • I(ϕ2) where ϕ1, ϕ2 are formulas and • is one of the
operators ∧,∨,⊗,⊕; I(¬ϕ) = ¬I(ϕ); I(∃xϕ(x)) =

∨{I(ϕ(t))|t is a ground term} and
finally I(∀xϕ(x)) =

∧{I(ϕ(t))|t is a ground term}. The partial orders of the bilattice
are point-wise extended to interpretations: I1 ≤t I2 iff I1(A) ≤t I2(A) for all ground
atoms A. The extension for ≤k is analogous. Given two interpretations I1, I2 we define
(I1 • I2)(ϕ) = I1(ϕ) • I2(ϕ) where • is a lattice operator and ϕ a formula. Thus the
space of all possible interpretations on a bilattice constitutes an infinitary interlaced and
distributive bilattice as well. An interpretation I is a model of a logic program P iff
I(A) = I(ϕ) for all rules A← ϕ in P .

Semantics

The semantics is defined via the fixed point of a monotone operator similarly to the well
known Kripke-Kleene [Fit85, Fit90] or well-founded [vRS91] semantics. In fact the any-
world semantics used here is a generalization of the well-founded semantics. The central
idea of the any-world semantics is to overcome the limitations of both the open and the
closed world as default assumption. Instead an arbitrary interpretation H called the hy-
pothesis is used as default assumption, i.e. the value H(A) is the default value for the
atom A. From this point of view, the open world assumption corresponds to the hypothe-
sis H(A) = ⊥ for all atoms A, we call this hypothesis H⊥. The closed world assumption
can be modelled by H(A) = false for all atoms A, this hypothesis is denoted Hf. Now
the information of the program is combined with knowledge extracted from the hypoth-
esis used. To gather information from the program we use the well known immediate
consequence operator ΦP (I)(A) = I(ϕ) where A ← ϕ is a rule in P . Now we want to
augment the interpretation I with the information from a hypothesis H . This is done sim-
ilarly to the use of the unfounded set in the well-founded semantics. From a knowledge
point of view, the unfounded set is the amount of information contributed to the semantics
by the closed world assumption. This concept now is generalized to arbitrary hypotheses
H . We usually cannot use all the information of H . Instead we want to extract the max-
imum knowledge of H , expressed as an interpretation J , so that the assumed knowledge
J is entailed by the program w.r.t. the augmented interpretation I ⊕ J , i.e. we want to
make sure that J(A) ≤k ΦP (I ⊕ J)(A). This idea is modelled using the so called safe
interpretations. An interpretation J is safe w.r.t. a logic program P , an interpretation I
and a hypothesis H if J ≤k H and J ≤k ΦP (I ⊕ J). The support provided by H to P
and I is the greatest (on the knowledge order) safe interpretation w.r.t. P , I and H . It is
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denoted sHP (I). Note that this particularily entails that the support is always smaller than
the hypothesis.

In order to simplify the treatment of logic programs using fixed-point semantics, we
introduce the transformed program P ∗. Given a logic program P and a hypothesis H the
program P ∗ contains the following rules:

• A ← ϕ1 ∨ · · · ∨ ϕn if A ← ϕ1, . . . , A ← ϕn are all rules in ground(P ) with the
head A.

• A← H(A) if A is not the head of any rule in P .

The second part enforces that for any atom that is not assigned a truth-value by a rule in
the program, it is given its value according to the default assumption, i.e. the hypothesis.

Now we define the operator Π̃H
P (I) = ΦP (I)⊕ sHP (I) which works on P ∗. The fixed

points of Π̃H
P are called theH-founded models of P . In [LS05] it is shown that the support

operator sHP (I) is monotone in I and H w.r.t. the knowledge order. Furthermore also ΦP

is monotone w.r.t. the knowledge order [Fit93]. By the infinitary interlacing condition,
motonicity of Π̃H

P is guaranteed. So by the well known Knaster-Tarski theorem [Tar55],
there is always a (unique) least H-founded model for any logic program, which can be
obtained as the least upper bound of the transfinite sequence (Π̃H

P ↑ α)α, where α ranges
over ordinals, Π̃H

P ↑ 0 is the least interpretation, Π̃H
P ↑ α + 1 = Π̃H

P (Π̃H
P ↑ α) for all α,

and Π̃H
P ↑ α = sup{Π̃H

P ↑ β : β < α} for limit ordinals α.

The key feature of the any-world semantics is the flexibility of the default assump-
tion. Particularly using a hypothesis that maps ground atoms to the set {false,⊥} it is
possible to mix closed- and open-world based information, whereon our hybrid semantics
relies. It also includes several well known semantics. Using Hf, the H-founded model is
the well-founded model [LS05]. Let HKK be the interpretation that maps all atoms that
are the head of a rule in a given program P to⊥, all the other atoms to false. Using this
hypothesis, the H-founded model of P is its Kripke-Kleene-model [LS05]. This reflects
that the Kripke-Kleene semantics uses only the immediate-consequence operator ΦP and
consequently the support part in Π̃H

P is reduced to ⊥ by the assignment of ⊥ to all rule
heads. (Recall that the support is always smaller than the hypothesis on the knowledge
order). However the Kripke-Kleene semantics is based on the closed world assumption.
This is manifested in the hypothesis mapping the other atoms to false. The fact that
the hypothesis affects only those atoms will be used later for the hybrid semantics of our
system.

2.2.2 Description logics

The description logics part of our hybrid system uses the KAON2 OWL DL reasoner
[Mot06].1 Our approach, however, is independent of the specific reasoner used, and can

1See also http://kaon2.semanticweb.org
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indeed be used with any reasoning system based on the open world assumption. OWL DL
is based on the description logic SHOIN (D) [HST99], but for the purpose of our exhi-
bition we will not need to give many details about OWL DL. It shall suffice to recall that
OWL DL allows to specify axioms describing the subsumption relation between complex
concepts C and D, written C v D. The (complex) concepts themselves are composed by
means of primitive (or atomic) concepts, logical and other connectives, individuals which
correspond to logical constants, and roles which describe relationships between individ-
uals. It is also possible to specify that some individual a belongs to a class C, written
C(a), or to explicitly state that two individuals a and b are connected by a role R, written
R(a, b). The special concepts > and ⊥, respectively, are defined as containing all indi-
viduals respectively no individual. OWL DL is given an open-world semantics e.g. by
mapping it into first-order logic with equality.

Given a set of OWL DL axioms, called an ontology, it is possible to derive logical
consequences from it by means of well-established algorithms. The most basic inference
tasks are

• checking whether an ontology is satisfiable (i.e. logically consistent),

• checking whether a concept C subsumes a concept D, i.e. whether C v D is a
logical consequence,

• checking whether a concept C is satisfiable, i.e. whether there is a model of the
knowledge base in which the extension of C is non-empty, and

• checking whether an individual a is contained in a concept C, i.e. whether C(a) is
a logical consequence.

2.3 A program transformation for algorithmising the any-
world semantics

We provide an extension for Prolog which implements an any-world logic based on
FOUR and hypotheses that map into {false,⊥}. The implementation is based on
Theorem 2 below, which acts as a bridge between the any-world semantics and Prolog.

Before we provide the theorem, let us define the specific type of hypotheses which
we need for our purposes. Recall that the hypothesis Hf corresponds to the closed world
assumption, while H⊥ can be interpreted as an open world semantics. Consequently, the
hypotheses of interest are a mix between these two.

Definition 1 Given a logic program P we define the set of hypotheses KKS to be the set
of all interpretations that map an atom A to ⊥ when A is the head of a rule in P , and to
either ⊥ or false otherwise.
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Note that HKK is in KKS for all programs P .

Theorem 2 Given a logic program P and a hypothesis HKKS ∈ KKS, there exists a
program transformation THKKS such that the H-founded model of P under HKKS is the
same as the H-founded model of THKKS(P ) under HKK .

The proof is based on the possibility to add the default assumption chosen as rules
of the form A ← H(A) to the program, such that the resulting program does not have
any atoms that are not head of a rule. When evaluated under HKK , accordingly the
default assumption false is not used for any atom. The assumption⊥ for atoms that are
heads of a rule, i.e. all atoms, is overridden by the rule A ← false should it exist, as
false ⊕⊥ = false. We first prove the following:

Lemma 3 Let P be a logic program andHKKS a hypothesis from KKS. Then sHKKS
P (I) =

HKKS for any interpretation I .

Proof 1 For the following proof we write sHKKS
P (A) for sHKKS

P (I)(A) as the choice of
interpretation is without effect. For an atom A that is not the head of any rule there
are two possibilities: (1) If HKKS(A) = ⊥, then the fact that the support is always
smaller than the hypothesis on the knowledge-order requires sHKKS

P (A) = ⊥. (2) If
HKKS(A) = false, then the rule A ← false is in P ∗. As the support is a safe inter-
pretation we require sHKKS

P (A) ≤k ΦP (I⊕sHKKS
P )(A). This now becomes sHKKS

P (A) ≤k
I(false)⊕ sHKKS

P (false) = false. As the support is the largest safe interpretation
on the knowledge-order we have sHKKS

P (A) = false. Consider now an atom A that is
head of a rule in P . Using again that the support is a safe interpretation and thus smaller
(in the knowledge order) than the hypothesis, we have that sHKKS

P (A) = ⊥ = HKKS . ut

Now we are ready to prove the theorem:

Proof 2 (of Theorem 2) We use the notation of the theorem. Furthermore we let P ′ =
THKKS (P ). We now show that the operators Π̃HKKS

P and Π̃HKK

P ′ have the same result
on every step of their iteration. As the operator Π̃ is defined on P ∗, for the evaluation
of Π̃HKKS

P P ∗ is constructed from P under the hypothesis HKKS . In this process the
same rules are added as when applying THKKS to P by definition of T . So P ′ and P ∗

constructed under the hypothesis HKKS are identical. For the evaluation of Π̃HKK

P ′ the
program P ′∗ is constructed under the hypothesis HKK . Since in P ′ all atoms are head of
rule, the hypothesis HKK has no influence on P ′∗. So we have P ∗ = P ′∗, thus Π̃HKKS

P

and Π̃HKK

P ′ work on the same program.

Now consider an arbitrary iteration step α:

(Π̃HKK

P ′ ↑ α + 1)(A) = (Π̃HKK

P ′ ↑ α)(ϕ)⊕ sHKK

P ′ (Π̃HKK

P ′ ↑ α)(A).

We have HKK(A) = ⊥ for all atoms A in P ′ as all atoms are the head of a rule after the
transformation. By Lemma 3 the support is equal to the hypothesis (note that HKK is in
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KKS) and so the remaining formula is

(Π̃HKK

P ′ ↑ α + 1)(A) = (Π̃HKK

P ′ ↑ α)(ϕ). (2.1)

Consider now the operator

(Π̃HKKS
P ↑ α + 1)(A) = (Π̃HKKS

P ↑ α)(ϕ)⊕ sHKKS
P (Π̃HKKS

P ↑ α)(A).

Again by Lemma 3 we have that HHKKS (A) = sHKKS
P (Π̃HKKS

P ↑ α)(A). For atoms that
are head of a rule in P we obtain

(Π̃HKKS
P ↑ α + 1)(A) = (Π̃HKKS

P ↑ α)(ϕ). (2.2)

As P and P ′ contain the same rules, the operators in (2.1) and (2.2) yield the same
results. For atoms that are not the head of a rule we know that either HKKS(A) = ⊥ or
HKKS(A) = false. The following argument is analogous for both cases, we consider
the latter. IfHKKS(A) = false, then there is a ruleA← false in P ∗ and accordingly
also in P ′. So we have (Π̃HKKS

P ↑ α)(ϕ) = sHKKS
P (Π̃HKKS

P ↑ α)(A) = false as well as
(Π̃HKK

P ′ ↑ α)(ϕ) = false. So both operators give the same result. ut

So we have the possibility to deal with hypotheses mixing open- and closed-world
assumption while we only need to compute the Kripke-Kleene semantics.

2.4 Implementation

In order to arrive at its least fixed point, i.e. at the Kripke-Kleene semantics, ΦP may need
as many as Church-Kleene ω1 steps. Indeed the Kripke-Kleene semantics is Π1

1-complete
[Fit02] and thus not even semi-decidable. This means that a sound and complete imple-
mentation of the Kripke-Kleene semantics cannot be provided for theoretical reasons.

However, the Kripke-Kleene semantics was originally conceived as a declarative se-
mantics which captures the essence of the Prolog procedural semantics, and indeed they
are strongly related, as shown e.g. in [Kun87]. For practical purposes, it thus suffices to
view Prolog as an approximate implementation of the Kripke-Kleene semantics.

We therefore provide a library that permits using the logic FOUR with all corre-
sponding lattice operations ⊕,⊗,∧,∨ and ¬ in Prolog. The user can write programs in
a Prolog-like syntax, which is then compiled to SWI-Prolog2 such that each predicate
is augmented with an additional parameter, which carries the truth-value. A predicate
p(t1, . . . , tn,TV) is then deducible in Prolog if p(t1, . . . , tn) has the truth-value TV.

Within this framework, we offer special atoms, so called DL-atoms, that are not eval-
uated according to the logic programming semantics but by querying the DL-reasoner

2http://www.swi-prolog.org
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KAON2. They have the form dlq(pq) where q is a query and pq the respective vector
of parameters. The queries we offer are subsumes, unsatisfiable and disjoint regarding
concepts and has role regarding roles.

Usually queries to a DL-reasoner have two possible answers: the queried information
is either demonstrable or not. However, if the answer is negative, then two cases are
possible: Either the negation of the query is demonstrable, or the negation of the query is
also not demonstrable. In the first case, the refutation of the query is much stronger than
in the second.

In order to give an example, consider the knowledge base specified by the following
axioms.

unicorn v appears in novels

horned animal v animal

When queried whether unicorn v horned animal holds, the reasoner responds with No,
which is entirely appropriate as the knowledge base does not allow to derive any knowl-
edge about the relationship between unicorn and horned animal, i.e. the relationship
unicorn v horned animal can neither be confirmed nor refuted.

Consider now the situation that the knowledge base contains the following addi-
tional axioms, where the second describes the assertion that the concepts unicorn and
phantasy animal are extensionally disjoint.

unicorn v phantasy animal

animal u phantasy animal v ⊥

When now queried whether unicorn v horned animal holds, the reasoner again re-
sponds with No, which is entirely appropriate as the knowledge base implies that unicorn
and horned animal are in fact extensionally disjoint. The situation compared to the first
situation, however, is very different: The first knowledge base did not specify anything
about the relation between unicorn and horned animal, while the second knowledge
base strongly refutes the subsumption relation.

Our framework provides the means to distinguish between these situations by means
of a different choice of truth values. In the first situation, the resulting truth value must
be ⊥, while in the second it must be false. Technically, we realise this in such a way
that each query to KAON2 results in two calls to the reasoner allowing to retrieve more
detailed information. For the atom dlsubsumes(C,D), the first query to the reasoner asks
for C v D. Given a positive answer, we know that this is demonstrable, thus the DL-
atom is evaluated as true. When the answer is negative, there are, however, two cases
possible: C v D might be satisfiable, but not formally implied by the knowledge base.
In this case the DL-atom should have the value ⊥ i.e. unknown. On the other hand it
is possible that the information in the knowledge-base makes C v D impossible. Then
the DL-atom should be assigned false. This is done by the second query, which asks
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whether KB∪{C v D} is satisfiable, where KB is the knowledge-base. We summarize
the query in the following table.

result of the query: result of the query: value of
C v D Is KB ∪ {C v D} satisfiable? dlsubsumes(C,D)

yes – true
no yes ⊥
no no false

Note that the queries are executed consecutively, i.e. the second query is only performed
if the first returned false.

A useful perspective on this is the following: C v D results in true if it holds in
all models of the knowledge base. It results in false if it holds in none of the models
of the knowledge base. And it results in ⊥ if it holds in some, but not all, models of the
knowledge base.

The question of the satisfiability of a concept is reducible to subsumption: a concept
C is satisfiable iff C v ⊥ does not hold, i.e. if there is some model in which the extension
of C is non-empty. This situation is best understood by considering unsatisfiabilitiy of a
concept instead of satisfiability, as this allows us to use exactly the argumentation used
above: A concept is unsatisfiable if it is extensionally empty in all models of the knowl-
edge base. Similarly to the case of subsumption, we arrive at the execution detailed in the
following table.

result of the query: result of the query: value of
C v ⊥ Is KB ∪ {C v ⊥} satisfiable? dlunsatisfiable(C)

yes – true
no yes ⊥
no no false

Querying for extensional disjointness of concepts is treated similarly, by reducing it to
subsumption: two concepts C and D are disjoint iff C v ¬D.

The query whether C(a) holds can be resolved as in the following table. Note that
C(a) holds if it is true in all models.

result of the query: result of the query: value of
C(a) ¬C(a) dlmember(C, a)
yes – true
no yes false
no no ⊥

The query dlhas role(I1, R, I2) provides information whether two individuals I1 and I2

are connected via a role R. When 〈I1, I2〉 ∈ R then the DL-atom is true. To evaluate
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the other truth-values, we have to restrict ourselves to the known individuals, as it is
not possible in OWL to ask for negated roles [ELST04c]. When querying whether two
individuals are connected via a role, it is a sensible assumption that this might be possible,
i.e. that 〈I1, X〉 ∈ R or 〈X, I2〉 ∈ R. So we assign the value false to queries when there
exists either an X 6= I2 with 〈I1, X〉 ∈ R or an Y 6= I2 with 〈Y, I2〉 ∈ R but 〈I1, I2〉 6∈ R.
All other pairs of individuals get the value ⊥.

To integrate these DL-atoms flawlessly with the semantics of our logic programming
environment which is based on fixed points, we need to guarantee that the values of
the DL-atoms are monotone w.r.t. the knowledge order. For now, we assume that the
knowledge-base is static, i.e. it cannot change during the program evaluation. Then the
evaluation of the DL-atoms always yields the same result, and thus, trivially, is monotone.

The implemented system, called PrOWLog, is available for download from http:
//logic.aifb.uni-karlsruhe.de/wiki/PrOWLog.

2.5 An Example

We exemplify our approach by extending an example given in [LS05], formalising a
judge’s decision process, as given by the following rules.

is suspect← has motive ∨ has witness
is cleared← ¬contradict alibi ∧ has alibi

charge← is suspect⊕ ¬is cleared

The judge collects information suggesting that a person is suspect as well as information
that indicates that the person is cleared. To support suspicion he collects information
about the existence of a motive or a witness (first line). To enforce innocence the judge
considers an alibi, but only if this is not contradicted by the defendant’s testimony (sec-
ond line). Finally he combines this information (third line). Assume now that the only
information the judge has about some person is has witness ← false. Only relying
on this, the suspect shouldn’t be charged. Based on the closed-world assumption we get
has motive = false and thus is suspect = false. As has alibi = false, we ob-
tain is cleared = false. So when evaluating charge the information is contradictory
and charge gets the value >.

Using the open-world assumption, giving all atoms the default value⊥, we get is suspect =
⊥ because has motive = ⊥ and false ∨ ⊥ = ⊥. Since we know nothing about
has alibi and contradict alibi, the default assumption is used again and we get is cleared =
⊥ and finally charge = ⊥. So neither of the two established assumptions work in a satis-
factory way. Consider now the mixed hypothesisHm defined as follows: Hm(has witness) =
false, Hm(has motive) = false, Hm(has alibi) = ⊥, Hm(contradict alibi) = ⊥.
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Then, like under the closed-world assumption, is suspect is false. The contradiction we
encountered, however, does not exist any more as is cleared = ⊥ which reflects that the
information is not sufficient to make a decision. Consequently charge = false. This
illustrates that the first line of the program is devised according to the closed-world as-
sumption. The second line however is based on a different idea: For is cleared to become
false, has alibi = false is already sufficient. So the meaning of has alibi = false
is that it has been proven that nobody can provide an alibi for the defendant. Then we
need also the possibility to model the fact, that just no alibi is known, which corresponds
to has alibi = ⊥, and which should be the default case. So the second line is conceived
with an open-world setting in mind. H-founded models enable the use of such programs
despite the different approaches involved.

To complete the example, it could be assumed that the judge draws his knowledge
from an OWL DL knowledge base, by means of the following rules which query a knowl-
edge base about a person Ted who is under investigation.

has motive← dlmember(dl has motive, Ted)

has witness← dlmember(dl has witness, Ted)

has alibi← dlmember(dl has alibi, T ed)

contradict alibi← dlmember(dl contradict alibi, T ed)

By means of our hybrid semantics, the system will respond with the desired answer.

2.6 Related work

Our approach using DL-atoms to link rule-based and ontology-based reasoning is inspired
by the approach of Eiter et. al. presented in [ELST04a], where extended logic programs
and the answer set semantics [GL91a] are modified to incorporate DL-atoms to query
external reasoners. This approach permits the flow of information in both directions from
the DL-enhanced program to the reasoner and vice versa. Extended logic programs make
use of two negation operators, distinguishing explicitly negation as failure and classical
negation. The any-world-semantics permits to manage this naturally, giving the nega-
tion operator of the lattice different meanings respective to the default assumption of the
negated expression. In [EIST06] Eiter et. al. generalize their approach to so called HEX-
Programs, where the DL-atoms are replaced by atoms permitting to access a variety of
different external sources, not only DL-reasoners. To accomplish this, the rule syntax and
the answer set semantics are extended. The evaluation of these programs is made possible
by a splitting algorithm based on the dependency structure in the program. Also based on
DL-atoms, our approach was developed from another perspective. Given the elegant yet
expressive any-world semantics and the ease of use of the hypotheses in KKS, we pro-
vide a logic programming environment with access to description logics, while remaining
close to Prolog programming. We emphasize the use of the particular kind of information
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that can be drawn from DL-reasoners as an open-world based system with an intuitive
semantics.

