
D1.3.8/D2.5.7 User Syntaxes for
Ontology Languages

Mustafa Jarrar
Rob Shearer
Boris Motik

Ian Horrocks
Christine Golbreich
Matthew Horridge

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB Deliverable D1.3.8 (WP1.3) /
D2.5.7 (WP2.5)

Keyword list: ontology language, RDF, OWL, syntax, ORM, OBO

The RDF/XML serialization for OWL has proven quite successful as an interchange format, but
it was never intended to be read or written by humans, nor to serve as an API for ontology
manipulation—complex and verbose encodings make the encoding of even simple ontological
structures quite arcane. In this deliverable we describe three different surface syntaxes which can
be mapped to OWL: the Open Biological Ontologies format, a new Structured Ontology Format
designed specifically to make working with OWL ontologies easier, and Object Role Modeling.

Copyright c© 2008 The contributors

Document Identifier KWEB/2007/D2.5.7/v1.0
Project KWEB EU-IST-2004-507482
Version 1.0
Date 31 December, 2007
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas /Informatics and Telematics Institute
Free University of Bozen-Bolzano
Institut National de Recherche en Informatique et en Automatique
University of Manchester
University of Trento
Vrije Universiteit Amsterdam
University of Innsbruck

4

Changes

Version Date Author(s) Changes
0.0 21.05.07 Mustafa Jarrar Creation
0.1 21.05.07 Mustafa Jarrar Chapter 3 Included
0.2 28.05.07 Mustafa Jarrar Chapter 3 revised according to Rob’s comments
0.9 Rob Shearer Compiled and edited to first draft
1.0 Rob Shearer Edited in response to reviewer comments

Executive Summary

The OWL recommendation includes a well-defined text-based syntax for encoding on-
tologies based on the Resource Description Format (RDF). This syntax has proven quite
successful as an interchange format, but it was never intended to be read or written by
humans—complex and verbose encodings make the serialization of even simple ontolog-
ical structures quite arcane. A more accessible surface syntax is needed.

Furthermore, there are a number of existing modeling languages which significantly
predate OWL, and which enjoy wide use within specific user communities. By defining a
mapping between these languages and OWL we both formalize their semantics and pro-
vide interoperability between the tools and ontologies available for these other languages,
and the tools available for working with OWL.

In this deliverable we describe three different surface syntaxes which can be mapped
to OWL: the Open Biological Ontologies format, a new Structured Ontology Format de-
signed specifically to make working with OWL ontologies easier, and Object Role Mod-
eling.

Contents

1 Introduction 1

2 Open Biomedical Ontologies Format 3
2.1 Why Map OBO to OWL 1.1? . 4

2.1.1 OBO at a Glance . 4
2.1.2 Why Formalize OBO Syntax? 5
2.1.3 Why Formalize OBO Semantics? 6
2.1.4 Why Use OWL 1.1? . 8
2.1.5 Reusing Existing Tools . 8

2.2 Providing a Formal Specification for OBO 9
2.2.1 Formalization of OBO Syntax 9
2.2.2 Mapping OBO to OWL . 10

2.3 Integrating OBO with the Semantic Web 11
2.3.1 Extending Semantic Web Tools to Support OBO 11
2.3.2 Reasoning Support for OBO . 12
2.3.3 Performance of Reasoning with OBO 14

2.4 Conclusion . 15

3 Structured Ontology Format 16
3.1 Background . 17
3.2 Structured Ontology Format . 18

3.2.1 Data Model . 18
3.2.2 Expression Language . 21
3.2.3 Serialization . 22
3.2.4 Special Forms . 22

3.3 Discussion and Future Work . 23

4 Object Role Modeling 26
4.0.1 Object Role Modeling (ORM) 27
4.0.2 Description Logics . 28

4.1 The formalization of ORM using DLRifd 30
4.1.1 Object-Types . 30
4.1.2 Roles and relationships . 31

iii

CONTENTS

4.1.3 ORM unary roles . 32
4.1.4 Role Mandatory . 33
4.1.5 Disjunctive Mandatory . 34
4.1.6 Role Uniqueness . 34
4.1.7 Predicate Uniqueness . 35
4.1.8 External Uniqueness . 36
4.1.9 Role Frequency Constraints . 38
4.1.10 Multiple-role Frequency Constraints 40
4.1.11 Subtypes . 40
4.1.12 Total Constraint . 41
4.1.13 Exclusive Constraint . 41
4.1.14 Value Constraints . 42
4.1.15 Subset Constraint . 43
4.1.16 Equality Constraint . 44
4.1.17 Exclusion Constraint . 45
4.1.18 Symmetric Ring Constraint (sym) 46
4.1.19 Asymmetric Ring Constraint (as) 47
4.1.20 Antisymmetric Ring Constraint (ans) 47
4.1.21 Irreflexive Ring Constraint (ac) 48
4.1.22 Acyclic Ring Constraint (ac) . 48
4.1.23 Intransitive Ring Constraint (ac) 48
4.1.24 Objectified Relations . 49

4.2 The Formalization of ORM using SHOIN /OWL 51
4.3 Implementation . 51
4.4 Related work . 53
4.5 Conclusions and future work . 53

5 Conclusion 55

iv 31 December, 2007 KWEB/2007/D2.5.7/v1.0

Chapter 1

Introduction

The Web Ontology Language (OWL) [BvHH+04] has been defined by the World Wide
Web Constortium (W3C) as part of its Semantic Web activity. Three dialects of the
language have been defined, two of which are based on Description Logics—a well-
understood family of knowledge representation formalisms with desirable computational
properties. Formal semantics and the availability of efficient and provably correct reason-
ing tools have made the OWL DL dialect of OWL the language of choice for ontology
development in fields as diverse as biology [SDCS05], medicine [GZB06], geography
[Goo05], astronomy [DRPM06], geology,1 agriculture [SLL+04], and defense [LAF+05].
Furthermore, OWL has been used to develop several large biomedical ontologies, such as
the Biological Pathways Exchange (BioPAX) ontology [RRL05], the GALEN ontology
[RR06], the Foundational Model of Anatomy (FMA) [GZB06], and the National Cancer
Institute thesaurus [HdCD+05]. Recently, the community of OWL users and developers
proposed an extension of OWL called OWL 1.1 [PSH06a], which has been accepted as a
member submission by the W3C. At the same time, a number of OWL-based tools have
been developed, such as the Protégé [KFNM04a] and SWOOP [KPH05a] editors, and the
FaCT++ [TH06], RACER [HM01], and Pellet [SP04] reasoners.

The OWL recommendation includes a well-defined text-based syntax for encoding
ontologies based on the Resource Description Format (RDF). This syntax has proven
quite successful as an interchange format, but it was never intended to be read or writ-
ten by humans—complex and verbose encodings make the serialization of even simple
ontological structures quite arcane. A more accessible surface syntax is needed.

Furthermore, there are a number of existing modeling languages which significantly
predate OWL, and which enjoy wide use within specific user communities. By defining a
mapping between these languages and OWL we both formalize their semantics and pro-
vide interoperability between the tools and ontologies available for these other languages,
and the tools available for working with OWL.

1http://sweet.jpl.nasa.gov/ontology/

1

http://sweet.jpl.nasa.gov/ontology/

1. INTRODUCTION

In this deliverable we describe three different surface syntaxes which can be mapped
to OWL.

In Chapter 2 we describe OBO, an ontology language that has often been used for
modeling ontologies in the life sciences. Its traditional definition is relatively informal, so
we provide a clear specification for OBO syntax and semantics via a mapping to OWL.
This mapping also allows us to apply existing Semantic Web tools and techniques to
OBO. We show that Semantic Web reasoners can be used to efficiently reason with OBO
ontologies. Furthermore, we show that grounding the OBO language in formal semantics
is useful for the ontology development process: using an OWL reasoner, we detected a
likely modeling error in one OBO ontology.

Chapter 3 presents a simple data model for the representation of OWL ontologies
(including the new features of OWL 1.1). The model is built from basic structures na-
tive to all common programming environments, so it can be used directly as an API for
ontology analysis and manipulation. Furthermore, serialization of these structures using
the widely-supported YAML standard yields a readable text format suitable for ontology
authoring by average users with text editors and code-management tools.

Finally, Chapter 4 focuses on Object Role Modeling (ORM), a graphical modeling
language suitable for use by domain experts unfamiliar with logic or formal knowledge
representation languages. ORM has long been used to encode the semantics of database
systems. Our mapping describes a translation ORM to the DLR and SHOIN Descrip-
tion Logics, the latter of which can be translated to OWL, allowing the use of OWL
reasoning engines to verify ORM models. A prototype implementation is described.

2 31 December, 2007 KWEB/2007/D2.5.7/v1.0

Chapter 2

Open Biomedical Ontologies Format

The Open Biomedical Ontologies (OBO) repository is a large library of ontologies from
the biomedical domain hosted by the National Center for Biomedical Ontology (NCBO).1

The majority of the ontologies in that repository are written in OBO Flat File Format2—
an ontology language originally designed for the Gene Ontology (GO) [ABB+00]. This
language (from now on called simply OBO) uses a simple textual syntax that was de-
signed to be compact, readable by humans, and easy to parse. The OBO community has
dedicated significant effort to developing tools such as OBO-Edit3—an integrated OBO
editor and reasoner.

In Section 2.1, we argue that there are many benefits in applying the tools and tech-
niques of the Semantic Web to OBO. For example, Semantic Web reasoners could be used
to provide guidance during ontology development; furthermore, modularization tech-
niques for OWL [GHKS07] could simplify the reuse of existing OBO ontologies. This
has been difficult up to now, however, since the OBO and Semantic Web communities
have been largely disjoint.

To enable interoperability between OBO and Semantic Web tools and systems, we
establish in Section 2.2 an exact relationship between OBO and OWL. This has not been
straightforward, mainly because the OBO specification is quite informal. The syntax of
the OBO language has not been formally specified, so our first step was to formalize
the syntax of OBO itself; we discuss the results in Section 2.2.1. Likewise, there is no
formal specification of OBO’s semantics: the effects of different constructs have been
described using natural language. We resolved ambiguities in these descriptions through
extensive discussions with OBO developers. Hence, our mapping, presented in Section
2.2.2, formalizes the consensus interpretation in the OBO community. We also relate our
mapping to several existing mappings from OBO to OWL.

In Section 2.3, we discuss how our mapping is used in practice. In Section 2.3.1 we

1http://www.bioontology.org/repositories.html
2http://www.geneontology.org/GO.format.obo-1_2.shtml
3http://oboedit.org/

3

http://www.bioontology.org/repositories.html
http://www.geneontology.org/GO.format.obo-1_2.shtml
http://oboedit.org/

2. OPEN BIOMEDICAL ONTOLOGIES FORMAT

discuss the technical aspects of our implementation. The complete replacement of OBO
with OWL is not desirable for the OBO community, as many OBO users are familiar with
both OBO-Edit and the OBO language, and find them convenient to use. Therefore, in-
stead of simply implementing a translator from OBO to OWL, we have embedded support
for OBO into existing Semantic Web ontology management infrastructure. In particular,
we extended the well-known OWL API [HBN07] with an OBO parser and serializer. All
tools built on top of the OWL API can thus directly load, process, and save OBO on-
tologies. Moreover, tools such as OBO-Edit could use the new API to provide similar
features, including direct access to OWL reasoners.

In Section 2.3.2, we show that reasoners implementing the formal semantics of OWL
can derive subsumption inferences that are missed by OBO-Edit’s reasoner. In fact, on one
of the OBO ontologies, our reasoner derived a new inference that highlights a probable
modeling error.

Classifying large biomedical ontologies requires optimized reasoners. In Section 2.3.3,
we show that OWL-based tools can be used to efficiently reason with OBO ontologies. To
this end, we classified a number of OBO ontologies using the FaCT++ [TH06] and Pel-
let [SP04] systems, as well as the novel hypertableau-based reasoner HermiT [MSH07].4

The design of HermiT was motivated by an analysis of the structure of biomedical on-
tologies such as GALEN and NCI. Our results show that HermiT’s improved handling
of GALEN is applicable to OBO ontologies as well: on several ontologies containing
complex cyclic definitions of terms, HermiT outperforms the other reasoners by orders of
magnitude. Thus, our mapping allows the OBO community to benefit from current and
future advances in reasoning technology while continuing to use their familiar ontology
language and tools.

2.1 Why Map OBO to OWL 1.1?

2.1.1 OBO at a Glance

An OBO ontology is a collection of stanzas, each of which describes one element of the
ontology. A stanza is introduced by a line containing a stanza name that identifies the
type of element being described. The rest of the stanza consists of lines, each of which
contains a tag followed by a colon, a value, and an optional comment introduced by “!”.

The following is an example of an OBO stanza defining the term (the OBO equiv-
alent of a class) GO:0001555 with name oocyte growth. This term is a sub-
class of the term GO:0016049. (The comment tells us that GO:0016049 is named
cell growth.) Furthermore, GO:0001555 has a part of relationship to the term
GO:0048601 (which is named oocyte morphogenesis). Finally, GO:0001555
is defined as an intersection of the term GO:0040007 (growth) and of a relationship

4http://www.cs.man.ac.uk/˜bmotik/HermiT/

4 31 December, 2007 KWEB/2007/D2.5.7/v1.0

http://www.cs.man.ac.uk/~bmotik/HermiT/

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

has central participant to CL:0000023 (oocyte).

[Term]
id: GO:0001555
name: oocyte growth
is_a: GO:0016049 ! cell growth
relationship: part_of GO:0048601 ! oocyte morphogenesis
intersection_of: GO:0040007 ! growth
intersection_of: has_central_participant CL:0000023 ! oocyte

The following stanza defines the relationship type (the OBO equivalent of a prop-
erty) propreo:is described by. The terms propreo:chemical entity and
Description177 are used as the domain and range, respectively, of the relationship

type being defined.

[Typedef]
id: propreo:is_described_by
domain: propreo:chemical_entity
range: __Description177

Finally, the following stanza defines the instance (the OBO equivalent of an indi-
vidual) propreo:water molecule. The instance is made a member of the term
propreo:inorganic solvent molecule and has propreo:CHEBI 15377 for
the value of the relationship propreo:is described by.

[Instance]
id: propreo:water_molecule
instance_of: propreo:inorganic_solvent_molecule
property_value: propreo:is_described_by propreo:CHEBI_15377

2.1.2 Why Formalize OBO Syntax?

The line-oriented syntax of OBO makes parsing ontologies into stanzas and tag-value
pairs straightforward. The tag values, however, usually have a structure that depends on
the tag type. This structure is described in the OBO specification in natural language. For
example, the structure of intersection of tag values is described as follows:

This tag indicates that this term represents the intersection of several other
terms. The value is either a term id, or a relationship type id, a space, and a
term id. [...]

This style of description is quite informal and it does not make the conceptual struc-
ture of the OBO language clear. For example, the above description does not provide any

KWEB/2007/D2.5.7/v1.0 31 December, 2007 5

2. OPEN BIOMEDICAL ONTOLOGIES FORMAT

intuition behind the distinction between the two alternative structures of allowed values.
Furthermore, the specification of the structure is conflated with low-level lexical issues,
such as whitespace handling. As a result, neither aspect of the language is robustly ad-
dressed; for example, the treatment of escape characters is dependent on the structure of
tag values. These issues make the implementation of an OBO parser quite difficult in
practice.

2.1.3 Why Formalize OBO Semantics?

The semantics of OBO is also defined informally, by providing natural-language descrip-
tions for different types of tag-value pairs. For example, the OBO specification defines
the semantics of the relationship tag as follows:

This tag describes a typed relationship between this term and another term.
[...] The necessary modifier allows a relationship to be marked as “not
necessarily true”. [...]

Such a description is clearly ambiguous and informal. The notion of a relationship
being “necessarily true” is completely undefined; in fact, the notion of a relationship has
not been formalized either. Computational logic can be used to provide an unambiguous
interpretation for such statements. For example, the relation tag from the stanza for
the term GO:0001555 from Section 2.1.1 can be interpreted in at least three different
ways:

• Existantial interpretation: Each instance of the term GO:0001555 must have at
least one part of relationship to an instance of the term GO:0048601. This
reading corresponds to the DL axiom GO:0001555 v ∃part of.GO:0048601.

• Universal interpretation: Instances of GO:0001555 can be connected through
part of relationships only to instances of GO:0048601. This reading corre-
sponds to the DL axiom GO:0001555 v ∀part of.GO:0048601.

• Constraint interpretation: Instances of the term GO:0001555 can be connected
through part of relationships; furthermore, the end-points of the relationship
must be known to be instances of GO:0048601. Such a statement cannot be for-
malized in standard DLs; however, it can be expressed in various extensions of DLs
[MHS07, DNR02].

As another example, consider the natural-language explanation of the semantics for
the intersection of tag:

6 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

[...] For example:

intersection of: GO:00001
intersection of: part of GO:00002

This means that the term is a subclass of any term that is both a subclass of
GO:00001 and has a part of relationship to GO:00002. [...]

Here, it is not clear whether the defined term is equivalent to or a subclass of the inter-
section of the other terms. The textual description has a “procedural” flavor: it says that
the defined term should be inferred to be a subclass of other terms, so one might conclude
that the subclass relationship is the proper reading. Our discussions with the OBO devel-
opers, however, revealed that the intended interpretation is equivalence. The union of
tag suffers from analogous problems.

