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Executive Summary

Today more and more applications from different research domains are using Semantic
Web languages, like RDF and OWL, in order to build knowledge based systems. Un-
fortunately, many of these applications are facing a vast amount of imprecise and vague
knowledge and information. To overcome these limitations fuzzy extensions to Semantic
Web languages have been proposed. The current deliverable presents some very recent
results on fuzzy extensions to ontology languages. This work builds upon previous results
reported in deliverables 2.5.1, 2.5.2, and 2.5.3, which presented the syntax, semantics and
reasoning capabilities for fuzzy extensions of ontology and rule languages.
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Chapter 1

Introduction

The management of uncertainty has become a very important issue in knowledge rep-
resentation and reasoning during the last decade. There are several applications within
different research domains that face a huge amount of uncertain and imprecise informa-
tion that is very important to be captured and dealt with. This is especially the case
in (semi)automatic procedures, like robotics [KKC94], decision making [Zim87], multi-
media processing [SST+05b], medical diagnosis [GBDG05], and many more. For that
reason there are several works that extend logical formalisms with uncertainty and impre-
cision handling frameworks. One logical formalism that has gained considerable attention
the last decade is Description Logics (DLs) [BN03]. Description Logics are a family of
class-based (concept-based) knowledge representation formalisms, equipped with well-
defined model-theoretic semantics.

Although there exist DL languages with considerable expressive power, like theSHIN
language, they feature expressiveness limitations regarding their ability to represent vague
and imprecise knowledge. Consider for example the case of the identification of brain
anatomical structures in MRI (Magnetic Resonance Images) images. In such an applica-
tion the goal is to (semi)automatically segment and identify the various parts of the brain
by providing appropriate labels for each of these parts. Such a process can be assisted by
a brain cortex anatomy knowledge base, which formally describes the various parts of the
brain anatomy [GBDG05]. For example, we could have the entities,

OPIFGyrus v ∃isDAPartOf.IFGyrus

IFGyrus v ∃isDAPartOf.FrontalLobe

wherev is a subsumption (implication) relation,OPIFGyrus represents the Orbital Pars
of Interior Frontal Gyrus,IFGyrus the Inferior Frontal Gyrus [DGM04] andisDAPartOf
represents the relation,isDirectAnatomicalPartOf. Furthermore, usingSHIN one can
capture the fact that,isDAPartOf is a sub-relation of a more broader relation,isAPartOf,
that the relationhasDAPart is an inverse ofisDAPartOf and thatisAPartOf is a transitive
relation. Following [GBDG05], we can specify thathasDAPart is an inverse-functional
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1. INTRODUCTION

relation, writing> v ≤ 1 Inv(hasDAPart) and meaning that there can be at-most one
object that has some other object as a direct anatomical part. Now suppose that an image
segmentation algorithm is applied to an MRI image in order to identify different brain
parts. Since such algorithms cannot be sure about the membership or non-membership
of an object to a certain concept, they usually provide confidence (truth) degrees. For
example, we could have thato1 isDAPartOf o2 to a degree of0.8, o2 isDAPartOf o3 to a
degree of0.9, o2 isDAPartOf o′3 to a degree of0.3, o1 belongs toOPIFGyrus to a degree of
0.75, o2 belongs toIFGyrus to a degree of 0.85 and thato2 belongs to≤ 1 Inv(hasDAPart)
to a degree of 0.7, meaning that it is likely thato2 is connected only with one individual.
From that fuzzy knowledge one could deduce thato3 belongs to∃hasAPart.OPIFGyrus
to a degree of 0.75. In order to make applications that use DLs able to cope with such
information we have to extend them with a theory capable of representing such kind of
information as well as to provide practical reasoning algorithms. One such theory is fuzzy
set theory.

In previous deliverables of this work package, namely 2.5.1, 2.5.2 and 2.5.3, we have
provided some first results towards extending the syntax and semantics of expressive Se-
mantic Web languages with fuzzy set theory. More precisely, in deliverable D2.5.1 we
have presented some first results about extending the OWL and the SWRL languages
with fuzzy set theory. In deliverable D2.5.2 we have investigated the problem of query-
ing fuzzy knowledge bases, while in deliverable D2.5.3 we have presented the syntax,
semantics and a reasoning algorithm for the fuzzy DL language fKD-SI. These very first
results have since been extended leading to very impressive and mature results, like rea-
soning algorithms for expressive fuzzy DLs, a prototype reasoner that implements such
reasoning algorithms, decision procedures for handling GCIs in the context of fuzzy DLs,
syntax and semantics of OWL and semantics of fuzzy extensions to Semantic Web rule
languages, like SWRL and RuleML. In the current deliverable we will report on this
progress.

1.1 Reader’s Guide

The rest of the deliverable is organized as follows. In Chapter 2 we provide a short intro-
duction to Fuzzy Set theory, which is necessary for the rest of the Deliverable. Chapter
3 presents the syntax and semantics of the fuzzySHOIN language. We further present
several properties of the semantics of the extended language that differ from the proper-
ties of the classical (crisp)SHOIN DL and we provide a reasoning algorithm for the
very expressive fuzzy DL language fKD-SHOIN . Furthermore, we present a prototype
implementation of a reasoning engine for the fuzzy DL langauge fKD-SHIN . In Chapter
4, we present the syntax and semantics of a fuzzy extension to the OWL language. We
also provide the extended abstract and concrete syntax of fuzzy OWL, and present a re-
duction algorithm that reduces the key inference problems of fuzzy OWL to the inference
problems of fuzzy DLs. Additionally, in Chapter 5 we present a fuzzy extension to several

2 February 8, 2007 KWEB/2006/D2.5.6/v1.1
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rule languages, focusing on the SWRL language and the RuleML markup language. Fi-
nally, Chapter 6 concludes the deliverable by summarizing our results on fuzzy reasoning
extensions, and by presenting a number of open issues and future research directions we
are investigating regarding such extensions.

KWEB/2006/D2.5.6/v1.1 February 8, 2007 3



Chapter 2

Fuzzy Set Preliminaries

Fuzzy set theory and fuzzy logic are widely used for capturing imprecise and vague
knowledge [KY95]. While in classical set theory an element either belongs to a set or
not, in fuzzy set theory elements belong only to a certain degree. More formally, letX be
a collection of elements (the universe of discourse), i.e.X = {x1, x2, . . .}. A crisp subset
Sof X is any collection of elements ofX that can be defined with the aid of itscharacter-
istic functionχS(x) that assigns anyx ∈ X to a value 1 or 0 if this element belongs toX
or not, respectively. Hence,χS(x) is a function of the form

χS(x) : X → 0, 1.

On the other hand, a fuzzy subsetA of X, is defined by amembership functionµA(x),
or simplyA(x), x ∈ X. This membership function assigns anyx ∈ X to a value between
0 and 1 that represents the degree in which this element belongs toX. Similarly, we can
define fuzzy relations. A fuzzy relationR over X × X is defined by a function which,
given a pair of elements〈x, y〉 returns the degree that the pair belongs to the fuzzy rela-
tion. Furthermore, the most important operations and properties defined on crisp sets and
relations, like complement, union, intersection, transitivity etc, are extended in order to
cover fuzzy sets and fuzzy relations, thus creating a sound mathematical theory which is
today applied successfully in many applications.

2.1 Fuzzy Set Theoretic Operations

In this section, we will explain how to extend boolean operations and logical implications
in fuzzy sets and fuzzy logics. In the current framework these operations are performed
by mathematical functions over the unit interval. These functions are usually callednorm
operations [KY95], and satisfy specific properties.

The operation of a fuzzy complement (c) is a unary operation, defined by a function
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of the formc : [0, 1] → [0, 1]. In order to produce meaningful fuzzy complements, these
functions must satisfy certain properties. More precisely, they must satisfy theboundary
conditions, c(0) = 1 andc(1) = 0, and must bemonotonic decreasing, for a ≤ b, c(a) ≥
c(b). Additionally, here, we are interested in complements that are alsocontinuousand
involutive, for eacha ∈ [0, 1] c(c(a)) = a, holds. Many widely used fuzzy complements,
like the Lukasiewicz negation,cL(a) = 1 − a, the Sugeno class,cS(a) = 1−a

1+λa
, λ ∈

(−1,∞) and the Yager class,cY (a) = (1 − aw)1/w, w ∈ (0,∞), of fuzzy complements
satisfy these properties. One non-involutive fuzzy complement is the Gödel complement
given by,c(a) = 0 if a > 0, otherwisec(0) = 1.

The operation of fuzzy intersection is performed by a function of the formt : [0, 1]×
[0, 1] → [0, 1], called t-norm [KY95] operation. These functions satisfy theboundary
condition, t(a, 1) = a, are monotonic increasing, for b ≤ d then t(a, b) ≤ t(a, d),
commutative, t(a, b) = t(b, a) and associative, t(a, t(b, c)) = t(t(a, b), c). Usually, t-
norm operations are also considered to becontinuousandsubidempotent, t(a, a) < a, for
a ∈ (0, 1). Such norms are calledArchimedeant-norms. The onlyidempotentt-norm is
the G̈odel t-norm given by,tG(a, b) = min(a, b). It can be proved that for any t-normt it
holds that,a, b ≥ t(a, b), andt(a, 0) = 0. Commonly used Archimedean t-norms are the
Lukasiewicz t-normtL(a, b) = max(0, a+ b−1), and the product t-normtP (a, b) = a · b.