Motik and Rosati present in [MR06] an approach for a system combining rules and
DL into one formalism. Based on MKNF [Lif91] they join a decidable FOL fragment
with logic programming rules. The modality operators in their so called hybrid MKNF
knowledge bases allow to formulate rules to enforce closed world reasoning while main-
taining the open world assumption for the DL-part. Their system also subsumes Rosati’s
approach in [Ros06a]. There and more detailed in [Ros05] he discusses the relation of
open and closed semantics in these hybrid systems.

2.7 Conclusions and Further Work

We have presented the hybrid reasoning system PrOWLog, which allows to combine
OWL DL with Prolog in such a way that the open-world semantics of OWL DL can
be captured within the Prolog system. To the best of our knowledge, this is the first work
which integrates a logic programming language and OWL in such a way.

We perceive basically two lines of further research to follow up on our results. On the
one hand, studies remain to be done which show that the approach is useful in practice.
We believe that in particular an integration with F-Logic reasoners is worth investigating,
as F-Logic and OWL are two complementary ontology paradigms, which are both used in
practice. On the other hand, it remains to be investigated whether the integration of Prolog
and OWL can be strengthened by weakening the layering, i.e. by allowing some flow of
information back to the OWL knowledge base, perhaps in a way similar to [EIST06].
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Chapter 3

Embedding Non-Ground Logic
Programs into Autoepistemic Logic for
Knowledge-Base Combination

3.1 Introduction

In the context of the ongoing discussion around combinations of rules and ontologies for
the Semantic Web, there have been several proposals for integrating classical knowledge
bases (ontologies) and rule bases (logic programs). Generally speaking, all these ap-
proaches try to define a reasonable semantics for a combined knowledge base consisting
of a classical component and a rules component.

Two trends are currently observable. On the one hand, approaches such as SWRL
[HPSBT05] extend the ontology with Horn formulas in a classical framework. This ap-
proach is straightforward, but prohibits nonmonotonic rules. On the other hand, existing
approaches which do allow nonmonotonic rules either (a) distinguish between “classi-
cal” and “rules” predicates and limit the domain of interpretation (e.g., [Ros06b]) or (b)
restrict the interaction to ground entailment (e.g., [ELST04b]). The main distinction be-
tween these approaches is the type of interaction between the classical knowledge base
on the one hand and the rule base on the other (cf. [BEPT06] for an examination of this
issue).

As for combination, a classical theory and a logic program should be viewed as com-
plementary descriptions of the same domain. Therefore, a syntactic separation between
predicates defined in these two components should not be enforced. Furthermore, it is
desirable to neither restrict the interaction between the classical and the rules components
nor impose any syntactic or semantic restrictions on the individual components. That is,
the classical component may be an arbitrary theory Φ of some first-order language with
equality, and the rules component may be an arbitrary non-ground normal or disjunctive
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logic program P , interpreted using, e.g., the common stable-model semantics [GL88].

The goal is a combined theory, ι(Φ, P ), in a uniform logical formalism. Naturally,
this theory should amount to Φ if P is empty, and to P if Φ is empty. Therefore, such a
combination must provide faithful embeddings σ(Φ) and τ(P ) of Φ and P , respectively,
in this formalism, given by σ(Φ) = ι(Φ, ∅) and τ(P ) = ι(∅, P ), respectively. In turn,
knowledge combination may be carried out on top of such embeddings σ(·) and τ(·),
where in the simplest case one may choose ι(Φ, P ) = σ(Φ) ∪ τ(P ).

This raises the questions (a) which uniform formalism is suitable and (b) which em-
beddings are suitable and, furthermore, how do embeddings relate to each other and how
do they behave under knowledge combination?

Autoepistemic logic (AEL) [Moo85], which extends classical logic with a modal be-
lief operator, is an attractive candidate for a uniform formalism. In fact, embedding a
classical theory in AEL is trivial, and several embeddings of logic programs in AEL have
been described [GL88, MT93, LS93, Che93, Prz91]. However, all these embeddings have
been developed for the propositional case only, whereas we need to deal with non-ground
theories and programs. This requires us to consider first-order autoepistemic logic (FO-
AEL) [Kon91, KR02, LL00], and non-ground versions of these embeddings. Our main
contributions are as follows.

We define several embeddings of non-ground logic programs into FO-AEL, taking
into account subtle issues of quantification in FO-AEL. We show that these embeddings
are faithful in the sense that the stable models of the program and the sets of objective
ground atoms in the stable expansions of the embeddings are in a one-to-one correspon-
dence. However, the embeddings behave differently on formulas beyond ground atoms,
and when combined with classical theories, even when considering propositional formu-
las.

Motivated by these differences, we compare the embeddings along two dimensions:

1. We determine correspondences between the stable expansions of different possi-
ble embeddings, with respect to various classes of formulas, and present inclusion
relations between the sets of autoepistemic consequences of the embeddings.

2. We determine correspondences between stable expansions for combinations with
theories from different fragments of classical logic which are important in ontology
representation.

Compared to other well-known nonmonotonic formalisms like Reiter’s default logic,
FO-AEL offers a uniform language in which (nonmonotonic) rules themselves can be
expressed at the object level. This conforms with the idea of treating an ontology and a
logic program together as a unified theory.

Arguably, none of the embeddings can a priori be considered to be superior to the
others. Our results give useful insight into the properties of the different embeddings,
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both on its own right and for knowledge combination. They provide a helpful guidance
for the selection of an embedding for a particular scenario.

The chapter is further structured as follows. We review the definitions of first-order logic
and logic programs in Section 3.2. We proceed to describe first-order autoepistemic logic
(FO-AEL) and present a novel characterization of stable expansions for certain kinds of
theories in Section 3.3. The embeddings of normal and disjunctive logic programs and
our results about the faithfulness of the embeddings are described in Section 3.4. We in-
vestigate the relationships between these embeddings themselves, and under combination
with first-order theories, in Sections 3.5 and 3.6. We conclude with related and future
work in Section 3.7.

3.2 Preliminaries

First-Order Logic A first-order (FO) language L consists of all formulas over a signa-
ture Σ = (F ,P), where F and P are countable sets of function and predicate symbols,
respectively. Function symbols with arity 0 are called constants. V is a countably infinite
set of variable symbols. Terms and atomic formulas (atoms) are constructed as usual for
first-order logic with equality. Ground terms are also called names;NΣ is the set of names
of a given signature Σ. Complex formulas are constructed as usual using the symbols ¬,
∧, ∨, ⊃, ∃, ∀,(, and ). A sentence is a formula with no free variables. The universal
closure of a formula φ is denoted by ∀φ. Lg is the restriction of L to ground formulas;
Lga is the restriction of Lg to atomic formulas. An FO theory Φ ⊆ L is a set of sentences.

An interpretation of a language L is a tuple w = 〈U, ·I〉, where U is a nonempty set,
called the domain, and ·I is a mapping which assigns a function f I : Un → U to every
n-ary function symbol f ∈ F and a relation pI ⊆ Un to every n-ary predicate symbol
p ∈ P . A variable assignment B for w is a mapping which assigns an element xB ∈ U
to every variable x ∈ V . A variable assignment B′ is an x-variant of B if yB = yB

′ for
every variable y ∈ V such that y 6= x. The interpretation of a term t, denoted tw,B, is
defined as usual; if t is ground, we write tw instead of tw,B.

An individual k with at least one name t ∈ N such that tw = k is called a named
individual, and unnamed otherwise. In case names are interpreted distinctly, the unique-
names assumption applies. If, additionally, every individual is named, the standard-names
assumption applies.

A variable substitution β is a set {x1/t1, ..., xk/tk}, where x1, ..., xk are distinct vari-
ables and t1, ..., tk are names. β is total if it contains some x/n for every variable x ∈ V .
Given variable assignmentB and substitution β, if β = {x/t | x ∈ V , tw = xB, for some name t},
then β is associated with B. The application of a variable substitution β to some term,
formula, or theory, denoted by appending β to it, is defined as syntactical replacement, as
usual. Clearly, if the unique-names assumption applies, each variable assignment has a
unique associated substitution; if the standard-names assumption applies, each associated

KWEB/2007/D2.5.8/v1.0 31 December, 2007 19



3. EMBEDDING NON-GROUND LOGIC PROGRAMS INTO AUTOEPISTEMIC LOGIC FOR KNOWLEDGE-BASE COMBINATION

substitution is total.

Example 1 Consider a language L with constants F = {a, b, c}, and an interpretation
w = 〈U, ·I〉 with U = {k, l,m} such that aw = k, bw = l, and cw = l, and the variable as-
signment B: xB = k, yB = l, and zB = m. B has two associated variable substitutions,
β1 = {x/a, y/b} and β2 = {x/a, y/c}, which are not total.

Logic Programs A disjunctive logic program P consists of rules of the form

h1 | . . . | hl ← b1, . . . , bm, not c1, . . . , not cn, (3.1)

where h1, . . . , hl, b1, . . . , bm, c1, . . . , cn are (equality-free) atoms. H(r) = {h1, . . . , hl}
is the set of head atoms of r, B+(r) = {b1, . . . , bm} is the set of positive body atoms of
r, and B−(r) = {c1, . . . , cn} is the set of negative body atoms of r. If l = 1, then r is
normal. If B−(r) = ∅, then r is positive. If every variable in r occurs in B+(r), then r is
safe. If every rule r ∈ P is normal (resp., positive, safe), then P is normal (resp., positive,
safe).

By a first-order signature, ΣP , we understand a superset of the function and predicate
symbols which occur in P . Let LP denote the first-order language based on ΣP . We as-
sume that ΣP contains at least one 0-ary function symbol or only 0-ary predicate symbols.
The Herbrand base, BH , of LP is the set of ground atomic formulas of LP . Subsets of
BH are called Herbrand interpretations.

The grounding of a logic program P , denoted gr(P ), is the union of all possible
ground instantiations of P , obtained by replacing each variable in a rule r with a name in
NΣP

, for each rule r ∈ P .

Let P be a positive program. A Herbrand interpretation M of P is a model of P if,
for every rule r ∈ gr(P ), B+(r) ⊆ M implies H(r) ∩M 6= ∅. A Herbrand model M is
minimal iff for every model M ′ such that M ′ ⊆M , M ′ = M .

Following [GL91b], the reduct of a logic program P with respect to an interpretation
M , denoted PM , is obtained from gr(P ) by deleting (i) each rule r with B−(r)∩M 6= ∅,
and (ii) not c from the body of every remaining rule r with c ∈ B−(r). If M is a minimal
Herbrand model of PM , then M is a stable model of P .

3.3 First-order Autoepistemic Logic

We adopt the definition of first-order autoepistemic logic (FO-AEL) under the any- and
all-name semantics following [Kon91], using a novel characterization with associated
variable substitutions. The benefit of these semantics is that they allow quantification
over arbitrary domains and generalize classical first-order logic with equality, thereby
allowing a trivial embedding of first-order theories (with equality). Other approaches
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[KR02, LL00] require interpretations to follow the unique or standard names assumptions
and therefore do not allow such direct embeddings.

An FO-AEL language LL is defined relative to a first-order language L:

i any atomic formula in L is a formula in LL;

ii if φ is a formula in LL, then Lφ, called a modal atom,1 is a formula in LL; and

iii complex formulas are constructed as in standard first-order logic.

A formula without modal atoms is an objective formula. As usual, a formula with no
free variable occurrences is a sentence. Standard autoepistemic logic is FO-AEL without
variables.

An autoepistemic interpretation is a pair 〈w,Γ〉 where w = 〈U, ·I〉 is a first-order
interpretation and is Γ ⊆ LL a set of sentences, called belief set. 〈w,Γ〉 satisfies an objec-
tive atomic formula p(t1, . . . , tn) relative to a variable assignment B, denoted (w,B) |=Γ

p(t1, . . . , tn), if (tw,B1 , . . . , tw,Bn ) ∈ pI . Furthermore, (w,B) |=Γ t1 = t2 iff tw,B1 = tw,B2 .

Satisfaction of a formula Lφ in an interpretation 〈w,Γ〉 with respect to a variable
assignment B under the any-name semantics (resp., all-name semantics) is defined as
follows:

(w,B) |=Γ Lφ iff, for some (resp., all) variable substitu-
tion(s) β, associated with B, φβ is closed and φβ ∈ Γ.

Satisfiability of complex formulas is defined as usual, with φ, ψ ∈ LL:

• (w,B) |=Γ ¬φ iff (w,B) 6|=Γ φ,

• (w,B) |=Γ φ ∧ ψ iff (w,B) |=Γ φ and (w,B) |=Γ ψ,

• (w,B) |=Γ φ ∨ ψ iff (w,B) |=Γ φ or (w,B) |=Γ ψ,

• (w,B) |=Γ φ ⊃ ψ iff (w,B) |=Γ ¬φ or (w,B) |=Γ ψ,

• (w,B) |=Γ ∀x.φ iff for every x-variant B′ of B, (w,B′) |=Γ φ, and

• (w,B) |=Γ ∃x.φ iff for some x-variant B′ of B, (w,B′) |=Γ φ.

Notice that in case the unique names (or the standard names) assumption applies, the any-
and all-name semantics coincide.

〈w,Γ〉 is a model of φ under the any-(resp. all-)name semantics, denoted w |=Γ φ, if
(w,B) |=Γ φ under the any-(resp. all-)name semantics for every variable assignment B
of w. This extends to sets of formulas in the usual way. A set of formulas A ⊆ LL entails
a sentence φ ∈ LL under the any-(resp. all-)name semantics with respect to a belief set

1Lφ is usually read as “φ is known” or “φ is believed.”
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Γ, denoted A |=Γ φ, if for every interpretation w such that w |=Γ A under the any-(resp.
all-)name semantics, w |=Γ φ under the any-(resp. all-)name semantics.

When considering only interpretations for which the standard names assumption ap-
plies (so that the any- and all-name semantics coincide), we talk about entailmentA |=Γ φ
under the standard names assumption.

Example 2 Consider a language with constant symbols a, b and unary predicate symbol
p, and an interpretation 〈w,Γ〉 with w = 〈{k}, ·I〉 and Γ = {p(a)}. Under the any-name
semantics, w |=Γ ∃x.Lp(x); under the all-name semantics, w 6|=Γ ∃x.Lp(x), because
bw = aw = k, but p(b) /∈ Γ.

We deem this behavior of the all-name semantics counterintuitive; so, following [Kon91],
we use the any-name semantics in what follows, unless stated otherwise.

Example 3 Consider the formula φ = ∀x(p(x) ⊃ Lp(x)) and some interpretation 〈w,Γ〉.
Then: w |=Γ φ iff for every variable assignment B, (w,B) |=Γ p(x) ⊃ Lp(x) iff
(w,B) 6|=Γ p(x) or (w,B) |=Γ Lp(x). Now, (w,B) |=Γ Lp(x), with xB = k, iff for
some t ∈ NΣ, tw = k, and p(t) ∈ Γ. Thus, φ is false (unsatisfied) in any interpretation
where pI contains unnamed individuals.

A stable expansion is the set of beliefs of an ideally introspective agent (i.e. an agent
with perfect reasoning capabilities, and with knowledge about its own beliefs), given
some base set. A belief set T ⊆ LL is a stable expansion of a base set A ⊆ LL iff
T = {φ | A |=T φ}. With Lg and Lga we denote the restriction of L to ground formulas
and to ground atomic formulas, respectively. To, Tog, and Toga denote the restrictions
of T to objective, objective ground, and objective ground atomic formulas, respectively,
i.e. To = T ∩ L, Tog = T ∩ Lg, and Toga = T ∩ Lga.

A formula φ is an autoepistemic consequence of A if φ is included in every sta-
ble expansion of A. Cons(A) denotes the set of all autoepistemic consequences of A.
Conso(A) denotes the restriction of Cons(A) to objective formulas, i.e. Conso(A) =
Cons(A) ∩ L.

Every stable expansion T ofA is a stable set, which means that it fulfills the following
properties: (a) T is closed under first-order entailment, (b) if φ ∈ T then Lφ ∈ T , and (c)
if φ /∈ T then ¬Lφ ∈ T . Furthermore, if T is consistent, the converse statements of (b)
and (c) hold.

Konolige [Kon91] shows that a stable expansion T of a base set A is determined by
its objective subset To, called the kernel of T . He further obtains the following result.

Proposition 1 ([Kon91]) Let A ⊆ LL be a base set which does not have nested modal
operators, and let Γo ⊆ L be a set of objective formulas. Then, Γo = {φ ∈ L | A |=Γo φ}
iff Γo = T ∩ L for some stable expansion T of A.

We extend this result as follows:
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Proposition 2 Given a base set A ⊆ LL with only objective atomic formulas in the con-
text of modal atoms, and a set of objective formulas Γo ⊆ L, with Γoga = Γo ∩ Lga, then
Γo = {φ ∈ L | A |=Γoga φ} iff Γo = T ∩ L for some stable expansion T of A.

Proof 3 Since A only contains atomic formulas in the context of the modal operator we
obtain A |=Γo φ iff A |=Γoga φ, because, by the definition of satisfaction of modal formu-
las, non-ground and non-atomic formulas in Γo do not affect satisfaction of formulas in
A. {φ ∈ L | A |=Γoga φ} = {φ ∈ L | A |=Γo φ} follows.

Since A does not contain any nested modal operators we combine this result with
Proposition 1 to obtain Γo = {φ ∈ L | A |=Γo φ} = {φ ∈ L | A |=Γoga φ} iff Γo = T ∩L
is the kernel of a stable expansion T of A.

3.4 Embedding Non-Ground Logic Programs

We define an embedding as a function which takes a logic program P as its argument and
returns a set of sentences in the FO-AEL language obtained from ΣP .

Since the unique names assumption does not hold in FO-AEL in general, it is neces-
sary to axiomatize default uniqueness of names (as introduced by [Kon91]). By UNAΣ

we denote the set of axioms

¬L(t1 = t2) ⊃ t1 6= t2, for all distinct t1, t2 ∈ NΣ.

The reason we axiomatize default uniqueness (¬L(t1 = t2) ⊃ t1 6= t2), instead of rigid
uniqueness (t1 6= t2), is that we want to allow a first-order theory which is added to the
embedding to override this inequality, rather than introduce an inconsistency. We believe
that, with default uniqueness, the combination behaves in a more intuitive way.

Recall that a logic program P consists of a set of rules of the form

h1 | . . . | hl ← b1, . . . , bm, not c1, . . . , not cn, (3.2)

where h1, . . . , hl, b1, . . . , bm, c1, . . . , cn are (equality-free) atoms. If l = 1, then r is nor-
mal. If B−(r) = ∅, then r is positive. If every variable in r occurs in B+(r), then r is
safe. If every rule r ∈ P is normal (resp., positive, safe), then P is normal (resp., positive,
safe).

We proceed to describe three embeddings of normal and three embeddings of disjunc-
tive logic programs into FO-AEL.

3.4.1 Embedding Normal Logic Programs

The first embedding we consider is an extension of the one which originally led Gel-
fond and Lifschitz to the definition of the stable model semantics [Gel87, GL88]. The
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second and third embedding are extensions of the embeddings described by Marek and
Truszczynski in [MT93]. The third was independently described by Lifschitz and Schwartz
in [LS93] and by Chen in [Che93]. The original motivation for the second and third em-
bedding was the possibility to directly embed programs with strong negation and disjunc-
tion. Furthermore, Marek and Truszczynski arrived at the second and third embedding
through embeddings of logic programs in reflexive autoepistemic logic [Sch92], which
is equivalent to McDermott’s nonmonotonic modal Sw5 [McD82], and the subsequent
embedding of reflexive autoepistemic logic into standard autoepistemic logic. Lifschitz
and Schwartz arrived at the third embedding through an embedding of logic programs
in Lifschitz’s bimodal nonmonotonic logic of Minimal Belief and Negation-as-Failure
(MBNF) [Lif94] and the subsequent embedding of MBNF in standard autoepistemic
logic. Finally, Chen also arrived at the third embedding through an embedding of logic
programs in MBNF, but he subsequently embedded MBNF in Levesque’s logic of only
knowing [Lev90], a subset of which corresponds with standard autoepistemic logic (with
respect to stable expansions).

Definition 4 Let r be a rule of the form (3.2) with l = 1. Then:

τHP(r) = (∀) ∧ibi ∧
∧
j¬Lcj ⊃ h;

τEB(r) = (∀) ∧i(bi ∧ Lbi) ∧
∧
j¬Lcj ⊃ h;

τEH (r) = (∀) ∧i(bi ∧ Lbi) ∧
∧
j¬Lcj ⊃ h ∧ Lh.

For a normal logic program P , we define:

τx(P ) = {τx(r) | r ∈ P} ∪ UNAΣP
, x ∈ {HP ,EB ,EH }.

In the above embeddings, “HP” stands for “H orn for Positive rules” (positive rules
are translated to objective Horn clauses); “EB” stands for “Epistemic rule Bodies” (the
body of a rule can only become true if it is known to be true); and “EH ” stands for
“Epistemic rule H eads” (if the body of a rule is true, the head is known to be true). For
all three embeddings, we assume Στx(P ) = ΣP (here and henceforth we use “x” as a meta-
variable to range over HP , EB , and EH ). Furthermore, by τ−x we denote the embedding
τx without the UNA axioms: given a normal logic program P , τ−x (P ) = τx(P )−UNAΣP

.
In the examples of embeddings in the remainder of the chapter we do not write the UNA
axioms explicitly.