The description of OBO-Edit’s reasoner provides an insight into the intended seman-
tics of OBO. The OBO-Edit User’s Guide5 defines the following three reasoning rules:

1. For each transitive relationship R (such as is a or part of), whenever the ontol-
ogy contains a→ R→ b and b→ R→ c, an implied relationship a→ R→ c is
added.

2. For each term a defined as an intersection of terms b1 and b2, implied relationships
a→ is a→ b1 and a→ is a→ b2 are added.

3. For each term a defined as an intersection of terms b1 and b2, whenever some term
c has relationships c→ is a→ b1 and c→ is a→ b2, an implied relationship
c→ is a→ a is added.

This definition is procedural, and it misses important inferences. Consider the follow-
ing example:

[Term] [Term]
id: A id: B
relationship: R B is a: C

This simple OBO ontology says that A has an R-relationship to B, and that B is a sub-
class of C. Regardless of which of the three previously suggested interpretations for the
relationship tag we choose, we should derive that A has an R-relationship to C; how-
ever, OBO-Edit’s reasoning procedure does not derive that. Furthermore, the second and
third inference rules clearly state that intersection of is interpreted as equivalence,
which may be in conflict with the natural-language description of the semantics.

To sum up, OBO suffers from problems very similar to those identified in seman-
tic networks [Qui68]. The DL family of ontology languages was developed precisely to

5Available as part of the OBO-Edit distribution.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 7

2. OPEN BIOMEDICAL ONTOLOGIES FORMAT

address such problems—that is, to unambiguously specify the semantic properties of all
ontology constructs. A mapping of OBO into OWL lends itself as an obvious way of pro-
viding formal semantics to OBO, and it allows for the application of sound and complete
reasoning algorithms.

2.1.4 Why Use OWL 1.1?

In OBO, it is possible to make a property reflexive and/or (anti-)symmetric, as well as
to say that one property is “transitive over” another: if P1 is transitive over P2, then for
any individuals x, y, and z, the relationships x→ P1 → y and y → P2 → z imply the
relationship x→ P1 → z. Such axioms cannot be expressed in OWL DL; however, they
can be expressed in the 1.1 extension of OWL. Thus, by using OWL 1.1 as the target
language, we can capture a larger subset of OBO.6 Since OWL 1.1 is fully backwards
compatible with OWL, OBO ontologies that do not use any of the additional features of
OWL 1.1 are mapped into OWL DL ontologies.

2.1.5 Reusing Existing Tools

An obvious practical benefit of a mapping from OBO to OWL is that it allows OBO users
to exploit the multitude of existing OWL tools and services, instead of reimplementing
the same functionality from scratch.

The foundation of many Semantic Web tools is provided by various APIs that provide
means for the programmatic manipulation of ontologies. The OWL API [HBN07] is a
prominent example of such an API that is now very widely used. Recently, it has been
completely reengineered and made compliant with the OWL 1.1 version of the language.
Jena7 is a similar API that is comparable in its functionality with the OWL API and also
has a large user base.

The OWL API has been used as the core data model for several ontology editors.
For example, Protégé [KFNM04a] is a well-known editor that can be used to edit OWL
ontologies. Its newest incarnation, Protégé 4, supports all of OWL 1.1 and is based on
the new OWL API. SWOOP [KPH05a] is another OWL editor that is based on the OWL
API. These editors have been developed over years and are de facto standards for ontology
editing. Furthermore, they are imbued with functionality that can provide guidance to the
user during the ontology development and maintenance processes; for example, SWOOP
supports ontology debugging [KPSH05] and modularization [GHKS07]. Finally, a num-
ber of plug-ins have been written for Protégé, implementing features such as UML-based
ontology editing and graph-based ontology visualization.

6Our translation captures all of the OBO 1.2 specification except for cyclic properties (the semantics of
which is not completely clear) and negative assertions about properties (e.g., the assertion that a property is
not transitive).

7http://jena.sourceforge.net/

8 31 December, 2007 KWEB/2007/D2.5.7/v1.0

http://jena.sourceforge.net/

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

Several highly optimized, sound, and complete reasoners for OWL exist. Pellet 1.4
[SP04] is built around the OWL API and is tightly integrated into SWOOP, and Racer-
Pro [HM01], FaCT++ [TH06], and KAON2 [MS06] can be used with ontology editors
through the Description Logics Implementors Group (DIG) protocol.8 These reasoners
can be used to classify an ontology and detect inconsistencies in class definitions, which is
valuable during ontology development. Furthermore, reasoners can be used for query an-
swering, which is the core inference underpinning many applications of OWL and OBO.

Apart from leveraging existing results, our integration allows the OBO community to
reap the benefits of the future Semantic Web research. Conversely, OBO can provide to
the OWL community significant user input as well as a growing library of OWL ontolo-
gies.

2.2 Providing a Formal Specification for OBO

In this section, we present a formal specification of the syntax and semantics of OBO. Due
to space limitations, we highlight in this paper only the salient points; the full specification
is available online.9

2.2.1 Formalization of OBO Syntax

We have formalized the OBO syntax by defining a BNF grammar, which maintains back-
ward compatibility with the original OBO specification. Our grammar has been specifi-
cally designed to provide a conceptual description of the structure of OBO ontologies. To
this end, it includes nonterminal symbols that identify and group certain OBO structures.
Additionally, the grammar can be used to generate OBO parsers using automated tools.

For example, consider the definition of the intersection of tag in BNF:

intersection := intersection of: termOrRestr
termOrRestr := term-id | restriction

restriction := relationship-id term-id

As explained in Section 2.1.2, the value of the intersection of tag can be either
a term, or a relationship type followed by a term. Our grammar introduces structure to
such a “flat” definition as follows. We introduce a nonterminal term-id, which denotes a
“named” term (mimicking OWL’s named classes), and a nonterminal restriction, which
denotes a “restricted term” (mimicking OWL’s restriction classes). Then, we introduce
the nonterminal termOrRestr (mimicking OWL’s complex classes). Finally, we say that
the value of the intersection tag is a termOrRestr (mimicking OWL’s intersection classes
that can contain arbitrary classes as conjuncts).

8http://dl.kr.org/dig/
9http://www.cs.man.ac.uk/˜horrocks/obo/

KWEB/2007/D2.5.7/v1.0 31 December, 2007 9

http://dl.kr.org/dig/
http://www.cs.man.ac.uk/~horrocks/obo/

2. OPEN BIOMEDICAL ONTOLOGIES FORMAT

2.2.2 Mapping OBO to OWL

Our conceptualization of OBO’s underlying model (described in Section 2.2.1) is quite
similar to that of OWL, so the mapping between the two is relatively straightforward. We
map OBO terms to OWL classes, OBO relationship types to OWL properties, and OBO
instances to OWL individuals. The id assigned to each of these elements is used in OBO
to uniquely identify each term, relationship type, and instance; hence, we use the value of
id as the URI of the corresponding OWL element. The value of the name tag provides
a human-readable description of OBO ontology elements, so it is translated into an OWL
label.

Unlike OBO, OWL requires a strict separation between object properties (that relate
individuals to each other) and data properties (that associate individuals with data values).
To map OBO to OWL, we must infer which kind of property is appropriate for each OBO
relationship type. If the range of a relationship type R is specified to be an XML datatype,
or if R is asserted to be a subtype of another relationship type with such a range, then we
translate R as an OWL datatype property; otherwise, we translate R as an object property.

OBO constructs such as is a, disjoint from, domain, and range have obvi-
ous equivalents in OWL and are translated in the straightforward manner. As discussed in
Section 2.1.3, the official specification of the OBO language allows for several interpre-
tations of the intersection of, union of, and restriction tags; hence, our
mapping into OWL must pick the appropriate one.

Our discussions with OBO developers, as well as a survey of existing OBO ontologies,
revealed that the existential interpretation (see Section 2.1.3) captures the intention behind
the relationship tag. Hence, we translate the statement relationship: R B
in a stanza defining the term A to the following OWL axiom:

SubClassOf(A ObjectSomeValuesFrom(R B))

Similarly, we concluded that the intersection of tags should be interpreted
as equivalences between classes (see Section 2.1.3). Furthermore, values given for the
intersection of tag that consist of a relationship type and a term should be in-
terpreted as existential constraints, just like relationship tags. Hence, we translate
the statements intersection of: C and intersection of: R D in a stanza
defining the term A to the following OWL axiom:

EquivalentClasses(A
ObjectIntersectionOf(C ObjectSomeValuesFrom(R D)))

There was no consensus on the formal semantics of several OBO constructs, such as
the not necessarymodifier to the relationship tag and the use of relationship
tags in Typedef stanzas. In fact, these tags are likely to be deprecated in future releases
of OBO, and are currently treated as annotations by our mapping.

10 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

EntityAnnotation(OWLClass(GO_0001555) Label("oocyte_growth"))
SubClassOf(GO_0001555 GO_0016049) SubClassOf(GO_0001555
ObjectSomeValuesFrom(part_of GO_0048601))
EquivalentClasses(GO_0001555 ObjectIntersectionOf(

GO_0040007 ObjectSomeValuesFrom(
has_central_participant CL_0000023)))

ObjectPropertyDomain(propreo_is_described_by chemical_entity)
ObjectPropertyRange(propreo_is_described_by Description177)

ClassAssertion(propreo_water_molecule inorganic_solvent_molecule)
ObjectPropertyAssertion(

is_described_by propreo_water_molecule CHEBI_15377)

Figure 2.1: The OWL Interpretation of the Stanzas from Section 2.1.1

Figure 2.1 shows the translation of the stanzas from Section 2.1.1.

Related Work. Other mappings between the OBO Flat File Format and OWL exist,
and a summary can be found online.10 None of these mappings are based on a formal
analysis of OBO. The Common Mapping—a new version of a mapping originally devel-
oped by Chris Mungall—is defined via an XSLT style sheet,11 and has been implemented
as a Protégé plug-in. Common Mapping differs from our mapping in several important
respects. For example, it reifies OBO annotation values and turns them into first-class
elements of the interpretation domain subject to consistency checking and inferencing; in
contrast, our translation simply encodes them as OWL 1.1 annotations. Common Map-
ping translates neither reflexive nor transitive over tags, whereas our encod-
ing preserves their semantics. Finally, for several OBO ontologies, Common Mapping
produces OWL Full ontologies, which cannot be efficiently processed by existing Seman-
tic Web tools. In contrast, our translation produces OWL 1.1 ontologies, which can be
processed by existing tools without problems.

2.3 Integrating OBO with the Semantic Web

2.3.1 Extending Semantic Web Tools to Support OBO

As mentioned, simply replacing the OBO language with OWL would not be desirable for
the OBO community—OBO users are familiar with the existing syntax of the language

10http://spreadsheets.google.com/ccc?key=pWN_4sBrd9l1Umn1LN8WuQQ
11http://www.godatabase.org/dev/xml/xsl/oboxml_to_owl.xsl

KWEB/2007/D2.5.7/v1.0 31 December, 2007 11

http://spreadsheets.google.com/ccc?key=pWN_4sBrd9l1Umn1LN8WuQQ
http://www.godatabase.org/dev/xml/xsl/oboxml_to_owl.xsl

2. OPEN BIOMEDICAL ONTOLOGIES FORMAT

Figure 2.2: A Screenshot of the Example From Section 2.1.1 Viewed in Protégé 4

and the available tools, and want to continue to use them. Therefore, we adopted a less
intrusive path of integration and have extended existing OWL tools with support for OBO.

As we discussed in Section 2.1.5, the OWL API lies at the core of many Seman-
tic Web tools and supports fundamental tasks such as reading, saving, and manipulating
ontologies. We extended the OWL API with an OBO parser and serializer, thus making
OBO just another format supported by the API. This conveniently extends all applications
based on the OWL API with support for OBO. For example, Protégé 4 can automatically
read, edit, and save OBO ontologies; see Figure 2.2. Furthermore, the OWL API can
be used to convert OBO files into OWL and vice versa by simply loading the file in one
format and saving it in another. This functionality can be used to import OBO ontologies
into tools that are not based on the OWL API and use custom OWL parsers.

The central new component in the API is an OBO parser, which consists of two distinct
parts. The lower-level part is concerned with recognizing the syntax of OBO flat files, and
it has been generated automatically from the BNF grammar described in Section 2.2.1.
The upper-level part accepts different constructs from the OBO language and translates
them into corresponding OWL 1.1 axioms according to the mapping described in Section
2.2.2.

2.3.2 Reasoning Support for OBO

An immediate benefit of our work is that it allows the application of Semantic Web rea-
soners to OBO ontologies. These reasoners are based on well-known algorithms with
well-understood formal properties; furthermore, they provide formal guarantees about the

12 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

completeness of reasoning, which makes the interpretation of derived results much easier.
This can be quite useful in practice: on the OBO ontology so.obo, we used an OWL
reasoner to detect a probable modeling error that is not detected by the OBO-Edit rea-
soner. This ontology contains the following stanzas that define the terms SO:0000992
and SO:0000914:

[Term] [Term]
id: SO:0000992 id: SO:0000914
name: BAC cloned genomic insert name: cloned genomic insert
intersection of: SO:0000914

Note that the stanza for SO:0000992 contains only one intersection of tag. This
seems to be a modeling error: presumably, the author simply forgot to add another
intersection of tag-value pair.

According to the mapping from Section 2.2.2, intersection of defines a term to
be equivalent to the intersection of other terms. Because the above intersection contains
only one term, it effectively makes SO:0000992 equivalent to SO:0000914. Indeed,
OWL reasoners (correctly) derive that SO:0000992 is a subclass of SO:0000914 and
vice versa. OBO-Edit’s reasoner, however, only derives that SO:0000992 is a subclass
of SO:0000914, so the error remains undetected.

It is instructive to examine why OBO’s reasoner does not derive the required inference.
Namely, this inference could potentially be derived by applying the third inference rule
from Section 2.1.3 on page 7 for a = SO:0000992 and b1 = b2 = c = SO:0000914;
however, for the rule to be applicable, we would need an is a relationship from SO:0000914
to itself. Semantically, each class is a subclass of itself; this fact, however, is not rep-
resented explicitly in the OBO ontology model, so the mentioned inference rule is not
applicable.

This error might have been detected by checking whether each stanza contains at least
two intersection of tags. Since the syntax of the OBO language, however, has
not been formally specified, it is hard to implement a comprehensive set of such checks,
so errors often fall thorough to the semantic level. Furthermore, if our example stanza
contained two intersection of tags with the same value, the ontology would be
syntactically correct, but would imply the same consequence. The OBO-Edit reasoner
does not derive all inferences even with respect to the informal semantics, so such an
error would not be detected at the semantic level either. In contrast, the syntax and the
semantics of OWL 1.1 have been formally specified, which makes the detection of errors
easier.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 13

2. OPEN BIOMEDICAL ONTOLOGIES FORMAT

Table 2.1: Performance of Reasoning with OBO Ontologies

Tools
No. of ontologies classified in

200 ms 1 s 5 s 25 s 53 s 163 s 3925 s
Pellet 2 13 36 51 59 64 79
FaCT++ 25 58 72 77 78 80 80
HermiT 48 65 74 81 82 82 82

2.3.3 Performance of Reasoning with OBO

Ontologies for the life sciences frequently contain many highly interconnected axioms
with “cyclic definitions” of ontology terms. Such ontologies pose significant challenges to
state-of-the-art tableau-based OWL reasoners [GHT06, MSH07]. Hence, it is interesting
to see whether the OBO ontologies can be effectively handled using modern Semantic
Web reasoning tools. Our mapping would clearly be much less useful if OWL reasoners
were unable to process OBO ontologies.

Therefore, we conducted several reasoning experiments using different OBO ontolo-
gies and tools. In particular, we measured the times needed to compute the subsumption
hierarchy of a large set of OBO ontologies. We used the well-known reasoners Pellet
and FaCT++, and a new reasoner HermiT. The latter reasoner employs novel reason-
ing algorithms based on hypertableau and hyperresolution [MSH07]. The development
of these algorithms has been motivated by an analysis of the structure of GALEN—the
well-known biomedical terminology for which reasoning has proved to be quite hard.
HermiT is currently the only reasoner that can classify the original version of GALEN
[MSH07].12

Although the reasoning algorithms from [MSH07] support most of the OWL lan-
guage, currently only the so-called Horn subset of OWL has been implemented in HermiT.
Of the 88 ontologies available in the OBO repository, 83 fall into the supported fragment,
so we used these ontologies in our performance tests. The ontologies are of varying sizes:
the smallest one contains 166 axioms, whereas the largest one contains 37,943 axioms.

We summarize the times needed to classify these ontologies in Table 2.1. Because
of the large number of ontologies, we do not present individual times for each ontology;
instead, we just show how many ontologies each tool can classify within a certain time
limit. The first four times were selected arbitrarily, whereas the last three times were
chosen to show how long it takes for each tool to process the hardest ontology that it can
classify.

12The original version of GALEN could not be processed by existing reasoners. Therefore, different
versions of GALEN were derived from the original one by removing several cyclic definitions. Please refer
to HermiT’s web page for more information on this issue.

14 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

Our results show that HermiT efficiently deals with all but one ontology—that is, it
classifies them in at most 53 seconds. FaCT++ exhausts the available resources on two
ontologies that HermiT can classify. Thus, HermitT’s novel reasoning techniques seem to
be critical in dealing with complex ontologies. In the future, similar advances are likely to
follow. By defining OBO in terms of a mapping to OWL, the OBO community can reap
the benefits of these advances while continuing to enjoy the existing OBO syntax and tool
set.