The operation of fuzzy union is performed by a functionu : [0, 1] × [0, 1] → [0, 1],
called t-conorm. Similarly to t-norms, these functions satisfy theboundary condition,
u(a, 0) = a, are monotonic increasing, commutative and associative. In many cases
t-conorms are continuous andsuperidempotent, u(a, a) > a, for a ∈ (0, 1). Such
norms are calledArchimedeant-conorms. The only idempotent t-conorm is the Gödel
t-conorm given by,uG(a, b) = max(a, b). It can be proved that for any t-conormu it
holds that,a, b ≤ u(a, b), andu(a, 1) = 1. Commonly used Archimedean t-conorms are
the Lukasiewicz t-conormuL(a, b) = min(1, a + b), and the probabilistic sumuP (a, b) =
a + b− a · b.

The operation of fuzzy implication is performed by a function of the formJ : [0, 1]×
[0, 1] → [0, 1]. Two distinct classes of fuzzy implications are commonly used in fuzzy
logic. The first one results from the extension of the proposition¬a ∨ b with fuzzy op-
erators. Thus, we get the class ofS-implications, which are defined by the operation
J (a, b) = u(c(a), b) [KY95]. The second class of fuzzy implications results from the
propositionmax{x ∈ [0, 1] | a ∧ x ≤ b}, which is an alternative expression for logical
implication. Thus, we get the class ofR-implications, which are given by the equation
J (a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b} [KY95]. This operation is usually referred to
asωt operation. For allR-implicationsωt(a, b) = 1 iff a ≤ b [Haj98]. Commonly used
R-implications are the Lukasiewicz implicationJL(a, b) = min(1, 1− a + b), the G̈odel
implication,JG(a, b) = b, if a > b, and the Goguen implication,JP (a, b) = a/b, if a > b,
while for S-implications the Kleene-Dienes implication,JKD(a, b) = max(1− a, b).

We conclude that in order to define a fuzzy logic we need to specify the fuzzy oper-
ations,c, t, u andJ , that we are going to use. Such a collection of operations would be

KWEB/2006/D2.5.6/v1.1 February 8, 2007 5
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referred to as afuzzy quadruple, 〈c, t, u,J 〉, or fuzzy triplein the case of〈c, t, u〉.

6 February 8, 2007 KWEB/2006/D2.5.6/v1.1



Chapter 3

Fuzzy Description Logics

In this chapter we will provide a full account of the fuzzy DL f-SHOIN . More precisely,
we will present the syntax, semantics and the inference problems of the f-SHOIN lan-
guage. Regarding the latter we will emphasize on how to deal with General Concept
Inclusion axioms in the context of fuzzy DLs. Finally, we will present a tableaux reason-
ing algorithm to decide the key inference problems of fKD-SHOIN (see next section
for a definition of fKD-SHOIN ) and we will present some initial results on a prototype
implementation of the presented reasoning algorithm.

The syntax and semantics of f-SHOIN were first presented in [Str05], but our pre-
sentation here differs from [Str05] in various points, like the semantics of concept and role
inclusion axioms, the semantics of number restrictions which are based on the extensions
presented in [SSP06] and the semantics of nominals. Moreover, note that the reason-
ing algorithm for the language fKD-SI was first reported in Deliverable 2.5.3 [PFT+05].
Moreover, the algorithms for fKD-SHIN , fKD-SHOIN and the investigation of GCIs
have been presented in [SST+05a], [SST+05c] and [SSSP06], respectively.

3.1 Syntax and Semantics of fuzzySHOIN
As usual we have an alphabet of distinct concept names (C), role names (R) and individ-
ual names (I). f-SHOIN -roles and f-SHOIN -concepts are defined as follows:

Definition 1 Let RN ∈ R be a role name andR an f-SHOIN -role. f-SHOIN -roles
are defined by the abstract syntax:R ::= RN | R−, whereR− denotes the inverse of
the roleR. The inverse relation of roles is symmetric, and to avoid considering roles
such asR−−, we define a functionInv which returns the inverse of a role, more precisely
Inv(RN) := RN− andInv(RN−) := RN . The set of f-SHOIN -concepts is the smallest
set such that

1. every concept nameCN ∈ C is an f-SHOIN -concept,

7



3. FUZZY DESCRIPTION LOGICS

2. if o ∈ I then{o} is an f-SHOIN -concept,

3. if C andD are f-SHOIN -concepts,R an f-SHOIN -role,S asimplef-SHOIN -
role 1 and p ∈ N, then(C t D), (C u D), (¬C), (∀R.C), (∃R.C), (≥ pS) and
(≤ pS) are also f-SHOIN -concepts.

By allowing p to take only the values 0 and 1, i.e. concepts of the form≤ 1R, ≥ 1R
and≤ 0R, and by removing point 2 in the above definition we obtain the set of f-SHIF -
concepts. As we can see, f-SHOIN -concepts are formed by the same abstract syntax
as that of crispSHOIN -concepts [HS05]. Ont the other hand the semantics of fuzzy
DLs are provided by afuzzy interpretation[Str01]. A fuzzy interpretation is a pairI =
(∆I , ·I) where the domain∆I is a non-empty set of objects and·I is afuzzy interpretation
function, which maps

1. an individual namea ∈ I to an elementaI ∈ ∆I ,

2. a concept nameA ∈ C to a membership functionAI : ∆I → [0, 1],

3. a role nameR ∈ R to a membership functionRI : ∆I ×∆I → [0, 1].

Intuitively, an object (pair of objects) can now belong to a fuzzy concept (role) to any de-
gree between 0 and 1. For example,HotPlaceI(RomeI) = 0.7, means thatRomeI is a hot
place to a degree equal to 0.7. Moreover, fuzzy interpretations can be extended to interpret
f-SHOIN -concepts and roles, with the aid of the fuzzy set theoretic operations, defined
in section 2.1. For example, sinceC tD represents a union, then by using a fuzzy union
(u) (CtD)I can be interpreted asu(CI(a), DI(a)). Furthermore, since a value restriction
∀R.C is an implication of the form,∀y(R(x, y) → C(y)), we can interpret∀ as infimum
inf, and→ as a fuzzy implication and have the equation,infb∈∆I{J (RI(a, b), CI(b))}.
The complete semantics are depicted in Table 3.1, wheresup represent the supremum of
a set andinf the infimum.

A fuzzy TBox is a finite set of fuzzy concept axioms. LetC andD be f-SHOIN -
concepts. Fuzzy concept axioms of the formC v D are calledfuzzy inclusion axioms,
while fuzzy concept axioms of the formC ≡ D are calledfuzzy equivalence axioms.
Axioms of the formC v D whereC is a concept description, are calledGeneral Concept
Inclusions(GCIs). A fuzzy interpretationI satisfiesC v D if ∀a ∈ ∆I , CI(a) ≤ DI(a)
and it satisfiesC ≡ D if CI(a) = DI(a). Finally, a fuzzy interpretationI satisfies an
f-SHOIN TBox T if it satisfies each axiom inT ; then we say thatI is amodelof T .
Please note that we give a crisp subsumption of fuzzy concepts. This is the usual way sub-
sumption is defined in the context of fuzzy DLs [Str01, ST04, HKS02, SST+05b, SSSP06]
and fuzzy sets [KY95]. These semantics differ from the ones in [Str05], where afuzzy

1A role is calledsimpleif it is neither transitive nor has any transitive sub-roles. Allowing only simple
roles to participate in number restrictions is crucial in order to get a decidable logic [HST99].

8 February 8, 2007 KWEB/2006/D2.5.6/v1.1



D2.5.6 Fuzzy Reasoning Extensions IST Project IST-2004-507482

Table 3.1: Syntax and Semantics of f-SHOIN -concepts

Constructor DL Syntax Semantics
top concept > >I

(a) = 1
bottom ⊥ ⊥I(a) = 0
conjunction C uD (C uD)I(a) = t(CI(a), DI(a))
disjunction C tD (C tD)I(a) = u(CI(a), DI(a))
negation ¬C (¬C)I(a) = c(CI(a))
nominal {o} {o}I(a) = 1 if a ∈{oI}, otherwise{o}I(a) = 0
existential restriction ∃R.C (∃R.C)I(a) = supb∈∆I t(RI(a, b), CI(b))
value restriction ∀R.C (∀R.C)I(a) = infb∈∆I J (RI(a, b), CI(b))
at-least restriction ≥ pR (≥ pR)I(a) = supb1,...,bp∈∆I t(tpi=1R

I(a, bi), ti<j{bi 6= bj})
at-most restriction ≤ pR (≤ pR)I(a) = infb1,...,bp+1∈∆I J (tp+1

i=1 RI(a, bi), ui<j{bi = bj})
inverse role R− (R−)I(b, a) = RI(a, b)
datatype exists restriction ∃T.d (∃T.d)I(a) = supy∈∆D

T (sI(a, y), y ∈ dI)
datatype value restriction ∀T.d (∀T.d)I(a) = infy∈∆D

J (T I(a, y), y ∈ dI)
datatype at-least ≥ pT (≥ pT )I(a) = supy1,...,yp∈∆D

t(tpi=1R
I(a, yi), ti<j{yi 6= yj})

datatype at-most ≤ pT (≤ pT )I(a) = infy1,...,yp+1∈∆D
J (tp+1

i=1 RI(a, yi), ui<j{yi = yj})

subsumptionof fuzzy concepts was provided. Syntactically, fuzzy subsumption is defined
by an axiom of the form〈C v D,n〉, wheren ∈ [0, 1], while a fuzzy interpretationI
satisfies such an axiom ifinfx∈∆I J (CI(x), DI(x)) ≥ n [Str05]. We choose not to intro-
duce such axioms in the current approach since they will impose many syntactic changes
in the f-OWL language which are difficult to encode and implement.