A notable distinction between the embedding τHP on the one hand and the embeddings
τEB and τEH on the other is that the contrapositive of the rules in P is included in stable
expansions of τHP , but not in stable expansions of τEB and τEH :

Example 4 Consider P = {p ← q, not r}. The stable expansion of τHP(P ) = {q ∧
¬Lr ⊃ p} includes ¬p ⊃ ¬q ∨ Lr; the expansion of τEB(P ) = {q ∧ Lq ∧ ¬Lr ⊃ p}
includes ¬p ⊃ ¬Lq ∨ ¬q ∨ Lr, but not ¬p ⊃ ¬q ∨ Lr.

For the case of standard autoepistemic logic and ground logic programs, the following
correspondence holds:
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Proposition 3 ([GL88, MT93]) A Herbrand interpretation M is a stable model of a
ground normal logic program P iff there is a consistent stable expansion T of τ−x (P )
in standard autoepistemic logic such that M = T ∩ Lga.

Now consider the case of non-ground programs. The following example illustrates
the embeddings:

Example 5 Consider P = {q(a); p(x); r(x) ← not s(x), p(x)}, having a single stable
model M = {q(a), p(a), r(a)}. Likewise, each of the embeddings τHP(P ), τEB(P ), and
τEH (P ) has a single consistent stable expansion:

THP = {q(a), p(a), Lp(a),¬Ls(a), r(a),
∀x(p(x)),¬L∀x(Lp(x)), . . .},

TEB = {q(a), p(a), Lp(a),¬Ls(a), r(a),¬L∀x(Lp(x)), . . .},
TEH = {q(a), p(a), Lp(a),¬Ls(a), r(a), ∀x(Lp(x)) . . .}.

The stable expansions in Example 5 agree on objective ground atoms, but not on
arbitrary formulas. We now extend Proposition 3 to the non-ground case.

Lemma 5 Given a normal logic program P , a stable expansion T of τx(P ), and an ob-
jective ground atom α, we have that τx(P ) |=Toga α under the any- or all-name semantics
iff τx(P ) |=Toga α under the standard names assumption. Moreover, the same result holds
for τ−HP under the all-name semantics.

Proof 4 (⇒) By definition, τx(P ) |=Toga α under the any- or all-name semantics iff for
every interpretation w it holds that whenever w |=Toga τx(P ), w |=Toga α. If for every
interpretation w, whenever w |=Toga τx(P ), w |=Toga α, then it must hold that for every
interpretation w′ for which the standard names assumption applies, whenever w |=Toga

τx(P ), w |=Toga α, and thus (again, by definition) τx(P ) |=Toga α under the standard
names assumption. Therefore, if τx(P ) |=Toga α under the any- or all-name semantics,
then τx(P ) |=Toga α under the standard names assumption.

(⇐) Assume, on the contrary, that τx(P ) |=Toga α under the standard names assumption,
but τx(P ) 6|=Toga α under the any- or all-name semantics. This means that there is some
interpretation w = 〈U, I〉 such that w |=Toga τx(P ), but w 6|=Toga α.

By the fact that there is no equality in τx(P ), there is no occurrence of the equality
symbol in Toga. Furthermore, by the UNA axioms, every name in ΣP must be assigned
to a distinct individual in U . We construct the interpretation w′ = 〈U ′, I ′〉 as follows:
U ′ = N , tI

′
= t, for t ∈ N , and 〈t1, . . . , tn〉 ∈ pI′ if 〈k1, . . . , kn〉 ∈ pI and ki = tIi for

1 ≤ i ≤ n, with p an n-ary predicate symbol. Clearly, the standard names assumption
holds for w′, and w and w′ agree on objective ground atoms: w |= α iff w′ |= α for any
α ∈ Lga. We now proceed to show that w′ |=Toga τx(P ).

Clearly, 〈w′, Toga〉 satisfies the UNA axioms due to the fact that the standard names
assumption holds for w′ and the fact that Toga does not contain equality atoms. We first
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consider the embedding τEH . Consider a formula ∀ b1∧Lb1∧ . . .∧ bm∧Lbm∧¬Lbm+1∧
. . . ∧ ¬Lbn ⊃ h ∧ Lh ∈ τEH (P ). Since w |=Toga τEH (P ), (w,B) |=Toga b1 ∧ Lb1 ∧ . . . ∧
bm ∧ Lbm ∧ ¬Lbm+1 ∧ . . . ∧ ¬Lbn ⊃ h ∧ Lh for every variable assignment B of w.

Now, consider a variable assignment B′ of w′ and a corresponding variable assign-
ment B of w which assigns variables only to named individuals: xB = k iff xB

′
= t

and tI = k. Consider a variable substitution β which is associated with B; since all
names are interpreted as distinct individuals (by the UNA axioms), β is the only vari-
able substitution associated with B; therefore, the any- and all-name semantics coincide.
Furthermore, by construction of B, β is also associated with B′

If (w,B) |=Toga h ∧ Lh, then (w′, B′) |=Toga h ∧ Lh and if (w,B) 6|=Toga b1 ∧ Lb1 ∧
. . . ∧ bm ∧ Lbm, then (w′, B′) 6|=Toga b1 ∧ Lb1 ∧ . . . ∧ bm ∧ Lbm, by construction of w′

(assuring correspondence of unsatisfiability of objective atoms) and since β is the only
variable substitution associated with B and the only one associated with B′ (assuring
correspondence of unsatisfiability of modal atoms). Now, if (w,B) 6|=Toga ¬Lbm+1 ∧ . . .∧
¬Lbn, then it must be the case that b1β ∈ Toga, . . . , or bnβ ∈ Toga. Therefore, it must hold
that (w′, B′) 6|=Toga ¬Lbm+1 ∧ . . .∧¬Lbn. So, (w′, B′) |=Toga b1 ∧ Lb1 ∧ . . .∧ bm ∧ Lbm ∧
¬Lbm+1 ∧ . . . ∧ ¬Lbn ⊃ h.

Thus, we obtain w′ |=Toga τEH (P ). Since w and w′ agree on objective ground atoms,
w′ 6|=Toga α, and thus τEH (P ) 6|=Toga α under the standard names assumption, clearly
contradicting the assumption that τEH (P ) |=Toga α under the standard names assumption.
Therefore, τEH (P ) |=Toga α under the any- and full-name semantics.

The argument for the embeddings τEB and τHP is analogous: simply leave out the
positive occurrences of modal atoms in the antecedents, respectively consequents and
antecedents, in the argument above.

To see why the lemma holds for the embedding τ−HP under the all-name semantics, leave
out the arguments about the UNA axioms and consider a simple adaptation of the ar-
gument above: if (w,B) 6|=Toga ¬Lbm+1 ∧ . . . ∧ ¬Lbn, then for all associated variable
substitutions β, b1β ∈ T , . . . , or bnβ ∈ T . One of these variable substitutions is the one
associated with B′.

Lemma 6 Given a normal logic program P and a setA ⊆ Lga of objective ground atoms,
there exists a stable expansion T of τx(P ) under the any- or all-name semantics with
Toga = A iff there exists a stable expansion T ′ of τx(gr(P )) with T ′oga = A. Moreover,
the same result holds for τ−HP under the all-name semantics.

Proof 5 We first prove the lemma for the special case that the standard names assumption
applies. We then use Lemma 5 to extend this result to cases where the standard names
assumption does not apply.

Consider a belief set Γ ⊆ LL and an interpretation w such that the standard names
assumption applies to w. We claim that (*) w |=Γ τx(gr(P )) iff w |=Γ τx(P ). By the
standard names assumption, we have that w |=Γ τx(P ) iff for every φ ∈ τx(P ), w |=Γ
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φ iff for every variable assignment B, (w,B) |=Γ φ iff for the variable substitution β
associated with B, w |=Γ φβ. By the standard names assumption, we know that the
associated variable substitution β is unique and total. Clearly, by the definition of gr(),
τx(gr(P )) contains all (and only) the formulas of the form φβ with φ ∈ τx(P ) and β a
variable substitution associated with some variable assignment B for w; the claim (*)
follows.

(⇒) Let T be a stable expansion of τx(P ). By Lemma 5 and the above we have:

{φ ∈ Lga |τx(P ) |=Toga φ}={φ ∈ Lga |τx(gr(P )) |=Toga φ}.
Therefore (by Proposition 2),

T ′o = {φ ∈ L | τx(gr(P )) |=Toga φ}
is the kernel of a stable expansion T ′ of τx(gr(P )) and T ′ ∩ Lga = Tga.

(⇐) Let T be a stable expansion of τx(gr(P )). By Lemma 5 and the above we have:

{φ ∈ Lga |τx(gr(P )) |=Toga φ}={φ ∈ Lga |τx(P ) |=Toga φ}.
Therefore (by Proposition 2),

T ′o = {φ ∈ L | τx(P ) |=Toga φ}
is the kernel of a stable expansion T ′ of τx(P ) and T ′ ∩ Lga = Tga.

Theorem 7 A Herbrand interpretation M of a normal logic program P is a stable model
of P iff there is a consistent stable expansion T of τx(P ) under the any- or all-name
semantics such that M = T ∩ Lga. Moreover, the same result holds for τ−HP under the
all-name semantics.

Proof 6 (Sketch) By Lemma 6 we can reduce embeddability of non-ground logic pro-
grams to embeddability of ground logic programs. The embeddings of gr(P ) in first-order
autoepistemic logic are then trivially reduced to the respective embeddings of gr(P ) in
standard autoepistemic logic (Proposition 3).

Note that this result does not extend to τ−HP under the any-name semantics. Consider
P = {p(n1); r(n2); q ← not p(x)} such that ΣP has only two names, n1 and n2. P has
one stable model, M = {p(n1), r(n2), q}. τ−HP(P ) = {p(n1); r(n2);∀x(¬Lp(x) ⊃ q)}
has one stable expansion, T = {p(n1), r(n2), Lp(n1), Lr(n2), ¬Lp(n2), . . .}. T does
not include q. To see why this is the case, consider an interpretation w with only one
individual k. Lp(x) is trivially true under the any-name semantics, because there is some
name for k such that p(t) ∈ T (viz. t = n1). In the all-name semantics, this situation
does not occur, because for Lp(x) to be true, p(t) must be included in T for every name
(t = n1 and t = n2) for k. One can similarly verify that the result does not apply to the
embeddings τ−EB and τ−EH under the all-name semantics, by the positive modal atoms in
the antecedents.
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3.4.2 Embedding Disjunctive Logic Programs

The embeddings τHP and τEB cannot be straightforwardly extended to the case of dis-
junctive logic programs, even for the propositional case. Consider the program P =
{a | b ←}. P has two stable models: M1 = {a} and M2 = {b}. However, a
straightforward extension of τHP , τ∨HP (P ) = {a ∨ b}, has one stable expansion T =
{a∨b, L(a∨b),¬La,¬Lb, . . .}. In contrast, τEH can be straightforwardly extended because
of the modal atoms in the consequent of the implication: τ∨EH(P ) = {(a∧La)∨ (b∧Lb)}
has two stable expansions T1 = {a ∨ b, a, La,¬Lb, . . .} and T2 = {a ∨ b, b, Lb,¬La, . . .}.

The so-called positive introspection axioms (PIAs) [Prz91] remedy this situation for
τ∨HP and τ∨EB. Let PIAΣ be the set of axioms

α ⊃ Lα, for every objective ground atom α of Σ.

The PIA α ⊃ Lα ensures that every consistent stable expansion contains either α or ¬α.

It would have been possible to define the PIAs in a different way: (∀) φ ⊃ Lφ for
any objective atomic formula φ. This would, however, effectively close the domain of the
predicates in ΣP (see Example 3). We deem this aspect undesirable in combinations with
FO theories.

Definition 8 Let r be a rule of form (3.2). Then:

τ∨HP (r) = (∀) ∧ibi ∧
∧
j¬Lcj ⊃

∨
khk;

τ∨EB(r) = (∀) ∧i(bi ∧ Lbi) ∧
∧
j¬Lcj ⊃

∨
khk;

τ∨EH(r) = (∀) ∧i(bi ∧ Lbi) ∧
∧
j¬Lcj ⊃

∨
k(hk ∧ Lhk).

For a disjunctive logic program P , we define:

τ∨HP (P ) = {τ∨HP (r) | r ∈ P} ∪ PIAΣP
∪ UNAΣP

;

τ∨EB(P ) = {τ∨EB(r) | r ∈ P} ∪ PIAΣP
∪ UNAΣP

;

τ∨EH(P ) = {τ∨EH(r) | r ∈ P} ∪ UNAΣP
.

As before, by τ∨−x we denote the embedding τ∨x without the UNA axioms. We do not
write the UNA and PIA axioms explicitly in the examples below.

For the case of standard autoepistemic logic and ground disjunctive logic programs,
the correspondence between the stable expansions of the embeddings τ∨HP (P ) and τ∨EH(P )
and the stable models of P is known:

Proposition 4 ([Prz91, MT93]) A Herbrand interpretation M of a ground disjunctive
logic program P is a stable model of P iff there is a consistent stable expansion T of
τ∨−HP (P ) (resp., τ∨−EH (P )) in standard autoepistemic logic such that M = T ∩ Lga.

We generalize this result to the case of FO-AEL and non-ground programs, and addi-
tionally for τ∨EB, similar to the case of normal programs.
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Lemma 9 Given a disjunctive logic program P , a stable expansion T of τ∨x (P ), and
an objective ground atom α, we have that τ∨x (P ) |=Toga α under the any- or all-name
semantics iff τ∨x (P ) |=Toga α under the standard names assumption. Moreover, the same
result holds for τ∨HP

− under the all-name semantics.

Proof 7 (⇒) Trivial, since every interpretation for which the standard names assumption
applies is an interpretation; see also the⇒ direction in the proof of Lemma 5.

(⇐) The argument is as straightforward adaptation of the arguments in the⇐ direction
in the proof of Lemma 5: simply replace the consequence h ∧ Lh with the disjunction
(h1∧Lh1)∨ · · · ∨ (hl ∧Lhl). Furthermore, it is also easy to see, by the fact that w and w′

agree on ground atomic formulas, that if the PIA axioms are satisfied in 〈w, Toga〉, then
they are satisfied in 〈w′, Toga〉.
Lemma 10 Given a disjunctive logic program P and a set A ⊆ Lga of objective ground
atoms, there exists a stable expansion T of τ∨x (P ) under the any- or all-name seman-
tics with Toga = A iff there exists a stable expansion T ′ of τ∨x (gr(P )) with T ′oga = A.
Moreover, the same result holds for τ∨HP

− under the all-name semantics.

Proof 8 The proof of the lemma is obtained from the proof of Lemma 6 by replacing
occurrences of τx with τ∨x and replacing references to Lemma 5 with references to Lemma
9.

Theorem 11 A Herbrand interpretation M of a disjunctive logic program P is a stable
model of P iff there is a consistent stable expansion T of τ∨x (P ) under the any- or all-
name semantics such that M = T ∩Lga. Moreover, the same result holds for τ∨HP

− under
the all-name semantics.

Proof 9 Reduction of embeddability of ground logic programs follows from Lemma 10.
Embeddability of gr(P ) using τ∨HP and τ∨EH follows from Proposition 4.

Embeddability of gr(P ) using τ∨EB then follows from the embeddability using τ∨HP
and the PIA axioms: if the objective part of the antecedent of any formula in τ∨EB(gr(P ))
is satisfied in a model of τ∨EB(gr(P )), then the positive modal part of the antecedent is
necessarily included in the stable expansion.

A notable distinction between the embeddings τ∨HP and τ∨EB on the one hand and τ∨EH
on the other is the presence and absence of the PIA axioms, respectively:

Example 6 Consider P = {p | q ←}, τ∨HP (P ) = {p ∨ q} ∪ PIAΣP
, and τ∨EH(P ) =

{(p∧ Lp)∨ (q ∧ Lq)}. The stable expansions of τ∨HP (P ) are THP1 = {p,¬q, Lp,¬Lq, . . .}
and THP2 = {q,¬p, Lp,¬Lp, . . .}; the expansions of τ∨EH(P ) are TEH1 = {p, Lp,¬Lq, . . .}
and TEH2 = {q, Lp,¬Lp, . . .}. The expansions TEH1 and TEH2 include neither ¬q nor ¬p.

Note that the embedding τHP cannot be straightforwardly extended to logic programs
with strong (“classical”) negation [GL91b], even for the propositional case. Take, for
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example, the logic program P = {p ←∼ p}, with ∼ denoting strong negation. P has
one stable model M = ∅. The straightforward extension of the embedding τHP yields
{¬p ⊃ p} which has one stable expansion which includes p. It was shown in [MT93]
that for the propositional case, the embeddings τEB and τEH can be easily extended to
the case of logic programs with strong negation: consider a rule of the form (3.1) such
that h1, . . . , hl, b1, . . . , bm, c1, . . . , cn are either atoms or strongly negated atoms, and an
extension of the embeddings τEB , τEH such that strong negation∼ is translated to classical
negation ¬, then Proposition 3 straightforwardly extends to these extended versions of
τEB , τEH [MT93]. These results can be straightforwardly extended to the non-ground
case. Embedding of logic programs with strong negation using τHP could be done by
rewriting P to a logic program without strong negation (see [GL91b] for such a rewriting).

3.5 Relationships between the Embeddings

In this section we explore correspondences between the embeddings presented in the pre-
vious section. Recall that we consider the any-name semantics, because of its more intu-
itive behavior (cf. Example 3).

In the following we compare (i) the stable expansions of such combinations and (ii) the
sets of autoepistemic consequences of the individual embeddings. To this end, we intro-
duce the following notation:

Let A1 and A2 be FO-AEL theories. We write A1 ≡ A2 iff A1 and A2 have the same
stable expansions. Moreover, for γ ∈ {g, ga}, we write A1 ≡oγ A2 iff

{T ∩ Lγ | T is a stable expansion of A1} =

{T ′ ∩ Lγ | T ′ is a stable expansion of A2}.

Note that, by definition, A1 ≡ A2 implies A1 ≡og A2 and A1 ≡og A2 implies A1 ≡oga A2.

In our analysis we furthermore use the following classes of programs:

• Prg , Safe, and Grnd denote the classes of arbitrary, safe, and ground logic pro-
grams, respectively.

Observe the following inclusions:

Grnd // Safe // Prg

Our results on relationships between sets of consequences of the embeddings are sum-
marized in Theorem 12 on page 35.
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3.5.1 Relationships between Stable Expansions of Embeddings

In this section, we present our results on the relations between stable expansions of em-
beddings τx(P ), where P is a logic program.

From Theorems 7 and 11 we know that all six embeddings agree on ground atomic
formulas in the stable expansions of the embedding of a normal logic program P :

Corollary 1 If P is a normal logic program, then τHP(P ) ≡oga τEB(P ) ≡oga τEH (P ) ≡oga
τ∨HP (P ) ≡oga τ∨EB(P ) ≡oga τ∨EH(P ). If P is a disjunctive logic program, then τ∨HP (P ) ≡oga
τ∨EB(P ) ≡oga τ∨EH(P ).

This result cannot be immediately extended to the case of objective ground formulas.
Consider the logic program P = {a← b}; τHP(P ) = {b ⊃ a} and τEB(P ) = {b ∧ Lb ⊃
a}. The single stable expansion of τHP(P ) includes ¬b ∨ a, but the expansion of τEB(P )
does not include ¬b ∨ a. This is because ¬b ⊃ ¬Lb is included in every stable expansion,
but the converse, ¬Lb ⊃ ¬b, is not. The situation changes for the embeddings τ∨HP and
τ∨EB, because of the PIA axioms.

Proposition 5 Given a normal (resp., disjunctive) logic program P , then τEB(P ) ≡og
τEH (P ) (resp., τ∨HP (P ) ≡og τ∨EB(P )).

Proof 10 For inconsistent expansions, the Proposition trivially holds.

Let Toga be the set of ground objective atoms in a stable expansion of τEB(P ). By
Corollary 1, Toga is also the set of objective ground atoms of a stable expansion of τEH (P )
(cq. τ∨HP (P ), τ∨EB(P )).

Define T xog as T xog = {φ is objective and ground | τx(P ) |=Toga φ}. By Proposition 2,
T xog, with x ∈ {EB,EH,HP∨, EB∨}, is the set of ground formulas in a stable expansion
of τEB(P ), τEH (P ), τ∨HP (P ), or τ∨EB(P ).

As for the first part of the proposition concerning normal embeddings τEB(P ) and
τEH (P ), we will show that, given Toga , TEBog = TEHog . We claim that all objective ground
formulas in either of the expansions are first-order consequences of the ground atomic
formulas in the expansions:

T xog = {φ ∈ Lg | Toga |= φ}. (3.3)

Since TEBoga = TEHoga (by Corollary 1), TEBog = TEHog follows by this claim.

Every entailed objective ground formula can be written as a set of ground clauses of
the form c = l1∨ . . .∨ lk, where each literal li is either an atom pi or a negated atom ¬pi.
Clearly, Toga |= c if and only if there is an li in c such that li ∈ Toga. In order to prove
our claim, we observe first that obviously T xog ⊇ {φ ∈ Lg | Toga |= φ}. For the converse
direction, we proceed indirectly: assume that τx(P ) |=Toga c (and thus c ∈ Tog) and there
is no li in c such that li ∈ Toga; therefore, for each li in c, τx(P ) |=Toga ¬Lli. Consider any
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interpretation w such that w |=Toga τx(P ); then, w |=Toga c. Let w′ be the interpretation
obtained from w by flipping the truth value of each atom pi contained in a literal li in c
such that w satisfies li; clearly, w′ 6|=Toga c. We now show that w′ |=Toga τx(P ).