2.4 Conclusion

OBO is a language that has been extensively used for ontology modeling in the life sci-
ences. Until now, the OBO language, as well as accompanying tools, have been devel-
oped independently from Semantic Web languages and tools. We argue that much can
be gained from bringing the two languages closer together. On the one hand, this allows
the OBO community to reuse OWL tools, while on the other hand, it provides new re-
quirements and makes a large new corpus of ontologies available to the Semantic Web
community.

The official specification of OBO is relatively informal. To obtain an unambiguous
specification that can be easily implemented, we first formalized the syntax of the OBO
language by capturing it in BNF. To capture the semantics, we developed a mapping
between OBO and OWL. We have implemented this transformation in a new parser that
we integrated into the OWL API, thus allowing numerous Semantic Web applications to
use OBO as a native format. Finally, we showed that existing Semantic Web reasoners,
such as HermiT, can be used to efficiently reason with OBO ontologies and can even
identify likely modeling errors.

Our mapping provides a human-accessible ontology language and a bridge between
the OBO and OWL communities, but OBO is still not an ideal language in all situations.
Although the syntax is simpler than OWL’s RDF/XML exchange syntax, OBO still re-
quires the implementation of customer parsers. Further, the data model underlying OBO
is not designed for programmatic access—there remains a large barrier to entry for tools
which wish to manipulate complex OBO ontologies. Finally, not all constructs available
in OWL can be easily expressed using OBO format. For this reason, users working with
OWL ontologies are unlikely to benefit from use of an OBO syntax. Chapter 3 presents
an alternative solution for these users.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 15

Chapter 3

Structured Ontology Format

OWL standardization solves many of the interoperability problems which affected early
DL systems; however, OWL’s RDF/XML exchange syntax presents two challenges for
developers:

1. The syntax is difficult for human users to read and write.

2. Parsing ontologies and working with the resulting ontology data (using some pro-
prietary internal representation) require significant engineering effort.

The first issue has been addressed primarily through development of graphical tools
for working with ontologies, such as Protégé [KFNM04b] and SWOOP [KPH05b]. Such
tools make authoring accessible to inexperienced users, but graphical interfaces are forced
to presume a particular user workflow and mindset which might not be appropriate in all
cases; sophisticated editors include “expert mode” interfaces in which users directly ma-
nipulate text-based formats. Taking traditional programming as an analogy, graphical
programming environments are helpful for those new to a programming language, and
can even play a significant role in experienced engineers’ workflows, but experienced de-
velopers rely on the ability to edit source code directly—a language without an accessible
text-based format would be difficult to promote. As another parallel, it has frequently
been noted that one of the primary advantages of HTML over its early competitors was
the ability to easily examine and modify a web page’s source code using a simple text
editor. The complexity of RDF/XML makes text editing of OWL ontologies in that for-
mat extremely demanding, and graphical editors are not a sufficient replacement for a
manageable syntax.

The second issue has led to the development of a number of sophisticated libraries
which handle RDF parsing and allow programmatic access to ontology content. Systems
such as Jena1 offer direct access to an RDF model, while the WonderWeb OWL API

1http://jena.sourceforge.net/

16

http://jena.sourceforge.net/

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

[BVL03] and KAON22 include Java libraries with customized APIs for working with on-
tology structures at a higher level of abstraction than RDF graphs. Using such libraries
does avoid the need for from-scratch parser implementation, but it also requires that de-
velopers learn new APIs and manage sometimes obscure library dependencies. More im-
portantly, the primary advantage of OWL standardization has been lost: code for working
with OWL ontologies is dependent not on the OWL standard, but on the particular API
chosen for implementation. Most damningly, the current technology landscape suggests
that working with OWL requires Java programming expertise. This puts OWL applica-
tions beyond the scripting skills of many biologists, and even out of reach of many web
programmers who work mainly in Perl, Python, Ruby, and Javascript.

This paper addresses the stated problems with RDF/XML by offering a structured data
model for ontologies built from primitive data types available in all major programming
environments. Such a model is easily accessible to a wide range of implementors without
the need for a proprietary API. Furthermore, the standard YAML [YAM] serialization
of these structures provides a text ontology format appropriate for human authors. This
ontology format has a standard translation to OWL 1.1 [PSH06b] (a superset of OWL
DL) and is interpreted using OWL 1.1 semantics, and it supports all features of OWL 1.1
with the exception of datatypes and annotations. This paper is not meant to be a complete
specification for all aspects of the format; an extended specification, conversion tools,
tutorial code, and sample ontologies are available at the Structure Ontology Format web
site.3

3.1 Background

Description logic notations derived from structured data models are not new. The KRSS
syntax [PSS] was effectively a purely structural specification realized as “symbolic ex-
pressions” (S-expressions), the fundamental datatype in the LISP programming language
based on linked lists of atoms (with a canonical serialization in LISP syntax). Such a
“native” format was ideally suited to development of LISP reasoners and tools (and to
ontology authoring by LISP programmers). Parsing and programmatic manipulation of
S-expressions in other languages, however, is not widely supported, and while the syntax
is very clean, the standard prefix notation and heavy use of parentheses feel unnatural to
many users.

The W3C recognizes at least three different serializations for OWL: an abstract syntax
[PSHH03] using a function-style format, the official exchange syntax [DCv+02] based on
RDF graphs (and serialized as XML encodings of these graphs), and a rarely-used pure
XML syntax [HEPS03] defined in a “W3C Note”. The Description Logic Implementors
Group4 has defined an alternative XML language for encoding description logic ontolo-

2http://kaon2.semanticweb.org/
3http://www.cs.man.ac.uk/˜rshearer/sof/
4http://dl.kr.org/dig/

KWEB/2007/D2.5.7/v1.0 31 December, 2007 17

http://kaon2.semanticweb.org/
http://www.cs.man.ac.uk/~rshearer/sof/
http://dl.kr.org/dig/

3. STRUCTURED ONTOLOGY FORMAT

gies. (The next version of the DIG specification is expected to share a pure XML syntax
with the OWL 1.1 proposal.)

XML does offer a formal data model, so XML-based formats can be viewed as struc-
tural specifications and processed with one of the many XML toolchains available. Such
tools can be integrated with most programming environments, but “native” manipulation
of XML structures (and appropriate mechanisms for abstraction of irrelevant low-level
details) is available in only very specialized languages (such as XSLT and XQuery). Fur-
thermore, XML syntax is not optimized for direct human interaction.

As described in Chapter 2, the Open Biomedical Ontologies5 effort has independently
developed a standardized encoding for ontologies6, with human-readable syntax and sim-
ple parsing as major design goals. The OBO syntax breaks an ontology document into
labeled sections called “stanzas”; a stanza contains a set of “tags”, each specified in
key: value format on a single line. Some stanzas define “terms” (comparable to
OWL classes), and some describe “instances” (comparable to OWL individuals). OBO
format is very accessible to human users, and our mapping from OBO to OWL formalizes
OBO semantics, but the syntax requires a custom parser, there is no obvious programmatic
API for OBO data, and the language does not provide the same formal expressiveness as
OWL.

Graphical modeling tools frequently need to display complex class expressions to
users, and this was initially done using formal logic symbols (e.g. ∃R.(C u D)). In
order to make such descriptions more accessible to nonlogicians, the Manchester OWL
Syntax (MOS) [HDG+06] was designed to use infix notation and read as natural language.
(The above expression would be written in MOS as “R some (C and D)”.) A simple
frame-based syntax was described for text exchange of class definitions, but the approach
was not extended to a full ontology language. The structured format presented in this
paper incorporates a formalized, extended version of Manchester syntax for complex class
descriptions (see Section 3.2.2).

3.2 Structured Ontology Format

3.2.1 Data Model

The Structured Ontology Format (SOF) data model is based on three types of structure:
character strings (the only atomic type) store text; collections directly contain other struc-
tures; and maps associate keys with values. The representational details of these types
are unimportant: map and collection types may be ordered or unordered, duplicate values
are allowed (but never required) in collections, and maps may contain a single binding or
multiple bindings for the same key.

5http://obo.sourceforge.net/
6http://www.godatabase.org/dev/doc/obo_format_spec.html

18 31 December, 2007 KWEB/2007/D2.5.7/v1.0

http://obo.sourceforge.net/
http://www.godatabase.org/dev/doc/obo_format_spec.html

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

The ontology format is dependent upon an expression language used to encode com-
plex class descriptions, properties, and individual names. Expression languages are de-
tailed in Section 3.2.2; for the purposes of this discussion, classes, properties, and indi-
viduals are assumed to be identified using strings.

An ontology is a map. If the string classes is present as a key in the ontology, then
its binding is either a collection of class identifiers, or a map whose keys are class iden-
tifiers and whose values are frames describing the classes to which they are bound. Such
frames are maps; if a frame bound to C binds the string subsumed by to a collection
containing class identifier D, then D subsumes C is an axiom of the ontology. Bind-
ings within class frames for keys such as equivalent to and disjoint from are
interpreted analogously.

Other keys in an ontology have similar meanings: the value bound to the properties
key is a collection or a map from property identifiers to frames describing those properties,
and that bound to individuals is a collection or a map to individual frames.

The bindings for the facts, class axioms, and property axioms keys within
an ontology are not maps but collections containing axioms not directly associated with
any particular class, property, or individual. Within the class axioms collection, a
map containing a single binding from disjoint to a collection of class identifiers as-
serts that all of the specified classes are disjoint from one another.

The formal semantics for SOF ontologies are given by a correspondence with OWL
1.1 functional syntax, presented in Table 3.1. We use a small subset of YAML notation to
represent structures: [x1,...,xn] is a collection containing elements x1 through xn, and {x
: y} is a map in which the binding for key x is y. A path syntax identifies the bindings
for keys within nested maps: “/foo” indicates the value associated with key foo in the
ontology map, and “/foo/bar” identifies the binding for key bar within “/foo”. An object
x contains value y if x is a collection containing y as an element, or if x is a map with
an assignment for key y. Finally, for expression x in a structured ontology, the term x̄
within an OWL axiom represents the translation of x to a class, property, or individual
expression in OWL functional syntax, in accordance with the chosen expression language
(described in Section 3.2.2).

The OWL 1.1 ontology derived from an ontology in SOF includes the axiom in the
third column of Table 3.1 for every value identified by the path in the first column which
contains the structure given in the second column. Converting an ontology to SOF from
OWL 1.1, however, can be done in a number of ways. Most OWL axioms can be encoded
in several different ways in SOF; e.g. SubClassOf(c, d) can be encoded by adding
c to “/classes/d/subsumes”, adding d to “/classes/c/subsumed by”, or adding “{c : d}” to
“/class axioms”. Any translation need choose only one such translation. Rows 1–33 are
usually only applicable to restricted forms of the OWL 1.1 axioms (e.g. equality axioms
involving only two elements); all OWL 1.1 axioms can be transformed to SOF using rows
34–56.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 19

3. STRUCTURED ONTOLOGY FORMAT

Table 3.1: OWL interpretation of Structured Ontology Format

SOF structure Contains OWL 1.1 Equivalent
1 /classes c Declaration(OWLClass(c̄))
2 /classes/c/subsumed by d SubClassOf(c̄ d̄)
3 /classes/c/subsumes d SubClassOf(d̄ c̄)
4 /classes/c/equivalent to d EquivalentClasses(c̄ d̄)
5 /classes/c/disjoint union of [d1,...,dn] DisjointUnion(c̄ d̄1 ... d̄n)
6 /classes/c/disjoint from d DisjointClasses(c̄ d̄)
7 /classes/c/domain of r ObjectPropertyDomain(r̄ c̄)
8 /classes/c/range of r ObjectPropertyRange(r̄ c̄)
9 /classes/c/members i ClassAssertion(̄i c̄)

10 /properties r Declaration(ObjectProperty(r̄))
11 /properties/r/subsumed by s SubObjectPropertyOf(r̄ s̄)
12 /properties/r/subsumes s SubObjectPropertyOf(s̄ r̄)

13 /properties/r/subsumes [s1,...,sn]
SubObjectPropertyOf(

SubObjectPropertyChain(s̄1 ... s̄n) r̄)
14 /properties/r/equivalent to s EquivalentObjectProperties(r̄ s̄)
15 /properties/r/inverse s InverseObjectProperties(r̄ s̄)
16 /properties/r/disjoint from s DisjointObjectProperties(r̄ s̄)
17 /properties/r/domain c ObjectPropertyDomain(r̄ c̄)
18 /properties/r/range c ObjectPropertyRange(r̄ c̄)
19 /properties/r functional FunctionalObjectProperty(r̄)
20 /properties/r inverse functional InverseFunctionalObjectProperty(r̄)
21 /properties/r reflexive ReflexiveObjectProperty(r̄)
22 /properties/r irreflexive IrreflexiveObjectProperty(r̄)
23 /properties/r symmetric SymmetricObjectProperty(r̄)
24 /properties/r asymmetric AntisymmetricObjectProperty(r̄)
25 /properties/r transitive TransitiveObjectProperty(r̄)
26 /properties/r/related {i : j} ObjectPropertyAssertion(r̄ ī j̄)
27 /properties/r/not related {i : j} NegativeObjectPropertyAssertion(r̄ ī j̄)
28 /individuals i Declaration(Individual(̄i))
29 /individuals/i/same as j SameIndividual(̄i j̄)
30 /individuals/i/different from j DifferentIndividuals(̄i j̄)
31 /individuals/i/member of c ClassAssertion(̄i c̄)
32 /individuals/i/related/r j ObjectPropertyAssertion(r̄ ī j̄)
33 /individuals/i/not related/r j NegativeObjectPropertyAssertion(r̄ ī j̄)
34 /facts {i : c} ClassAssertion(̄i c̄)
35 /facts {{i : j} : r} ObjectPropertyAssertion(r̄ ī j̄)
36 /facts {same : [i1,...,in]} SameIndividual(ī1 ... īn)
37 /facts {different : [i1,...,in]} DifferentIndividuals(̄i j̄)
38 /facts {not related : {{i : j} : r}} NegativeObjectPropertyAssertion(r̄ ī j̄)
39 /class axioms {disjoint : [c1,...,cn]} DisjointClasses(c̄1 ... c̄n)
40 /class axioms {equal : [c1,...,cn]} EquivalentClasses(c̄1 ... c̄n)
41 /class axioms {c : d} SubClassOf(c̄ d̄)

42 /class axioms
{disjoint union :
{c : [d1,...,dn]}} DisjointUnion(c̄ d̄1 ... d̄n)

43 /property axioms {disjoint : [r1,...,rn]} DisjointObjectProperties(r̄1 ... r̄n)
44 /property axioms {equal : [r1,...,rn]} EquivalentObjectProperties(r̄1 ... r̄n)
45 /property axioms {r : s} SubObjectPropertyOf(r̄ s̄)

46 /property axioms {[r1,...,rn] : s} SubObjectPropertyOf(
SubObjectPropertyChain(r̄1 ... r̄n) s̄)

47 /property axioms {functional : r} FunctionalObjectProperty(r̄)
48 /property axioms {inverse functional : r} InverseFunctionalObjectProperty(r̄)
49 /property axioms {reflexive : r} ReflexiveObjectProperty(r̄)
50 /property axioms {irreflexive : r} IrreflexiveObjectProperty(r̄)
51 /property axioms {symmetric : r} SymmetricObjectProperty(r̄)
52 /property axioms {asymmetric : r} AnitsymmetricObjectProperty(r̄)
53 /property axioms {transitive : r} TransitiveObjectProperty(r̄)
54 /property axioms {domain : {r : c}} ObjectPropertyRange(r̄ c̄)
55 /property axioms {range : {r : c}} ObjectPropertyDomain(r̄ c̄)
56 /property axioms {inverse : {r : s}} InverseObjectProperties(r̄ s̄)

20 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

3.2.2 Expression Language

The structures used to encode axioms in SOF are at most five levels deep, but OWL class
descriptions (and property expressions) can be very complex, with arbitrarily deep nesting
of subexpressions. It is difficult to define a single format for such a language which is both
readable for humans and easy for machines to process.

The structured format described in Section 3.2.1 is independent of the language used
for class descriptions, property expressions, and individual identifiers. This allows differ-
ent dialects of structured format to use different expression languages.

In order to eliminate the need for text parsing, a structured expression language similar
to KRSS but with OWL 1.1 expressiveness has been formalized. (Details are available on
the SOF web site.7) For many users, however, a more lightweight, readable encoding
closer to natural language is preferable. For this reason, a second dialect of structured
ontology format is defined which encodes class, property, and individual expressions as
simple (unicode) strings. These strings are interpreted as Extended Manchester OWL
Syntax (EMOS), which we summarize here. A formal grammar and translation to OWL
1.1 are given at the Manchester OWL Syntax web site.8

EMOS is backwards-compatible with the original Manchester syntax presented in
[HDG+06]. Manchester syntax was designed as a simple and readable text format for
expressing complex class descriptions, intended primarily for presenting such descrip-
tions to (non-logician) human users. The focus is on allowing even relatively complex
expressions to be readable as natural (English) language: ObjectIntersectionOf, Objec-
tUnionOf, and ObjectComplementOf OWL descriptions are written with and (or that),
or, and not, class expressions involving properties (such as ObjectSomeValuesFrom and
ObjectHasValue) are expressed using infix notation (with keywords some, only, min,
max, exactly, and value), and parentheses are needed only where rules of precedence
demand them. The language also includes a number of shorthands for common model-
ing patterns: the someonly construct stands for the intersection of multiple some and
only expressions, never R is short for R max 0, and always R means R some
owl:Thing. A property P’s inverse is given by P-, and class, property, and individual
names can be quoted to prevent conflicts with the language keywords.