A fuzzy RBox is a finite set of fuzzy role axioms. Fuzzy role axioms of the form
Trans(R), are calledfuzzy transitive roleaxioms; fuzzy role axioms of the formR v S are
calledfuzzy role inclusionaxioms. A fuzzy interpretationI satisfies an axiomTrans(R) if
∀a, c ∈ ∆I , RI(a, c) ≥ supb∈∆I{t(RI(a, b), RI(b, c))} and it satisfiesR v S if ∀〈a, b〉 ∈
∆I×∆I , RI(a, b) ≤ SI(a, b). Finally,I satisfies an f-SHOIN RBox if it satisfies each
role axiom inR; in this case we say thatI is a model ofR.

A fuzzy ABox is a finite set of fuzzy assertions. Afuzzy assertion[Str01] is of the
form (a : C)./n, (〈a, b〉 : R)./n, where./ ∈ {≥, >,≤, <}, or of the forma 6 .= b, for
a, b ∈ I. In many cases we write(a : C) = n instead of writing two fuzzy assertions
of the form (a : C) ≥ n and (a : C) ≤ n. We call assertions containing either≥
or > positiveassertions, while those containing either≤ or < negativeassertions. A
fuzzy interpretationI satisfies(a : C) ≥ n if CI(aI) ≥ n, it satisfies(〈a, b〉 : R) ≥ n if
RI(aI , bI) ≥ n. An assertion of the forma 6 .= b is satisfied ifaI 6= bI and the satisfiability
of fuzzy assertions with>,≤ and< is defined analogously. A fuzzy interpretationI
satisfies a fuzzyABox A if it satisfies all fuzzy assertions inA. In this case, we say that
I is a model ofA. If A has a model then we say that it isconsistent.
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As noted in [SSP06], since we have defined fuzzy number restrictions it is possible
that(a : (≥ p1R.C)) ≥ n1 and(a : (≤ p2R.C)) ≥ n2, with p1 > p2 andn1, n2 ∈ [0, 1]
simultaneously hold, without forming a contradiction. More precisely ift is the G̈odel
t-norm andJ the KD-implication we have,

Lemma 2 LetA = {(a : (≥ p1R.C)) ≥ n1, (a : (≤ p2R.C)) ≥ n2} be a fuzzy ABox,
with n1, n2 ∈ [0, 1], p1, p2 ∈ N, andp2 < p1. ThenA is satisfiable iffn1 + n2 ≤ 1.

In classical DLs, sincen1, n2 ∈ {0, 1}, the inequalityn1 + n2 ≤ 1 is satisfied if and only
if either n1 = 0 or n2 = 0. Indeed in crisp DLs an individual cannot simultaneously
belong to both such concepts.

Now we introduce some notation. In the following we use the symbols¤ and¢ as
a placeholder for the inequalities≥, > and≤, <, respectively. Additionally, we use the
symbols¤−,¢− to denote thereflectionof an inequality. For example the reflection of
≥ is≤, while the reflection of< is >. Furthermore, we use the symbol+ to denote the
strengtheningor weakeningof an inequality. For example applying+ to≥ gives>, i.e.
strengthens the inequality, while applying it to> gives≥, i.e. weakens the inequality.
Finally, by¬./ to denote thenegationof an inequality. For example, the negation of≥ is
< and that of< is≥.

A fuzzy knowledge baseΣ is a triple〈T ,R,A〉, that contains a fuzzyTBox, RBox
andABox, respectively.

Example 1 Consider the fuzzy knowledge base (Σ), we introduced in Chapter 1. For-
mally written such a fuzzy knowledge base can be defined as follows:

T = {OPIFGyrus v ∃isDAPartOf.IFGyrus,

IFGyrus v ∃isDAPartOf.FrontalLobe},
A = {(〈o1, o2〉 : isDAPartOf) ≥ 0.8,

(〈o2, o3〉 : isDAPartOf) ≥ 0.9,

(〈o4, o3〉 : isDAPartOf) ≥ 0.3,

(o1 : OPIFGyrus) ≥ 0.75, (o2 : IFGyrus) ≥ 0.85,

R = {Trans(isAPartOf), isDAPartOf v isAPartOf,

hasAPart v isAPartOf−, isAPartOf− v hasAPart}.

The last two role inclusion axioms state the fact thathasAPart is the inverse of the role
isAPartOf. Now letI be a fuzzy interpretation that is a model of the KB. This means
that I satisfiesA, hence the following inequalities must hold,isDAPartOfI(oI1 , oI2 ) ≥
0.8, isDAPartOfI(oI2 , oI3 ) ≥ 0.9, isDAPartOfI(oI4 , oI3 ) ≥ 0.3, OPIFGyrusI(oI1 ) ≥ 0.75,
IFGyrusI(oI2 ) ≥ 0.85 and≤ 1 Inv(isDAPartOf)I(oI3 ) ≥ 0.7.

Furthermore,I should also satisfy the two subsumption axioms of the TBox. Hence,
we have that∀oi ∈ ∆I both inequalities(∃isDAPartOf.IFGyrus)I(oIi ) ≥OPIFGyrusI(oIi )
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and (∃isDAPartOf.FrontalLobe)I(oIi ) ≥ IFGyrusI(oIi ) must hold. In order to satisfy
these inequations we have to carefully define our fuzzy interpretationI. Suppose that we
use the t-normt(a, b) = min(a, b) for performing fuzzy intersection. Then, if we consider
taking the equalities, i.e.isDAPartOfI(oI1 , oI2 ) = 0.8, OPIFGyrusI(oI1 ) = 0.75, similarly
with the rest of concepts and roles, then the first inequality holds, while the second one
does not hold sinceFrontalLobeI(oI3 ) = 0. On the other hand we can defineI to assign,
FrontalLobeI(oI3 ) ∈ [0.85, 1] for which the second subsumption axiom is satisfied. Please
note that the fuzzy interpretationI that results by considering the equalities, as well as
the last restriction, is one out of infinitely many fuzzy interpretations that can be defined.
For example, another interpretationI ’ can assign different membership degrees, but in
order forI ’ to be a model ofA andT the above inequalities must hold.

In order for I to be a model of the knowledge base it should also satisfy the ax-
ioms of the RBox. Hence, from the role inclusionisDAPartOf v isAPartOf we have that
isAPartOfI(oI1 , oI2 ) ≥ 0.8, isAPartOfI(oI2 , oI3 ) ≥ 0.9 and isAPartOfI(oI4 , oI3 ) ≥ 0.3;
similarly for the rest of the role inclusions. Moreover, sinceisAPartOf is transitive and
due to the semantics of inverse roles we have,(isAPartOf−)I(oI3 , oI1 ) = isAPartOfI(oI1 , oI3 ) ≥
sup{. . . , min(0.8, 0.9), . . .} ≥ 0.8. Furthermore, from(isAPartOf−)I(oI3 , oI1 ) ≥ 0.8
and isAPartOf− v hasAPart we deduce that,hasAPartI(oI3 , oI1 ) ≥ 0.8 and finally,
(∃hasAPart.OPIFG)I(oI3 ) = sup{. . . , min(hasAPartI(oI3 , oI1 ), (OPIFG)I(oI1 )), . . .} ≥
0.75.

♦

Table 3.2: Conjugated pairs of fuzzy assertions
φ < m φ ≤ m

φ ≥ n n ≥ m n > m
φ > n n ≥ m n ≥ m

Following [Str01], we introduce the concept of conjugated pairs of fuzzy assertions to
represent pairs of assertions that form a contradiction. The possible conjugated pairs are
defined in Table 3.2, whereφ represents a crisp assertion of the forma : C or 〈a, b〉 : R.
So for example, the two fuzzy assertions(a : C) > 0.7 and(a : C) ≤ 0.7 conjugate
since this case falls under the cell of the second line and first column of Table 3.2. In the
presence of inverse roles and role hierarchies, the definition of conjugated role assertions
has to be extended. We say that two role assertionsφ ≥ n1 andψ ≤ n2 conjugate if
φ = (a, b) : R, ψ = (b, a) : Inv(R) andn1 > n2. Similarly for the rest of the inequalities.
Finally, regarding role hierarchies, one should also take under consideration possible sub-
or super-roles when checking for conjugation two fuzzy assertions that involve roles. For
example, the fuzzy assertion(〈a, b〉 : R) > 0.6, conjugates with(〈a, b〉 : S) ≤ 0.5,
provided thatR v* S.
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Theorem 3 Fuzzy interpretations coincide with crisp interpretations if we restrict to the
membership degrees of 0 and 1.