If (the non-ground version of) pi occurs in the antecedent of an axiom originating
from a rule in P , then also Lpi is there, but is false by assumption, so switching pi does
not change satisfaction of the axiom. If (the non-ground version of) pi occurs in the head
of an axiom originating from a rule, then (at least one of the modal atoms) in the body
must be false in 〈w, Toga〉; otherwise pi would have been included in Toga. Therefore,
w′ |=Toga τx(P ) and thus τx(P ) 6|=Toga c, which is a contradiction. This establishes (3.3).

As for ground equivalence of the disjunctive embeddings τ∨HP (P ) and τ∨EB(P ), we exploit
the properties of the PIA axioms: for any objective ground atom α, either α or ¬α is
included in the stable expansion T x (x ∈ {HP∨, EB∨}); thus, T xog = {φ ∈ Lg | Toga |=
φ} (by induction over the formulas). THP

∨
og = TEB

∨
og follows immediately.

For non-ground formulas we obtain the following result:

Proposition 6 Given a safe normal logic program P , τEB(P ) ≡ τEH (P ).

Proof 11 Let Toga be the set of objectives ground atoms of a stable expansion T of either
τEB(P ) or τEH (P ); by Corollary 1 we know that the stable expansions of τEB(P ) and
τEH (P ) correspond with respect to objective ground atomic formulas.

We show below (1) that if P is a safe program we can, given any interpretation w,
construct an interpretation w′ with no unnamed individuals such that w |=Toga τx(P ) iff
w′ |=Toga τx(P ) (x ∈ {EB,EH}). It follows that, given a formula φ, τx(P ) |=Toga φ iff
for every interpretation w with no unnamed individuals it holds that whenever w |=Toga

τx(P ), w |=Toga φ.

Clearly, given an interpretation w, if w |=Toga τEH (P ), then w |=Toga τEB(P ). There-
fore, for any formula φ must hold that whenever τEB(P ) |=Toga φ, it must be the case that
τEH (P ) |=Toga φ. To show the converse direction, we proceed by contradiction. Suppose
that τEH (P ) |=Toga φ, but τEB(P ) 6|=Toga φ. Consider an interpretation with no unnamed
individuals w such that w |=Toga τEB(P ), but w 6|=Toga φ. By (1), there is such an inter-
pretation. We proceed to show that w |=Toga τEH (P ), contradicting the assumption that
τEH (P ) |=Toga φ.

Suppose, on the contrary, that there is some formula B ⊃ h ∧ Lh ∈ τEH (P ) such
that w 6|=Toga B ⊃ h ∧ Lh. Since B ⊃ h ∈ τEB(P ), it must be the case that w |=Toga B
and w 6|=Toga Lh, and thus h /∈ Toga. However, since w |=Toga B, it must be the case
that for B = b1 ∧ Lb1 ∧ · · · ∧ bm ∧ Lbm ∧ ¬Lc1 ∧ · · · ∧ ¬Lcn, b1, . . . , bm ∈ Toga and
c1, . . . , cn /∈ Toga. Now, since T is a stable expansion and B ⊃ h ∈ τEB(P ), it must be
the case that h ∈ Toga. Therefore, w |=Toga B ⊃ h ∧ Lh. By contradiction we obtain that
w |=Toga τEH (P ).

(1) Given an interpretation w = 〈U, ·I〉, we construct w′ = 〈U ′, ·I′〉 as follows: U ′ = {k |
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k ∈ U and k is named}; for every predicate symbol p : pI
′

= {t | t ∈ pI and t does not
contain an unnamed individual}; and, for every n-ary function symbol f and every n-ary
tuple t of U ′, if f I(t) = k and k is named, then f I

′
= k.

Consider τEB(P ). Now, τEB(P ) contains two kinds of formulas: UNA axioms and
axioms of the form (∀)∧(bi ∧ Lbi) ∧

∧¬Lcj ⊃ h. UNA axioms are obviously true in
〈w′, Toga〉, since they do not involve variables. Consider the open formula

∧
(bi ∧ Lbi) ∧∧¬Lcj ⊃ h and the variable assignment B for w. Since P is a safe program, every

variable in h or in some cj occurs in some bi. Therefore, if B assigns any variable in the
formula to an unnamed individual, the formula is trivially true in 〈w, Toga〉 with respect
to B. If B assigns all variables in the formula to named individuals, then the formula
must be true in 〈w, Toga〉 with respect to B iff the formula is true in 〈w′, Toga〉 with respect
to B, by construction of w′. This argument is straightforwardly extended to formulas of
τEB(P ). The case of τEH (P ) is analogous. Thus, we have established that w |=Toga τx(P )
iff w′ |=Toga τx(P ).

Note that this result cannot be extended to the embeddings τHP and τ∨HP . Consider
the logic program P = {q(x) ← p(x)}. τHP(P ) = {∀x(q(x) ⊃ p(x))} has one stable
expansion T such that {∀x(p(x) ⊃ q(x))} ∈ T . τEB(P ) = {∀x(p(x) ∧ Lp(x) ⊃ q(x))}
has one stable expansion such that {∀x(p(x) ⊃ q(x))} /∈ T . This difference is caused by
the fact that Lp(x) will be false in case an unnamed individual is assigned to x by some
variable assignment B for some model w. Similar for τ∨HP ; the PIAs do not help, since
they are only concerned with ground atoms and thus do not apply to unnamed individuals.

To see that the embeddings τEB and τEH differ when considering arbitrary logic pro-
grams, consider P = {p(x); q(x) ← p(x)}. The embedding τEH (P ) = {∀x(p(x) ∧
Lp(x)),∀x(p(x) ∧ Lp(x) ⊃ q(x) ∧ Lq(x))} has one consistent stable expansion which
includes ∀x(q(x)), while τEB(P ) = {∀x(p(x)),∀x(p(x) ∧ Lp(x) ⊃ q(x))} has one
consistent stable expansion which does not include ∀x(q(x)), because ∀x(Lp(x)) is not
necessarily true when ∀x(p(x)) is true; in other words, the converse Barcan formula
(L∀x(φ(x)) ⊃ ∀x(Lφ(x))) is not universally valid, which is a property of FO-AEL under
the any-name semantics [Kon91].

Proposition 7 Given a ground disjunctive logic program P , τ∨HP (P ) ≡ τ∨EB(P ).

Proof 12 By the PIA axioms bi ⊃ Lbi we can eliminate the modal atoms of the form Lbi
from the antecedents of the formulas in τ∨EB(P ) originating from rules in P . The remain-
ing theory is logically equivalent to τ∨HP (P ) and thus the stable expansions correspond.

Note that this result cannot be extended to the embedding τ∨EH ; this embedding does
not include the PIA axioms, and thus the argument used in the proof of the proposition
does not apply.
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Figure 3.1: Relationships between sets of consequences; C(∨)
x stands for Conso(τ

(∨)
x (P )),

→ stands for ⊆, and stands for ⊆ in case P is safe.

3.5.2 Relationships between Consequences of Embeddings

In order to investigate the relationships between the embeddings with respect to autoepis-
temic consequences, we first compare the embeddings with respect to their autoepistemic
models. Recall that an autoepistemic model 〈w, T 〉 consists of a first-order interpretation
w and a belief set T ⊆ LL. We now present the results on the relations between the
FO-AEL models of the embeddings.

Proposition 8 Given a normal logic program P and a model 〈w, T 〉, if w |=T τEH (P )
then w |=T τEB(P ) and if w |=T τHP(P ) then w |=T τEB(P ).

Proof 13 (Sketch) Every axiom in τEB(P ) is subsumed by an axiom in τEH (P ); the first
implication follows immediately.

Consider a model 〈w, T 〉, a variable assignment B such that (w,B) |=T τHP(P ), and
an axiom in τHP(P ) originating from a rule in P such that (w,B) |=T

∧
bi∧

∧¬Lcj . Ob-
viously, (w,B) |=T h. Consider the corresponding axiom in τEB(P ). Now, if (w,B) 6|=T∧

(bi ∧ Lbi) ∧
∧¬Lcj , then the axiom is trivially satisfied. Also, if (w,B) |=T

∧
(bi ∧

Lbi) ∧
∧¬Lcj , the axiom is satisfied, since (w,B) |=T h.

Proposition 9 Given a disjunctive logic program P , a first-order interpretation w and a
belief set T , if w |=T τ

∨
HP (P ) then w |=T τ

∨
EB(P ).

Proof 14 Follows from the proof of Proposition 8.

Proposition 10 Given a safe disjunctive logic program P , a first-order interpretation w,
and a belief set T , if w |=T τ

∨
EB(P ) then w |=T τ

∨
EH(P ).

Proof 15 As in the proof of Proposition 6, we can restrict our attention to the case of
named individuals. Now, because of the PIA axioms, we have that, for any interpretation
〈w, T 〉 such that w |=T τ

∨
EB(P ), variable assignment B, associated variable substitution

β, and objective atomic formula α, whenever (w,B) |=T α, w |=T Lαβ. Therefore,
w |=T τ

∨
EH(P ).

We now consider the relative behavior of the embeddings with respect to autoepis-
temic consequences.
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Theorem 12 Let P be a (safe) normal (resp., disjunctive) logic program, and let τ (∨)
x and

τ
(∨)
y be embedding functions, for x, y ∈ {HP ,EB ,EH }. Then, the relationsConso(τ

(∨)
x (P )) ⊆

Conso(τ
(∨)
y (P )) hold as depicted in Figure 3.1 (with the respective provisos).

Proof 16 Recall that a formula φ is an autoepistemic consequence of a base set A if it is
included in all stable expansions. Recall also that the stable expansions of all embeddings
correspond with respect to objective ground atoms, by Corollary 1. From this and the fact
that, by Proposition 2, every stable expansion T of an embedding τ (∨)

x (P ) is determined by
Toga and τ (∨)

x (P ), we can conclude that, if every model 〈w, Toga〉 of an embedding τ (∨)
x (P )

is also a model of another embedding τ (∨)
y (P ), then Conso(τ

(∨)
y (P )) ⊆ Conso(τ

(∨)
x (P )).

In the remainder, C(∨)
x is short for Conso(τ

(∨)
x (P )).

• CEH ⊆ C∨EH and C∨EH ⊆ CEH follows from the fact that, for P is normal, τEH (P )
and τ∨EH(P ) coincide.

• CEH ⊆ CEB for P is safe follows from the fact that the stable expansions of τEH

and τEB coincide, by Proposition 6.

• CEB ⊆ CEH and CEB ⊆ CHP follow from Proposition 8.

• CEB ⊆ C∨EB and CHP ⊆ C∨HP follow from the definition of the embeddings.

• C∨EB ⊆ C∨HP follows from Proposition 9.

• Finally, C∨EH ⊆ C∨EB for safe programs follows from Proposition 10.

Notice that by the Theorems 7 and 11, all embeddings obviously agree on objective
ground atomic consequences. Notice also that, if the stable expansions of two embed-
dings or combinations correspond with respect to a certain class of formulas, then the
embeddings or combinations will also agree on autoepistemic consequences with respect
to this class of formulas.

3.6 Combinations with First-Order Theories

In this section we explore correspondences between the embeddings presented in combi-
nations with FO theories. In our simple setting, we define the combination of a program
P and an FO theory Φ as

ι(∨)
x (Φ, P ) = Φ ∪ τ (∨)

x (P ) ⊆ LL,
2

where ΣLL
is the union of the signatures ΣΦ and ΣP . Recall that we consider the any-name

semantics, because of its more intuitive behavior (cf. Example 3).
2One could imagine other, more involved, embeddings of the classical theory. Such embeddings are a

topic for future investigations.
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In our analysis we furthermore use the following classes of programs and theories:

• Prg , Safe, and Grnd denote the classes of arbitrary, safe, and ground logic pro-
grams, respectively; and

• T hr , Uni , gHorn, Horn, Prop, and {∅} denote the classes of arbitrary (T hr =
2L), universal, generalized Horn,3 Horn, propositional, and empty FO theories
(Uni , gHorn,Horn,Prop, {∅} ⊆ 2L).

Observe the following inclusions:

Prop // Uni
))TTTTTTT

Grnd // Safe // Prg ; {∅}
55kkkkkk

))SSSSSS T hr

Horn //

::tttttttt

gHorn

55jjjjjj

Our results on the relationships between stable expansions are summarized in Theo-
rem 13 on page 39.

3.6.1 Relationships between Stable Expansions of Combinations

In this section, we present our results on the relations between stable expansions of combi-
nations ιx(Φ, P ), where P is a logic program and Φ is a first-order theory from a particular
class of theories.

Proposition 11 Given a safe normal logic program P ∈ Safe and a first-order theory
Φ ⊆ L, ιEB(Φ, P ) ≡ ιEH (Φ, P ).

Proof 17 We show that, given a first-order interpretation w and a stable expansion T of
ιx(Φ, P ), with x ∈ {EB,EH}, 〈w, T 〉 is a model of ιEB(Φ, P ) iff 〈w, T 〉 is a model of
ιEH (Φ, P ).

(⇐) The axioms in ιEB(Φ, P ) logically follow from (are entailed by) the axioms in
ιEH (Φ, P ), i.e. every model of ιEH (Φ, P ) is a model of ιEB(Φ, P ); recall that the only
difference between ιEB(Φ, P ) and ιEH (Φ, P ) is the fact that rules in P are embedded as
formulas of the form B ⊃ h in τEB(P ), whereas they are embedded as formulas of the
form B ⊃ h ∧ Lh.

(⇒) Recall that axioms in ιEH (Φ, P ) which originate from rules in P have the follow-
ing form:

(∀) ∧(bi ∧ Lbi) ∧
∧¬Lcj ⊃ (h ∧ Lh). (3.4)

3Generalized Horn formulas are Horn formulas which additionally allow existentially quantified vari-
ables in the consequent of the material implication.
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• Let T be a stable expansion of ιEH (Φ, P ). Consider a variable assignment B of w,
and an associated variable substitution β. Consider an axiom of the form (3.4) such that
(w,B) |=T

∧
(bi∧Lbi)∧

∧¬Lcj . Because the positive modal atoms in
∧

(bi∧Lbi)∧
∧¬Lcj

are true in 〈w, T 〉 with respect to B, and all variable occurrences in these modal atoms
are free, all variables in (3.4) are assigned to named individuals by B. Therefore, biβ,
cjβ, and hβ are closed. It follows that biβ ∈ T, cjβ /∈ T , and thus, since (3.4) is in
ιEH (Φ, P ), hβ ∈ T .

• The case of T being a stable expansion of ιEB(Φ, P ) is similar.

To see the difference between ιEB(Φ, P ) and ιEH (Φ, P ) for arbitrary logic programs,
consider a language with two unary predicate symbols p, q and one constant symbol a.
Consider the FO theory Φ = {¬p(a),∃x(p(x))} and the logic program P = {q(x) ←}.
Then, ιEB(Φ, P ) has one consistent stable expansion, while ιEH (Φ, P ) has only one stable
expansion which is the inconsistent expansion, because τEH (P ) = {∀x(q(x) ∧ Lq(x))},
which means that every individual must be named and must be in qw for every model
〈w, T 〉 of ιEH (Φ, P ). However, Φ requires that there is an individual k ∈ pw such that
k 6= aw, and because there is at most one named individual, represented by a, there must
be an unnamed individual in every model w of Φ. Summarizing, τEH (P ) requires every
individual in every model to be named and Φ requires at least one unnamed individual in
every model; this is a contradiction.

Proposition 12 Given a normal logic program P and a first-order theory Φ ∈ Uni ,
ιEB(Φ, P ) ≡og ιEH (Φ, P ).

Proof 18 If Φ is universal, we can disregard models which have unnamed individuals for
determining ground entailment. The equivalence ιEB(Φ, P ) ≡og ιEH(Φ, P ) now follows
directly from the proof Proposition 11, with the difference that we can restrict ourselves
to the case that B assigns variables in h only to named individuals, not because of the
modal atoms in the antecedent (the rules are not necessarily safe), but because we are
only interested in ground entailment.

Proposition 13 Given a normal logic program P and a first-order theory Φ ∈ Horn,
then ιHP(Φ, P ) ≡oga ιEB(Φ, P ).

Proof 19 If Φ is an equality-free Horn theory, there is no syntactical difference between
the formulas in Φ and the formulas in τHP which originate from positive rules. It is
well known that unnamed individuals do not play a role in inference of ground atomic
formulas from Horn theories. The lack of UNA axioms for the names in ΣΦ does not
affect the truth of positive modal atoms in the antecedent of the formulas in τEB (by the
any-name semantics). The correspondence follows straightforwardly from Corollary 1.

To see why the correspondence holds for Horn formulas with equality, consider a
formula ∀(t1 = t2) ∈ Φ, with t1 and t2 terms. Obviously, all substitution instances of the
formula are first-order entailed by ιx(Φ, P ); and, since the formula is universal, we do
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not need to take unnamed individuals into account. Imagine that a = b, with a, b ground
terms, is first-order entailed by ιx(Φ, P ), then if p(a) is entailed, obviously p(b) is also
entailed. Thus, if p(a) and a = b are included in a stable expansion, then so is p(b).
ιHP (Φ, P ) ≡oga ιEB(Φ, P ) for Φ is Horn with equality follows.

It turns out that ιHP(Φ, P ) and ιEB(Φ, P ) already differ with respect to objective
ground atoms in case Φ ∈ Prop. Consider the theory Φ = {p ∨ q} and the logic program
P = {r ← p; r ← q}. ιHP(Φ, P ) has one stable expansion which includes r; ιEB(Φ, P )
also has one stable expansion, but it does not include r.

Proposition 14 Given a ground normal logic program P and a first-order theory Φ ∈
gHorn, then ιHP(Φ, P ) ≡oga ιEB(Φ, P ).

Proof 20 Let Φ′ be a Skolemization of Φ. Φ′ is Horn and thus, by Proposition 13,
ιHP (Φ′, P ) ≡oga ιEB(Φ′, P ). It remains to be shown that if T is a stable expansion
of ιx(Φ, P ) ⊆ LL, then there exists a stable expansion T ′ of ιx(Φ′, P ) ⊆ L′L such that
T ∩ Lga = T ′ ∩ Lga.

We now transform ιx(Φ, P ) to a first-order theory J with respect to Toga in the follow-
ing way: we treat each combination of the modal symbol L and a predicate symbol p as
a new predicate Lp; we add the atom Lα to J if α ∈ Toga, and ¬Lα otherwise, for each
α ∈ Lga. Intuitively, J “fixes” the value of Lα according to T . We now have that for any
objective ground atom α ∈ Lga, ιx(Φ, P ) |=T α iff J |= α.

We obtain J ′ from ιx(Φ
′, P ) in the same way, and have that ιx(Φ′, P ) |=T α iff J ′ |= α.

J ′ is a Skolemized version of J , and thus equi-satisfiable. This remains true if we add
a negated objective ground atom ¬α, with α ∈ Lga, to J or J ′. We can conclude that

ιx(Φ, P ) |=Toga α iff ιx(Φ′, P ) |=Toga α.

Furthermore, consistency is preserved, and thus we can extend Toga to a set of ground
atoms T ′oga over L′L by including ground atoms with Skolem terms such that T ′oga = T ′ ∩
L′ga with T ′ the stable expansion of ιx(Φ′, P ).

Proposition 15 Given a ground disjunctive logic program P ∈ Grnd and a first-order
theory Φ ⊆ L, ι∨HP (Φ, P ) ≡ ι∨EB(Φ, P ).

Proof 21 Follows from the proof of Proposition 7.

Proposition 16 Given a disjunctive logic program P and a first-order theory Φ ∈ Prop,
then ι∨HP (Φ, P ) ≡og ι∨EB(Φ, P ).

Proof 22 Follows from the proof of Proposition 5 and the fact that there is a PIA for each
propositional symbol which occurs in any formula in τ∨HP (P ) or τ∨EB(P ).
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Φ\P Prg Safe Grnd

T hr ιEH ≡ ι∨EH ιEB ≡ ιEH ι∨HP ≡ ι∨EB
Uni ιEB ≡og ιEH

gHorn ιHP ≡oga ιEB
Horn ιHP ≡oga ιEB
Prop ι∨HP ≡og ι∨EB

{∅}
ιHP ≡oga ιEB ≡oga
ιEH ≡oga ι∨HP ≡oga
ι∨EB ≡oga ι∨EH

Table 3.1: Correspondence between expansions of combinations; ι
(∨)
x is short for

ι
(∨)
x (Φ, P ).

To show that the correspondence between ι∨HP (Φ, P ) and ι∨EB(Φ, P ) does not hold for
arbitrary Φ ∈ L, consider the FO theory Φ = {∀x(p(x)), (∀x(q(x)) ⊃ r)} and the logic
program P = {q(x) ← p(x)}. ι∨HP (Φ, P ) has one stable expansion which includes r;
ι∨EB(Φ, P ) also has one stable expansion, but it does not include r.

The following Theorem summarizes our results on the relationships between expansions.

Theorem 13 Let P be a normal (resp., disjunctive) logic program and Φ be a first-order
theory. Then, the relations depicted in Table 3.1 (with the respective provisos) hold, pro-
viding P and Φ belong to the classes listed there.

Proof 23 Φ ∈ T hr , P ∈ Prg : ιEH(Φ, P ) ≡ ι∨EH(Φ, P ), by the fact that the embeddings
τEH and τ∨EH are equivalent for normal programs.

Φ ∈ Uni , P ∈ Prg : ιEB(Φ, P ) ≡og ιEH(Φ, P ), by Proposition 12.

Φ ∈ Horn, P ∈ Prg : ιHP (Φ, P ) ≡oga ιEB(Φ, P ), by Proposition 13.

Φ ∈ Prop, P ∈ Prg : ι∨HP (Φ, P ) ≡og ι∨EB(Φ, P ), by Proposition 16.

Φ = ∅, P ∈ Prg : ιHP (Φ, P ) ≡oga ιEB(Φ, P ) ≡oga ιEH(Φ, P ) ≡oga ι∨HP (Φ, P ) ≡oga
ι∨EB(Φ, P ) ≡oga ι∨EH(Φ, P ), by Corollary 1.