Identifers in EMOS can be explicitly typed as full RFC 3987 IRIs (surrounded by “<”
and “>” tokens), or they can be interpreted subject to namespace expansion similar to
that described in [BHLT06]. Crucially, interpretation of EMOS expressions is dependent
upon a set of namespace bindings mapping namespaces prefixes to their expansions. In
Structured Ontology Format, these bindings are given by a map stored as the value of the
namespaces key in the ontology object (with the default namespace bound to a null or
empty prefix). Unlike in standard XML, a namespace prefix used in a legal EMOS iden-
tifier need not be declared; the interpretation of such identifiers is application-dependent.

7http://www.cs.man.ac.uk/˜rshearer/sof/sel
8http://www.cs.man.ac.uk/˜rshearer/mos/

KWEB/2007/D2.5.7/v1.0 31 December, 2007 21

http://www.cs.man.ac.uk/~rshearer/sof/sel
http://www.cs.man.ac.uk/~rshearer/mos/

3. STRUCTURED ONTOLOGY FORMAT

Although this expression language is relatively straightforward to parse, such string
processing is far more complex than manipulation of an SOF ontology’s axiom structure.
Ontology authors and authoring tools should be mindful of the fact that some SOF pro-
cessors may view class descriptions, property expressions, and individual identifiers as
opaque strings and might be unable to perform even namespace expansion. When the
same expression occurs multiple times within an ontology, it is recommended that all
encodings of that expression be lexically identical, particularly when the expression is a
simple identifier.

3.2.3 Serialization

YAML9 is a standard serialization format for simple data structures, including maps, or-
dered collections (called sequences), and string values. The syntax is extremely flexible,
with a number of different styles of encoding for each data type. Sequences, for ex-
ample, can be written as comma-separated lists of values within square brackets (as in
Table 3.1), or elements can be listed on separate lines, with each element preceded by
a dash. Nested sequences are distinguished by indentation level. Bindings within maps
are written as key : value, and maps can be enclosed in curly braces with comma-
separated bindings, or they can be written in a line-oriented style similar to sequences.
The syntax also allows comments (introduced by #, and continuing to the end of the line).
The full YAML specification is defined in [YAM]. A small example of a complete SOF
ontology serialized as YAML is shown in Figure 3.1.

While YAML is the canonical (and most human-friendly) serialization format for SOF
ontologies, in some cases more restrictive encodings are useful. The JSON10 fragment
of YAML allows only the braced/bracketed forms of maps and sequences (among other
restrictions), and as a result JSON is extremely simple to parse. SOF ontologies using
Structured Expression Language and serialized as JSON are ideally suited to efficient
machine-to-machine exchange of OWL ontology data.

3.2.4 Special Forms

Most OWL axioms can be encoded in two or even three different ways in structured
format—for example an ObjectPropertyDomain axiom in an OWL ontology can be rep-
resented in SOF according to rows 7, 17, or 54 of Table 3.1 (modulo class and property
declarations). This provides a great deal of flexibility for ontology authors, but it is prob-
lematic for tools (or humans) scanning an ontology for a particular type of axiom. We thus
define a number of normal forms which add requirements that certain axioms be encoded
in particular ways.

9http://yaml.org/
10http://www.json.org/

22 31 December, 2007 KWEB/2007/D2.5.7/v1.0

http://yaml.org/
http://www.json.org/

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

For a given row r of Table 3.1, OWL ontology K, and SOF representation of K S, if
every axiom of K which could be represented in structured format in accordance with row
r is represented in that way in S, then we say that S is normalized with respect to r. Such
normalization does not require reasoning about semantic entailments between axioms:
normal forms deal only with different ways of encoding the same structural/syntactic
content.

An ontology is said to be class-frame normalized if it is normalized with respect to
rows 1–6 of Table 3.1. Note that class-frame normalization does not require the encoding
of domain, range, or membership axioms within the class frame.

Analogously, property-frame normalized ontologies are normalized with respect to
rows 10–25, and individual-frame normalized ontologies are normalized with respect to
rows 28–33. A fully frame-normalized ontology is normalized with respect to rows 1–33
(and thus must be individual-frame, property-frame, and class-frame normalized), and an
axiom-normalized ontology is normalized with respect to rows 34–56. A fully normalized
ontology is normalized with respect to all rows of Table 3.1.

In addition to these simple syntactic conditions on an ontology’s SOF representation,
three criteria on the underlying ontology data are very useful for ontology authoring and
processing tools. First, if all namespace prefixes used in all class, property, and indi-
vidual expressions throughout the ontology are declared in the namespaces mapping,
then the ontology is namespace consistent. Without this property, there is no guaran-
tee that two different translations of the same ontology into OWL will entail each other.
Second, an ontology with declarations for all class, property, and individual names is
structurally consistent. (This notion is from the OWL 1.1 specification.) An ontology
which is both namespace and structurally consistent can benefit from extensive author-
ing support (highlighting of typos, tab completion, etc.). Finally, given some definition
of equivalence between class descriptions (lexical equality is sufficient), an ontology is
taxonomy optimized if no class subsumption axioms are redundant with respect to the
transitive-reflexive closure of all subsumption axioms in the ontology.

3.3 Discussion and Future Work

Structured format has already proven to be extremely useful as a language for creating test
suites for new reasoner implementations: the syntax makes it possible to author simple
tests (with dozens of axioms) by hand, and more complex tests are easy to construct and
serialize using standard scripting languages. Furthermore, implementation of a parser for
OWL’s RDF/XML syntax can be substantially more expensive than construction of naı̈ve
reasoners for restricted logic fragments. The use of a Java tool based on one of the exist-
ing OWL parsing libraries to “preprocess” ontologies into structured format has allowed
realistic knowledge bases to be used as tests for new reasoning algorithms prototyped in
Perl and Python.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 23

3. STRUCTURED ONTOLOGY FORMAT

Conversion of ontologies to SOF and examination with text tools such as grep has
replaced ontology exploration using graphical tools in some workflows. Version control
of ontologies maintained in structured format has proven much easier than with other
formats: text difference tools allow the same conflict-resolution strategies as are common
with traditional programming languages.

Straightforward programmatic access to ontology data using modern dynamic lan-
guages has decreased the engineering cost for developing new OWL tools by several
orders of magnitude. Routines to convert ontologies between the special forms described
in Section 3.2.4 can be implemented in under a dozen lines of Python code (and only
a few minutes’ work), and a from-scratch ontology exploration interface intended for
visually-impaired users weighs in at under one hundred lines (and roughly an hour of
implementation time).

The current specification, however, offers only partial coverage of OWL 1.1: neither
datatypes, datatype properties, nor annotations are currently supported. Further, there
is no “import” functionality for structured ontologies. Networks of OWL imports are
converted to SOF as a single monolithic text file, which can be difficult to manage. An
extension of structured format which includes these features is currently being developed.

24 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

namespaces:
"" : http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#
food : http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#

classes:
Wine:

subsumed by:
- food:PotableLiquid # note use of namespace
- hasMaker exactly 1 # class descriptions use EMOS
- locatedIn some Region

TableWine:
equivalent to:

- Wine that hasSugar value Dry
properties:

hasMaker:
inverses: [producesWine] # bracketed syntax for sequences
functional: # some keys don’t need values

locatedIn:
range: [Region]
transitive:

individuals:
StonleighSauvignonBlanc:

member of:
- Wine

related:
hasSugar: [Dry] # sequences can be bracketed...
hasMaker:

- Stonleigh # ...or use a line-oriented style.
locatedIn: [NewZealandRegion]

Figure 3.1: A small portion of the Wine ontology in SOF, using Manchester syntax and
YAML serialization

KWEB/2007/D2.5.7/v1.0 31 December, 2007 25

Chapter 4

Object Role Modeling

Object Role Modeling (ORM) is a conceptual modeling method that allows the semantics
of a universe of discourse to be modeled at a highly conceptual level and in a graphical
manner. ORM has been used commercially for more than 30 years as a database modeling
methodology, and has recently becoming popular not only for ontology engineering but
also as a graphical notation in other areas such as the modeling of business rules[Hal04,
Nor99, DJM02, Jar06a], XML-Schemes[BGH99], data warehouses[Pip06], requirements
engineering[HPH04, BB95], web forms[Jar05, DAHtH02], and web engineering[DT05].

We formalize the ORM using both the DLR and the SHOIN /OWL Description
Logics. This would enable automated reasoning to be carried out on the formal properties
of ORM diagrams (and thus legacy database systems), such as detecting contradictions,
implications, and inference. In addition, the expressive, methodological, and graphical
power of ORM make it a good candidate for use as a graphical notation for most descrip-
tion logic languages. With this, non-IT trained industrial experts will be able to build
axiomatized theories (such as ontologies, business rules, etc.) in a graphical manner,
without having to know the underpinning logic or foundations.

Indeed, in many domains the ontology building process is difficult and time consum-
ing. From practical experience, this is not because these domains are not well understood
or that a consensus cannot be made about them. Typically, this is because it is difficult for
domain experts to understand and use ontology languages. Current ontology languages
(and tools) require an understanding of their underpinning logic. The limitation of these
languages is not that they lack expressiveness or logical foundations. Instead, it is in their
capability to be used by subject matter experts.

Certain properties are required for an ontology language to be easily understood by
domain experts. First, its constructs should be close to the language that business ex-
perts speak and the “logic” they use. For example, it is easier for a lawyer to say “it is
mandatory for each Complaint Problem to be testified by at least one Evidence”, than to
say “the cardinality between the concept Complaint Problem and the concept Evidence
is (1:0)”. Second, the language should have a graphical notation to enable simple con-

26

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

ceptual modeling. By ”graphical notation” here, we refer to not only visualization, but
also a “graphical language” that allow domain experts to construct an ontology using a
graphical notation for each concept, relation, or rule type. In other words, such a lan-
guage should guide experts through its modeling constructs to “think” conceptually while
building, modifying, or validating an ontology.

4.0.1 Object Role Modeling (ORM)

Many commercial and academic tools that support ORM solutions are available, includ-
ing the ORM solution within Microsoft’s Visio for Enterprise Architects [HEHM03], Vi-
sioModeler [Vis], NORMA [NOR], CaseTalk [Cas], Infagon [Inf], and DogmaModeler
[Hal05]. DogmaModeler and its support for ontology engineering will be presented later.

ORM has an expressive and stable graphical notation. It supports not only n-ary
relations and reification, but also a fairly comprehensive treatment of many practical and
standard business rules and constraint types. These language features include identity,
mandatoriness, uniqueness, subsumption, totality, exclusivity, subset, equality, exclusion,
value, frequency, symmetry, intransitivity, acyclicity, derivation rules, and several others.
Furthermore, compared with, for example, EER or UML, ORM’s graphical notation is
more stable since it is attribute-free; in other words, object types and value types are both
treated as concepts. This makes ORM immune to changes that cause attributes to be
remodeled as object types or relationships.

Compared with other modeling notations, ORM diagrams can be automatically ver-
balized into pseudo natural language sentences. For example, the mandatory constraint
in figure 4.4 is verbalized as: “Each Professor must WorksFor at least one University”.
The subset constraint in figure 4.18 is verbalized as: “If a Person Drives a Car then this
Person must be AuthorizedWith a DrivingLicense”. Additional explanation can be found
in [JKD06] and [HC06], which provide sophisticated and multilingual verbalization tem-
plates. From a methodological viewpoint, this verbalization capability simplifies commu-
nication with non-IT domain experts and allows them to better understand, validate, and
build ORM diagrams. It is worthwhile to note that ORM is the historical successor of
NIAM (Natural Language Information Analysis Method), which was explicitly designed
(in the early 70’s) to play the role of a stepwise methodology, that is, to arrive at the
”semantics” of a business application’s data based on natural language communication.

Indeed, the graphical expressiveness and the methodological and verbalization ca-
pabilities of ORM make it a good candidate for a graphical notation for modeling and
representing ontologies and their underpinning logic.

ORM’s formal specification and semantics are well-defined ([Hal89, vBtHvdW91,
tH93, dT96, dTM95]). The most comprehensive formalization in first-order logic (FOL)
was carried out by Halpin in [Hal89]. Later on, some specific portions of this formaliza-
tion were reexamined, such as subtypes [HP95], uniqueness [Hal02], objectification[Hal05],
and ring constraints [Hal01]. Since reasoning on first order logic is far complex, namely

KWEB/2007/D2.5.7/v1.0 31 December, 2007 27

4. OBJECT ROLE MODELING

undecidable[BCM+03], the above formalizations do not enable automated reasoning on
ORM diagrams, which comprises e.g. detection of constraint contradictions, implications,
and inference.

To enable such automated reasoning, we map all ORM primitives and constraints into
the DLR and the SHOIN description logics, which are decidable fragments of first-
order logic. Our mapping is based on the ORM syntax and semantics specified in [Hal89]
and [Hal01].

The remainder of the chapter is organized as follows. In section 4.0.2, we give a quick
overview of description logics. Section 4.1 presents the ORM semantics in detail as well
as its mapping intoDLR, and section 4.2 maps ORM into SHOIN /OWL. In section 4.3,
we illustrate the implementation of this formalization as an extension to DogmaModeler,
and in section 4.4 we relate our mappings to related work. Finally, the conclusions and
directions for future work are presented in section 4.5.

Remark: In this chapter, we focus only on the logical aspects of reusing ORM for on-
tology modeling. The conceptual aspects (i.e. ontology modeling verses data modeling)
are discussed in [JM07, Jar05, JDM1, JM02, Jar06b], while a real-life case study that uses
the ORM notation (for developing an eBusiness ontology) can be found in [JVM03].

4.0.2 Description Logics

Description logics are a family of knowledge representation formalisms. Description log-
ics are decidable fragments of first-order logic, associated with a set of automatic reason-
ing procedures. The basic primitives of a description logic are the notion of a concept and
the notion of a relationship. Complex concept and relationship expressions can be built
from atomic concepts and relationships. For example, one can define HumanMother
as Female u ∃HasChild.Person. The expressiveness of a description logic is charac-
terized by the set of constructors it offers. The simplest description logic is called FL−,
which offers only the intersection of concepts, value restrictions, and a simple form of
existential quantification. In other words, a TBox in FL− is built as a set of inclusion
assertions of the following forms: C, D → A | C uD | ∀R.C | ∃R.

A more practical and expressive description logic is called AL [BCM+03], and it
serves as the basis for several description logics. AL offers a concept to be formed as
(C, D → A | > | ⊥ | ¬A | C u D | ∀R.C | ∃R.>), where C and D denote concept
descriptions, A and R stand for atomic concept and atomic role (i.e. binary relation)
respectively, > and ⊥ denote a universal concept and a bottom concept respectively, ¬A
stands for atomic negation, C u D stands for an intersection, ∀R.C stands for a value
restriction, and ∃R.> indicates limited existential quantification. [BCM+03] provides
more information on description logic and its applications, while [DLc] provides an online
tutorial course on description logics.

28 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

SHOIN is an expressive description logic [HST99]. It is the logic underpinning
OWL, the standard (W3C recommendation) Ontology Web Language. SHOIN was
developed as a compromise between expressive power and decidability. The SHOIN
syntax is described as follows. If C and D are concepts and R is a binary relation (also
called role), then (C u D), (C t D), (¬C), (∀R.C), and (∃R.C) are also concepts. If R
is simple (i.e., neither transitive nor has any transitive sub relations), then (≤ nR) and (≥
nR) are also concepts, where n is a non-negative integer. For C and D (possibly complex)
concepts, C v D is called a general concept inclusion. SHOIN also allows hierarchies
of relations (R v S), transitivity (R+), and inverse (S v R−). A recent extension
[HKS06] of SHOIN (called SROIQ) enables representing more advanced constructs
on relations, such as complex inclusions (e.g. S ◦ R v R), disjointness, negation (¬R),
and local reflexivity (∃R.Self). Please refer to [HST99] for the semantics of SHOIN ,
and [HKS06] for more details on SROIQ.

DLR (or specially its extension DLRifd[CGL01]) is an expressive description logic.
It was developed to allow the majority of the primitives and constraints used in database
modeling to be represented [CDGL98a] [CLN99], including n-ary relations, identifica-
tion, and functional dependencies. The basic constructs of DLR are concepts and n-ary
relations (n ≥ 2). Let A denote an atomic concept, and P an atomic n-ary relation. Arbi-
trary concepts, denoted by C and arbitrary relations denoted by R, can be built according
to the following syntax respectively:

C ::= >1 | A | ¬C | C1 u C2 | (≤ k[i]R)
R ::= >n | P | (i/n : C) | ¬R | R1 uR2

where P, R, R1 and R2 are n-ary relations (n ≥ 2), i/n denotes the ith component of an
n-ary relationship (i is an integer between 1 and n), and k denotes a non-negative integer.
Relations inDLR are well-typed, which means that only relations of the same arity n can
be used in expressions like R1 uR2 and i ≤ n whenever i denotes a component of a rela-
tion of arity n. The following are abbreviations: ⊥ for ¬>1; C1 t C2 for ¬(¬C1 u ¬C2);
C1 ⇒ C2 for ¬C1 t C2; (≤ k[i]R) for ¬(≤ k − 1 [i]R); ∃[i]R for (≥ 1[i]R); ∀[i]R for
¬∃[i]¬R; and (i : C) for (i/n : C) if n is clear from the context.