As we explained in Chapter 2 different choices of fuzzy triples and quadruples defines
different fuzzy logics. Hence, this justifies the need for introducing a special notation
for distinguishing between fuzzy DLs that use different norm functions. More precisely,
the notation fJ -DL, whereJ is a fuzzy implication function, has been proposed in the
literature [SST+05b] to indicate that the fuzzy DL uses the specifiedJ operation to per-
form fuzzy implication. The rest of fuzzy operations are defined by the fuzzy implication
[Haj98, KN99]. For example the notation fKD-SHOIN indicates the fuzzySHOIN
language which uses the Lukasiewicz complement, the Gödel t-norm and t-conorm and
the Kleene-Dienes fuzzy implication.

3.2 Inference Problems of fuzzy DLs

In the current section we will present the inference problems of f-DLs. Moreover, we
will show how to deal with GCIs in the context of fuzzy DLs. Until recently this was
considered an open problem.

An f-SHOIQ knowledge baseΣ is satisfiable(unsatisfiable) iff there exists (does
not exist) a fuzzy interpretationI which satisfies all axioms inΣ. An f-SHOIQ-concept
C is n-satisfiablew.r.t. Σ iff there exists a modelI of Σ for which there is somea ∈ ∆I

such thatCI(a) = n, andn ∈ (0, 1]; C subsumesD w.r.t. Σ iff for every modelI of Σ
we have∀d ∈ ∆I , CI(d) ≤ DI(d); a fuzzy ABoxA is consistent(inconsistent) w.r.t. a
fuzzy TBoxT and RBoxR if there exists (does not exist) a modelI of T andR that
satisfies each assertion inA. Given a fuzzy concept axiom, a fuzzy role axiom or a fuzzy
assertionφ, Σ entailsφ, writtenΣ |= φ, iff for all modelsI of Σ, I satisfiesφ.

Let Σ = 〈T ,R,A〉, be a fuzzy knowledge base. It has been proved that all inference
problems of f-DLs can be reduced to ABox consistency w.r.t.T andR. More precisely,
C is n-satisfiable w.r.t.Σ iff 〈T ,R, {(a : C) ≥ n}〉 is satisfiable,Σ |= φ ./ n iff Σ =
〈T ,R,A ∪ {φ ¬ ./ n}〉 is unsatisfiable andΣ |= C v D iff Σ = 〈T ,R,A ∪ {(a :
C) ≥ n, (a : D) < n}〉, for both n ∈ {n1, n2}, n1 ∈ (0, 0.5] andn2 ∈ (0.5, 1], is
unsatisfiable [Str01]. In the past, the consistency problem in f-DLs has been considered
with respect to a simple and acyclic TBox. Only recently a procedure for deciding fuzzy
ABox consistency w.r.t. general and/or cyclic TBoxes has been developed [SSSP06]. In
classical DLs general and cyclic TBoxes are handled by a process calledinternalization
[HS99]. The method of internalization is based on the law of excluded middle, which is
not always satisfied in f-DLs. In [SSSP06] the authors use simple case analysis to provide
the following result,

Lemma 4 [SSSP06] A fuzzy interpretationI satisfiesC v D iff for all n ∈ [0, 1] and
a ∈ ∆I , eitherCI(a) < n or DI(a) ≥ n.
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The above lemma suggests that the models represented by a fuzzy TBoxT can be encoded
in the form of mutually exclusive fuzzy ABoxes. For example, ifT = {C1 v D1, C2 v
D2}, then the alternatives,{〈a : C1 < n〉, 〈a : C2 < n〉} or {〈a : C1 < n〉, 〈a :
C2 ≥ n〉} or {〈a : C1 ≥ n〉, 〈a : C2 < n〉} or {〈a : C1 ≥ n〉, 〈a : C2 ≥ n〉} for all
n ∈ [0, 1], are created and capture exactly the models represented by the fuzzy TBox.
These alternatives should be asserted for all individualsa ∈ I and for all valuesn ∈ [0, 1].
Observe that this is quite similar to the case of crisp DLs where for the above TBox
the internalization method would create the concept(¬C1 t D1) u (¬C2 t D2), which
represents four different possibilities. In fuzzy DLs we additionally have to perform case
analysis for each membership degreen.

However, it is practically impossible to devise a terminating reasoning algorithm that
uses Lemma 4 to handle GCIs and cyclic axioms as we cannot realistically apply it to
all n ∈ [0, 1]Q. Fortunately, we can restrict thesen to a finite set of values. Indeed,
a good candidate is the setNA, defined asNA = XA ∪ {1 − n | n ∈ XA}, where
XA = {0, 0.5, 1} ∪ {n | 〈α ./n〉 ∈ A}. Intuitively, this means that if a fKD-ALC ABox
is consistent, then there exists a model where the membership degrees used to build the
model are restricted to those that exist in the ABox. For instance, in order to satisfy
{〈a:C ≥ n〉}, we setCI(aI) = n, while to satisfy{〈a:C > n〉}, we setCI(aI) = n+ε,
for a sufficiently smallε ∈ [0, 1].

In the following, we assume that an ABoxA has beennormalized, i.e. fuzzy assertions
of the form〈a:C > n〉 are replaced by〈a:C ≥ n + ε〉 and those of the form〈a:C < n〉,
by 〈a:C ≤ n− ε〉. Please note that in a normalized fuzzy KB we allow the degree to
range in[−ε, 1 + ε]Q in place of[0, 1]Q. It can be proved that the process of normalization
is satisfiability preserving.

Proposition 1 Let Σ = 〈T ,A〉 be a fuzzy knowledge base. ThenΣ is satisfiable if and
only if its normalized variant is satisfiable.

3.3 Reasoning in fKD-SHOIN
Reasoning in DLs is usually performed with tableaux decision procedures [BDS93]. Such
procedures try to prove the consistency of an AboxA by attempting to construct a model
for it. Since concepts that appear in assertions inA might be complex concept descrip-
tions, such algorithms applyexpansion rules, which decompose the initial concept, to
sub-concepts, until no rule is applicable or an evident contradiction (clash) is reached.
Proceeding that way leads to the creation of a model forA, which has a graph-like shape
[HS05]. The nodes in such a graph correspond to objects in the model, and edges to cer-
tain relations that connect two nodes. Each nodex is labelled with a set of conceptsL(x),
and each edge〈x, y〉 with a set of rolesL(〈x, y〉). In the fuzzy case, since we have fuzzy
assertions, we extend these sets to also include the membership degree that a node be-
longs to a concept as well as the type of inequality that holds for the fuzzy assertion, thus
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speaking ofmembership triples. For example a fuzzy assertion of the form〈a : C ≥ n〉
is represented with a nodexa, labelled with the set,L(xa) = {〈C,≥, n〉}.

In [SST+05b, SST+05a] tableaux decision procedures for deciding the consistency
of fKD-SI and fKD-SHIN ABoxes has been presented. Since we argue that nominals
should not be fuzzyfied, this algorithm, together with the results obtained in [HS05] for
crispSHOIN , can be extended to provide a tableaux procedure for fKD-SHOIN . The
only additional non-standard rules that are needed are those which would ensure that
membership triples involving nominal concepts{o} would contain a membership degree
of either 0 or 1, in order to respect the semantics of nominal concepts. In the following we
first give the definition of an fKD-SHIN completion-forest as well as the tableaux ex-
pansion rules. This definition and rules extend our results about fKD-SI completion-trees
and tableaux expansion rules, previously reported in deliverable D2.5.3. In the following
we present the algorithm for the fKD-SHIN DL and then we extend it with those expan-
sions rules that are needed to provide reasoning support for nominals and GCIs.

Definition 5 A completion-forestF for an fKD-SHIN ABoxA is a collection of trees
whose distinguished roots are arbitrarily connected by edges. Each nodex is labelled
with a setL(x) = {〈C, ./, n〉}, whereC ∈ sub(A) andn ∈ [0, 1]. Each edge〈x, y〉 is
labelled with a setL(〈x, y〉) = {〈R, ./, n〉}, whereR ∈ RA are (possibly inverse) roles
occurring inA. Intuitively, each triple〈C, ./, n〉 (〈R, ./, n〉), calledmembership triple,
represents the membership degree and the type of assertion of each node (pair of nodes)
to a conceptC ∈ sub(A) (role R ∈ RA).

If nodesx and y are connected by an edge〈x, y〉 with 〈P, ./, n〉 ∈ L(〈x, y〉), and
P v* R, theny is called anR./n-successorof x and x is called anR./n-predecessorof
y. If y is anR./n-successor or anInv(R)./n-predecessorof x, theny is called anR./n-
neighbour ofx. Lety be anR>n-neighbour ofx, the edge〈x, y〉 is conjugatedwith triples
〈R, ¢,m〉 if n ≥ m. Similarly, we can extend it to the cases ofR≥n-, R<n- and R≤n-
neighbours. A nodex is anR-successor (resp.R-predecessor orR-neighbour) ofy if it
is anR./n-successor (resp.R./n-predecessor orR./n-neighbour) ofy for some roleR. As
usual,ancestoris the transitive closure ofpredecessor.

For two rolesP andR, a nodex in F , two inequality types./, ./′ and a membership
degreen ∈ [0, 1] we define:RF

C (x, ./, ./′, n) = {y | y is anR./n′-neighbour, and〈x, y〉 is
conjugated with〈P, ./′, n〉, with P v* R}.