Φ ∈ T hr , P ∈ Safe : ιEB(Φ, P ) ≡ ιEH(Φ, P ), by Proposition 11.

Φ ∈ T hr , P ∈ Grnd : ι∨HP (Φ, P ) ≡ ι∨EB(Φ, P ), by Proposition 15.

Φ ∈ gHorn, P ∈ Grnd : ιHP (Φ, P ) ≡oga ιEB(Φ, P ), by Proposition 14.

In case the standard names assumption applies, we additionally obtain the following
result.
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Proposition 17 Given a normal logic program P and an FO theory Φ, if the standard
names assumption applies, then ιEB(Φ, P ) ≡ ιEH(Φ, P ).

Proof 24 Follows from the proof of Proposition 6.

Note that the differences between the embeddings, shown in the preceding subsections,
do not depend on the use of negation in the program. Generally speaking, the differences
originate from the positive use of the modal operator in the antecedent and the consequent,
and the use of the PIA axioms. We illustrate the use of the results with an example.

Example 7 Consider the logic program P = {q(a); p(x); r(x) ← not s(x), p(x)} from
Example 5. P is neither safe nor ground; to determine correspondence between embed-
dings, we need to use the first column of Table 3.1. Since P is normal, all equations in this
column are applicable. We have that τEB(P ) ≡og τEH (P ) and τ∨HP (P ) ≡og τ∨EB(P ). Let
Φ be a Horn theory, then ιHP(Φ, P ) ≡oga ιEH (Φ, P ) ≡oga ιEB(Φ, P ) and ιEH (Φ, P ) ≡
ι∨EH(Φ, P ).

Additionally, since autoepistemic consequence is defined through the intersection of
all stable expansions, we can conclude that τEB(P ) and τEH (P ), and also τ∨HP (P ) and
τ∨EB(P ), agree on objective ground autoepistemic consequence and that ιHP(Φ, P ), ιEH (Φ, P ),
and ιEB(Φ, P ) agree on objective ground atomic autoepistemic consequence.

Most of the relations given in Figure 3.1 do not extend to combinations with FO
theories. Consider, e.g., P = {r ← not p, not q} and Φ = {p ∨ q}. Then, τHP(P ) =
{¬Lp ∧ ¬Lq ⊃ r} and τ∨HP (P ) = {¬Lp ∧ ¬Lq ⊃ r} ∪ PIAΣP

both have a single stable
expansion; the stable expansions of τHP(P ) and τHP(P ) both contain ¬Lp, ¬Lq and r.
The combination τHP(P ) ∪ Φ has one stable expansion which includes ¬Lp, ¬Lq, and r;
τ∨HP (P ) ∪ Φ has two stable expansions {p, Lp,¬Lq, . . .} and {q, Lq,¬Lp, . . .}, neither
of which includes r. Thus, r is an autoepistemic consequence of ιHP(Φ, P ), but not of
ι∨HP (Φ, P ). Therefore, Conso(ιHP(Φ, P )) 6⊆ Conso(ι

∨
HP (Φ, P )).

Using the results obtained in this section, we can make a number of observations about
the embeddings:

(1) The stable expansions of embeddings with and embeddings without the PIAs generally
tend to differ. However, we can note that the former are generally stronger in terms of the
number of objective autoepistemic consequences (cf. Figure 3.1 and Example 6).

(2) The embeddings τHP and τ∨HP are generally the strongest in terms of consequences
(see Figure 3.1), when comparing to other and embeddings without and with PIAs, re-
spectively. They allow to derive the contrapositive of rules (cf. Example 4) and the bodies
of rules are applicable to unnamed individuals, whereas the antecedents of the axioms in
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the other embeddings are only applicable to named individuals, because of the positive
modal atoms in the bodies.

(3) For unsafe programs, the embeddings τEH and τ∨EH are generally not comparable with
the others; embeddings of unsafe rules may result in axioms of form ∀xLp(x) (cf. Exam-
ple 5), which require all individuals to be named.

(4) In case the programs are safe, or one assumes that all individuals are named, τEB and
τEH coincide.

Special care needs to be taken if one selects an embedding which includes the PIA
axioms (τ∨HP and τ∨EB), since they ensure that either α or ¬α (or both for the inconsistent
expansion) is included in every stable expansion, for every ground atom of ΣP . Note that
the PIA axioms have no effect when considering individuals which do not correspond to
ground terms in ΣP .

We conclude this section with an example which demonstrates possibly unexpected
or undesirable effects of the UNA axioms in their interaction with an FO theory.

Example 8 Consider P = {p(a); p(b)} and Φ = {a 6= b ⊃ r}. Then, r is included in
any stable expansion of Φ ∪ τx(P ), for any τx, in view of the UNA axioms.

Special care needs to be taken if one selects an embedding which includes the PIA
axioms (τ∨HP and τ∨EB), since they ensure that either α or ¬α (or both for the inconsistent
expansion) is included in every stable expansion, for every ground atom of ΣP . Note that
the PIA axioms have no effect when considering individuals which do not correspond to
ground terms in ΣP .

3.7 Related and Future Work

In this chapter, we have studied the combination of logic programs and ontologies (FO
theories) using embeddings in a unifying formalism (FO-AEL). One could imagine, in
contrast, extensions of semantics for logic programs or ontologies to incorporate (parts of)
the other formalism. One such extension of logic programming semantics is that of open
domains [GP93, VBDDS97, HVNV]. Such extended semantics can be used to accommo-
date incomplete knowledge, an important aspect of ontology languages. Nonmonotonic
extensions of description logics (an FO-based formalism suitable for ontologies) have
been presented in the literature [BH95, DNR02, BLW06]. Such approaches might be
extended to accommodate logic programs.

We have investigated basic correspondences between different embeddings of non-
ground programs in FO-AEL, and simple combinations with FO theories. Choosing dif-
ferent embeddings for logic programs, but also possibly different embeddings for first-
order theories, will give rise to different properties of such combinations [BEPT06]. In
future work, we will investigate these properties, as well as the relationship with exist-
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ing approaches to combine logic programs and classical theories [HPSBT05, ELST04b,
Ros06b].

So far, we have only considered equality-free logic programs. We expect that equality
in rule bodies will not pose a problem, since still only the trivial equalities are derivable.
Allowing equality in rule heads is a topic for further research.

We expect that the proposed combinations of rules and ontologies based on FO-AEL
will give rise to the definition of novel decidable fragments and for sound (but possibly
incomplete) algorithms for specific reasoning tasks for such combinations. Additionally,
we will consider other nonmonotonic logics (e.g., default logic and circumscription) as
formalisms for combining logic programs and classical knowledge bases.
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Chapter 4

Logical Foundations of (e)RDF(S):
Complexity and Reasoning

4.1 Introduction

The Resource Description Framework RDF [KC04], together with its vocabulary descrip-
tion language RDFS [BG04], constitutes the basic language for the semantic Web. More
expressive semantic Web languages such as the description logic-based OWL DL [PSHH04a]
and future semantic Web rule languages1 are supposed to extend it. However, certain
properties of the RDF semantics posed layering problems in the definition of OWL DL [HPSvH03];
it was decided to extend only a part of RDF. This has led to a situation in which the user
communities of RDF and OWL DL are increasingly diverging, leading to a fragmentation
of the semantic Web. There is a possibility that a similar situation will occur if a possible
future rules language for the semantic Web does not adequately account for RDF(S).

Research has been done to uncover some of the formal properties of RDF (e.g. [Hor05b,
GHM04, BFT05]). However, so far little research has been done into the formal relation-
ships between RDF and the logical language paradigms of description logics and logic
programming.2 Therefore, we deem it worthwhile to investigate these relationships, in
order to facilitate the RDF-compatibility of a future logic-based rules language for the
semantic Web, and to see whether the RDF and description logic worlds can be brought
closer together. Additional benefits of such an investigation include the possible use of
techniques from logic programming and description logics for reasoning with RDF(S).

The RDF semantics specification [Hay04] defines three increasingly expressive kinds of
entailment, namely simple, RDF and RDFS entailment. Furthermore, it describes exten-
sional RDFS (eRDFS) entailment as a possible extension of RDFS entailment which is
more in line with description logic-like languages. We refer to these kinds of entailment

1http://www.w3.org/2005/rules/
2A notable exception is [BFT05].
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as entailment regimes.

To investigate the relationship between RDF and logic we embed the various RDF
entailment regimes in F-Logic [KLW95a], which is a syntactic extension of first-order
logic with object oriented modeling constructs. It turns out that the attribute value con-
struct in F-Logic is exactly equivalent to the triple construct in RDF, and the typing (class
membership) construct in F-Logic is very close in spirit to the one in RDF. Additionally,
F-Logic, like RDFS, allows to use the same identifier as a class, instance, or property
identifier, while still having a standard first-order logic-based semantics.

These embeddings can be used for RDF reasoning using Datalog engines. Further-
more, they lead to several novel complexity results about RDF; see Table 4.3 on page 57
for an overview of the complexity results for the various entailment regimes.

We then show the embedding of a large subset of extensional RDFS in FOL, and we
show that it can be embedded in the tractable description logic (contextual) DL-LiteR
[CDGL+06].

Finally, we define a notion of conjunctive queries over RDF graphs, and establish the
data complexity of query answering for the respective entailment regimes.

The structure of the remainder of the chapter is as follows. In Section 4.2 we review
F-Logic, DL-LiteR, and RDF. In Section 4.3 we define embeddings of RDF in F-Logic
and FOL, and demonstrate the relationship with DL-LiteR. In Section 4.4 we use these
embeddings and correspondences to obtain several novel complexity results for RDF. In
Section 4.5 we define conjunctive query answering in RDF and exhibit its complexity. We
discuss some implications of the results in this chapter, and compare it with related work,
in Section 4.6. We conclude the chapter and outline future work in Section 4.7.

4.2 Preliminaries

4.2.1 F-Logic

F-Logic3 extends first-order logic with constructs for object-oriented modeling (we use
the object typing and attribute value construct), while staying in a first-order semantic
framework.

The signature of an F-language L is of the form Σ = 〈F ,P〉 with F and P disjoint
sets of function and predicate symbols, each with an associated arity n ≥ 0. Let V be a
set of variable symbols disjoint from F and P . Terms and atomic formulas are defined in
the usual way; ⊥ is an atomic formula. A molecule in F-Logic is one of the following:
(i) an is-a molecule of the form C :D, which states that an individual C is of the type D,

3Note that F-Logic is also often used as an extension of nonmonotonic logic programming; however, we
follow the original definition which is strictly first-order.
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or (ii) a data molecule of the form C[D � E] which states that an individual C has an
attribute D with the value E, where C, D and E terms,. A molecule is ground if it does
not contain variable symbols.

Formulas of an F-language L are either atomic formulas, molecules, or compound
formulas, which are constructed in the usual way from atomic formulas, molecules, the
logical connectives ¬, ∧, ∨ and ⊃, the quantifiers ∃ and ∀, and the auxiliary symbols ‘)’
and ‘(’. An F-Logic theory Φ ⊆ L is a set of formulas.

F-Logic Horn formulas are of the form (∀)B1 ∧ . . . ∧ Bn ⊃ H , with B1, . . . , Bn, H
atomic formulas or molecules. F-Logic Datalog formulas are F-Logic Horn formulas with
no function symbols of arity higher than 0 such that every variable in H occurs in some
equality-free B1, . . . , Bn. F-Logic Horn and Datalog theories are sets of F-Logic Horn
and Datalog formulas, respectively.

An F-structure is a tuple I = 〈U,∈U , IF , IP , I�〉, where U is a non-empty, countable
set (the domain) and ∈U is a binary relation over U . An n-ary function symbol f ∈ F
is interpreted as a function over the domain U : IF (f) : Un → U . An n-ary predicate
symbol p ∈ P is interpreted as a relation over the domain U : IP (p) ⊆ Un. I� associates
a binary relation over U with each k ∈ U : I�(k) ⊆ U × U . Variable assignments are
defined as usual.

Given an F-structure I of an F-language L, a variable assignment B, and a term t of
L, tI,B is defined as: xI,B = xB for x ∈ V and tI,B = IF (f)(tI,B1 , . . . , tI,Bn ) for t of the
form f(t1, . . . , tn), with f ∈ F an n-ary function symbol and t1, . . . , tn terms.

Satisfaction of atomic formulas and molecules φ in I, given the variable assignmentB,
denoted (I, B) |=f φ, is defined as: (I, B)6|=f ⊥, (I, B) |=f p(t1, . . . , tn) iff (tI,B1 , . . . , tI,Bn ) ∈
IP (p), (I, B) |=f t1 : t2 iff tI,B1 ∈U tI,B2 , (I, B) |=f t1[t2 � t3] iff 〈tI,B1 , tI,B3 〉 ∈ I�(tI,B2 ),
and (I, B) |=f t1 = t2 iff tI,B1 = tI,B2 . This extends to arbitrary formulas in the usual way.

The notion of a model is defined in the usual way. A theory Φ ⊆ L F-entails a formula
φ ∈ L, denoted Φ |=f φ, if for all F-structures I such that I |=f Φ, I |=f φ.

4.2.2 FOL and DL-LiteR

Classical first-order logic (FOL) is F-Logic without molecules. Contextual first-order
logic [CKW93] (contextual FOL) is classical FOL where F and P are not required to
be disjoint, function and predicate symbols do not have associated arities, and for every
structure I = 〈U,∈U , IF , IP , I�〉 it is the case that IF assigns a function IF (f) : U i →
U to every f ∈ F and IP assigns a relation IP (p) ⊆ U i to every p ∈ P , for every
nonnegative integer i. We denote satisfaction and entailment in classical and contextual
FOL using the symbols |= and |=c, respectively.

F-Logic can be straightforwardly embedded in FOL, as shown in the following propo-
sition.
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Proposition 18 Let Φ and φ be an F-Logic theory and formula which do not contain the
binary and ternary predicate symbols isa and data, respectively, and let Φ′ and φ′ be the
FOL theory and formula obtained from Φ and φ by replacing every is-a molecule a :b with
the atomic formula isa(a, b) and every data molecule a[b � c] with the atomic formula
data(a, b, c). Then,
– Φ has a model iff Φ′ has a model and
– Φ |=f φ iff Φ′ |= φ′.

DL-LiteR [CDGL+06] is a description logic (DL) with certain desirable computa-
tional properties; most reasoning tasks are polynomial, and query answering has LogSpace
data complexity.

A classical (resp., contextual)DL-LiteR language consists of pairwise disjoint (resp.,
possibly non-disjoint) sets of concept (C), role (R), and individual (F) identifiers. Con-
cepts and roles in DL-LiteR are defined as follows:

Cl −→ A | ∃R
Cr −→ A | ∃R | ¬A | ¬∃R

R,R′ −→ P | P−

with A ∈ C, P ∈ R, Cl (resp., Cr) a left- (resp., right-)hand side concept, and R,R′ ∈ R
roles.

A DL-LiteR knowledge base K consists of a TBox T which is a set of inclusion
axioms of the forms Cl v Cr and R v R′, and an ABox A which is a set of concept and
role membership assertions of the forms A(a) and P (a1, a2), with a, a1, a2 ∈ F .

We define the semantics ofDL-LiteR through a translation to classical (resp., contextual)
FOL, using the mapping function π, which is defined in Table 4.1; π extends naturally to
sets of axioms and assertions.

π(A,X) = A(X) π(Cl v Cr) = ∀x(π(Cl, x) ⊃ π(Cr, x))
π(P,X, Y ) = P (X, Y ) π(R1 v R2) = ∀x, y(π(R1, x, y) ⊃ π(R2, x, y))

π(P−, X, Y ) = P (Y,X)
π(∃R,X) = ∃y(R(X, y)) π(A(a)) = A(a)
π(¬A,X) = ¬π(A,X) π(P (a1, a2)) = P (a1, a2)
π(¬∃R,X) = ¬∃y(R(X, y))

y is a new a variable

Table 4.1: Mapping DL-LiteR to FOL

Given a classical (resp., contextual)DL-LiteR knowledge baseK, the classical (resp.,
contextual) FOL equivalent of K is the theory Φ = π(K) = π(T ) ∪ π(A).
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4.2.3 RDF

RDF is a data language, where the central notion is the graph, which is a set of triples of
the form 〈s, p, o〉; s is the subject, p is the predicate, and o is the object of the triple.

A vocabulary V = 〈F ,PL, T L,B〉 consists of a set F of URI references, a set PL
of plain literals (i.e. Unicode character strings with an optional language tag), a set T L
of typed literals (i.e. pairs (s, u) of a Unicode string s and a URI u denoting a datatype),
and a set B of blank nodes (i.e. existentially quantified variables); see [KC04, Sections
6.4, 6.5, 6.6] for more details about the specific form of these symbols. Terms are URI
references, plain or typed literals, or blank nodes. A graph S of a vocabulary V is a set
of triples 〈s, p, o〉, with s, p, o ∈ F ∪ PL ∪ T L ∪ B.4 With bl(〈s, p, o〉) (resp., bl(S)) we
denote the set of blank nodes in 〈s, p, o〉 (resp., S). A triple 〈s, p, o〉 (resp., graph S) is
ground if bl(〈s, p, o〉) = ∅ (resp., bl(S) = ∅).

An interpretation of a vocabulary V is a tuple I = 〈UR, UP , UL, IF , IL, Iext〉, where
UR is a countable non-empty set, called the domain, UP is a countable set of properties,
UL ⊆ UR is a countable set of literal values with PL ⊆ UL, IF is an interpretation
function for URI references IF : F → UR ∪UP , IL is an interpretation function for typed
literals IL : T L → UR, and Iext is an extension function Iext : UP → 2(UR×UR).

Given an interpretation I of a vocabulary V and a subset of the blank nodes B′ ⊆ B,
we define a mapping A : B′ → UR which is used to interpret blank nodes. For a term t we
define tI,A as: (a) if t ∈ F , then tI,A = IF(t), (b) if t ∈ PL, then tI,A = t, (c) if t ∈ T L,
then tI,A = IL(t), and (d) if t ∈ B′, then tI,A = A(t).

An interpretation I satisfies a triple 〈s, p, o〉 with respect to a mapping A : B′ →
UR, with bl(〈s, p, o〉) ⊆ B′, denoted (I, A) |= 〈s, p, o〉, if pI,A ∈ UP and 〈sI,A, oI,A〉 ∈
Iext(p

I,A). I satisfies a graph S with respect to a mapping A : bl(S) → UR, denoted
(I, A) |= S, if (I, A) |= 〈s, p, o〉 for every 〈s, p, o〉 ∈ S. An interpretation I is a model of
a graph S, denoted I |= S, if (I, A) |= S for some A : bl(S)→ UR.

Any interpretation is an s-interpretation (simple interpretation). An interpretation I is
an rdf- (resp., rdfs-, erdfs-)interpretation if it interprets the RDF (resp., RDFS) vocabulary,
satisfies the RDF (resp., RDFS) axiomatic triples, and satisfies a number of conditions, as
specified in [Hay04].

An RDF graph S s-(resp., rdf-, rdfs-, or erdfs-)entails an RDF graph E if every s-
(resp., rdf-, rdfs-, or erdfs-)interpretation which is a model of S is also a model of E.
We refer to these kinds of entailment as entailment regimes, and use the symbol |=x, with
x ∈ {s, rdf, rdfs, erdfs}, to denote entailment under the respective regimes.

Intuitively, the difference between the RDFS and eRDFS entailment regimes is that
for the latter, whenever an ontological relation (e.g. subclass or property domain) implic-

4Note that we allow literals in subject (s), and literals and blank nodes in predicate (p) positions, whereas
the RDF specification [KC04] does not. Nonetheless, our results immediately apply to standard RDF graphs
as defined in [KC04].
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itly holds in an interpretation, the corresponding RDF statement (subClassOf, domain)
must be true, whereas this is not always the case with the RDFS entailment regime. The
following example illustrates this difference.

Example 9 Let S be the following graph: S = {〈parent, domain, P erson〉, 〈mother,
subPropertyOf parent〉 which says that the domain of parent is Person, and the prop-
erty mother is a sub-property of parent. Using eRDFS entailment we can conclude from
S that the domain of mother is also Person:

S |=erdfs 〈mother, domain, P erson〉;

it is always the case that the subject of any mother triple has the type Person; thus,
mother implicitly has the domain Person. We cannot draw this conclusion when using
RDFS entailment; in RDFS, only explicitly asserted domain constraints can be derived.

4.3 RDF(S) Embedding

In this section we first define an embedding of the various entailment regimes in F-Logic.
We then consider an embedding of eRDFS entailment in FOL and DL.

4.3.1 Embedding RDF in F-Logic

We embed a graph as a conjunction of data molecules; URI references and literals are
treated as constant symbols, and blank nodes are treated as existentially quantified vari-
ables. In the remainder we assume that RDF graphs are finite.

Given a vocabulary V = 〈F ,PL, T L,B〉, an F-language L corresponds to V if it has
a signature of the form Σ = 〈F ′ ⊇ F ∪ PL ∪ T L,P〉.5

Definition 14 Let S be an RDF graph of a vocabulary V , let 〈s, p, o〉 ∈ S be a triple in
S, and let L be an F-language which corresponds to V . Then,

(tr(〈s, p, o〉) ∈ L) = s[p� o] and
(tr(S) ∈ L) = {∃ bl(S)(

∧{tr(〈s, p, o〉) | 〈s, p, o〉 ∈ S})}.
If φ is an F-Logic formula or theory in prenex normal form with only existential

quantifiers, then φsk denotes the Skolemization of φ, i.e. every existentially quantified
variable is replaced with a globally unique new constant symbol.