The semantics of DLR is specified as follows. An interpretation I is constituted by
an interpretation domain4I , and an interpretation function .I that assigns to each concept
C a subset CI of 4I and to each R of arity n a subset RI of (4I)n. t[i] denotes the i-th
component of tuple t.

>I
n ⊆ (4I)n >I

1 = 4I

P I ⊆ >I
n AI ⊆ 4I

(i/n : C)I = {t ∈ >I
n|t[i] ∈ CI} (¬C)I = 4I\CI

(¬R)I = >I
n\RI (C1 u C2)I = CI

1 ∩ CI
2

(R1 uR2)I = RI
1 ∩RI

2 (≤ k[i]R)I = {a ∈ 4I |]{t ∈ RI |t[i] = a} ≤ k}

A DLR TBox comprises a finite set of inclusion assertions, where each assertion
has the form: C1 v C2 or R1 v R2 , with R1 and R2 of the same arity. Beside these
inclusion assertions in DLR, DLRifd allows the following assertions for identification
id and functional dependencies fd to be expressed.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 29

4. OBJECT ROLE MODELING

(id C [i1]R1, ..., [ih]Rh)
(fd R i1, ..., ih → j)

which have the following semantics.

An interpretation I satisfies the assertion (id C [i1]R1, ..., [ih]Rh) if for all a, b ∈ CI

and for all t1, s1 ∈ RI
1, ..., th, sh ∈ RI

h we have that:

An interpretation I satisfies the assertion (fd R i1, ..., ih → j) if for all t, s ∈ RI , we
have that: t[i1] = s[i1], ..., t[ih] = s[ih] implies t[j] = s[j]

Furthermore, another useful extension that has been recently included in DLR-Lite
[CDGL+06] which we shall use in this paper, is inclusion between projections of rela-
tions, which has the following form:

R2[rj1 , ..., rjk
] v R1[ri1 , ..., rik

]

This inclusion, the identification id, and the functional dependencies fd shall be ex-
plained in more details later in this paper. A DLR ABox is constituted by a finite set of
assertions, called ABox assertions, of the following types:

C(x) R(x1, ..., xn) x 6= y x = y

4.1 The formalization of ORM using DLRifd

In this section we present the formalization of all ORM constructs using DLRifd. The
semantics of each construct is presented in detail and mapped into DLRifd and clear
motivations for the mapping choices are given.

4.1.1 Object-Types

ORM allows a domain to be modelled by using object types that play certain roles. There
are two kinds of object-type in ORM: Non-Lexical Object-Types (NOLOT) and Lexical
Object-Types (LOT). Both object-types are shown as ellipses in ORM’s notation, with
a LOT being depicted as a dotted-line ellipse and a NOLOT as a solid-line ellipse (see
figure 4.1). The difference between a LOT and a NOLOT is linguistic [VvB82]. While
lexical object-types correspond to utterable entities, such as names or titles, non-lexical
object-types refer to non-utterable entities, such as a person, a university, or a book. In
other words, when someone says “I am John”, he actually means “I am the person who
is referred to by the name John”. In data models, non-lexical object types are represented
(and referenced) by lexical object types1.

We represent both NOLOTs and LOTs as classes in DLR. To distinguish between

1Although they are not exactly similar, the notions of LOT and NOLOT in ORM can be, for the sake of
simplicity, compared to the concepts of ’Attribute’ and ’Class’ in UML, or the notions of ’ValueProperty’
and ’ObjectProperty’ in OWL

30 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

Figure 4.1: Object Types (NOLOT and LOT.) in ORM

NOLOT and LOT in a DLR knowledge base, we introduce four classes: LEXICAL,
STRING, NUMBER, and BOOLEAN. The class LEXICAL is considered to be a super-
type of the other three classes, while the other three classes are considered to be disjoint.
Unless specified, each LOT is mapped by default into the class STRING. We shall return
to this issue later.

4.1.2 Roles and relationships

ORM supports n-ary relationships, where n ≥ 1. Each argument of a relationship in ORM
is called a role. In figure 4.2, we show examples of binary and ternary relationships. For
example, the binary relationship has two roles, WorksFor and Employs. The formaliza-
tion of the general case of an ORM n-ary relationship is [Hal89]: ∀x1...xn(R(x1...xn)→
A1(x1) ∧ ... ∧ An(xn)).

DLR supports n-ary relationships, where n ≥ 2. Each argument of a relationship in
DLR is called a component [BCM+03]. As shown in figure 4.2, we represent a relation-
ship in ORM as a relationship in DLR; thus, a role in ORM is seen as a component of
a relationship in DLR. Notice that the notion of ’role’ in DLR is synonym to a rela-
tionship. Hence to avoid any confusion, the term ’role’ is used in this chapter to indicate
only a component of a relationship, i.e. a ORM role. Notice also that while ORM sup-
ports unary relations, DLR does not. For this case, we introduce a special treatment
in the next section. For people who are familiar with ORM, the formalization of ORM

R v (WorksFor : Person) u (Employs : University)

R v (Achieves : Person) u (r2 : Position) u (r3 : Subject)

Figure 4.2: Examples of Binary and Ternary relations in ORM.

roles and relationships shown in figure 4.2 seems to be trivial. However, people who are
familiar with description logics may not find it intuitive. This is because, unlike ORM,
the components of relationships in description logics are typically not used and do not

KWEB/2007/D2.5.7/v1.0 31 December, 2007 31

4. OBJECT ROLE MODELING

have linguistic labels. For example, one expects to see the binary relationship in Fig-
ure 4.2 represented in description logic as, Person v ∀WorksFor.University, and
University v ∀Employs.Person. In this case, both WorksFor and Employs are two
different relationships. This formalization requires an additional axiom to state that both
relations are inverse to each other: WorksFor v Employs−.

ORM schemes formalized in this way are not only lengthy, but also become more
complex when relationships other than binary are introduced. As will be shown later, our
method of formalizing ORM roles and relationships will make the formalization of ORM
constraints more intuitive and elegant. Rule-1 presents the general case formalization of
ORM n-ary relations, where n ≥ 2.

R v (r1 : A1) u ... u (rn : An) (Rule-1)

Remark: When mapping an ORM schema into a DLR knowledge base:

• Each role in the ORM schema should have a unique label within its relationship.

• In case a role label is null, an automatic label is assigned, such as r1, r2, etc.

• In case of a relationship having the same labels of its roles, such as ColleagueOf/
ColleagueOf , new labels are assigned to these roles, such as: ColleagueOf − r1,
ColleagueOf − r2.

• Usually, ORM relationships do not have labels; thus, a unique label is automatically
assigned, such as: R1, R2, etc.

One may notice that according to the DLR syntax (see section 4.0.2), a role i in an n-ary
relation R is identified by a number: [i]R, where i is an integer. However, we use the
linguistic labels of roles instead of such numbers. As stated in the previous remark, each
role label in ORM is scoped within its relationship, and the concatenation of a role label
and a relationship name, such as [WorksFor]R1, is unique in the whole ORM schema.

4.1.3 ORM unary roles

Unlike DLR, ORM allows the representation of unary relations (see figure 4.3). The
relationship in Figure 3 means that a person may smoke; in other words, any individual
that ’smokes’ must be a person. In first-order logic, this fact can be formalized [Hal89]
as: ∀x(Smokes(x) → Person(x)). One may notice that this knowledge is typically
represented in description logic using the subsumption relationship, e.g. Smoker Is-A
Person. However, ORM allows this knowledge to be represented using unary roles, so as

32 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

to enable such roles to participate in constraints that might be defined on multiple roles or
relationships2, as shall be shown later.

To formalize ORM unary roles in DLR, we avoid using the subsumption relationship
for the reasons mentioned above. Instead, we introduce a new class called BOOLEAN,
which can take on two values: either TRUE or FALSE. Each ORM unary fact is seen as
a binary relationship in DLR, where the second concept is BOOLEAN. Recall from the
previous section that the class BOOLEAN is a subclass of LEXICAL, and that it is disjoint
with the classes STRING and NUMBER. Rule-2 presents the general case formalization
of ORM unary fact types. As shall be shown in the following sections, formalizing unary
facts in this way allows the simple and elegant formalization of complex constraints that
might be defined on multiple relations.

R v (Smokes : Person) u (r2 : BOOLEAN)

Figure 4.3: Example of Unary relations.

R v (r1 : A) u (r2 : BOOLEAN) (Rule-2)

4.1.4 Role Mandatory

There are two types of mandatory constraints in ORM: role mandatory, and disjunctive
mandatory.

The role mandatory constraint in ORM is depicted as a dot on the line connecting a
role with an object type (see figure 4.4). It is used to constrain a role played by an object
type, such that each instance of that object type must play this role at least once. The
example in figure 4.4 indicates that, in every interpretation of this schema, each instance
of the object-type Professor must work for at least one University. Rule-3 presents the
general case formalization of the role mandatory constraint.

2In our opinion, using unary roles instead of a subsumption relationship has other ontological advan-
tages. Ontologically, it is not completely accurate to say that a ”smoker” is a type of person. A smoker is
a role that a person might play, rather than a type. See [GW02] for more details on ’type’ versus ’role’ in
ontology engineering.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 33

4. OBJECT ROLE MODELING

Professor v ∃[WorksFor]R

Figure 4.4: Example of a role mandatory con-
straint.

Ai v ∃[ri]R (Rule-3)

4.1.5 Disjunctive Mandatory

The disjunctive mandatory constraint is used to constrain a set of two or more roles con-
nected to the same object type. It means that each instance of the object type’s population
must play at least one of the constrained roles. For example, the disjunctive mandatory in
figure 4.5 means that each account must be owned by at least a person, a company, or both.
Rule-4 presents the general case formalization of a disjunctive mandatory constraint.

R1 v (OwnedBy : Account) u (r2 : Person)
R2 v (OwnedBy : Account) u (r2 : Company)
Account v ∃[OwnedBy]R1 t ∃[OwnedBy]R2

Figure 4.5: Example of a disjunctive
mandatory constraint.

A v ∃[r1]R1 t t ∃[r1]Rn (Rule-4)

4.1.6 Role Uniqueness

We distinguish between three types of uniqueness constraints in ORM: role uniqueness,
predicate uniqueness, and external uniqueness.

Role uniqueness is represented by an arrow spanning a single role in a binary relation-
ship. As shown in figure 4.6, this uniqueness constraint states that, in every interpretation
of this schema, each instance of Professor must work for at most one University, i.e. each
occurrence is unique. Rule-5 presents the general case formalization of the role unique-
ness constraint.

34 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

Professor v (≤ 1[WorksFor]R)

Figure 4.6: Example of a role uniqueness con-
straint.

A v (≤ 1[ri]R) (Rule-5)

4.1.7 Predicate Uniqueness

An arrow spanning more than a role in a relationship of arity n represents predicate
uniqueness. As shown in figure 7, this uniqueness constraint states that, in any popula-
tion of this relationship, the person and subject pair must be unique together. The general
case of this constraint is formalized in [Hal89] as: ∀x1, .., xi, .., xn, y(R(x1, .., xi, .., xn)∧
R(x1, .., y, xi+1, .., xn)→ xi = y).

We formalize this uniqueness constraint using the notion of functional dependency fd
in DLRifd [CGL01], which has the form:

(fd R r1, ..., rh → rj)

where R is a relation, and r1, ..., rh, rj denote roles in R. The notion of functional de-
pendency requires two tuples of a relationship that agree on the constrained components
r1, ..., rh to also agree on the un-constrained component rj . The set of the constrained
roles (on the the left-side of the fd assertion) uniquely determines the un-constrained role
(which is on the the right side of the assertion). In other words, we say that the un-
constrained role is functionally dependent upon the set of the constrained roles. We call
the set of the constrained roles determinant and the un-constrained role dependent. The
following is the general case formalization rule of a predicate uniqueness constraint.

R v (Achieves : Person) u (r2 : Position) u (r3 : Subject)
fd R Achieves, r2 → r3

Figure 4.7: Example of an ORM predicate uniqueness constraint.

fd R r1, ..., ri−1, ri+1, ..., rn → ri (Rule-6)
(Not supported by any DL reasoner yet)

KWEB/2007/D2.5.7/v1.0 31 December, 2007 35

4. OBJECT ROLE MODELING

Notice that our formalization excludes the following cases:

• Role uniqueness in a binary relationship: Although it is theoretically possible to use
the above formalization in case of a binary relationship, we keep the formalization
of this case separate (see rule-5) for implementation reasons. This is because: 1)
rule-5 is supported in most description logic reasoners while rule-6 is not imple-
mented in any reasoner yet, and 2) reasoning on functional dependencies cannot be
performed on TBox only. In other words, as functional dependencies in DLRifd

are seen as extra assertions (i.e. outside the TBox), the reasoning process to check
whether the fd assertions are violated is reduced to ABox satisfiability. If there is
no ABox, one cannot reason over the fd assertions.

• A single role uniqueness in an n−ary relationship where (n > 2), since it is always
a non-elementary fact type (see [Win90], chapter 12): This case is considered an
illegal constraint in ORM (see [Hal01], chapter 4), with [CGL01] proving that it
leads to undecidability in reasoning. Therefore, this case is ruled out in our formal-
ization.

• A uniqueness constraint spanning all roles of a relationship, where i = n (see
figure 8): This uniqueness states that the population of the entities Person and Uni-
versity together is unique in each tuple of the relationship. Notice that there is no
logical significance to such a constraint, i.e. it is not a constraint [Hal89]. This
constraint is used in databases to prevent data redundancy, which is not important
in logic. For a relationship of arity n to be elementary, any uniqueness constraint
on it must span at most n − 1 roles [Hal89]. However, this constraint can be eas-
ily formalized by objectifying the relation R and then using the notion of id, as:
(id R [WorksFor]R, [Employs]R).

Figure 4.8: Example of the uniqueness constraint spanning all roles.

4.1.8 External Uniqueness

External uniqueness constraints (denoted by “U”) apply to roles from different relation-
ships. The roles that participate in such a uniqueness constraint uniquely refer to an
object type. For example, as shown in figure 9, the combination of (Author, Title, Edi-
tion) must be unique. In other words, different values of (Author, Title, Edition) refer
to different Books. Formalizing this constraint in description logic is possible using the

36 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

R1 v (WrittenBy : Book) u (Writes : Author)
R2 v (Has : Book) u (IsOf : Title)

R3 v (Has : Book) u (IsOf : Edition)
id Book [WrittenBy]R1 t [Has]R2 t [Has]R3

Figure 4.9: Example of the role of an external uniqueness constraint on different relation-
ships.

notion of identity id in DLRifd [CGL01]. In case the external uniqueness is defined on
binary relationships and the common concept to be constrained is directly connected to
these relations, the formalization is direct (see figure 9). In other cases, the formaliza-
tion becomes more complex. We shall try to simplify and explain this complexity in the
following section.

The notion of identity id in DLRifd has the form:

(id C [r1]R1, ..., [rn]Rn)

Where C is a concept, each Ri is a relation, and each ri is a role in Ri that is connected
to C. The identity id in DLRifd states that two instances of the concept C cannot agree
on the participation in R1, ..., Rn via their roles r1, ..., rn, respectively. See [CGL01] for
more details on this.

In ORM, the intuition of external uniqueness is that the combination of r1, ..., rn in
R1, ..., Rn respectively must be unique. The formalization of the general case [Hal89] of
this constraint (see the figure in rule-7) is: ∀x1, x2, y1..yn(R1(x1, y1) ∧ ... ∧ Rn(x1, yn) ∧
(R1(x2, y1) ∧ ... ∧Rn(x2, yn)→ x1 = x2).

This allows one to define uniqueness on roles that are not directly “connected” to a
common concept. For example, although the external uniqueness in figure 10 means that
the combination of {CountryCode, CityCode} must be unique, it does not tell us that
the combination is unique for which concept. In other words, the notion of “common
concept” is not explicitly regarded, neither in the ORM graphical notation nor in its un-
derlying semantics [Hal89] [Hal02] [vBtHvdW91]. This is the reason why the notation
of external uniqueness is drawn on the roles that are connected with a unique combina-
tion, and not on the roles of a common concept. For example, the external uniqueness
constraint in figure 10 is drawn on the {[IsOf]R4, [IsOf]R5} roles, even though for the
notion of id the involved roles should be {[Has]R4, [Has]R5}. To interpret the external

KWEB/2007/D2.5.7/v1.0 31 December, 2007 37

4. OBJECT ROLE MODELING

uniqueness (i.e. the semantics) in figure 10, a join path should be performed on R4−R1
and R5−R2. In other words, although the notion of “common concept” does not exist in
ORM, it is assumed that there must be a join path between the constrained roles. If this
path cannot be constructed, then the external uniqueness is considered illegal [Hal02], i.e.
an error in the ORM schema.

This freedom in ORM (i.e. being able to draw an external uniqueness constraint on
arbitrary roles) leads to the ambiguity of the paths on which a join can be performed
[Hal02]. For example, should it be on {R4−R1, R5−R2} or {R4−R1, R5−R3}? The
construction of such join paths becomes more complex (even for human eyes) in large
schemes or when objectified (i.e. reified) predicates are involved. Figure 11 show some
cases of complex external uniqueness.