A nodex is blockediff it is not a root node and it is either directly or indirectly blocked.
A nodex is directly blockediff none of its ancestors is blocked, and it has ancestorsx′, y
andy′ such that:

1. y is not a root node,

2. x is a successor ofx′ andy a successor ofy′,

3. L(x) = L(y) andL(x′) = L(y′) and,
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Table 3.3: Tableaux expansion rules for fKD-SI
Rule Description
(¬) if 1. 〈¬C, ./, n〉 ∈ L(x)

2. and〈C, ./−, 1− n〉 6∈ L(x)
then L(x) → L(x) ∪ {〈C, ./−, 1− n〉}

(u¤) if 1. 〈C1 u C2,¤, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1, ¤, n〉, 〈C2, ¤, n〉} 6⊆ L(x)

then L(x) → L(x) ∪ {〈C1, ¤, n〉, 〈C2, ¤, n〉}
(t¢) if 1. 〈C1 t C2,¢, n〉 ∈ L(x), x is not indirectly blocked, and

2. {〈C1, ¢, n〉, 〈C2, ¢, n〉} 6⊆ L(x)
then L(x) → L(x) ∪ {〈C1, ¢, n〉, 〈C2, ¢, n〉}

(t¤) if 1. 〈C1 t C2,¤, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1, ¤, n〉, 〈C2, ¤, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for someC ∈ {〈C1, ¤, n〉, 〈C2, ¤, n〉}
(u¢) if 1. 〈C1 u C2,¢, n〉L(x), x is not indirectly blocked, and

2. {〈C1, ¢, n〉, 〈C2, ¢, n〉} ∩ L(x) = ∅
then L(x) → L(x) ∪ {C} for someC ∈ {〈C1, ¢, n〉, 〈C2, ¢, n〉}

(∃¤) if 1. 〈∃R.C, ¤, n〉 ∈ L(x), x is not blocked,
2. x has noR¤n-neighboury with 〈C, ¤, n〉 ∈ L(y)

then create a new nodey with L(〈x, y〉) = {〈R, ¤, n〉}, L(y) = {〈C, ¤, n〉},
(∀¢) if 1. 〈∀R.C, ¢, n〉 ∈ L(x), x is not blocked,

2. x has noR¢−1−n-neighboury with 〈C, ¢, n〉 ∈ L(y)
then create a new nodey with L(〈x, y〉) = {〈R, ¢−, 1− n〉}, L(y) = {〈C, ¢, n〉},

(∀¤) if 1. 〈∀R.C, ¤, n〉 ∈ L(x), x is not indirectly blocked, and
2. x has anR¤′n1 -neighboury with 〈C, ¤, n〉 6∈ L(y) and
3. 〈R, ¤−, 1− n〉 is conjugated with the edge〈x, y〉

then L(y) → L(y) ∪ {〈C,¤, n〉},
(∃¢) if 1. 〈∃R.C, ¢, n〉 ∈ L(x), x is not indirectly blocked and

2. x has anR¤n1-neighboury with 〈C, ¢, n〉 6∈ L(y) and
3. 〈R, ¢, n〉 is conjugated with the edge〈x, y〉

then L(y) → L(y) ∪ {〈C,¢, n〉},
(∀+) if 1. 〈∀S.C, ¤, n〉 ∈ L(x), x is not indirectly blocked, and

2. there is someR, with Trans(R), andR v* S, x has aR¤′n1-neighboury with, 〈∀R.C, ¤, n〉 6∈ L(y), and
3. 〈R, ¤−, 1− n〉 is conjugated with the edge〈x, y〉

then L(y) → L(y) ∪ {〈∀R.C,¤, n〉},
(∃+) if 1. 〈∃S.C, ¢, n〉 ∈ L(x), x is not indirectly blocked and

2. there is someR, with Trans(R), andR v* S, x has aR¤n1 -neighboury with, 〈∃R.C, ¢, n〉 6∈ L(y), and
3. 〈R, ¢, n〉 is conjugated with the edge〈x, y〉

then L(y) → L(y) ∪ {〈∃R.C,¢, n〉},

4. L(〈x′, x〉) = L(〈y′, y〉).

In this case we say thaty blocksx. A nodey is indirectly blocked iff one of its ancestors
is blocked, or it is a successor of a nodex andL(〈x, y〉) = ∅.

For a nodex, L(x) is said to contain a clash if it contains one of the following:

• two conjugated pairs of triples,
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Table 3.4: Tableaux rules for number restrictions
Rule Description
(≥¤) if 1. 〈≥ pR, ¤, n〉 ∈ L(x), x is not blocked,

2. there are nop R¤n-neighboursy1, . . . , yp of x
3. with yi 6= yj for 1 ≤ i < j ≤ p

then createp new nodesy1, . . . , yp, with L(〈x, yi〉) = {〈R, ¤, n〉} andyi 6= yj for 1 ≤ i < j ≤ p
(≤¢) if 1. 〈≤ pR, ¢, n〉 ∈ L(x), x is not blocked,

then apply(≥¤)-rule for the triple〈≥ (p + 1)R, ¢−, 1− n〉
(≤¤) if 1. 〈≤ pR, ¤, n〉 ∈ L(x), x is not indirectly blocked,

]RFC (x, ¤′,¤−, 1− n) > p, there are two of themy, z, with noy 6 .= z and
3. y is neither a root node nor an ancestor ofz

then 1.L(z) → L(z) ∪ L(y) and
2. if z is an ancestor ofx
thenL(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
elseL(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)
3. L(〈x, y〉) −→ ∅
4. Setu 6 .= z for all u with u 6 .= y

(≥¢) if 1. 〈≥ pR, ¢, n〉 ∈ L(x), x is not indirectly blocked,
then apply(≤¤)-rule for the triple〈≤ (p− 1)R, ¢−, 1− n〉

(≤r¤
) if 1. 〈≤ pR, ¤, n〉 ∈ L(x),

]RFC (x, ¤′,¤−, 1− n) > p, there are two of themy, z, both root nodes, with noy 6 .= z and
then 1.L(z) → L(z) ∪ L(y) and

2. For all edges〈y, w〉:
i. if the edge〈z, w〉 does not exist, create it withL(〈z, w〉) = ∅
ii. L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉)
3. For all edges〈w, y〉:
i. if the edge〈w, z〉 does not exist, create it withL(〈w, z〉) = ∅
ii. L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉)
4. SetL(y) = ∅ and remove all edges to/fromy
5. Setu 6 .= z for all u with u 6 .= y and sety

.= z
(≥r¢

) if 1. 〈≥ pR, ¢, n〉 ∈ L(x),
then apply(≤r¤

)-rule for the triple〈≤ (p− 1)R, ¢−, 1− n〉

• one of the triples〈⊥,≥, n〉, 〈>,≤, n〉, with n > 0, n < 1, 〈⊥, >, n〉, 〈>, <, n〉
〈C, <, 0〉 or 〈C, >, 1〉,

• some triple〈≤ pR, ¤, n〉 andx hasp + 1 R¤′ni
-neighboursy0, . . . , yp conjugated

with 〈R, ¤−, 1− n〉 andyi 6= yj, ni, n ∈ [0, 1], for all 0 ≤ i < j ≤ p, or

• some triple〈≥ pR, ¢, n〉 and x hasp R¤ni
-neighboursy0, . . . , yp−1, conjugated

with 〈R, ¢, n〉 andyi 6= yj, ni, n ∈ [0, 1], for all 0 ≤ i < j ≤ p− 1.

For an fKD-SHIN ABoxA, the algorithm initialises a forestF to contain (i) a root
nodexi

0, for each individualai ∈ IA occurring in the ABoxA, labelled withL(xi
0) such

that {〈Ci, ¤, n〉} ⊆ L(xi
0) for each assertion of the form(ai : Ci) ¤ n ∈ A, (ii) an

edge〈xi
0, x

j
0〉, for each assertion(〈ai, aj〉 : Ri) ¤ n ∈ A, labelled withL(〈xi

0, x
j
0〉) such

that {〈Ri, ¤, n〉} ⊆ L(〈xi
0, x

j
0〉), (iii) the relation 6 .= asxi

0 6 .= xj
0 if ai 6 .= aj ∈ A and the

relation
.
= to be empty. Finally, the algorithm expandsR by adding role inclusion axioms
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Inv(P ) v Inv(R), for all P v R ∈ R and by addingTrans(Inv(R)) for all Trans(R) ∈ R.
F is then expanded by repeatedly applying the completion rules from Tables 3.3 and 3.4.
The completion-forest is complete when, for some nodex, L(x) contains a clash, or
none of the completion rules is applicable. The algorithm stops when a clash occurs; it
answers ‘A is consistent w.r.t.R’ iff the completion rules can be applied in such a way
that they yield a complete and clash-free completion-forest, and ‘A is inconsistent w.r.t.
R’ otherwise.