We use a set of formulas Ψx ⊆ L, as defined in Table 4.2, to axiomatize the semantics
of an entailment regime x ∈ {s, rdf, rdfs, erdfs}.

5Even though typed literals are pairs in RDF, we treat them simply as constant symbols in our embed-
ding.
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Proposition 19 Let S be an RDF graph of a vocabulary V . Then, tr(S)sk ∪ Ψx, with
x ∈ {s, rdf, rdfs}, can be equivalently rewritten to a set of F-Logic Datalog formulas.

Note that Ψerdfs cannot be equivalently rewritten to a set of Datalog formulas, because
of the use of universal quantification in the antecedents of some of the implications in
Ψerdfs.

Ψs = ∅
Ψrdf = Ψs ∪ {tr(〈s, p, o〉) | 〈s, p, o〉 is an RDF axiomatic triple}∪
{wellxml(t) | t ∈ T L is a well-typed XML literal}∪
{illxml(t) | t ∈ T L is an ill-typed XML literal}∪
{∀x(∃y, z(y[x� z]) ⊃ x[type� Property]),
∀x(wellxml(x) ⊃ x[type� XMLLiteral]),
∀x(x[type� XMLLiteral] ∧ illxml(x) ⊃ ⊥)}

Ψrdfs = Ψrdf ∪ {tr(〈s, p, o〉) | 〈s, p, o〉 is an RDFS axiomatic triple}∪
{pl(t) | t ∈ PL}∪
{∀x, y, z(x[y � z] ⊃ x[type� Resource] ∧ z[type� Resource]),
∀u, v, x, y(x[domain� y] ∧ u[x� v] ⊃ u[type� y]),
∀u, v, x, y(x[range� y] ∧ u[x� v] ⊃ v[type� y]),
∀x(x[type� Property] ⊃ x[subPropertyOf� x]),
∀x, y, z(x[subPropertyOf� y] ∧ y[subPropertyOf� z] ⊃ x[subPropertyOf� z]),
∀x, y(x[subPropertyOf� y] ⊃ ∀z1, z2(z1[x� z2] ⊃ z1[y � z2])),
∀x(x[type� Class] ⊃ x[subClassOf� Resource]),
∀x, y(x[subClassOf� y] ⊃ ∀z(z[type� x] ⊃ z[type� y])),
∀x(x[type� Class] ⊃ x[subClassOf� x]),
∀x, y, z(x[subClassOf� y] ∧ y[subClassOf� z] ⊃ x[subClassOf� z]),
∀x(x[type� ContainerMembershipProperty] ⊃ x[subPropertyOf� member]),
∀x(x[type� Datatype] ⊃ x[subClassOf� Literal]),
∀x(pl(x) ⊃ x[type� Literal]),
∀x(x[type� Literal] ∧ illxml(x) ⊃ ⊥)}

Ψerdfs = Ψrdfs ∪ {∀x, y(∀u, v(u[x� v] ⊃ u[type� y]) ⊃ x[domain� y]),
∀x, y(∀u, v(u[x� v] ⊃ v[type� y]) ⊃ x[range� y]),
∀x, y(x[type� Property] ∧ y[type� Property] ∧ ∀u, v(u[x� v] ⊃
u[y � v]) ⊃ x[subPropertyOf� y]),
∀x, y(x[type� Class] ∧ y[type� Class] ∧ ∀u(u[type� x] ⊃ u[type� y]) ⊃
x[subClassOf� y])}

Table 4.2: Axiomatization of the RDF entailment regimes

Theorem 15 Let S and E be RDF graphs of a vocabulary V and let x ∈ {s, rdf, rdfs,
erdfs} be an entailment regime. Then,

S |=x E iff tr(S) ∪Ψx |=f tr(E), and
S is x-satisfiable iff tr(S) ∪Ψx has a model.
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Proof 25 We first show that S 6|=x E iff tr(S) ∪Ψx 6|=f tr(E). From this follows immedi-
ately that S |=x E iff tr(S) ∪Ψx |=f tr(E).

(⇒) Let V = 〈F ,PL, T L,B〉 be the vocabulary of S andE and let L be a corresponding
F-language. Assume that S 6|=x E. This means that there is an x-interpretation I =
〈U ′R, UP , UL, IF , IL, Iext〉 such that I |= S and I 6|= E. We construct a corresponding
F-Logic interpretation I = 〈U,∈U , IF , IP , I�〉 in the following way:

• (i) U = U ′R ∪ UP ,

• (ii) IF (t) = IF(t) for every URI reference t ∈ F , IF (t) = t for every plain literal
t ∈ PL, IF (t) = IL(t) for every typed literal t ∈ T L,

• (iii) I�(k) = Iext(k) for every k ∈ UP , and

• (iv) IP (pl) = PL, IP (illD) = {u | tT L is an ill-typed literal and , IL(t) = u},
IP (wellxml) = {u | tT L is a well-typed XML literal and , IL(t) = u} and IP (wellD) =
{u | tT L is a well-typed literal and , IL(t) = u}.

It is easy to verify that I |=f tr(S)∪Ψx and I6|=f tr(E). Hence, tr(S)∪Ψx 6|=f tr(E).

(⇐) Assume that tr(S) ∪ Ψx 6|=f tr(E). This means that there is a (by classical re-
sults) Herbrand F-structure I = 〈U,∈U , IF , IP , I�〉 such that I |=f tr(S) ∪ Ψx and
I6|=f tr(E). Since I is a Herbrand structure, U includes all constant symbols, and ev-
ery constant symbol is interpreted as itself. We construct a corresponding interpretation
I = 〈U ′R, UP , UL, IF , IL, Iext〉 as follows:

• (i) UP = {p | 〈p, IF (Property)〉 ∈ I�(IF (type))} ∪ {p | ∃s, o.〈s, o〉 ∈ I�(p)},
• (ii) UL = PL ∪ {xml(s) | ((s, XMLLiteral) ∈ T L ∧ (s, XMLLiteral) is a well-

typed XML literal)} ∪ {l | 〈l, IF (Literal)〉 ∈ I�(IF (type))},
• (iii) U ′R = U ∪ UL,

• (iv) IF(t) = IF (t) for every URI reference t ∈ F ,6 IL((s, u)) = xml(s) if (s, u) ∈
T L is a well-typed XML literal; IL((s, u)) = IF ((s, u)) for (s, u) ∈ T L if (s, u) ∈
T L is not a well-typed XML literal,

• (v) for any p ∈ U and any 〈s, o〉 ∈ I�(p): 〈s′, o′〉 ∈ Iext(p), where s′ (resp.,
o′) is: if ∃(t, XMLLiteral) ∈ T L.((t, XMLLiteral) is a well-typed XML literal
∧IF ((t, XMLLiteral)) = s) (resp., ... = o) then s′ = xml(t) (resp., o′ = xml(t));
otherwise s′ = s (resp., o′ = o).

It is easy to verify that I is an x-interpretation, I |= S, and I 6|= E. Hence, S 6|= E. The

second part of the theorem can be shown analogously.
6Note that plain literals are always interpreted as themselves in RDF interpretations.
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The following corollary follows immediately from Theorem 15 and the classical re-
sults about Skolemization (see e.g. [Fit96]). For the case of s-entailment, the result was
implicitly stated in [Hay04, Skolemization lemma].

Corollary 2 Let S and E be RDF graphs and let x ∈ {s, rdf, rdfs, erdfs} be an entail-
ment regime. Then,

S |=x E iff tr(S)sk ∪Ψx |=f tr(E).

Since, by Proposition 19, tr(S)sk, tr(S)sk∪Ψrdf and tr(S)sk∪Ψrdfs are equivalent to
sets of Datalog formulas, this result implies that simple, RDF, and RDFS entailment can
be computed using existing F-Logic rule reasoners7 such as FLORA-2, and Ontobroker,
as well as any rule reasoners which supports Datalog (see Proposition 18). Notice that,
in the corollary, tr(E) can be seen as a boolean conjunctive query (i.e. a yes/no query) in
which the existentially quantified variables in tr(E) are the non-distinguished variables.

We now consider an alternative, direct embedding of the extensional RDFS semantics
(erdfs-entailment) which eliminates part of the RDFS vocabulary from the embedded
graph, yielding a set of Datalog formulas.

We first define the notion of nonstandard use of the RDFS vocabulary, which intu-
itively corresponds to using the vocabulary in locations where it has not been intended,
for example in places where it redefines the semantics of RDF constructs such as in the
triple 〈type, subPropertyOf, a〉.

We say that a term t occurs in a property position if it occurs as the predicate of a
triple, as the subject or object of a subPropertyOf triple, as the subject of a domain or
range triple, or as the subject of a triple 〈t, type, Property〉 or 〈t, type, Container-
MembershipProperty〉. A term t occurs in a class position if it occurs as the subject
or object of a subClassOf triple, as the object of a domain, range, or type triple, as
the subject of a triple 〈t, type, Class〉 or 〈t, type, Datatype〉. Otherwise, we say that t
occurs in an individual position.

Definition 16 Let S be an RDF graph. Then, S has nonstandard use of the RDFS vocab-
ulary if
– type, subClassOf, domain, range or subPropertyOf occurs in the subject or object
position of a triple in S or
– ContainerMembershipProperty, Resource, Class, Datatype or Property occurs
in any position other than the object position of a type-triple in S.

We conjecture that large classes of RDF graphs will not have any nonstandard use of
the RDFS vocabulary. We now proceed to define a direct embedding of the extensional
RDFS entailment regime in F-Logic.

7Note that a Datalog formula with⊥ in the antecedent corresponds to an integrity constraint, i.e. a query
which may not have an answer set.
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Definition 17 Let 〈s, p, o〉 be an RDF triple. Then,

trerdfs(〈s, type, Datatype〉) = ∀x(x :s ⊃ x :Literal),
trerdfs(〈s, type, o〉) = s :o,

trerdfs(〈s, subClassOf, o〉) = ∀x(x :s ⊃ x :o),
trerdfs(〈s, subPropertyOf, o〉) = ∀x, y(x[s� y] ⊃ x[o� y]),

trerdfs(〈s, domain, o〉) = ∀x, y(x[s� y] ⊃ x :o),
trerdfs(〈s, range, o〉) = ∀x, y(x[s� y] ⊃ y :o), and

trerdfs(〈s, p, o〉) = s[p� o], otherwise.

Let S be an RDF graph of a vocabulary V = 〈F ,PL, T L,B〉. Then,

trerdfs(S) = {∃ bl(S)(
∧{trerdfs(〈s, p, o〉) | 〈s, p, o〉 ∈ S})}, and

Ψerdfs−V = {trerdfs(〈s, p, o〉) | 〈s, p, o〉 is an RDF(S) axiomatic triple with no non-
standard use of the RDF(S) vocabulary} ∪ {t :XMLLiteral | t ∈ T L is a well-
typed XML literal} ∪ {illxml(t) | t ∈ T L is an ill-typed XML literal}∪
{t :Literal | t ∈ PL} ∪ {∀x(x :Literal ∧ illxml(x) ⊃ ⊥)})

The property (resp., class) vocabulary of an RDF graph S consists of all the symbols
occurring in property (resp., class) positions in S and the RDF(S) axiomatic triples with
no nonstandard use of the RDF(S) vocabulary.

Given two RDF graphs S andE, we writeEES if the property and class vocabularies
ofE are subsets of the property and class vocabularies of S (modulo blank node renaming
and instantiation, i.e. replacement of blank nodes with URI references or literals) and
Resource, ContainerMembershipProperty, Class, Property and Datatype do not
occur in E.

Theorem 18 Let S,E be RDF graphs with no nonstandard use of the RDFS vocab-
ulary such that Resource, Class, Property, ContainerMembershipProperty and
Datatype do not occur in E. Then,

• whenever E E S,

S |=erdfs E iff trerdfs(S) ∪Ψerdfs−V |=f tr
erdfs(E);

• (trerdfs(S))sk is a conjunction of F-Logic Datalog formulas, and whenever E does
not contain the terms subClassOf, domain, range, and subPropertyOf, trerdfs(E)
is a conjunction of atomic molecules prefixed by an existential quantifier and

S |=erdfs E iff (trerdfs(S))sk ∪Ψerdfs−V |=f tr
erdfs(E).

Since (trerdfs(S))sk ∪ Ψerdfs−V is a set of Datalog formulas we have that, if the RDF
graphs fulfill certain conditions, query answering techniques from the area of deductive
databases can be used for checking extensional RDFS entailment.

52 31 December, 2007 KWEB/2007/D2.5.8/v1.0



D2.5.8 Integrating RDF and OWL with Other Reasoning ParadigmsIST Project IST-2004-507482

4.3.2 Embedding Extensional RDFS in First-Order Logic

We now consider an embedding of extensional RDFS entailment in FOL, based on the
direct embedding of extensional RDFS in F-Logic considered above (Definition 17).

An F-Logic theory or formula is translatable to contextual FOL if for molecules of the
forms t1[t2 � t3] and t1 : t2 holds that t2 is a constant symbol (i.e. 0-ary function symbol).

Let Φ (resp., φ) be an F-Logic theory (resp., formula) which is translatable to contex-
tual FOL, then (Φ)FO (resp, (φ)FO) is the contextual FOL theory obtained from Φ (resp.,
φ) by:
– replacing every data molecule t1[t2 � t3] with t2(t1, t3), and
– replacing every is-a molecule t1 : t2 with t2(t1).

The following proposition follows immediately from a result in [BH08].

Proposition 20 Let Φ, φ be an equality-free F-Logic theory and formula which are trans-
latable to contextual FOL. Then,

Φ |=f φ iff (Φ)FO |=c (φ)FO.

An RDF graph S is a non-higher-order RDF graph if S does not contain blank nodes
in class and property positions, and does not contain nonstandard use of the RDFS vo-
cabulary. A non-higher-order RDF graph S is a classical RDF graph if the sets of URIs
occurring in individual, class and property positions in S and its context (e.g. entailing or
entailed graph) are mutually disjoint. Notice that every ground RDF graph which does
not contain nonstandard use of the RDFS vocabulary is a non-higher-order RDF graph.
One can also verify that every OWL DL graph, as defined in [PSHH04a], is a classical
RDF graph, but there are classical RDF graphs which are not OWL DL graphs.

The following theorem identifies subsets of extensional RDFS which have a natural
correspondence to contextual and classical FOL. Observe that if S is a non-higher-order
RDF graph, then trerdfs(S) is translatable to contextual FOL.

Theorem 19 Let S and E be non-higher-order RDF graphs such that E E S. Then,

S |=erdfs E iff (trerdfs(S))FO |=c (trerdfs(E))FO.

If, additionally, S,E are classical graphs, then (trerdfs(S))FO and (trerdfs(E))FO are
theories of classical first-order logic, and

S |=erdfs E iff (trerdfs(S))FO |= (trerdfs(E))FO.

Proof 26 Follows immediately from Theorem 18, the fact that (trerdfs(S))FO and (trerdfs(E))FO

do not contain the equality symbol, and Proposition 20.
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Proposition 21 Let S be a ground non-higher-order graph8. Then, (trerdfs(S))FO can
be equivalently rewritten to the FOL equivalent Φ of a contextual DL-LiteR knowledge
base K.

If S is a classical RDF graph, then (trerdfs(S))FO can be equivalently rewritten to the
FOL equivalent Φ of a classical DL-LiteR knowledge base.

Proof 27 ((Proof Sketch)) Φ is obtained from (trerdfs(S))FO in the following way:
- Class membership or property value statements of the forms A(a), P (a1, a2) are in-
cluded as such,

- Subclass and subproperty statements are included as such,

- Domain constraints of the form ∀x, y(P (x, y) ⊃ A(x)) are rewritten to role-typing
statements of the form ∀x(∃y(P (x, y)) ⊃ A(x)), and

- Range constraints of the form ∀x, y(P (x, y) ⊃ A(y)) are rewritten to role-typing state-
ments of the form ∀x(∃y(P (y, x)) ⊃ A(x)).

Φ and (trerdfs(S))FO are obviously equivalent, and it is easy to verify that Φ is the FOL
equivalent of a (contextual) DL-LiteR knowledge base.

4.4 Complexity

In this section we review the complexity of the various forms of entailment in RDF and
present several novel results, based on the embeddings presented in the previous section.

The complexity of simple entailment and RDFS entailment is well known, and the com-
plexity of RDF entailment follows immediately. Note that, although the set of axiomatic
triples is infinite, only a finite subset, linear in the size of the graphs, needs to be taken
into account when checking entailment.

Proposition 22 ([GHM04, Hor05b, BFT05]) Let S andE be graphs. Then, the problem
of checking S |=s E, S |=rdf E, or S |=rdfs E is NP-complete in the combined size of
the graphs, and polynomial in the size of S. If E is ground, then the respective problems
are polynomial in the combined size of the graphs.

Additionally, the problem of checking S |=erdfs E is NP-hard in the size of the graphs.

Using Corollary 2 and known results about Datalog we construct a novel membership
proof; we give a direct proof of hardness of all for entailment regimes through a reduction
from 3-satisfiability.

8Note that, when considering a variant of DL-LiteR which allows existentials in the ABox – also
allowed in OWL DL – this restriction could be relaxed to S being a non-higher-order RDF graph with no
blank nodes outside of individual positions.
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Proof 28 (Membership) Assume that E is ground. By Proposition 19 and Corollary 2,
the problems S |=s E, S |=rdf E, and S |=rdfs E can be reduced to ground entailment in
Datalog: tr(S)sk∪Ψx, with x ∈ {s, rdf, rdfs}, is equivalent to a Datalog knowledge base
with tr(S)sk the data and Ψx the program; tr(E) is equivalent to a conjunction of ground
atoms. Ground entailment in Datalog is polynomial in the size of the data [DEGV01],
which corresponds to the size of the RDF graphs in our case. Note that Ψrdf and Ψrdfs

contain infinitely many statements involving 1, . . . , 2, because of the axiomatic triples.
However, only those statements involving vocabulary which is used in S or E need to be
taken into account; this is linear in the size of the graphs. This establishes polynomiality
of the respective problems in the size of S and E, for E is ground, and in the size of S in
the general case.

If E is not ground, then the problem S |=x E, with x ∈ {s, rdf, rdfs}, can be decided
using the following non-deterministic polynomial algorithm:

1. Guess a ground substitution θ for the variables in tr(E) with symbols occurring in
tr(S)sk.

2. Verify whether tr(S)sk ∪Ψx |=f tr(E)θ.

It is easy to verify that this algorithm is correct. This establishes membership in NP of
the problems S |=s E, S |=rdf E, and S |=rdfs E.

(Hardness) We show a novel proof of the NP-hardness of simple, rdf, rdfs, and erdfs
entailment through a reduction from 3-satisfiability. Let φ be of the form (l11∧ l12∧ l13)∨
. . .∨(lm1∧lm2∧lm3) where lij is a propositional literal, i.e. a possibly negated proposition
a ∈ {a1, . . . , an}. Let S be the smallest RDF graph such that

• 〈ai, value, true〉, 〈ai, value, false〉 ∈ S for 1 ≤ i ≤ n,

• for 1 ≤ j ≤ m 〈cj, has1st, cj1〉, 〈cj, has2nd, cj2〉, 〈cj, has3rd, cj3〉 ∈ S and for
1 ≤ k ≤ n, 1 ≤ o ≤ 3,

– 〈cjo, ak, true〉 ∈ S if ljo = ak,

– 〈cjo, ak, false〉 ∈ S if ljo = ¬ak, and

– 〈cjo, ak, true〉, 〈cjo, ak, false〉 ∈ S, otherwise,

and let E be the smallest RDF graph such that

• 〈ai, value, : ai〉 ∈ E for 1 ≤ i ≤ n,

• 〈 : c, has1st, : c1〉, 〈 : c, has2nd, : c2〉, 〈 : c, has3rd, : c2〉 ∈ E, and

• 〈 : c1, ai, : ai〉, 〈 : c2, ai, : ai〉, 〈 : c3, ai, : ai〉 ∈ E for 1 ≤ i ≤ n,
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with : c, : c1, : c2, : c3, : ai blank nodes.

The triples of the form 〈ai, value, true〉, 〈ai, value, false〉 in S encode the possible
variable assignments for ai. Each of the conjuncts cjo in a conjunction cj encodes the
possible value assignments which satisfies ljo.

In the graph E, the triples of the form 〈ai, value, : ai〉 are used to “guess” a val-
uation, and the other triples are used to “check” whether there is a conjunction in the
original formula which is satisfied in this valuation.

Clearly, S |=s E iff S |=rdf E iff S |=rdfs E iff S |=erdfs E iff φ is satisfiable. Since
the construction of the graphs S,E is polynomial in the size of φ, this establishes NP -
hardness.

From the embedding in F-Logic, together with the complexity of nonrecursive Data-
log [DEGV01], we obtain the following novel characterization of the complexity of sim-
ple and RDF entailment.

Theorem 20 Let S and E be RDF graphs. Then, the problems S |=s E and S |=rdf E
are in LogSpace in the size of S, and in the combined size of the graphs if E is ground.

Proof 29 ((Proof Sketch)) Notice that transforming tr(S) to tr(S)sk does not require any
rewriting; it simply requires removing the existential quantification, and interpreting the
variables as constant symbols. It is easy to see that the only fact which could potentially
be recursively derived from Ψrdf is type[type � Property]; however, type[type �
Property] ∈ Ψrdf . Thus, tr(S)sk and tr(S)sk ∪ Ψrdf may be treated as nonrecursive
Datalog programs.

The proposition then follows straightforwardly from Corollary 2 and the fact that
ground entailment in nonrecursive Datalog is in LogSpace in the size of the data [AHV95],
with the data being the input RDF graphs.