We formalize the general case of external uniqueness using the notion of id inDLRifd,
but we use the concept Top as the common concept C (see rule-7). As shown in figure 9,
the formalization (using Top) means that any two individuals must agree on their partici-
pation in roles: [WrittenBy]R1, [Has]R2 and [Has]R3.

id Top [Has]R4 t [Has]R5

Figure 4.10: Example of an external uniqueness
constraint through multiple join paths, adopted
from [Hal02].

id Top [r1]R1, ..., ...[r1]Rn (Rule-7)
(Not supported by any DL reasoner yet)

Although the use of the Top concept yields a simple and elegant formalization, in-
tensive ABox reasoning may be required. In practice, we recommend using the Uniquest
algorithm [vdWtHvB92]. This algorithm is designed to compute the shortest join path
connecting the constrained roles for an external uniqueness constraint, no matter what its
level of complexity is. The result is a derived relation, which represents the shortest join
path. This derived relation can then be used instead of the concept Top in rule-7.

4.1.9 Role Frequency Constraints

We distinguish between frequency constraints that span 1) a single role, which we call
“role frequency” constraints, and 2) multiple roles, which we call “multiple-role fre-

38 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

Figure 4.11: Examples of complex external uniqueness in ORM, adopted from
[vdWtHvB92].

quency” constraints.

A role frequency constraint (min−max) is used to specify the number of occurrences
that this role can be played by its object-type. A frequency constraint on the ith role of
an n-ary relation is formalized [Hal89] as: ∀x[x ∈ R.i → ∃n,mz(R(z) ∧ zi = x)]. For
example, the frequency constraint in figure 12 indicates that if a car has wheels, it must
have at least 3 and at most 4 wheels. Notice that a frequency constraint of 1, which
is equivalent to an internal uniqueness constraint on this role, is covered by rule-5. The
example here says that if it happens that a car has wheels (although it may not have them),
then it must have at least 3 and at most 4 wheels. Therefore, we formalize this constraint
by conjugating ⊥ to the (min − max) cardinality, i.e. either there is no occurrence, or
it must be within the (min − max) range, which is the exact meaning in ORM. Rule-8
presents the general case mapping rule of a role frequency constraint.

Car v ∃≥3,≤4[HasPart]R t ⊥

Figure 4.12: Example of a role frequency.
A v ∃≥n,≤m[i]R t ⊥ (Rule-8)

KWEB/2007/D2.5.7/v1.0 31 December, 2007 39

4. OBJECT ROLE MODELING

4.1.10 Multiple-role Frequency Constraints

A multiple-role frequency constraint spans more than one role (see figure 13). This con-
straint means that, in the population of this relationship, A and C must occur together (i.e.
as a tuple) at least 3 times and at most 6 times. Notice that a frequency constraint of 1
on a set of roles is covered by rule-6, which is equivalent to a predicate uniqueness on
these role. Up to our knowledge, such a cardinality constraint cannot be formalized in
description logic. However, this constraint is extremely rare in practice, [Hal01] presents
an example of this constraint and shows that it can be remodeled and achieved by a com-
bination of uniqueness and single-role frequency constraints, which are indeed cheaper to
compute and reason about. Exception-1 presents the general case of the ORM multiple-
role frequency constraint and its formalization in first order logic [Hal89].

Figure 4.13: A Multiple-Role Fre-
quency Constraint.

Not supported in DL (Exception-1)
∀x [R(x)→ ∃n,mz(R(z) ∧ zi1 = xi1... ∧ zir = xir)]

4.1.11 Subtypes

Subtypes in ORM are proper subtypes. For example, we say that B is a proper subtype
of A if and only if the population of B is always a subset of the population of A, and
A 6= B. This implies that the subtype relationship is acyclic; hence, loops are illegal in
ORM. To formalize this relationship in DLR, we introduce an additional negation axiom
for each subtype relation. For example, Subtype(Man, Person) in ORM is formalized as:
(Man v Person) u (Person 6v Man). Rule-9 presents the general case formalization
of ORM subtypes. Notice that “ 6v” is not part of the DLR syntax. However, it can be
implemented by reasoning on the ABox to make sure that the population of A and the
population B are not equal.

B v A
A 6v B (Rule-9)

Remarks. First: In ORM, object-types are mutually exclusive by default, unless they
share a common type. A subtype hierarchy corresponds to a directed acyclic graph with
a unique top. A specialization hierarchy can thus considered to be a semi-lattice, where

40 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

the least upper bound should exist for each pair of subtypes in the same hierarchy. Refer
to [HP95] and ([Hal01], chapter 6) for more details. This “unique top” property of ORM
subtypes can be implemented by stating that all object types in the schema, except those
that have a subtype link among themselves, are disjoint.

Second: Subtypes in ORM should be well-defined, which means that users should
introduce some rules explicitly to define a subtype. Such definitions are not part of the
graphical notation and are typically written in the FORMAL langauge [Hal89]. The idea
of the ORM FORMAL language is similar to the idea the OCL language for UML. For
example: if one states that (Man Is-a Person), then a textual rule on Man is defined e.g.
“who has Gender=’Male”’. Since such rules are not part of the graphical notation, we
do not include them in our formalization. We assume that textual rules that are not part of
the ORM graphical notation are written in DLR directly.

4.1.12 Total Constraint

The total constraint (�) between subtypes means that the population of the supertype is
exactly the union of the population of these subtypes. For example, the constraint in figure
4.14 means: Person = Man ∪Woman ; that is, each person must be at least a man or a
woman, or both. Rule-10 presents the general case formalization of the Total constraint.

Person vMan tWoman

Figure 4.14: Example of Total constraint. A v A1 t A2 t ... t An (Rule-10)

4.1.13 Exclusive Constraint

The exclusive constraint (⊗) between subtypes means the population of these subtypes
is distinct, i.e. the intersection of their populations must be empty. For example, the
constraint in figure 4.15 means [Hal01]: Man ∩ Woman = {}; that is, if a person is a
woman, then this person cannot be a man at the same time. Notice that ORM allows
an exclusive constraint to be drawn between more than two object types. In this case,
all objects types involved are pairwise disjoint. A single exclusive constraint between
n object types can be replaced by n(n − 1)/2 pairs of exclusive constraints. Rule-11
presents the general case formalization of the Exclusive constraint.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 41

4. OBJECT ROLE MODELING

Man uWoman ≡⊥

Figure 4.15: Example of an Exclu-
sive constraint.

(Ai u Aj ≡⊥) for each i ∈ {1..n−1}, j ∈ {i + 1..n} (Rule-11)

4.1.14 Value Constraints

The value constraint in ORM indicates the possible values (i.e. instances) for an object
type. A value constraint on an object type A is denoted as a set of values {s1, ..., sn}
depicted near an object type, which indicate that (∀x[A(x) ≡ x ∈ {s1, ..., sn}]) [Hal89]
(see figure 16 and 17). Value constraints can be declared only on lexical object types,
and values should be well-typed, i.e. its datatype should be either a string such as
{′be′,′ 39′,′ it′,′ 32′} or a number such as {1, 2, 3}. Notice that quotes are used to dis-
tinguish string values from number values. As discussed earlier, if a LOT has no value
constraint on it, then it is, by default, seen as a subtype of LEXICAL. If it has a value
constraint, it must be a subtype of either the STRING or the NUMBER classes. Rule-12
and Rule-13 respectively present the general case formalization of the value constraints
whether its datatype is a string or a number.

Gender v STRING

Gender ≡ {Male, Female}

Figure 4.16: A STRING Value con-
straint

ZipCode v NUMBER

ZipCode ≡ {1040, 1160}

Figure 4.17: A NUMBER Value con-
straint

A v STRING
A ≡ {x1, .., xn} (Rule-12)

A v NUMBER
A ≡ {x1, .., xn} (Rule-13)

Outlook: We plan to extend our formalization of the ORM value constraint to include
other data types, such as real, integer, and boolean, which are not discussed here.

42 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

4.1.15 Subset Constraint

The subset constraint (→) between roles (or sequences of roles) is used to restrict the
populations of these roles, since one is a subset of the other. In figure 4.18, we illustrate
a subset constraint. This indicates that each person who drives a car must be authorized
by a driving license: ∀x(x ∈ R2.Drives → x ∈ R1.AuthorizedWith) [Hal89]. If an
instance plays the subsuming role, then this instance must also play the subsumed role.
Rule-14 presents the general case formalization of a subset constraint between two roles.

[Drives]R2 v [AuthorizedWith]R1

Figure 4.18: A Subset between two
roles.

R2 v R1

Figure 4.19: A Subset between two re-
lations.

A subset constraint that is declared between all roles in a relationship and all roles
in another relationship implies that the set of tuples of the subsuming relation is a subset
of the tuples of the subsumed relation. For example, figure 19 denotes the case that if a
person manages a company, this person must also be employed in that company. Rule-15
presents the general case formalization of a subset constraint between two relations.

ORM also allows subset constraints between tuples of (not necessarily contiguous)
roles as shown in rule-16, where each ith and jth roles must have the same type. The
population of the set of the jth roles is a subset of the population of the set of the
ith roles. The FOL formalization of the general case of this constraint [Hal89] is :
∀x1...xk[∃y(R2(y) ∧ x1 = yi1 ∧ ... ∧ xk = yik)→ ∃z(R1(z) ∧ x1 = zj1 ∧ ... ∧ xk = zjk

)].

To formalize this constraint in description logic, we use the recent extension to DLR-
Lite [CDGL+06] that allows inclusion assertions between projections of relations of the
forms:

R2[rj1 , ..., rjk
] v R1[ri1 , ..., rik]

where R1 is an n-ary relation, ri1 , ..., rik ∈ {r1, ..., rn}, and rip 6= riq if rp 6= rq; R2 is an
m-ary relation, rj1 , ..., rjk

∈ {r1, ..., rm}, and rjp 6= rjq if rp 6= rq.

Using this extension, any ORM set-comparison constraint formalized hereafter be-
tween two sets of (not contiguous) roles becomes direct. Rule-16 shows the subset general
case.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 43

4. OBJECT ROLE MODELING

[rj]R2 v [ri]R1 (Rule-14) R2 v R1 (Rule-15)

R2[rj1 , ..., rjk
] v R1[ri1 , ..., rik] (Rule-16)

4.1.16 Equality Constraint

Similar to the subset constraint, the equality constraint (↔) can be declared between
two roles, two relationships, or two sequences of roles. The equality constraint in figure
20 denotes that: Each FacultyMember WorksFor a University iff this FacultyMember
Teaches a Course. The quality constraint is equivalent to two subset constraints opposed
to each other. Rule-17 presents the general case formalization of an equality constraint
between two roles.

[WorksFor]R1 ≡ [Teaches]R2

Figure 4.20: Equality between two
roles.

R1 ≡ R2

Figure 4.21: Equality between two re-
lations.

Equality constraints can also be declared between two relationships (see figure 21).
This example means that each person who works for a company must be affiliated with
that company, and vise versa. Rule-18 presents the general case formalization of an equal-
ity constraint between two relationships.

Similar to rule-16, rule-19 presents the formalization of an equality constraint between
two sets of (not contiguous) roles, i.e. equivalence between two projections. The FOL
formalization of this constraint [Hal89] is: ∀x1...xk[∃y(R1(y)∧ x1 = yi1 ∧ ...∧ xk = yik) ≡
∃z(R2(z) ∧ x1 = zj1 ∧ ... ∧ xk = zjk

)]

44 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

[ri]R1 ≡ [rj]R2 (Rule-17)
R1 ≡ R2 (Rule-18)

R1[ri1 , ..., rik] ≡ R2[rj1 , ..., rjk
] (Rule-19)

4.1.17 Exclusion Constraint

Similar to the subset and quality constraints, the exclusion constraint (⊗) can be declared
between roles, relationships, and sequences of (not contiguous) roles. Figure 22 shows an
example of the exclusion constraint between two roles. It says that an Account cannot be
Owned-By a Company and a Person at the same time. Figure 23 presents an example of
the constraint between two relationships: it says that the same Person cannot Write and
Review the same Book.

[OwnedBy]R1 v ¬[OwnedBy]R2

Figure 4.22: Exclusion between two
roles.

R1 v ¬R2

Figure 4.23: Exclusion between rela-
tions.

Rule-20 and rule-21 present the general cases of an exclusion constraint between two
roles and relationships and its formalization in DLR. The formalization of the exclusion
constraint between two sets of (not contiguous) roles is presented in rule-22 as two distinct
projections. In FOL, this constraint is formalized as [Hal89]: ∀x1...xk¬[∃y(R1(y) ∧ x1 =
yi1 ∧ ... ∧ xk = yik) ∧ ∃z(R2(z) ∧ x1 = zj1 ∧ ... ∧ xk = zjk

)]

[ri]R1 v ¬[rj]R2 (Rule-20) R1 v ¬R2 (Rule-21)

KWEB/2007/D2.5.7/v1.0 31 December, 2007 45

4. OBJECT ROLE MODELING

R1[ri1 , ..., rik] v ¬R2[rj1 , ..., rjk
] (Rule-22)

Remark: ORM allows the exclusion constraint to be drawn among more than two
sets of roles; this is called “Multiple Exclusion” (see the left-side of figure 24). The idea
of this redrawing merely is to avoid exhaustively marking exclusion constraints between
each pair of roles. This case can be converted into pairs of exclusions as shown in the
right-side. A single exclusion constraint across n roles replaces n(n − 1)/2 separate
exclusion constraints between two roles [Hal01].

Figure 4.24: Multiple verses pair exclusions.

In the following we formalize the Ring Constraints. ORM allows ring constraints to
be applied to a pair of roles (i.e. on binary relations) that are connected directly to the
same object-type, or indirectly via supertypes. Six types of ring constraints are supported
by ORM: symmetric (sym), asymmetric (as), antisymmetric (ans), acyclic (ac), irreflexive
(ir), and intransitive (it). Below, we present the basics of these constraints, as found in
[Hal01], and their formalization in description logic.

4.1.18 Symmetric Ring Constraint (sym)

The symmetric constraint states that if a relation holds in one direction, it should also hold
on the other direction, such as “colleague of” and “partner of”. R is symmetric over its
population iff ∀x, y[R(x, y) −→ R(y, x)]. The example shown in rule-23 illustrates the
symmetric constraint and its general case formalization in DLR.

R v R−1 (Rule-23)

46 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

4.1.19 Asymmetric Ring Constraint (as)

The asymmetric constraint is the opposite of the symmetric constraint. If a relation holds
in one direction, it cannot hold on the other; an example would be “wife of” and “parent
of”. R is asymmetric over its population iff ∀xy, R(x, y) −→ ¬R(y, x) The example
shown in rule-24 illustrates the asymmetric constraint and its general case formalization
in DLR.

R v ¬R−1 (Rule-24)

4.1.20 Antisymmetric Ring Constraint (ans)

The antisymmetric constraint is also an opposite to the symmetric constraint, but not
exactly the same as asymmetric; the difference is that all asymmetric relations must be
irreflexive, which is not the case for antisymmetric. R is antisymmetric over its population
iff ∀xy, x 6= y ∧R(x, y) −→ ¬R(y, x) (see the example in rule-25).

To formalize this constraint (and some other constraints below) in description logic,
we use the concept (∃R.Self) that has been introduced recently to the SROIQ descrip-
tion logic 3[HKS06]. The semantics of this concept simply is:

(∃R.Self)I = {x |< x, x >∈ RI}

Notice that this concept is not yet included in the DLR description logic. However, as
[HKS06] show, this concept can be added without causing difficulties in reasoning. Rule-
25 illustrates the antisymmetric constraint and its general case formalization.

> v (∃R.Self) t (¬∃R−.>) (Rule-25)
Not supported by any DL reasoner yet

3SROIQ is an extension of the description logics SHOIN [HST99] [HPSvH03] andRIQ [HS04].

KWEB/2007/D2.5.7/v1.0 31 December, 2007 47

4. OBJECT ROLE MODELING

4.1.21 Irreflexive Ring Constraint (ac)

The irreflexive constraint on a relation states that an object cannot participate in this rela-
tion with himself. For example, a person cannot be the “parent of” or “sister of” himself.
R is Irreflexive over its population iff ∀x,¬SisterOf(x, x). As discussed above, for-
malizing this constraint in description logic is also possible using the concept ∃R.Self .
Rule-26 illustrates the irreflexive constraint and its general case formalization in descrip-
tion logic.

> v ¬∃R.Self (Rule-26)
Not supported by any DL reasoner yet

4.1.22 Acyclic Ring Constraint (ac)

We say R is acyclic over its population iff ∀x[¬Path(x, x)]. For example, a Person cannot
be directly (or indirectly through a chain) ParentOf himself. In ORM, this constraint is
preserved as a difficult constraint. “Because of their recursive nature, acyclic constraints
maybe expensive or even impossible to enforce in some database systems.”[Hal01]. In-
deed, even some highly expressive description logics support notions such as n-tuples
and recursive fixed-point structures, from which one can build simple lists, trees, etc.
However, to our knowledge, acyclicity with any depth on binary relations cannot be rep-
resented.