Table 3.5: The new expansion rules for fKD-SHOIN
Rule Description
{o}¤ if 1. 〈{o},¤, n〉 ∈ L(x), and

2. 〈{o},≥, 1〉 6∈ L(x)
then L(x) ∪ {〈{o},≥, 1〉}

{o}¢ if 1. 〈{o},¢, n〉 ∈ L(x), and
2. 〈{o},≤, 0〉 6∈ L(x)

then L(x) ∪ {〈{o},≤, 0〉}
(C v D) if 1. C v D ∈ T and

2. {〈C,≤, n− ε〉, 〈D,≥, n〉} ∩ L(x) = ∅ for n ∈ NA

then L(x) → L(x) ∪ {E} for someE ∈ {〈C,≤, n− ε〉, 〈D,≥, n〉}

The above definition gives us a tableaux decision procedure for the fuzzy DL language
fKD-SHIN . In order to extend the algorithm to handle nominals we have to take under
consideration all the notions introduced in [HS05] for crispSHOIN . In fact most no-
tions, like blockable nodes, merging, pruning and priority of rule expansion are the same.
The only additions to the algorithm are those that will ensure the interpretation of the
nominal concepts as crisp concepts, since this is how we have interpreted them. In Table
3.5 we can see these rules together with the rule that is intended for reasoning with GCIs.
As we see the rule for GCIs is based on the notion of a normalized KB that we introduced
in the previous section.

Regarding implementation issues we have implemented a Fuzzy Reasoning Engine
(FiRE)2 for the fKD-SHIN language, based on the direct tableaux rules in [SST+05a],
and we have started the extension of the algorithm to cover the fKD-SHOIN language
with general concept inclusion axioms; optimization capabilities are also investigated.
Please note that how to reason with other norm operations in expressive fuzzy DLs, like
fuzzySI or SHIN , remains an open problem.

2FiRE is available athttp://www.image.ece.ntua.gr/ ∼nsimou
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3.4 FiRE: A Fuzzy Reasoning Engine

FiRE (Fuzzy Reasoning Engine) [SSSK06] is a prototype implementation of a reasoning
algorithm for a very expressive fuzzy Description Logic language, namely fKD-SHIN
[SST+05a]. This algorithm builds upon previous results about reasoning with fuzzy De-
scription Logics, by extending the reasoning algorithm of fKD-ALC [Str01] to handle
most of the features of OWL. Currently FiRE supports only simple TBoxes, i.e. no Gen-
eral Concept Inclusion axioms are allowed. Figure 3.1 illustrates the graphical interface
of the FiRE platform. As we can see FiRE is formed by three different components. The
first one, which is in the upper left part of the user interface, is the editor panel; the sec-
ond, on the upper upper right part, is the inference services panel; the last, on the bottom
consists of a set of output tabs.

Figure 3.1: Screen Shot of FiRE User Interface
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3.4.1 Editor

In the editor area one is able to open and edit or create from scratch a new knowledge base.
FiRE uses the same syntax as the RACER (http://www.sts.tu-harburg.de/ r.f.moeller/racer/)
Description Logic reasoning engine in order to encode the captured knowledge. Obvi-
ously, in FiRE we had to slightly extend the syntax of RACER in order to support fuzzy
facts.

As we can see in Figure 3.1, by using the keywordequivalentwe can provide the def-
initions for the fuzzy conceptsTenniBall, White andYellow. Finally, using the keywords
instanceandrelatedas well as an inequality type and a membership degree we can define
fuzzy facts. In addition to the fuzzy facts introduced in the previous section, we have
specified that segmento2 is red to a degree 0.6, green to a degree 0.5, blue to a degree
0.9 and its shape represents a stripe to a degree 0.8. Furthermore, we have extended our
knowledge about segmento1 saying that it is round to a degree 0.6.

3.4.2 Inference Services

The FiRE platform supports three types of inferences. The first one is the ability to check
the consistency of a fuzzy knowledge base. The other two inferences are more focused on
querying the given knowledge in order to derive new implied knowledge. To provide rea-
soning support for f-OWL we have reduced a f-OWL ontology to a fuzzy DL knowledge
base [SST+05c] in a manner similar to the way OWL is reduced to DLs.

The first type of query that is supported is the entailment of a fuzzy fact. This func-
tionality is provided in the upper part of the inference services panel of the FiRE platform
as it is depicted in Figure 3.1. For example one useful query to our fuzzy knowledge
would be to ask if segmento1 is yellow to a degree greater or equal than0.8. The user
can input this query in the upper part of the inference services panel by using the RACER
syntax. For our fuzzy knowledge the answer is positive since as we explained in the pre-
vious section the semantics of the language entail such a fact. Another fuzzy fact that our
knowledge entails is thato1 is a tennis ball to a degree greater or equal than 0.5.

The last inference service provided is the subsumption between two fuzzy concepts.
This is provided in the lower part of the inference services panel, as it can be seen in Figure
3.1. For example we can query if conceptYellow is a sub-concept of the conjunction of
the fuzzy conceptsRed, Green and notBlue which is obviously true. In RACER syntax
subsumption is specified with the keywordimplies.

3.4.3 Output Tabs

Finally FiRE uses a number of output tabs to provide information about the fuzzy knowl-
edge base. In Figure 3.1 themodeloutput tab has been selected. This tab returns the
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model (fuzzy interpretation) that satisfies the concept, role and instance axioms specified
in the fuzzy knowledge base if they are consistent. Figure 3.1 shows a model of the fuzzy
knowledge base after we have checked its consistency. We can see that the conceptRed
is a fuzzy concept with objecto1 belonging to a degree 0.8 and objecto2 belonging to a
degree0.6. hasPart is a fuzzy property where the pair(o1, o2) belongs to a degree 0.75;
similarly with the rest of the fuzzy concepts. Another important tab are the tableaux ex-
pansion tab where one is able to see a trace of the application of the reasoning algorithm.
Other tabs that are provided is the tableaux tab where we can see the structure that the
reasoning algorithm has created, the output tab which provides a view of the initial fuzzy
knowledge and the performance tab which provides a view of information about the usage
of computing resources.

Regarding the efficiency of the implementation, we have to mention that currently
FiRE does not support any of the optimization techniques of classical DL. Hence, the
behavior of the implementation is dependent on the form and size of the input knowledge
base. Roughly speaking FiRE operates well with small and medium size knowledge bases
(about 100 concepts), and which do not contain concept which use complex constructors
(speaking in terms of sources of complexity), like disjointness constructors and at-most
restrictions which introduce non-determinism. Some first investigations have shown that
there is a lot of room for optimization and that most of the classical DL optimization
methods would be applicable to fuzzy DLs with some necessary adaptations.
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Chapter 4

Fuzzy OWL

In the current chapter we will present a fuzzy extension to the OWL language, thus creat-
ing the fuzzy OWL language. Additionally, we will present a translation technique which
reduces an f-OWL ontology to a f-SHOIN knowledge base. Our presentation follows
the one in [SST+05c], but provides some revisions to the semantics of the language, as
well as the reduction technique. Moreover, we also address the issue of the RDF/XML
syntax of f-OWL that has not been previously presented.

4.1 Semantics of fuzzy OWL

Our fuzzy OWL language uses essentially the same syntax as the crisp OWL language
[BvHH+04]. Hence, one is able to create OWL class descriptions and OWL class and
property axioms in exactly the same way this is done in OWL. For example one can
define the class of white things as the set of things that are red, green and blue at the same
time. In OWL abstract syntax [PSHH04] this definition could be written as,Class(White
complete intersectionOf(Red Green Blue)).

The differences between crisp OWL and fuzzy OWL arise in the definition of facts
(individual axioms). In the case of f-OWL besides specifying the membership of an indi-
vidual (pair of individuals) to a class (property) we also need to specify the membership
degree that this individual (pair of individuals) belongs to the class (property), and an
inequality, as in the case of f-SHOIN fuzzy assertions. Such axioms are referred to as
fuzzy facts. For example, one might want to state that an image region,reg1, is blue to a
degree greater or equal than 0.8. As we will see in the following, in f-OWL the abstract
syntax of such an axiom isIndividual(reg1 type(Blue) >= 0.8).

Although the syntax modifications are minor, the semantics of f-OWL are based on
fuzzy interpretations, and interpret OWL classes and properties as fuzzy sets and fuzzy
relations. In the case of f-OWL DL (that we are studying here) these interpretations are
fairly standard by description logic standards. Hence, a fuzzy interpretation is a pairI =
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Table 4.1: Fuzzy OWL Class Descriptions

Abstract Syntax DL Syntax Semantics
Class(A) A AI : ∆I → [0, 1]
Class(owl:Thing) > >I (a) = 1
Class(owl:Nothing) ⊥ ⊥I(a) = 0
intersectionOf(C, D, . . . ) C uD (C uD)I(a) = t(CI(a), DI(a))
unionOf(C, D, . . . ) C tD (C tD)I(a) = u(CI(a), DI(a))
complementOf(C) ¬C (¬C)I(a) = c(CI(a))
OneOf(o1, o2, . . . ) {o1}t {o2} ({o1} t {o2})I(a) = 1 if a ∈{oI1 , oI2}

({o1} t {o2})I(a) = 0 otherwise
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I(a) = supb∈∆I t(RI(a, b), CI(b))
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I(a) = infb∈∆I J (RI(a, b), CI(b))
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I(a) = supb∈∆I t(RI(a, b), {o}I(b))
restriction(R minCardinality(m)) ≥ pR (≥ pR)I(a) = supb1,...,bp∈∆I t(tpi=1R

I(a, bi), ti<j{bi 6= bj})
restriction(R maxCardinality(m)) ≤ pR (≤ pR)I(a) = infb1,...,bp+1∈∆I J (tp+1

i=1 RI(a, bi), ui<j{bi = bj})

(∆I , ·I) where the domain∆I is a non-empty set of objects and·I is afuzzy interpretation
function, which maps an individual namea ∈ I to an elementaI ∈ ∆I , a f-OWL class
A to a membership functionAI : ∆I → [0, 1] and a f-OWL object propertyR ∈ R to a
membership functionRI : ∆I ×∆I → [0, 1].