Using the correspondence of Proposition 21, the results on the complexity of rea-
soning in DL-LiteR [CDGL+06], and the classical results on skolemization [Fit96] we
obtain the following result for extensional RDFS entailment.

Theorem 21 Let S and E be RDF graphs with no nonstandard use of the RDFS vocabu-
lary such that E E S. Then, the problem of deciding S |=erdfs E is NP-complete in the
size of the graphs, and polynomial if E is ground.

Proof 30 Notice that ((trerdfs(S))sk)FO is a theory of contextual FOL. If E is ground,
then, as a straightforward consequence from Theorems 18 and 19,

S |=erdfs E iff ((trerdfs(S))sk)FO |=c (trerdfs(E))FO.

Given a contextual DL-LiteR theory Φc (resp., formula φc), the corresponding clas-
sical DL-LiteR theory Φ (resp., formula φ) is obtained from Φc (resp., φc) by replacing
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every occurrence of A as class symbol with AC , replacing every occurrence of P as role
symbol with PR, and replacing occurrence of a as an individual symbol with aF . We
can use this transformation to reduce reasoning in contextual DL-LiteR to reasoning in
DL-LiteR; it is easy to verify that

Φc |=c φ
c iff Φ |= φ,

for any formula φc.

Since this transformation is linear in the size of the knowledge base, the complexity
of satisfiability and entailment for contextual DL-LiteR are the same as for DL-LiteR,
namely polynomial in the size of the knowledge base [CDGL+06].

Assume that E is ground. Since ((trerdfs(S))sk)FO and (trerdfs(E))FO can be (lin-
early) equivalently rewritten to contextual FOL theories which are equivalent to contex-
tual DL-LiteR knowledge bases, and entailment in contextual DL-LiteR is polynomial,
the problem S |=erdfs E can be solved in polynomial time as well.

This result immediately leads to the following nondeterministic polynomial-time algo-
rithm for deciding S |=erdfs E, in case E is not ground:

1. Guess a substitution θ of blank nodes in E with terms in ((trerdfs(S))sk)FO.
2. Check whether ((trerdfs(S))sk)FO |=c (trerdfs(E)θ)FO, which can be done in polyno-
mial time, by the above result.

Correctness of the overall algorithm follows from the fact that all formulas in ((trerdfs(S))sk)FO

are Horn, and thus we only need to take terms occurring in ((trerdfs(S))sk)FO into ac-
count (by the classical results by Herbrand), justifying the use of the substitution θ. This
establishes membership in NP.

NP-hardness follows from the proof of Proposition 22 (observe that the RDFS vocabulary
is not used in the hardness proof). Therefore, checking extensional RDFS entailment
S |=erdfs E, where S has no nonstandard use of the RDFS vocabulary, is NP-complete.

Entailment Restrictions on S Restrictions on E Complexity
|=s,|=rdf ,|=rdfs none none NP-complete
|=s,|=rdf none ground LogSpace
|=rdfs none ground P
|=erdfs none none NP-hard
|=erdfs no nonst. RDFS no nonst. RDFS NP-complete
|=erdfs no nonst. RDFS ground, no nonst. RDFS P

Table 4.3: Complexity of Entailment S |=x E in RDF, measured in the size of S,E

Table 4.3 summarizes the complexity of reasoning with the entailment regimes of RDF;
“No nonst. RDFS” stands for “no nonstandard use of the RDFS vocabulary; S and E

KWEB/2007/D2.5.8/v1.0 31 December, 2007 57



4. LOGICAL FOUNDATIONS OF (E)RDF(S): COMPLEXITY AND REASONING

are such that the property and class vocabularies of E are subsets of the property and
class vocabularies of S (modulo blank node renaming and instantiation); and Resource,
Class, Property, ContainerMembershipProperty and Datatype do not occur in E”.
The results in the first and third line of the table were obtained in [GHM04, BFT05,
Hor05b], and the fourth line follows immediately. To the best of our knowledge, the other
results are novel.

4.5 Querying

In this section we consider conjunctive queries over RDF graphs using the RDF entailment
regimes we considered throughout this chapter.

Given a countable set V of variable symbols, disjoint from the symbols in V , a gener-
alized RDF triple is a tuple of the form 〈s, p, o〉, with s, p and o terms or variable symbols.
A conjunctive query q(~x) over an RDF graph S is a set of generalized RDF triples q(~x)
such that ~x is a vector of variables occurring in q, also called the distinguished variables
of q; the blank nodes occurring in q, bl(q), are the non-distinguished variables of q.

Given an RDF graph S and conjunctive query q(~x), then a tuple of terms ~a is an
answer of a query under x-entailment if S |=x q(~a), with x ∈ {s, rdf, rdfs, erdfs} an
entailment regime. The complexity of query answering is related to the complexity of
the corresponding recognition problem: the recognition problem associated with a query
q(~x) is the decision problem of checking whether, given an RDF graph S and a tuple ~a of
terms, the entailment S |=x q(~a) holds. The data complexity of query answering under
the x entailment regime corresponds to the complexity of the corresponding recognition
problem, in the size of S.

From the preceding results on the complexity of the various entailment regimes we
obtain the following characterization of the complexity of query answering.

Theorem 22 Let S be an RDF graph, let x ∈ {s, rdf, rdfs} be an entailment regime,
and let q(~x) be a conjunctive query. Then, the data complexity of query answering under
the x entailment regime is

• in LogSpace, if x ∈ {s, rdf} ,

• polynomial, if x ∈ {rdfs}, and

• polynomial in the size of S, and LogSpace in the size of S−ont, which is the subset
of S without the RDFS ontology vocabulary, if x = erdfs, S and q have no non-
standard use of the RDFS vocabulary, and q contains no blank nodes or variables
in class or property position.

Proof 31 The first and second bullet follow immediately from Propositions 22 and 20.
The third bullet follows from the complexity results aboutDL-LiteR [CDGL+06, CGL+05]
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and the proof of Theorem 21.

4.6 Discussion and Related Work

In this section we discuss implications of the results in this chapter, and place it in the
context of related work. We distinguish between work done on RDF and on RDF query-
ing.

RDF There have been several investigations [GHM04, BFT05, Hor05b] into the se-
mantics of RDF. The investigation in [GHM04] reconstructs the semantics from a graph
database perspective, and the one in [BFT05] reconstructs the semantics from a logical
language perspective. The investigation of the RDF semantics in [Hor05b] stays very
close to the RDF specification. Additionally, [Hor05b] shows that the entailment rules
presented in the original specification [Hay04] are not complete with respect to the se-
mantics. These reconstructions have led to a number of complexity results for RDF en-
tailment. In this chapter, we built upon these results and complemented them with several
novel results for simple, RDF, and extensional RDFS entailment.

The investigation in [BFT05] is close in spirit to our investigation, albeit that [BFT05]
bases its logical reconstruction on (contextual) first-order logic, rather than F-Logic.

RDFS(FA) [PH07] defines a new (extensional) semantics for RDFS which is in line
with the semantics of OWL DL, as well as a number of syntactic restrictions to achieve a
layered meta-modeling architecture. It is currently not known what the precise relation-
ship is between RDFS(FA) and the RDFS semantics defined in the standard [Hay04].

Finally, we mention [MPG07], in which the authors identify a syntactic subset of
RDFS which allows for efficient reasoning (O(n log n)), while still being expressive
enough to capture large classes of ontologies.

RDF Querying SPARQL [PS07] is a query language for RDF, currently under devel-
opment at W3C. Of all the RDF entailment regimes, SPARQL currently only considers
simple entailment. However, the use of other regimes is considered a possible future
extension.

The queries we considered in Section 4.5 are conjunctive queries and correspond to
what are called “[SPARQL] graph pattern expressions constructed by using only AND”
in [PAG06]. Therefore, not surprisingly, data complexity of conjunctive query answering
when considering simple entailment corresponds to the data complexity of evaluating
such graph pattern expressions; they are both in LogSpace (cf. Theorem 22 and [PAG06,
Theorem 4]).

Finally we mention [Pol07], in which a translation from SPARQL queries to Datalog
is described. The combination of such a translation with an embedding of the RDF or
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RDFS semantics, as described in Theorem 15, could be used for evaluating SPARQL
queries using the respective entailment regimes.

4.7 Conclusions and Future Work

We have presented embeddings of the different RDF entailment regimes in F-Logic, and
we have shown how deductive database and description logic technology can be used
for reasoning with RDF. An implementation of answering conjunctive queries over RDF
graphs under the RDF and RDFS entailment regimes, and restricted RDF graphs under
the eRDFS entailment regime, based on the Datalog reasoner IRIS9, can be found at:
http://tools.deri.org/rdfs-reasoner. It is planned to extend this reasoner
with support for more expressive query languages, such as SPARQL, considering the
embedding in Datalog presented in [Pol07].

In the course of our investigation we have presented several novel complexity results.
To the best of our knowledge, ours is the first comprehensive investigation of the exten-
sional RDFS entailment regime. These results could be used for, for example, rule-based
extensions of RDF, or increasing the alignment between RDF and logic-based semantic
Web languages (e.g. OWL DL).

Our future work includes the extension of the considered embeddings with more extensive
treatment of datatypes, in the form of D-entailment [Hay04], and D*-entailment [Hor05b],
as well as more expressive query languages such as SPARQL.

Several proposals have been made for rule extensions of RDF graphs (e.g. [Hor05a,
AADW05]), and several rule-based systems which deal with RDF exist (e.g. Jena, CWM).
In an earlier version of the present chapter [BH07] we considered extensions of RDF
graphs with logical rules and axioms, based on the embeddings we have presented. How-
ever, such extensions are not entirely faithful with respect to the model-theoretic seman-
tics of RDF. Therefore, our future work includes an investigation of combinations of log-
ical rules and RDF based on a notion of common models, i.e. an interpretation is a model
of a combination if it is a model of both the logical theory and the RDF graph.

Finally, we plan to investigate the precise relationship between eRDFS and OWL DL
entailment, taking the subset compatible withDL-LiteR (see Proposition 21) as a starting
point.

9http://sourceforge.net/projects/iris-reasoner

60 31 December, 2007 KWEB/2007/D2.5.8/v1.0



Chapter 5

Semantic Cooperation and Knowledge
Reuse by Using Autonomous Ontologies

5.1 Introduction

The Semantic Web vision is to develop a distributed environment in which software agents
can automatically, conveniently and effectively interpret and apply the data that is avail-
able on the Web. To this end, a system of knowledge representation which supports se-
mantic cooperation between distributed agents is required. Such a system must be based
on ontologies which define the terms and relationships used in a particular application
domain. Each such ontology reflects the objective and shared views of a community of
users working in that domain. However, the original use of the word “ontology” in phi-
losophy was to describe a complete, self-contained domain of discourse. This usage does
not scale to the open and distributed Web, where there are ontologies for each different
application domain and even different ontologies for the same domain. Thus, to support
semantic cooperation between agents, it is necessary to manage and reason about multi-
ple ontologies, which we call an ontology space. How to do this effectively is a major
research problem for the Semantic Web.

AI researchers have also studied management and reasoning in multiple representa-
tions of application domains using contextual reasoning [Giu93, GS94, GG01]. For this
reason, it is a natural and interesting issue to combine ontology-based and context-based
approaches so that the advantages of both ontology and contextual reasoning can be em-
ployed in the same system. This idea led a series of interesting work.

C-OWL [BGvH+03] sets up relations outside the ontologies by a set of “bridge rules”
between the concepts (individuals) from different ontologies. Its semantics relies on the
domain relation in DDL [BS03], which is a directional mapping from the elements of
one domain to the other domain. E-Connection [GPS04] puts the relations inside the
ontology, by extending OWL with a new kind of “link property”. It connects two sets
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of strictly disjoint concepts from different domains. P-DL [BCH06] treats every foreign
term as an imported relation, and semantically interprets it by an image domain relation
which is a one-to-one and compositionally consistent mapping between two domains.
Semantic Importing [PSZ06] focuses on the overlaps of domains; it allows a subconcept
which falls into the conjunction of two domains to be semantically imported and used in
the other ontology. Conservative Extension [GK07] restricts multiple ontology modules
in the same global interpretation domain and allows them to be interpreted using standard
semantics.

It is easy to see that the above approaches somehow weaken the autonomy of an ontol-
ogy. In order to bridge the gaps between the semantics of different ontologies, a class of
approaches based on cross-domain relations (i.e., domain relations in C-OWL, directional
binary relation in E-connection, and image domain relation in P-DL) needs the informa-
tion of the domain element in the other ontology to interpret a bridge rule in C-OWL, a
link property in E-connection, or an importing relation in P-DL. For example, suppose that
there is well-accepted ontology on the Web called “Vehicle”, in which a concept “Car”
is defined as: “A car consists of two parts: engine and body”. In C-OWL, this concept
is represented as V ehicle : Car which indicates that the concept “Car” is defined in the
ontology “Vehicle”. Both BMW and Toyota may wish to borrow the concept “Car” when
they design their own ontologies. These two companies have different interpretations on
“engine” and “body”. In C-OWL, V ehicle : Car has different local interpretations in
BMW and Toyota. However, a user cannot distinguish this difference and confusion may
be caused when other people use V ehicle : Car. Semantic Importing does not rely on
domain relations, but one needs to know exactly the domain elements and how the con-
cepts/roles are interpreted in the other ontology. Conservative extensions require a single
global domain, and prevent each module from local interpretation its axioms under its
own context.

In this chapter, we propose a new framework for managing autonomy in a distributed
ontology space. On the one hand a language entity (concept/role/individual) is interpreted
totally under local domain semantics in order to preserve the autonomy of an ontology;
on the other hand a (shared) language entity is restricted by a semantic binding if neces-
sary in order to enable semantic cooperation among several ontologies. In this way, one
ontology is able to express its “subjective” opinion by local interpretation, and to receive
its foreign semantics by semantic binding. We use the term “foreign semantics” of one
ontology to express the “semantic meaning” of an foreign entity from another ontology
connected by semantic binding. Accordingly, we also introduce two reasoning mecha-
nisms: cautious reasoning and brave reasoning. The former relies on an ontology and
its foreign semantics from its neighbors’ ontologies connected by semantic binding, but
it does not trust the foreign semantics of its neighbor from their neighbors. The latter
believes an ontology and its foreign semantics, and also its neighbor ontologies and their
foreign semantics.

The main contribution of this chapter are the followings:
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• We introduce a novel approach to define semantic cooperation between different ontologies. By
semantic binding, the semantics of language entities from one ontology is able to be accessed in
other ontologies. This is different from the existing domain-relation based approaches.

• We formalize two forms of reasoning mechanisms: cautious reasoning and brave reasoning. The
former only does reasoning in one ontology and its neighbors’ ontologies associated by its semantic
binding; the latter does reasoning in one ontology and its neighbours’ ontologies and their neigh-
bours’ ontologies and so on.

In the rest, we briefly review ontologies and ontology spaces in Section-5.2, and intro-
duce the notion of an autonomous ontology in Section-5.3. In Section-5.4 we introduce
the two reasoning mechanisms and the algorithms. The conclusion is given in Section-5.5.

5.2 Preliminaries: Ontology Space and foreign entity

In general understanding [PSHH04b], an ontology is a set of annotated terminologi-
cal axioms and facts. Current discussion is based on normal Description Logic (DL)
[BCM+03]. The proposed framework can be restricted or generalized to some DL lan-
guages such as OWL, SHOIN(D+), etc.

5.2.1 Ontology and ontology space

Let C be a finite set of concept names, R a finite set of role names, and E a finite sets of
individual names. A language L has a vocabulary of the disjoint union of C, R and E.

Definition 23 (Ontology) Let L be the language. An Ontology O is a tuple 〈T,A〉, where
T and A are TBox and ABox respectively in Description Logic on L.

Definition 24 (Ontology interpretation) An (abstract) ontology interpretation I is a pair〈
∆I , ·I〉, in where ∆I is an nonempty domain, and ·I is a mapping that assigns

1. to each concept name c ∈ C a subset of ∆I ,

2. to each role name R ∈ R a subset of ∆I ×∆I ,

3. to each individual name e ∈ E an element of ∆I .

Definition 25 (Ontology Space) Let I be a set of indexes, standing for a set of URIs for
ontologies. Let LI = {Li}i∈I be a set of languages. An Ontology Space OI on LI is a
family {Oi}i∈I , s.t. every Oi is an ontology on language Li, where i ∈ I .

In ontology space OI = {Oi}i∈I , we denote, by Ci the set of concept names in
ontology Oi; we define Ri and Ei analagously. Actually language Li has a vocabulary of
the disjoint union of Ci, Ri and Ei. In the rest of the chapter, we use language entity to
denote a concept, role, or individual in one ontology.
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5.2.2 Foreign Entity

In ontology space, sometimes a language entity is defined in one ontology, but could be
used in another ontology. So we partition the language Li in two parts: the local entity and
the foreign entity (originated from local language and foreign language in [BGvH+03]).
Intuitively, local entities are the roles, concepts, and individuals that one invites in her
own ontology; foreign entities are the roles, concepts, and individuals that she borrows
from the other ontologies in order to define something in her ontology.

In this chapter, when we are talking about semantics and reasoning, we always tell a
language entity in the ontology space by a way showing (1) where it is used, and (2) where
it is originally defined. Suppose that C ∈ Li and i, j ∈ I , then formally in ontology space
we have a language entity like, (i : j : C), which means a language entity C appears in
ontology Oi, but is originally defined in ontology Oj . This kind of denotation is applied
to concepts, roles, and individuals in ontology space.

One of the advantages of this denotation is, in syntax two concepts/roles with the
same name but used in different ontologies are distinguishable. For example, suppose we
use (BMW : auto : engine) for the engines in BMW car ontology, and (Toyota : auto :
engine) for those in Toyota car ontology; obvious these two concepts should be different,
and it is easy to see from the syntax: (BMW :auto :engine) 6= (Toyota :auto :engine).
This denotation is important in this chapter because, the approach proposed in this chapter
assigns local semantics to this kind of concepts/roles, and treats them as totally different
entities.

5.3 Autonomous Ontology

In one ontology space, each ontology reflects the subjective opinion on a partial structure
of the universe. In Semantic Web, in general one party presents her personal knowledge
(understanding) by her ontology. Thereafter we argue each ontology should be semantical
independent and keeping autonomy.

Formally an autonomous ontology is composed by two parts: one is an ontology which
is to be interpreted locally in order to keep the autonomy of one party; the other is a set of
foreign entities, which is called semantic binding in this chapter, in order to accept foreign
information or knowledge from the other parties.

Definition 26 (Autonomous Ontology) Let OI = {Oi}i∈I be an ontology space, where
I is a set of indexes. An autonomous ontology is a tuple AOi = 〈Bi, Oi〉, in which
Oi ∈ OI , and Bi is the semantic binding of AOi, which is a set of foreign entities.

An autonomous ontology space AOI is a set of autonomous ontologies. In an au-
tonomous ontology space AOI = {AOi}i∈I , if an entity (j : j : x), which is original
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AO1

AO2

2: 2 : A ≡ 2: 1 : E

2: 2 : B v 2: 1 : E

2: 2 : C v 2: 1 : F

· · ·
2: 2 : C v 2: 1 : G

1: 1 : F v 1: 1 : E
· · ·
1: 1 : G v 1: 1 : F

AO3

3: 3 : S ≡ 3: 2 : A

3: 3 : T ≡ 3: 2 : C

Figure 5.1: Autonomous ontology space.

defined in AOj , is semantic bounded in AOi; i.e., (i : j :x) ∈ Bi, then we say AOj is the
binding neighbour of AOi.

In fact it is easy to treat an autonomous ontology as a normal ontology; for example
in OWL we could just introduce a binding annotation like:

Annotation ( binding <http://www.auto.org/engine\#> )

to express the semantic binding. So in the rest of the chapter sometime we also mean an
autonomous ontology by ontology.

Example 10 (Autonomous Ontology) Consider the autonomous ontology space in Figure-
5.1, suppose we have following semantic bindings: B1 = ∅, B2 = {(2 :1 :E), (2 :1 :F )},
and B3 = {(3 : 2 :A), (3 : 2 :C)}. So AO1 is the binding neighbour of AO2, and AO2

is the binding neighbour of AO3. We note that in autonomous ontology it allows some
foreign entity outside of the semantic binding, e.g., (2 :1 :G) in AO2. �

5.3.1 Local interpretation

Definition 27 (Local Interpretation) For autonomous ontology AOi = 〈Bi, Oi〉, a local
interpretation Ii is a pair

〈
∆Ii , ·Ii

〉
, in where ∆Ii is an nonempty domain, and ·Ii is a

mapping , s.t. ·Ii assigns

1. (for local entities)

(a) a subset of ∆Ii to each local concept name (i : i :c);

(b) a subset of ∆Ii ×∆Ii to each local role name (i : i :r);

(c) an element of ∆Ii to each local individual name (i : i :e),

2. and for i 6= j (for foreign entities)
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(a) a subset of ∆Ii to each foreign concept name (i :j :c);

(b) a subset of ∆IiT imes∆Ii to each foreign role name (i :j :r);

(c) an element of ∆Ii to each foreign individual name (i :j :e).

As we see in the above definition, in local interpretation not only local entities but
also foreign entities including those in the semantic binding are interpreted under local
domain. Actually, the local interpretation of an autonomous ontology is the interpretation
of the ontology. From this aspect the abstract interpretation of ontology in Section-5.2
is also a local interpretation. The difference is, the definition in the last section is for a
single ontology, but here we focus on one ontology among an ontology space.

Following common understanding, if an axiom a ∈ A is true under an interpretation
I, we say that interpretation I satisfies the axiom a , and denote this by I |= a.