(Exception-2)
Not supported in Description logic

4.1.23 Intransitive Ring Constraint (ac)

A relation R is intransitive over its population iff ∀x, y, z[R(x, y)∧R(y, z) −→ ¬R(x, z)].
If Person X is FatherOf Person Y , and Y is FatherOf Z, then it cannot be that X is Fa-
therOf Z. We formalize this constraint using the notion of role-composition in description
logic. The composition of the two relations R and S (written as R ◦ S) is a relation, such
that: RI ◦ SI = {(a, c)|∃b.(a, b) ∈ RI ∧ (b, c) ∈ SI}. Hence, any composition with R itself
(R ◦R) should not imply R, see rule-28.

48 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

R ◦R v ¬R (Rule-28)
Not supported by any DL reasoner yet

The relationships between the six ring constraints described above are formalized by
[Hal01] using an Eular diagram, as shown in figure 25. This formalization helps one to
visualize the implication and incompatibility between these constraints. For example, one
can see that acyclic implies reflexivity, intransitivity implies reflexivity, the combination
of antisymmetric and reflexivity is exactly asymmetric, acyclic and symmetric are incom-
patible, etc.

Figure 4.25: The relationships between ring constraints.

4.1.24 Objectified Relations

An objectified relation in ORM is a relation that is regarded as an object type, receives
a new object type name, and is depicted as a rectangle around the relation. To help ex-
plain predicate objects in ORM, we use a familiar example (see figure 26 [Hal01]). In
this example, each (Person, Subject) enrollment is treated as an object type that scores a
rating. Predicate objects in ORM are also called objectified relationship types or nested
fact types. The general case of predicate objects in ORM is formalized in [Hal89] as:
∀x[A(x) ≡ ∃x1, ..., xn(R(x1, ..., xn) ∧ x = (x1, ..., xn))] In addition to this axiom, it is as-
sumed that there must be a uniqueness constraint spanning all roles of the objectified
relation, although it is not explicitly stated in the diagram. This is to indicate that e.g.
each person may enroll in many subjects, and the same subject may be enrolled by many
persons; see [Hal01] or the recent [Hal05] for more details.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 49

4. OBJECT ROLE MODELING

Enrollement v
[$1]Enrolls u (≤ 1[$1]Enrolls) u ∀[$1](Enrolls⇒ ($2 : Student))u
[$1]EnrolledBy u (≤ 1[$1]EnrolledBy) u ∀[$1]((EnrolledBy ⇒ ($2 : Subject))

id Enrollment [$1]Enrolls, [$1]EnrolledBy

Figure 4.26: Example of an objectification in ORM.

Predicate objects in ORM can be formalized using the notion of reification inDLRifd.
Reifying an n-ary relationship into a DLRifd concept is done by representing this con-
cept with n binary relations, with one relationship for each role[DBG05]. To help un-
derstand this reification, we demonstrate the “Enrollment” example (see figure 27) by
remodeling the relation into two binary relations, one for the role “Enrolls” and one for
the role “EnrolledBy”. The new concept “Enrollment” is defined as shown in figure 26.
In this definition: ([$1]Enrolls and [$1]EnrolledBy) specify that the concept “Enrollment”
must have all roles “Enrolls” and “EnrolledBy” of the relationship, (≤ 1[$1]Enrolls and
≤ 1[$1]EnrolledBy) specify that each of these roles is single-valued, and (∀[$1](Enrolls ⇒
$2 : Student) and ∀[$1]((EnrolledBy ⇒ $2 : Subject)) specify the object type each role be-
long to. The last identity id assertion is to specify a uniqueness constraint spanning all
roles (i.e. “Enrolls” and “EnrolledBy”). Rule-29 presents the general case formalization
of the objectified predicates in DLRifd.

Figure 4.27: Demonstrating the objectified relation “Enrolment” as two binary relations.

R v [$1]r1 u (≤ 1[$1]r1) u ∀[$1](r1 ⇒ ($2 : C1))u
[$1]r2 u (≤ 1[$1]r2) u ∀[$1](r2 ⇒ ($2 : C2))u

...
[$1]rn u (≤ 1[$1]rn) u ∀[$1](rn ⇒ ($2 : Cn))

(id R [$1]r1, [$1]r2, ..., [$1]rn) (Rule-29)

50 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

4.2 The Formalization of ORM using SHOIN /OWL

In this section we formalize ORM using SHOIN [HST99], which is the description logic
underpinning OWL4, the standard Ontology Web Language. Compared with DLRifd,
SHOIN does not support n-ary relations, identification, functional dependencies, and
projection of relations, among other things. This implies that several ORM constructs
cannot be formalized in SHOIN , and thus are not supported by OWL. These constraints
are: predicate uniqueness, external uniqueness, set-comparison constraints (subset, equal-
ity, and exclusion) between not contiguous roles, objectification, as well as n-ary relation-
ships.

Without these constraints, mapping ORM into SHOIN becomes direct based on
the mappings presented in the previous section. In other words, mapping ORM into
SHOIN /OWL can be seen as a subset of the mappings presented in the previous sec-
tion. All mapping rules can hold for SHOIN /OWL except {Rule-9,10,16,19,22, and
28}. The syntax of some rules need to be modified. The following table presents these
rules according to the SHOIN syntax, taking into account binary relations only.

To reason about OWL using DL reasoners, OWL statements should be mapped into
DIG[TBK+06]5, which is the language that DL reasoners understand. DogmaModeler
(as shall be demonstrated in the next section) maps ORM schemes into DIG directly. A
functionality to export OWL shall be released in the near future. This functionality is
based on table 4.1 (i.e., a subset of ORM).

4.3 Implementation

In this section, we illustrate the implementation of our formalization rules. The formaliza-
tion is implemented as an extension to the DogmaModeler [Jar05]. DogmaModeler is an
ontology modeling tool based on ORM. In DogmaModeler, ORM diagrams are mapped
automatically into DIG, which is a description logic interface (XML-based language) that
most reasoners (such as Racer, FaCT++, etc) support. DogmaModeler is integrated with
the Racer description logic reasoning server which acts as a background reasoning engine.
Figure 4.28 shows a screen shot of DogmaModeler. The first window shows an ORM dia-
gram, while the second DIG window shows the Tell and Ask functionalities. While Tell is
to map an ORM diagram into a knowledge base inside Racer, Ask is to reason about this
knowledge base. The results of the reasoning about the displayed ORM diagram indicates
that the roles “AffiliatedWith” and “Manages“ cannot be satisfied, because the mandatory

4OWL can be seen as a friendly XML interface of SHOIN .
5http://dl.kr.org/dig/ (Last visit May 2007)

KWEB/2007/D2.5.7/v1.0 31 December, 2007 51

4. OBJECT ROLE MODELING

n-ary relation ∗ Rule-1
Binary relation A v ∀R.C Rule-1’
Unary relation A v ∀R.BOOLEAN Rule-2
Role Mandatory A v ∃R.C Rule-3
Disjunctive Mandatory A v ∃R1.C1 t t ∃Rn.Cn Rule-4
Role Uniqueness A v ≤ 1R.C Rule-5
Predicate Uniqueness ∗ Rule-6
External Uniqueness ∗ Rule-7
Role Frequency A v ∃≥n,≤mR.C t ⊥ Rule-8
Multiple-Role Frequency ∗∗ Exception-1
Subtypes B v A, A 6v B Rule-9
Total A v A1 t A2 t ... t An Rule-10
Exclusive (Ai u Aj ≡⊥) for each i ∈ {1, .., n−1}, J ∈ {i+1, ..n} Rule-11
String Value A v STRING, A ≡ {x1, .., xn} Rule-12
Number Value A v NUMBER, A ≡ {x1, .., xn} Rule-13
Role Subset ∃R2.C2 v ∃R1.C1 Rule-14
Relation subset R2 v R1 Rule-15
Projection subset ∗ Rule-16
Role Equality ∃R2.C2 ≡ ∃R1.C1 Rule-17
Relation Equality R2 ≡ R1 Rule-18
Projection Equality ∗ Rule-19
Role Exclusion ∃R2.C2 v ¬∃R1.C1 Rule-20
Relation Exclusion R2 v ¬R1 Rule-21
Projection Exclusion ∗ Rule-22
Symmetric R v R− Rule-23
Asymmetric R v ¬R− Rule-24
Antisymmetric > v (∃R.Self) t (¬∃R−.>) Rule-25
Irreflexive > v ¬∃R.Self Rule-26
Acyclic ∗∗ Exception-2
Intransitive R ◦R v ¬R Rule-28
Objectification ∗ Rule-29

Table 4.1: Formalization of ORM using SHOIN ; (∗: Not supported in SHOIN) (∗∗:
Cannot be formalized in Description logic).

and the exclusion constraints are conflicting each other. DogmaModeler currently imple-
ments three types of reasoning services: schema satisfiability, concept satisfiability, and
role satisfiability. The other types of reasoning services that are being implemented or are
scheduled to be implemented include constraint implications, inference, and subsump-
tion. Please refer to [JE06] for the technical details of DogmaModeler’s mapping into
DIG.

The main problem we faced during the implementation is that several ORM con-

52 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

straints cannot be mapped into DIG; that is, these constraints were not yet supported by
any description logic reasoner. Each formalization rule that could not be implemented is
marked by “Not supported by any DL reasoner yet” in the previous sections.

Figure 4.28: DogmaModeler, Ontology modeling using ORM and its automated reason-
ing.

4.4 Related work

Similar to our work, there have been several efforts to reuse the graphical notation of
UML and EER for ontology modeling. Some approaches, such as [BVEL04, KCH+02],
considered this to be a visualization issue and did not consider the underpinning seman-
tics. Others (e.g., [SB05, VDSMSJ03]) are motivated only to detect consistency problems
in conceptual diagrams. We have found work in formalizing UML in [DBG05], and in
[CDGL+98b, BCM+03] for EER. These two formalization efforts have studied the FOL
semantics of UML and EER and mapped it into the DLRifd description logic. It is also
worth noting that the ICOM tool was one of the first tools to enable automated reasoning
with conceptual modeling. ICOM [FN00, Ico] supports ontology modeling using a graph-
ical notation that is a mix of the UML and the EER notations. ICOM is fully integrated
with the FaCT description logic reasoning server, which acts as a background inference
engine.

4.5 Conclusions and future work

In this chapter, we have formalized ORM using both DLRifd and SHOIN /OWL, two
expressive and wisely used DLs, Our formalization is structured into 29 formalization

KWEB/2007/D2.5.7/v1.0 31 December, 2007 53

4. OBJECT ROLE MODELING

rules which map all ORM primitives and constraints, except for two complex cases (ex-
ception 1 and 2). We have shown which formalization rules can be implemented by
current description logic reasoning engines. We have illustrated the implementation of
our formalization as an extension to the DogmaModeler. Hence, we have explained how
ORM can be used as as a graphical notation for ontology modeling with the reasoning
being carried out by a background reasoning engine.

Various issues remain to be addressed. These include extending our formalization to
cover more datatypes besides the String, Number, and Boolean types; implementing ad-
ditional types of reasoning services, specifically constraint implications and inferencing;
studying the computational complexity of ORM constraints; and last but not least, is to
extend the ORM graphical notation to include some description logical notions, such as
the composition, intersection, and union between relations.

Acknowledgment: This research was initiated during my visit to Enrico Franconi at
the Free University of Bozen-Bolzano, which was funded by the Knowledge Web project
(FP6-507482). I am indebted to Enrico for his very valuable suggestions, contributions,
and encouragement. I am also indebted to Sergio Tessaris, Terry Halpin, and Rob Shearer
for their valuable comments and feedback on the final version of the chapter. I wish
to thank Diego Calvanese, Maurizio Lenzerini, Stijn Heymans, Robert Meersman, Ian
Horrocks, Alessandro Artale, Erik Proper, Marijke Keet, and Jeff Pan for their comments
and suggestions during this research.

54 31 December, 2007 KWEB/2007/D2.5.7/v1.0

Chapter 5

Conclusion

In this report, we have presented mappings between three different modeling languages—
OBO, Structured Ontology Format (SOF), and ORM—and OWL.

In all three cases, the non-OWL modeling syntax offers compelling advantages over
OWL’s native RDF serialization: OBO provides a simple and intuitive text format or
human users, ORM offers a graphical modeling paradigm, and SOF includes a straight-
forward data model which can be easily used as a library-free ontology API from any
popular programming language.

By providing mappings from each of these languages to OWL, we have also made a
wide selection of tools available to those working with OWL ontologies: IDEs for OBO
syntax, graphical editors for ORM, and scripting libraries for SOF.

Just as importantly, each alternate modeling syntax makes OWL, as well as the large
library of OWL-based tools and services, available to a larger audience. OBO is widely
used by biologists and there exists a large repository of biological knowledge encoded in
OBO. ORM is a mature and well-known language which has been in use in the database
community for over thirty years. While SOF is a new syntax, it is designed specifically
to appeal to “casual” programmers who would like to work with ontologies using script-
ing languages. By joining these groups with the OWL community we create a richer
ecosystem for the further development of semantic web technologies.

55

Bibliography

[ABB+00] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,
M. Ringwald, G. M. Rubin, and G. Sherlock. Gene Ontolgy: Tool for the
Unification of Biology. Nature Genetics, 25(1):25–29, 2000.

[BB95] A.T. Berztiss and J.A. Bubenko. A software process model for business
reengineering. In Proceedings of Information Systems Development for
Decentralized Organizations (ISDO95), an IFIP 8.1 Working Conference,
pages 184–200, Trondheim Norway, August 1995. Chapman and Hall.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter Patel-Schneider. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, 2003.

[BGH99] L. Bird, A. Goodchild, and T.A. Halpin. Object role modelling and xml-
schema. In A. Laender, S. Liddle, and V. Storey, editors, Proc. of the 19th
International Conference on Conceptual Modeling, LLNCS. Springer,
1999.

[BHLT06] Tim Bray, Dave Hollander, Andrew Layman, and Richard To-
bin. Namespaces in XML 1.0 (second edition). Technical Report
http://www.w3.org/TR/2006/REC-xml-names-20060816/, W3C, August
2006. http://www.w3.org/TR/2006/REC-xml-names-
20060816/.

[BVEL04] S. Brockmans, R. Volz, A. Eberhart, and P. Loffler. Visual modeling of
owl dl ontologies using uml. Proc. of International Semantic Web Con-
ference (2004), pages 198–213, 2004.

[BvHH+04] Sean Bechhofer, Frank van Harmelen, James Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein eds.
OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-
ref/, Feb 2004.

56

http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

[BVL03] Sean Bechhofer, Raphael Volz, and Phillip W. Lord. Cooking the semantic
web with the OWL API. In Dieter Fensel, Katia P. Sycara, and John My-
lopoulos, editors, International Semantic Web Conference, volume 2870
of Lecture Notes in Computer Science, pages 659–675. Springer, 2003.

[Cas] CaseTalk website: http://www.casetalk.com/php/ (Visited, October 1,
2006).

[CDGL98a] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability
of query containment under constraints. Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 149–158, 1998.

[CDGL+98b] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele
Nardi, and Riccardo Rosati. Source integration in data warehousing. In
Proc. of the 9th Int. Workshop on Database and Expert Systems Applica-
tions (DEXA’98), pages 192–197. IEEE Computer Society Press, 1998.

[CDGL+06] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Data complexity of query answering in
description logics. In Patrick Doherty, John Mylopoulos, and Christo-
pher Welty, editors, Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR2006), pages
178–218, Menlo Park, California, 2006. AAAI Press.

[CGL01] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Iden-
tification constraints and functional dependencies in description logics. In
Proceedings of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI
2001), pages 155–160, 2001.

[CLN99] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based repre-
sentation formalisms. J. of Artificial Intelligence Research, 11:199–240,
1999.

[DAHtH02] Marlon Dumas, Lachlan Aldred, Mitra Heravizadeh, and Arthur H.M. ter
Hofstede. Ontology markup for web forms generation. In WWW’02 Work-
shop on Real-World Applications of RDF and the Semantic Web, 2002.

[DBG05] Diego Calvanese Daniela Berardi and Giuseppe De Giacomo. Reasoning
on uml class diagrams. Artificial Intelligence, 168(1):70–118, 2005.

[DCv+02] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Hor-
rocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn An-
drea Stein. OWL web ontology language 1.0 reference, July 2002.
http://www.w3.org/TR/owl-ref/.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 57

http://www.w3.org/TR/owl-ref/

BIBLIOGRAPHY

[DJM02] J. Demey, M. Jarrar, and R. Meersman. A conceptual markup language
that supports interoperability between business rule modeling systems.
In Proc. of the Tenth International Conference on Cooperative Informa-
tion Systems (CoopIS 02), number 2519 in LNCS, pages 19–35. Springer,
2002.

[DLc] DL online course by Enrico Franconi, http://www.inf.unibz.it/ fran-
coni/dl/course/ (Visited, October 1, 2006).

[DNR02] F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal
Knowledge and Negation as Failure. ACM Transactions on Computa-
tional Logic, 3(2):177–225, 2002.

[DRPM06] S. Derriere, A. Richard, and A. Preite-Martinez. An Ontology of Astro-
nomical Object Types for the Virtual Observatory. In Proc. of the 26th
meeting of the IAU: Virtual Observatory in Action: New Science, New
Technology, and Next Generation Facilities, pages 17–18, Prague, Czech
Republic, August 21–22 2006.

[dT96] Olga de Troyer. A formalization of the binary object-role model based on
logic. Data and Knowledge Engineering, 19:1–37, 1996.

[DT05] Casteleyn S. Plessers P. De Troyer, O. Using orm to model web sys-
tems. In Terry Halpin and Robert Meersman, editors, Proceeding of the
International Workshop on Object-Role Modeling (ORM’05), Agia Napa,
Cyprus, 2005. Springer.