An f-OWL interpretation can be extended to give semantics to fuzzy class descriptions
and fuzzy class and fuzzy property axioms. The abstract syntax, the respective fuzzy DL
syntax and the semantics of f-OWL class descriptions are depicted in Table 4.1. The ab-
stract syntax, f-DL syntax and semantics of f-OWL class and property axioms are depicted
in Table 4.2. Observe that specifying a membership degree along with an inequality in
an individual axiom is optional. This ability will be further explained in the next section.
A fuzzy ontology, O, is a set of f-OWL axioms. We say that a fuzzy interpretationI is a
model ofO iff it satisfies all axioms inO. A fuzzy ontologyO1 entailsa fuzzy ontology
O2, writtenO1 |= O2 if every model ofO1 is a model ofO2.

There are some remarks regarding Table 4.2. Firstly, the semantics of domain axioms
result from the inequations,supb∈∆I t(RI(a, b), 1) ≤ CI

i (a), which provide the semantics
for the subsumption axioms∃R.> v Ci. Since the inequality holds for the supremum of
the left-hand side it would hold for anyb ∈ ∆I so,t(RI(a, b), 1) ≤ CI

i (a) and due to the
boundary condition of t-norms we get the simplified inequality of Table 4.2. Similarly,
the semantics of fuzzy range restrictions result by considering an arbitraryb ∈ ∆I for
the inequation1 ≤ infb∈∆I J (RI(a, b), CI

i (b)). Finally, observe that the semantics of
disjoint classes are based on the GCIC uD v ⊥, rather than the axiomC v ¬D, which
is usually considered in the crisp case. While in crisp DLs the semantics of these two
syntactic forms coincide, this is notalwaystrue in fuzzy DLs. We choose the first form
since in many cases the second one provides us with some counterintuitive properties.
For example, suppose we assert that a classC is disjoint from itself. Then using the
first semantics and themin-norm for performing fuzzy intersection we will get that∀a ∈
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Table 4.2: Fuzzy OWL Axioms

Abstract Syntax DL Syntax Semantics
(ClassA partialC1 . . . Cn) A v C1 u . . . u Cn AI(a) ≤ t(CI1 (a), . . . , CIn (a))
(ClassA completeC1 . . . Cn) A ≡ C1 u . . . u Cn AI(a) = t(CI1 (a), . . . , CIn (a))
(EnumeratedClassA o1 . . . on) A ≡ o1 t . . .t on AI(a) = 1 if a ∈ {oI

1, . . . , oI
n}, AI(a)=0 otherwise

(SubClassOfC1, C2) C1 v C2 CI1 (a) ≤ CI2 (a)
(EquivalentClassesC1 . . . Cn) C1 ≡ · · · ≡ Cn CI1 (a) = · · · = CIn (a)
(DisjointClassesC1 . . . Cn) Ci u Cj v ⊥ t(CIi (a), CIj (a)) = 0, 1 ≤ i < j ≤ n

(SubPropertyOfR1, R2) R1 v R2 RI1 (a, b) ≤ RI2 (a, b)
(EquivalentPropertiesR1 . . . Rn) R1 ≡ · · · ≡ Rn RI1 (a, b) = · · · = RIn(a, b)
ObjectProperty(R super(R1) ... super(Rn) R v Ri RI(a, b) ≤ RIi (a, b)

domain(C1) ... domain(Ck) ∃R.> v Ci RI(a, b) ≤ CIi (a)
range(C1) ... range(Ch) > v ∀R.Ci 1 ≤ J (RI(a, b), CIi (b))
[InverseOf(S)] R ≡ S− RI(a, b) = (S−)I(a, b)
[Symmetric] R ≡ R− RI(a, b) = (R−)I(a, b)
[Functional] > v6 1R infb1,b2∈∆I J (t(RI(a, b1), RI(a, b2)), u(b1 = b2)) ≥ 1

[InverseFunctional] > v6 1R− infb1,b2∈∆I J (t((R−)I(a, b1), (R−)I(a, b2)), u(b1 = b2)) ≥ 1

[Transitive]) Trans(R) supb∈∆I t(RI(a, b), RI(b, c)) ≤ RI(a, c)

Individual(o type(C1) [./ degree(m1)] . . . type(Cn) [./ degree(mn)] o : Ci./mi CIi (oI)./mi, mi ∈ [0, 1], 1 ≤ i ≤ n
value(R1, o1) [./ degree(k1)] . . . value(R`, o`)) [./ degree(k`)] (o, oi) : Ri./ki RIi (oI , oIi )./ki, ki ∈ [0, 1], 1 ≤ i ≤ `

Sameindividual(o1 . . . on) o1 = · · · = on oI1 = · · · = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj oIi 6= oIj , 1 ≤ i < j ≤ n

∆I . min(CI(a), CI(a)) = 0 ⇒ ∀a ∈ ∆I .CI(a) = 0. In other words,C ≡ ⊥, which is
intuitive. On the other hand by using the second axiom we will get,∀a ∈ ∆I .CI(a) ≤
1− CI(a) ⇒ CI(a) ≤ 1

2
.

4.2 Abstract and Concrete RDF Syntax

In order to provide a complete presentation of the fuzzy OWL language in the current sec-
tion we provide the abstract and concrete RDF syntax of f-OWL. We also give a number
of examples to make the syntax more clear.

Table 4.3 presents the abstract syntax of fuzzy facts. We see that the usual definition
of OWL facts is extended with a new element calledmembership. This element is de-
fined by two sub-elements that ofineqTypeanddegree. The element ineqType is used to
specify the inequality type that is taking place in the instance relation. Thus, the values
of this element are the inequalities,≥, ≤, > and< and the equality=. Observe that
f-OWL allows one to use the equality symbol (=) in order to specify an exact equality
in an instance relation. This is in order to avoid writing two instance relations using the
inequalities>= and<=, as was noted in chapter 3. Finally, element degree is used to
specify the membership degree that the specified instance relation holds, taken from the
interval [0, 1].

As we can see the membership element is optional, i.e. the user might not specify a
membership for an instance relation. In that case it is reasonable to consider by default
that the inequality type is of the form= and the membership degree is equal to 1. More-
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Table 4.3: Abstract Syntax of f-OWL
individual ::= ‘Individual(’ [individualID] {annotation}

{‘type(’ type ‘)’ [membership]} {value [membership]} ‘)’
membership ::= ineqType degree
ineqType ::= ‘=’ | ‘>=’ | ‘>’ | ‘<=’ | ‘<’
degree ::= ‘degree(’ real-number-between-0-and-1-inclusive ‘)’

over, we see that the membership element is placed both after the type element as well as
after the value element. In the former case we can specify the membership of fuzzy facts
involving an individual and a concept, while in the latter we can specify the membership
between a pair of individuals and a fuzzy role.

Now let us turn our attention to the RDF/XML syntax of f-OWL. In order to demon-
strate the RDF/XML syntax of f-OWL we are going to use as an example a holiday orga-
nization task. In this example we have thatRomeis closeTo Athens to a degree equal
to 0.75, thatRomeis aHotPlace to a degree greater or equal than 0.7, thatAthens is
a HotPlace to a degree greater or equal than 0.8 and thatAthens is closeTo Cyprus
to a degree greater or equal than 0.6. As is the case with the classical OWL and RDF
languages there are two different forms in which such information can be encoded. First
we can use the abbreviating syntax of RDF/XML for specifying instances relations. In
that case, the RDF/XML syntax is the following,

<HotPlace rdf:about="Rome" owlx:ineqType=" ≥" owlx:degree="0.7">
<closeTo rdf:resource="Athens" owlx:degree="0.75"/>

</HotPlace>

On the other hand we could also use the RDF elementrdf:Description to pro-
vide a different form of RDF/XML syntax. By using this element in the case ofAthens
we can provide the following syntax,

<rdf:Description rdf:about="Athens">
<rdf:type rdf:resource="HotPlace" owlx:ineqType=" ≥" owlx:degree="0.8"/>
<closeTo rdf:resource="Cyprus" owlx:ineqType=" ≥" owlx:degree="0.6"/>

</rdf:Description>

4.3 Reduction to fuzzy OWL Satisfiability

In [HPS04] a translation from OWL axioms and facts to DL axioms and assertions was
provided. The aim of this translation is to reduce the problem of the entailment of OWL
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ontologies to the problem of satisfiability of a DL knowledge base for which implemented
algorithms are known. In this section we will study the reduction in the case of fuzzy
OWL and fuzzy DLs.