Definition 28 (Satisfiability of autonomous ontology) Let AOi be an autonomous on-
tology and an I its local interpretation, we say that I satisfies AOi, if for any axiom
a ∈ AOi, we have I |= a. We call I a local model of AOi, and denote this fact by
I |=L AOi.

Definition 29 (Local Entailment) Let AOi be an autonomous ontology, λ a concept de-
scription or an assertion. We say that λ is a local entailment of AOi, iff for any local
model Ii of AOi, Ii |= λ. This fact is denoted by AOi |=L λ.

Example 11 (Local semantics) Consider the autonomous ontology space in Figure-5.1.
We have AO2 |=L (2 :2 :B) v (2 :2 :A), because for any local model I,

I |= (2:2 :B) v (2 :1 :E), and

I |= (2:2 :A) ≡ (2 :1 :E)
I |= (2:2 :B) v (2 :2 :A)

.

5.3.2 C-binding Consistency

For autonomous ontology AOi ∈ AOI , let Bi = {⋃j∈I Bij} be the semantic binding 1, in
which Bij = {(i : j :C)}i,j∈I contains all of the semantic-bounded foreign entities which
are original defined in Oj .

In autonomous ontology AOi ∈ AOI , a j-concept (j-role) is an class (property) de-
scription which is composed by the entities in Bij . For example, a j-concept ofAOi could
be ∃(i :j :hasChild).(i :j :Male).

Let λj be a j-concept , obviously in λj all of the entities are prefixed by “i : j ”. If
we change the prefix of every entity in λj from “i : j ” to “j : j ”, and then we get λ′j .
We call λ′j the original image of λj in Oj . For example, let λj be (i : j :Person) u ∀(i :

1It is possible that some foreign entities are not included in Bi. Actually these foreign entities are not
semantic-bounded; they are “free-access” entities according to [ZSG06].
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symbol I21 I22

T op {α, β} {α, β}
(2 :2 :A) {α} {α, β}
(2 :2 :B) {α} {α}
(2 :2 :C) {α, β} {β}
(2 :1 :E) {α} {α, β}
(2 :1 :F ) {α, β} {β}
(2 :1 :G) {α, β} {α, β}
· · · · · · · · ·

(2 :1 :F ) v (2 :1 :E) Not satisfied Satisfied

Table 5.1: Example of interpretations for the autonomous ontology AO2.

j : hasChild).(i : j : Female), then its original image λ′j is (j : j : Person) u ∀(j : j :
hasChild).(j :j :Female).

We note that the original image λ′j of a j-concept λj may not has a concept name in
Oj; it may not be explicitly defined there.

Definition 30 (C(j)-binding Consistent Model) Let AOi = 〈Bi, Oi〉 be an autonomous
ontology, and j ∈ I . Let I be a local model of AOi, if for any j-concept λj , we have

I |= λj iff AOj |=L λ′j (5.1)

then we say I is the C(j)-binding consistent model ofAOi. This fact is denoted by I |=C(j)
AOi

Example 12 (C(j)-binding consistent model) Let ∆2 = {α, β} be the domain of AO2

in Figure-5.1. Considering following two local interpretations of AO2:

Obviously both I21 and I22 are local models of AO2, i.e., I21 |=L AO2 and I22 |=L
AO2. Let λ = (2 : 1 : F ) v (2 : 1 : E), from Table-5.1 we find I21 6|= λ. Since
B21 = {(2 : 1 :E), (2 : 1 :F )}, λ is the 1-concept, and AO1 |=L λ, we have I21 is not a
C(1)-binding consistent model. Actually I22 is a C(1)-binding consistent model of AO2.
In this example we also note that foreign entity outside of the semantic binding does not
carry any semantical information from its original ontology; e.g., since (2 : 1 :G) 6∈ B21,
although AO1 |=L (1 :1 :G) v (1 :1 :F ), in AO2 C(1)-binding consistent model I22 does
not need to satisfy (2 :1 :G) v (2 :1 :F ). �

Definition 31 (C(j)-binding Entailment) Let AOi be an autonomous ontology, λ a con-
cept description2 or an assertion. We say that λ is the C(j)-binding entailment of AOi,
iff for any C(j)-binding consistent model I of AOi, I |= λ. This fact is denoted by
AOi |=C(j) λ.

2Here for convenient we treat a subsumption x v y as a concept description ¬x t y. Same for the rest
of the chapter.
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In Example-12 we have AO2 |=C(1) (2 :1 :F ) v (2 :1 :E), and AO2 |=C(1) (2 :2 :C) v
(2 :2 :A).

Definition 32 (C-binding Consistency) Let I be a local model of AOi. If for any j 6=
i ∈ I , I is the C(j)-binding consistent model of AOi, then I is the C-binding consistent
model of AOi. We say AOi is C-binding consistent in AOI if there exists a C-binding
consistent model.

We say an autonomous ontology AOi = 〈Bi, Oi〉 is C-satisfiable, if it is C-binding
consistent and Oi is satisfiable.

Let AOi be an autonomous ontology and i 6= j ∈ I , we note that not every local
model is a C(j)-binding consistent model; it is not necessary for a local model to satisfy a
j-concept , but it is for a C(j)-binding consistent model. We also note that not every C(j)-
binding consistent model is a C-binding consistent model; a C(j)-binding consistent model
may not satisfies a k-concept for k 6= j. So an autonomous ontology which is satisfiable
under the local semantics could be unsatisfiable under the autonomous semantic.

Definition 33 (C-entailment) Let AOi be an autonomous ontology, λ a concept descrip-
tion or an assertion. We say that λ is the C-entailment of AOi, iff for any C-binding
consistent model Ii of AOi, Ii |= λ. This fact is denoted by AOi |=C λ.

Lemma 34 LetAOi be an autonomous ontology, λ a concept description or an assertion.
We have AOi |=L λ =⇒ AOi |=C λ.

In this chapter, we use ΠC(AOi) = {λ| AOi |=C λ} to denote the set of C-entailments
of AOi, and call it Cautious theory of AOi. Comparably, we also use ΠL(AOi) =
{λ| AOi |=L λ} to denote the set of local entailment of AOi under local semantics,
and call it local theory of AOi.

Theorem 35 For a autonomous ontology AOi, we have ΠL(AOi) ⊆ ΠC(AOi).

Proposition 23 Let AOi = 〈Bi, Oi〉 be C-binding consistent, for any j 6= i ∈ I and any
j-concept λ of AOi, we have AOi |=C λ if AOj |=L λ′ .
Example 13 In the autonomous ontology space in Figure-5.1, we have AO2 |=C (2 :
2 : C) v (2 : 2 : A). However for AO3, since AO2 6|=L (2 : 2 : C) v (2 : 2 : A),
AO3 6|=C (3 :2 :C) v (3 :2 :A), and then we do not have AO3 entails (3 :3 :T ) v (3 :3 :S)
under C-entailment. �

In this chapter when we say cautious semantics of an autonomous ontology we mean
the C-binding model(s). We say an autonomous ontology space AOI is C-binding con-
sistent if every autonomous ontology is C-binding consistent.

Definition 36 (C-entailment of Ontology Space) Suppose autonomous ontology space
AOI = {AOi}i∈I is C-binding consistent. Let AOi ∈ AOI , and λ a concept description
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or an assertion. We say that λ is the C-entailment of autonomous ontology space AOI ,
denoted by AOI |=C λ , iff there exists i ∈ I, s.t. AOi |=C λ . We also say i ∈ I is the
provenance of the entailment λ .

5.3.3 B-binding Consistency

B-binding stands for “brave binding”. One autonomous ontology not only relies on its
binding neighbors, it also trusts the neighbors of its binding neighbors. In this way B-
binding could build more stronger semantic cooperation among multiple ontologies than
C-binding, in the sense that some information in one ontology is transitively reused by,
not only its neighbour but also the neighbour’s neighbour.

For example in the autonomous ontology space in Figure-5.1, AO3 does not entail
(3 :3 :T ) v (3 :3 :S) under C-binding semantics because AO2 6|=L (2 :2 :C) v (2 :2 :A);
but it could entail this subsumption under B-binding semantics because AO2 |=C (2 : 2 :
C) v (2 :2 :A). Details will be given later.

Definition 37 (B-binding Entailment) Let AOi = 〈Bi, Oi〉 be an autonomous ontology,
and I a local interpretation of it. We say I is a B-binding consistent model ofAOi, which
is denoted by I |=B AOi, if

1 I is a local model of AOi, and

2 for any j ∈ I and any j-concept λj we have I |= λj iff

(a) AOj |=L λ′j, or
(b) AOj |=C λ′j, or
(c) AOj |=B λ′j

We say AOi is B-binding consistent in AOI if there exists a B-binding consistent model.
Let ψ be a formula. For any B-binding model I of AOi, if I |= ψ, then we say ψ is the
B-entailment of AOi. This fact is denoted by AOi |=B ψ

Above is a recursive definition on the B-binding semantics for an autonomous ontol-
ogy . Local knowledge in one ontology is used to support a logical result in its binding
neighbour-reached ontology. We say AOj is binding neighbour-reached from AOi, if
there exists a sequence (AOx,1, AOx,2, · · · , AOx,k) such that for 1 ≤ y < k AOx,(y+1)

is a binding neighbour of AOx,y and AOx,1 = AOi and AOx,k = AOj .

From above definition it is easy to get the following lemma.

Lemma 38 For a autonomous ontology AOi ∈ AOI , every B-binding model is a C-
binding model.

KWEB/2007/D2.5.8/v1.0 31 December, 2007 69



5. SEMANTIC COOPERATION AND KNOWLEDGE REUSE BY USING AUTONOMOUS ONTOLOGIES

Lemma 39 LetAOi be an autonomous ontology, λ a concept description or an assertion.
We have AOi |=C λ =⇒ AOi |=B λ.

In this chapter, we use ΠB(AOi) = {λ| AOi |=B λ} to denote the set of B-entailments
of AOi, and call it brave theory of AOi. From Lemma-38 and Lemma-39, the following
theorem is obvious.

Theorem 40 For a autonomous ontology AOi, we have ΠC(AOi) ⊆ ΠB(AOi).

According to Definition-37 the following proposition is obvious.

Proposition 24 Let AOi = 〈Bi, Oi〉 be B-binding consistent, for any j 6= i ∈ I and any
j-concept λ of AOi, we have AOi |=B λ if AOj |=C λ′ .
Example 14 In the autonomous ontology space in Figure-5.1, we have AO3 |=B (3 : 3 :
T ) v (3 :3 :S) under the brave semantics.

In this chapter when we say brave semantics of an autonomous ontology we mean the
B-binding model(s). We say an autonomous ontology space AOI is B-binding consistent
if every autonomous ontology is B-binding consistent.

Definition 41 (B-entailment of Ontology Space) Suppose autonomous ontology space
AOI = {AOi}i∈I is B-binding consistent. Let AOi ∈ AOI , and λ a concept description
or an assertion. We say that λ is the B-entailment of autonomous ontology space AOI ,
denoted by AOI |=B λ , iff there exists i ∈ I, s.t. AOi |=B λ . We also say i ∈ I is the
provenance of the entailment λ .

5.4 Tableaux Algorithms of Reasoning on ALCN
In this section, we present two distributed tableaux algorithms to realize cautious rea-
soning (under cautious semantics) and brave reasoning (under brave semantics) in au-
tonomous ontology space respectively.

Here we consider ontologies represented as ALCNTBoxes (which consists of only
class axioms). These algorithms are designed for verifying class satisfiability in an au-
tonomous ontology space AOI , and can also be used to verify class subsumption3.

5.4.1 Preliminary of Tableaux Algorithm

Tableaux algorithms are very useful to solve class satisfiability problem. They test the
satisfiability of a class λ4 by trying to construct an interpretation for λ, which is repre-

3Since subsumption relation C v D in AOi w.r.t. AOI iff C u ¬D is unsatisfiable in AOi w.r.t. AOI .
4Here we assume λ is in negation normal form; i.e., negation is only applied to class names.

70 31 December, 2007 KWEB/2007/D2.5.8/v1.0



D2.5.8 Integrating RDF and OWL with Other Reasoning ParadigmsIST Project IST-2004-507482

sented by a completion tree T which is formally defined as following: A completion tree
is a tuple T = 〈x0, N,E,L〉, where x0 is the root of T , N and E are the sets of nodes and
edges, respectively, of T , and Lis a function that maps a node x in T to its label L(x) ,
and an edge 〈x, y〉 in T to its L(〈x, y〉), respectively.

A tableaux algorithm starts from an labeled initial tree (usually simply a root node),
and is expanded by repeatedly applying the completion rules. The algorithm terminates
either when T is complete (no further completion rules can be applied) or when an obvi-
ous contradiction, or clash, has been revealed.

Intuitively, our tableaux algorithm expands a completion tree w.r.t. the local axiom
box, and then project some part of the tree (which is related to other autonomous ontol-
ogy ) for further expansion w.r.t. the axiom boxes of the neighbour autonomous ontology ,
(e.g., sending the original image of a j-concept toAOj and start a new tableaux algorithm
to check the satisfiability) and then back-project some semantics results to the local com-
pletion tree. We say that a completion tree T is S(j)-bound if there exist some j-concept
or j-role descriptions in the labels of all nodes and edges of T . In this section, we use
procedure Tab(AOi, T ) as a well known (local) ALCN tableaux algorithm to expand T
w.r.t. a local ontology AOi. Tab(AOi, T ) has two distinguished features that we need: (1)
it takes not only a single node but an arbitrary initial completion tree, (2) the algorithm
can cache reasoning states, i.e., backtracking points. In the algorithms below we also use
backtrack(Tab(AOi, T )) to denote the operation to expand tree T from the backtracking
point and return a completion tree.

Projection is to bring information from one autonomous ontology to the binding
neighbour.

Definition 42 (Projection of Completion Tree) Let AOi = 〈Bi, Oi〉 be an autonomous
ontology, and Bij ∈ Bi the set of semantic binding of foreign entities from another au-
tonomous ontology AOj . Let T be a clash-free completion tree with root x0 in AOi. The
projection of T w.r.t. Bij , denoted as P (T ,Bij), is a completion tree T ′ = 〈x′0, N ′, E ′,L〉
generated in the following way:

1. N ′ = {x′ | if x ∈ N},

2. E′ = {〈x′, y′〉 | if 〈x, y〉 ∈ E},

3. L(x′) = { (j :j :C)| if (i :j :C) ∈ L(x) and (i :j :C) ∈ Bij},

4. L(〈x′, y′〉) = { (j :j :R)| if (i :j :R) ∈ L(〈x, y〉) and (i :j :R) ∈ Bij},

5.4.2 Cautious Reasoning

Cautious reasoning relies on the knowledge of an ontology as well as the knowledge of
its binding neighbour ontologies.

Given an autonomous ontology space AOI = {AOi}i∈I , the procedure C-Tab(AOI ,
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k, λ)5 verifies the satisfiability of an ALC class description λ in ontology AOk under the
cautious semantics w.r.t. AOI .

Algorithm A-1: C-Tab(AOI , k, λ)
1: Let T := Tab(AOk, 〈x0, {x0}, ∅, {L(x0) = {λ}}〉) // local expansion w.r.t. AOk

2: repeat
3: if T has a clash then
4: return unsatisfiable
5: end if
6: for every binding neighbour autonomous ontology AOi (i ∈ I) of AOk do
7: if there exist S(i)-bound maximal sub-trees T1, . . . , Tn of T with roots x1, ..., xn, respectively

then
8: T ′1 := P (T1,Bki), . . . , T ′n := P (Tn,Bki) // sub-trees projection to AOi

9: T ′1 := Tab(AOi, T ′1 ), . . . , T ′n := Tab(AOi, T
′
n) // local expansion of T ′1 , . . . , T ′n w.r.t. AOi

10: if any of T ′1 , . . . , T ′n has a clash then
11: if T is backtrackable then
12: T :=backtrack(Tab(AOi, T )) // backtrack and expand
13: else
14: return unsatisfiable
15: end if
16: end if
17: end if
18: end for
19: return satisfiable
20: until false

In this algorithm, T is initialized with a root x0 with L(x0) = {λ}, and is expanded
by local completion rules w.r.t. AOk (line 1 of A-1). As T can have multiple binding
neighbour ontologies, each of them should be taken care (line 6 of A-1). Note that T
might not be k-bound, the algorithm just project the maximal k-bound sub-trees, and then
expand them by local completion rules w.r.t. AOi, and expanded w.r.t. AOI (lines 7-9 of
A-1). If any of the projected sub-tree has a clash, T needs to be backtracked (line 12 of
A-1), expanded and start the checking all over again.

Theorem 43 C -Tab(AOI , k, λ) is a decision procedure to verify the cautious semantics
satisfiability of an ALCN -class description λ in ontology AOk w.r.t. AOI .

To prove the theorem, we need to show that: (1) The algorithm always terminates. (2)
The algorithm returns unsatisfiable if AOI 6|=C λ. (3) The algorithm returns satisfiable if
AOI |=C λ. Due to limited space, we skip the detail.

5This Algorithm is originated from [PSZ06], in which only positive concepts/roles can be projected to
the original ontology, but the approach in this chapter does not have this restriction.
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5.4.3 Brave Reasoning

Brave reasoning not only relies on its binding neighbors, but also trusts the neighbors of
its binding neighbors.

Given an autonomous ontology space AOI = {AOi}i∈I , the procedure B -Tab(AOI ,
k, λ) verifies the satisfiability of an ALC class description λ in ontology AOk w.r.t. AOI

under brave semantics. It calls a recursive procedure DB-Tab(AOI , k, T ) to expands a
completion tree T of AOk w.r.t. AOI under brave semantics.

Algorithm A-2: B -Tab(AOI , k, λ)
1: Let T := 〈x0, {x0}, ∅, {L(x0) = {λ}}〉)
2: T := DB-Tab(k, T )
3: if T has a clash then
4: return unsatisfiable
5: else
6: return satisfiable
7: end if

Algorithm A-3: DB-Tab(AOI , k, T )
1: let T :=Tab(AOk, T ) // local expansion w.r.t. AOk

2: repeat
3: if T has a clash then
4: return T // unsatisfiable
5: end if
6: for every binding neighbour autonomous ontology AOi of AOk do
7: if there exist S(i)-bound maximal sub-trees T1, . . . , Tn of T with roots x1, ..., xn, respectively

then
8: T ′1 := P (T1,Bki), . . . , T ′n := P (Tn,Bki) // sub-trees projection from AOk to AOi

9: T ′1 := DB-Tab(AOI , i, T ′1 ), . . . , T ′n := DB-Tab(AOI , i, T
′
n) // recursive calling DB-Tab for

brave reasoning on T ′1 , . . . , T ′n w.r.t. AOi

10: if any of T ′1 , . . . , T ′n has a clash then
11: if T is backtrackable then
12: T :=backtrack(Tab(Oxi, T )) // backtrack and expand
13: else
14: return T // unsatisfiable
15: end if
16: else
17: T1 := β(Bki, T1, T ′1 ), . . . , Tn := β(Bki, Tn, T ′n) //back-project
18: end if
19: end if
20: end for
21: if T is not changed, then
22: return T // satisfiable
23: end if
24: until false

In this algorithm, initially T has a root x0 with L(x0) = {λ} (line 1 of A-2), and then
it is expanded by local completion rules w.r.t. AOk (line 1 of A-3). As T can have multiple
binding neighbour ontologies, each of them should be taken care (line 6 of A-3). Note

KWEB/2007/D2.5.8/v1.0 31 December, 2007 73



5. SEMANTIC COOPERATION AND KNOWLEDGE REUSE BY USING AUTONOMOUS ONTOLOGIES

that T might not be S(i)-bound, maximal S(i)-bound sub-trees then should be projected,
and expanded by local completion rules w.r.t. AOi, if possible it also need to project to
the binding neighbour of AOi. (lines 7-9 of A-3). If any of the projected sub-tree has
a clash, T needs to be backtracked (line 12 of A-3), expanded and start the checking all
over again; otherwise, we need to back-project the new S(i)-bound labels back to T (line
17 of A-3). The algorithm A-3 would not stop until T is not changed.

Theorem 44 B -Tab(AOI , k, λ) is a decision procedure to verify the brave semantics
satisfiability of an ALCN -class description λ in ontology AOk w.r.t. AOI .

To prove the theorems, we need to show that: (1) The algorithms always terminates.
(2) The algorithm returns unsatisfiable if AOI 6|=B λ. (3) The algorithm returns satisfiable
if AOI |=B λ. Due to limited space, we skip the proof.

5.5 Conclusions

In general understanding, ontologies are used for describing the structure of domain
knowledge. Techniques for (partial) ontology reuse are important for ontology building,
ontology discovery, and practical application of ontologies.

How to realise semantic cooperation among multiple ontologies is an important prob-
lem in the field of (partial) ontology reuse. In this chapter we have proposed and analyzed
a new framework for managing multiple ontologies that both preserves the autonomy of
individual ontologies and also enables the semantic cooperation of different ontologies.
We have also proposed two different reasoning mechanisms, called cautious reasoning
and brave reasoning, for this framework and studied their properties. As we discussed
in Section-5.1, this work is related to DDL [BS03], C-OWL [BGvH+03], E-Connection
based approach [GPS04], P-DL [BCH06], Semantic Importing [PSZ06], and conservative
extension [GK07].

Ontology modularization [Rec03, SK04, GPSK, PMT05, GPSK06] is another inter-
esting problem in this field. It attempts to partition one ontology and isolate functional
modules. How to present formal functional modules in a single ontology by semantic
binding (as proposed in this chapter) could be an interesting extension of this approach.

Another interesting task is to explore whether our approach to ontology spaces and
semantic binding can be applied to problems of forgetting, importing and extending in
ontology spaces.

A natural task for the immediate future is to implement our two reasoning mechanisms
and empirically evaluate their performance.
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