[dTM95] Olga de Troyer and Robert Meersman. A logic framework for a seman-
tics of object-oriented data modelling. In M.P. Papazoglou, editor, Pro-
ceedings of 14th International Conference Object-Orientation and Entity-
Relationship Modelling. LNCS 1021, Springer., 238-249 1995.

[FN00] Enrico Franconi and Gary Ng. The i.com tool for intelligent conceptual
modelling. In 7th Intl. Workshop on Knowledge Representation meets
Databases(KRDB’00). Springer Verlag, August 2000.

[GHKS07] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the Right
Amount: Extracting Modules from Ontologies. In Proc. WWW 2007,
pages 717–726, Banff, AB, Canada, May 8–12 2007.

[GHT06] T. Gardiner, I. Horrocks, and D. Tsarkov. Automated Benchmarking of
Description Logic Reasoners. In Proc. DL 2006, volume 189 of CEUR
WS Proceedings, Lake District, UK, May 30–June 1 2006.

[Goo05] J. Goodwin. Experiences of using OWL at the Ordnance Survey. In Proc.
OWL-ED 05, volume 188 of CEUR WS Proceedings, Galway, Ireland,
November 11–12 2005.

58 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

[GW02] Nicola Guarino and Chris Welty. Evaluating ontological decisions with
ontoclean. Communications of the ACM, 45(2):6165, 2002.

[GZB06] C. Golbreich, S. Zhang, and O. Bodenreider. The Foundational Model of
Anatomy in OWL: Experience and Perspectives. Journal of Web Seman-
tics, 4(3):181–195, 2006.

[Hal89] Terry Halpin. A logical analysis of information systems: static aspects
of the data-oriented perspective. University of Queensland, PhD Thesis,
1989.

[Hal01] Terry Halpin. Information Modeling and Relational Databases, 3rd edn.
Morgan-Kaufmann, 2001.

[Hal02] Terry Halpin. Join constraints. In Terry Halpin, Keng Siau, and John
Krogstie, editors, Proceedings of the 7th International IFIP WG8.1 Work-
shop on Evaluation of Modeling Methods in Systems Analysis and Design
(EMMSAD’02), June 2002.

[Hal04] Terry Halpin. Business rule verbalization. In Halpin T. Liddle S. Mayr H.
Doroshenko, A., editor, Information Systems Technology and its Applica-
tions, 3rd International Conference (ISTA’2004), pages 39–52, 2004.

[Hal05] Terry Halpin. Objectification. In John Krogstie Terry Halpin, Keng Siau,
editor, Proceddings of the 10th International Workshop on Exploring
Modeling Methods in Systems Analysis and Design (EMMSAD05) at
CAiSE 2005, 2005.

[HBN07] M. Horridge, S. Bechhofer, and O. Noppens. Igniting the OWL 1.1 Touch
Paper: The OWL API. In Proc. OWL-ED 2007, Innsbruck, Austria, June
6–7 2007. To appear.

[HC06] Terry Halpin and Matt Curland. Automated verbalization for orm 2. In
Robert Meersman and et al Zahir Tari, editors, Proceeding of the Interna-
tional Workshop on Object-Role Modeling (ORM’06), OTM 2006 Work-
shops. Springer Verlag, 2006.

[HdCD+05] F. W. Hartel, S. de Coronado, R. Dionne, G. Fragoso, and J. Golbeck.
Modeling a Description Logic Vocabulary for Cancer Research. Journal
of Biomedical Informatics, 38(2):114–129, 2005.

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert
Stevens, and Hai H Wang. Manchester OWL syntax. In Proc. of the 2006
OWL: Experiences and Directions Workshop (OWLED 2006), 2006.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 59

BIBLIOGRAPHY

[HEHM03] T. Halpin, K. Evans, P. Hallock, and W. MacLean. Database Modeling
with Microsoft Visio for Enterprise Architects. Microsoft Visio, Morgan
Kaufmann, San Francisco., 2003,.

[HEPS03] Masahiro Hori, Jérôme Euzenat, and Peter F. Patel-Schneider. OWL web
ontology language XML presentation syntax. W3C Note, 11 June 2003.
http://www.w3.org/TR/owl-xmlsyntax/.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Proceeding of the 10th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2006), 2006.

[HM01] V. Haarslev and R. Möller. RACER System Description. In Proc. IJCAR
2001, pages 701–706, Siena, Italy, June 18–23 2001.

[HP95] Terry Halpin and Erik Proper. Subtyping and polymorphism in object-role
modelling. Data and Knowledge Engineering, 15(3):251–281, 1995.

[HPH04] A.I. Bleeker H.A. Proper and S.J.B.A. Hoppenbrouwers. Object-role
modelling as a domain. In J. Grundspenkis and M. Kirikova, editors, Pro-
ceedings ofthe Workshop on Evaluating Modeling Methods for Systems
Analysis and Design, volume 3, page 317328, 2004.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language. J. of
Web Semantics, 1(1):7–26, 2003.

[HS04] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex
role inclusion axioms. Artificial Intelligence, 160(1–2):79–104, Decem-
ber 2004.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning
for expressive description logics. In H. Ganzinger, D. McAllester, and
A. Voronkov, editors, Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99), number
1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer-
Verlag, 1999.

[Ico] ICOM website, http://www.inf.unibz.it/ franconi/icom/(Visited, October 1,
2006).

[Inf] Infagon website: http://www.mattic.com/Infagon.html (Visited, October 1,
2006).

[Jar05] Mustafa Jarrar. Towards Methodological Principles for Ontology Engi-
neering. PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium, May
2005.

60 31 December, 2007 KWEB/2007/D2.5.7/v1.0

http://www.w3.org/TR/owl-xmlsyntax/

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

[Jar06a] Mustafa Jarrar. Orm markup language, version 3. Technical report, Vrije
Universiteit Brussel, Brussels, Belgium, August 2006.

[Jar06b] Mustafa Jarrar. Towards the notion of gloss, and the adoption of linguistic
resources in formal ontology engineering. In Proceedings of the 15th
international conference on World Wide Web (WWW2006), pages 497–
503, Edinburgh, Scotland., May 2006. ACM Press.

[JDM1] Mustafa Jarrar, Jan Demey, and Robert Meersman. On using concep-
tual data modeling for ontology engineering. Journal on Data Semantics
(Special issue on Best papers from the ER/ODBASE/COOPIS 2002 Con-
ferences.), 2800:185–207, October 1.

[JE06] Mustafa Jarrar and Mohammed Eldammagh. Reasoning on orm using
racer. Technical report, Vrije Universiteit Brussel, Brussels, Belgium,
August 2006.

[JKD06] Mustafa Jarrar, Maria Keet, and Paolo Dongilli. Multilingual verbaliza-
tion of orm conceptual models and axiomatized ontologies. Technical
report, Vrije Universiteit Brussel, Brussels, Belgium, February 2006.

[JM02] Mustafa Jarrar and Robert Meersman. Formal ontology engineering in the
dogma approach. In Robert Meersman and Zahir Tari, editors, Proceed-
ings of the International Conference on Ontologies, Databases and Ap-
plications of Semantics (ODBase 02)., volume LNCS 2519, pages 1238–
1254. Springer Verlag, 2002.

[JM07] Mustafa Jarrar and Robert Meersman. The DOGMA Approach for On-
tology Engineering, volume 1 of Advances in Web Semantic, A state-of-
the Art Semantic Web Advances in Web Semantics IFIP2.12., chapter 3.
Springer-sbm, 2007.

[JVM03] Mustafa Jarrar, Ruben Verlinden, and Robert Meersman. Ontology-based
customer complaint management. In Mustafa Jarrar and Ann Salaun,
editors, OTM 2003 Workshops, proceedings of the workshop on regula-
tory ontologies and the modeling of complaint regulations, volume LNCS
2889, pages 594–606, Catania, Sicily, Italy, 2003. Springer.

[KCH+02] Paul Kogut, Stephen Cranefield, Lewis Hart, Mark Dutra, Kenneth Ba-
clawski, Mieczyslaw Kokar, and Jeffrey Smith. Uml for ontology devel-
opment. Knowl. Eng. Rev., 17(1):61–64, 2002.

[KFNM04a] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé
OWL Plugin: An Open Development Environment for Semantic Web
Applications. In Proc. ISWC 2004, pages 229–243, Hiroshima, Japan,
November 7–11 2004.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 61

BIBLIOGRAPHY

[KFNM04b] Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and Mark A.
Musen. The Protégé OWL plugin: An open development environment for
semantic web applications. In Sheila A. McIlraith, Dimitris Plexousakis,
and Frank van Harmelen, editors, International Semantic Web Confer-
ence, volume 3298 of Lecture Notes in Computer Science, pages 229–243.
Springer, 2004.

[KPH05a] A. Kalyanpur, B. Parsia, and J. Hendler. A Tool for Working with Web
Ontologies. International Journal on Semantic Web and Information Sys-
tems, 1(1):36–49, 2005.

[KPH05b] Aditya Kalyanpur, Bijan Parsia, and James A. Hendler. A tool for working
with web ontologies. Int. J. Semantic Web Inf. Syst., 1(1):36–49, 2005.

[KPSH05] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging Unsatisfiable
Classes in OWL Ontologies. Journal of Web Semantics, 3(4):243–366,
2005.

[LAF+05] L. Lacy, G. Aviles, K. Fraser, W. Gerber, A. Mulvehill, and R. Gaskill.
Experiences Using OWL in Military Applications. In Proc. OWL-ED 05,
volume 188 of CEUR WS Proceedings, Galway, Ireland, November 11–12
2005.

[MHS07] B. Motik, I. Horrocks, and U. Sattler. Bridging the Gap Between OWL
and Relational Databases. In Proc. WWW 2007, pages 807–816, Banff,
AB, Canada, May 8–12 2007.

[MS06] B. Motik and U. Sattler. A Comparison of Reasoning Techniques for
Querying Large Description Logic ABoxes. In Proc. LPAR 2006, pages
227–241, Phnom Penh, Cambodia, November 13–17 2006.

[MSH07] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in Descrip-
tion Logics using Hypertableaux. In Proc. CADE-21, Bremen, Germany,
July 17–20 2007. To appear.

[NOR] NORMA website http://sourceforge.net/projects/orm , or www.orm.net
(Visited, October 1, 2006).

[Nor99] K. North. Modeling, data semantics, and natural language. New Architect
magazine, 1999.

[Pip06] Baba Piprani. Using orm-based models as a foundation for a data quality
firewall in an advanced generation data warehouse. In Terry Halpin and
Robert Meersman, editors, Proceeding of the International Workshop on
Object-Role Modeling (ORM’06), volume LNCS. Springer, 2006.

62 31 December, 2007 KWEB/2007/D2.5.7/v1.0

D1.3.8/D2.5.7 User Syntaxes for Ontology Languages IST Project IST-2004-507482

[PSH06a] P. F. Patel-Schneider and I. Horrocks. OWL 1.1 Web Ontology Language
Overview. W3C Member Submission, December 19 2006.
Available at http://www.w3.org/Submission/owl11-
overview/.

[PSH06b] Peter F. Patel-Schneider and Ian Horrocks. Owl 1.1 web ontology lan-
guage overview. W3C Member Submission, 19 December 2006. http:
//www.w3.org/Submission/2006/10/.

[PSHH03] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web
ontology language semantics and abstract syntax. W3C Candidate Rec-
ommendation, 18 August 2003. Available at http://www.w3.org/
TR/owl-semantics/.

[PSS] Peter F. Patel-Schneider and Bill Swartout. Description-logic knowledge
representation system specification from the KRSS group of the ARPA
knowledge sharing effort. http://www.cs.bell-labs.com/cm/
cs/who/pfps/publications/krss-spec.pdf.

[Qui68] M. R. Quillian. Semantic Memory. In M. Minsky, editor, Semantic Infor-
mation Processing, pages 216–270. MIT Press, Cambridge, MA, USA,
1968.

[RR06] A. Rector and J. Rogers. Ontological and Practical Issues in Using a
Description Logic to Represent Medical Concept Systems: Experience
from GALEN. In Reasoning Web, Second International Summer School,
Tutorial Lectures, pages 197–231, Lisbon, Portugal, September 4–8 2006.

[RRL05] A. Ruttenberg, J. Rees, and J. Luciano. Experience Using OWL DL for
the Exchange of Biological Pathway Information. In Proc. OWL-ED 05,
volume 188 of CEUR WS Proceedings, Galway, Ireland, November 11–12
2005.

[SB05] J. Simmonds and M.C. Bastarrica. A tool for automatic uml model con-
sistency checking. Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, pages 431–432, 2005.

[SDCS05] A. Sidhu, T. Dillon, E. Chang, and B. Singh Sidhu. Protein Ontology
Development using OWL. In Proc. OWL-ED 05, volume 188 of CEUR
WS Proceedings, Galway, Ireland, November 11–12 2005.

[SLL+04] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz. Reengi-
neering Thesauri for New Applications: The AGROVOC Example. Jour-
nal of Digital Information, 4(4), 2004.

KWEB/2007/D2.5.7/v1.0 31 December, 2007 63

http://www.w3.org/Submission/owl11-overview/
http://www.w3.org/Submission/owl11-overview/
http://www.w3.org/Submission/2006/10/
http://www.w3.org/Submission/2006/10/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/
http://www.cs.bell-labs.com/cm/cs/who/pfps/publications/krss-spec.pdf
http://www.cs.bell-labs.com/cm/cs/who/pfps/publications/krss-spec.pdf

BIBLIOGRAPHY

[SP04] E. Sirin and B. Parsia. Pellet: An OWL DL Reasoner. In Proc. DL 2004,
volume 104 of CEUR WS Proceedings, Whistler, BC, Canada, June 6–8
2004.

[TBK+06] A.-Y. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther,
R. Moller, O. Noppens, P. Patel-Schneider, B. Suntisrivaraporn, and
T. Weithoner. Dig 2.0 towards a flexible interface for description logic
reasoners. In B. Cuenca Grau, P. Hitzler, C. Shankey, and E. Wallace,
editors, In Proceedings of the second international workshop OWL: Ex-
periences and Directions, November 2006.

[tH93] Proper H. van der Weide T ter Hofstede, A. Formal definition of a concep-
tual language for the description and manipulation of information models.
Information Systems, 18(7):471–495, October 1993.

[TH06] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: Sys-
tem Description. In Proc. IJCAR 2006, pages 292–297, Seattle, WA,
USA, August 17–20 2006.

[vBtHvdW91] Patrick van Bommel, Arthur H. M. ter Hofstede, and Theo P. van der
Weide. Semantics and verification of object-role models. Information
Systems, 16(5):471–495, 1991.

[VDSMSJ03] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using de-
scription logic to maintain consistency between uml models. UML, pages
326–340, 2003.

[vdWtHvB92] Th. P. van der Weide, A. H.M. ter Hofstede, and P. van Bommel. Uniquest:
determining the semantics of complex uniqueness constraints. Comput. J.,
35(2):148–156, 1992.

[Vis] VisioModeler download site: http://www.microsoft.com/downloads/ re-
sults.aspx?displaylang=en&freeText =VisioModeler (Visited, October 1,
2006).

[VvB82] G.M.A. Verheijen and J. van Bekkum. Niam: an information analysis
method. In T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors, In-
formation Systems Design Methodologies: A Comparative Review, page
537590, Amsterdam, The Netherlands, 1982. x, North-Holland.

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory
and Practice. Kluwer, Deventer, The Netherlands, 1990.

[YAM] YAML specification. http://www.yaml.org/spec/.

64 31 December, 2007 KWEB/2007/D2.5.7/v1.0

http://www.yaml.org/spec/

	Introduction
	Open Biomedical Ontologies Format
	Why Map OBO to OWL 1.1?
	OBO at a Glance
	Why Formalize OBO Syntax?
	Why Formalize OBO Semantics?
	Why Use OWL 1.1?
	Reusing Existing Tools

	Providing a Formal Specification for OBO
	Formalization of OBO Syntax
	Mapping OBO to OWL

	Integrating OBO with the Semantic Web
	Extending Semantic Web Tools to Support OBO
	Reasoning Support for OBO
	Performance of Reasoning with OBO

	Conclusion

	Structured Ontology Format
	Background
	Structured Ontology Format
	Data Model
	Expression Language
	Serialization
	Special Forms

	Discussion and Future Work

	Object Role Modeling
	Object Role Modeling (ORM)
	Description Logics

	The formalization of ORM using DLRifd
	Object-Types
	Roles and relationships
	ORM unary roles
	Role Mandatory
	Disjunctive Mandatory
	Role Uniqueness
	Predicate Uniqueness
	External Uniqueness
	Role Frequency Constraints
	Multiple-role Frequency Constraints
	Subtypes
	Total Constraint
	Exclusive Constraint
	Value Constraints
	Subset Constraint
	Equality Constraint
	Exclusion Constraint
	Symmetric Ring Constraint (sym)
	Asymmetric Ring Constraint (as)
	Antisymmetric Ring Constraint (ans)
	Irreflexive Ring Constraint (ac)
	Acyclic Ring Constraint (ac)
	Intransitive Ring Constraint (ac)
	Objectified Relations

	The Formalization of ORM using SHOIN/OWL
	Implementation
	Related work
	Conclusions and future work

	Conclusion