The first step in such reduction is to translate an f-OWL ontology to an f-DL knowl-
edge base. More precisely we have to translate f-OWL class and property descriptions
and axioms to f-DL concept and role axioms and descriptions. Such a translation is de-
scribed in [HPS04]. Since we impose no syntax changes in class and property axioms
and descriptions the same reduction also applies to the f-OWL language. Additionally, in
the current paper we have provided the DL counterpart of the OWL class and property
axioms and descriptions, (see Tables 4.1 and 4.2). The only difference with respect to the
mapping in [HPS04] is the reduction of disjoint classes. Since we consider the seman-
tics that result from the syntaxC uD v ⊥ such axioms are reduced to this DL concept
inclusion axiom, rather thanC v ¬D, which is used in [HPS04].

Table 4.4: From f-OWL facts to f-DL fuzzy assertions
f-OWL fragment F TranslationF(F )
Individual(x1 ./ n1...xp ./ np) F(a : x1./n1), ...,F(a : xn./np) wherea is new
a : type(C)./n a : V(C)./n
a : type(C) a : V(C) = 1
a : value(R x)./n 〈a, b〉 : R./n, F(b : x) whereb is new
a : value(R x) 〈a, b〉 : R = 1, F(b : x) whereb is new
a : o a = o
Sameindividual(o1 . . . on) V(oi) = V(oj) 1 ≤ i < j ≤ n
DifferentIndividuals(o1 . . . on) V(oi) 6= V(oj) 1 ≤ i < j ≤ n

The most complex part of the translation, identified in [HPS04], is the translation of
individual axioms (facts), because they can be stated with respect to anonymous individ-
uals. In [HPS04] two translations were provided, one for OWL DL and one for OWL
Lite. This is because the translation of OWL DL uses nominals which OWL Lite does not
support. Close inspection of the abstract syntax of fuzzy individual axioms from Table
4.2, and the translations in [HPS04], reveals that the OWL Lite reduction better serves our
needs in the fuzzy case even when we consider the reduction of OWL DL facts. This is
due to the presence of inequality types and membership degrees. Table 4.4 defines a map-
ping (F) that transforms OWL facts to f-SHOIN assertions. The mappingV represents
the translation from f-OWL classes and individuals to f-DL concepts and individuals.

As a second step of the reduction we have to reduce f-SHOIN knowledge base
entailment to f-SHOIN unsatisfiability. More precisely, we have to define a translation
G such thatK |= A iff K ∪ {G(A)} is unsatisfiable, whereA represents an axiom. The
definition ofG is depicted in Table 4.5. There are some remarks regarding the definition
of G. Observe that in the reduction of the entailment of concept and role subsumption and
transitive role axioms we have to check for the satisfiability of the ABoxes for all degrees
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Table 4.5: From entailment to unsatisfiability
Axiom A TransformationG(A)
C v D {(x : C) ≥ n, (x : D) < n〉}, ∀n ∈ [0, 1]
Trans(R) {(x : ∃R.(∃R.{y})) ≥ n, (x : ∃R.{y}) < n}, ∀n ∈ [0, 1]
R v S {(x : ∃R.{y}) ≥ n, (x : ∃S.{y}) < n}, ∀n ∈ [0, 1]
(a : C)./n (a : C)¬./n
(〈a, b〉 : R)./n (〈a, b〉 : R)¬./n
a = b a 6= b
a 6= b a = b

n ∈ [0, 1]. Obsiously, such a task is practicaly impossible. Straccia [Str01] proves that
for concept subsumption it suffices to check the unsatisfiability of the ABox for only two
arbitrarily selected data values,n1, n2 from the intervals,n1 ∈ (0, 0.5] andn2 ∈ (0.5, 1].
This result can be easily extended to the cases of role subsumption and transitive role
axioms At last observe that the entailment of role assertions(〈a, b〉 : R)./n is much
easier in the fuzzy case, than in the crisp case. While in classical DLs the negation of
roles is required, necesitating special transformation techniques [HPS04], in fuzzy DLs
only a negation of the form of inequality is needed, which can easily be handled.

Regarding the reduction of f-SHIF entailment to f-SHIF satisfiability a number of
issues have to be taken under consideration. More precisely, the f-SHIF language does
not support nominals, thus the reduction method for role subsumption and transitive role
axioms presented in Table 4.5, cannot be used. This is also true in the case of crisp OWL
Lite [HPS04]. For that purpose a new transformation method has to be devised. Based
on the translation method presented in [HPS04] we can replace each nominal concept in
Table 4.5 with a new atomic conceptB not present in the KB. The new mapping that
uses this new notion will be denoted byG ′. This yields a translation method for f-SHIF .
Please note that, the approach taken in [HPS04] for the reduction ofSHIF entailment to
SHIF satisfiability is different from the approach taken here.

The reduction of OWL entailment to f-SHOIN satisfiability, presented in this sec-
tion, together with the recent results on reasoning with expressive DLs [SST+05a] with
general inclusion axioms [SSSP06] and the extensions provided in the previous Chapter,
implies that at the current moment we can fully support reasoning for the fuzzy OWL
language fKD-OWL. The extension of the tableaux algorithms to cover other norm oper-
ations in expressive DL languages and thus cover reasoning in OWL DL and OWL Lite
or to any expressive sub-language of them is an interesting open issue.
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Chapter 5

Fuzzy Rules

In the current chapter we will report on some recent results about extending Semantic Web
rule languages with fuzzy set theory. More precisely, we will present a fuzzy extension
to the languages SWRL and RuleML. A first account to fuzzy SWRL was presented in
Deliverable 2.5.1 [PFT+04], but here we revise these results by using the presentation
given in [PSS+06]. Finally, our presentation of the uncertainty extensions to RuleML
follows the one in [SSTP05].

5.1 Fuzzy SWRL

Fuzzy rules are of the formantecedent → consequent, where atoms in both the an-
tecedent and consequent can have weights (importance factors), which are numbers be-
tween 0 and 1. More specifically, atoms can be of the forms C(x)∗w, P(x,y)∗w, Q(x,z)∗w,
sameAs(x,y)∗w, differentFrom(x,y)∗w or builtIn(pred,z1, . . . , zn), wherew ∈ [0, 1] is the
weight of an atom, and omitting a weight is equivalent to specifying a value of 1. For
instance, the following fuzzy rule axiom, inspired from the field of emotional analysis,
asserts that if a man has his eyebrows raised enough and his mouth open then he is happy,
and that the condition that he has his eyebrows raised is a bit more important than the
condition that he has his mouth open.

EyebrowsRaised(?a) ∗ 0.9 ∧MouthOpen(?a) ∗ 0.8 → Happy(?a), (5.1)

In this example,EyebrowsRaised, MouthOpen and Happy are class URIrefs, ?a is an
individual-valuedvariable, and 0.9 and 0.8 are the weights of the atomsEyebrows-Raised(?a)
andMouthOpen(?a), respectively.

In this presentation of fuzzy rules, we only consideratomicfuzzy rules, i.e., rules with
only one atom in theconsequent. The weight of an atom in aconsequent, therefore, can
be seen as indicating the weight that is given to the rule axiom in determining the degree

27



5. FUZZY RULES

with which theconsequent holds. Consider, for example, the following two fuzzy rules:

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8 (5.2)

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4, (5.3)

which shareHappy(?x) in theconsequent. Since0.8 > 0.4, more weight is given to rule
(5.2) than to rule (5.3) when determining the degree to which an individual isHappy.

In what follows, we formally introduce the syntax and model-theoretic semantics of
fuzzy SWRL.

5.1.1 Syntax

In this section, we present the syntax of fuzzy SWRL. To make the presentation simple
and clear, we use DL syntax (see the following definition) instead of the XML, RDF or
abstract syntax of SWRL.

Definition 6 Let a,b be individual URIrefs,l a OWL data literal,C, D OWL class de-
scriptions, r, r1 OWL individual-valuedproperty descriptions,r1, r2 individual-valued
property URIrefs,s, s1 data-valuedproperty URIrefs,pred a datatype predicate,w,w1, . . . ,

wn ∈ [0, 1],
⇀
v ,

⇀
v 1, . . . ,

⇀
v n are (unary or binary) tuples of variables and/or individual

URIrefs,a1(
⇀
v1), . . . , an(

⇀
vn) andc(

⇀
v ) are of the formsC(x), r(x, y), s(x, z), sameAs(x, y),

differentFrom(x, y), m or builtIn(pred, z1, . . . , zn), wherex, y are individual-valued
variables or individual URIrefs,m is a truth constant, which is a rational number between
0 and 1, and z,z1, . . . , zn aredata-valuedvariables or OWL data literals.

An f-SWRL ontology can have the following kinds of axioms:

• class axioms:C v D (class inclusion axioms);

• property axioms:r v r1 (individual-valuedproperty inclusion axioms),Func(r1)
(functional individual-valuedproperty axioms),Trans(r2) (transitive property ax-
ioms),s v s1 (data-valuedproperty inclusion axioms),Func(s1) (functionaldata-
valuedproperty axioms);

• individual axioms (facts):(a : C) ≥ m, (a : C) ≤ m (fuzzy class assertions),
(〈a,b 〉 : r) ≥ m, (〈a,b 〉 : r) ≤ m (fuzzyindividual-valuedproperty assertions),
(〈a,l 〉 : r) ≥ m, (〈a,l 〉 : r) ≤ m (fuzzydata-valuedproperty assertions),a = b
(individual equality axioms) anda 6= b (individual inequality axioms);

• rule axioms:a1(
⇀
v1) ∗ w1 ∧ · · · ∧ an(

⇀
vn) ∗ wn → c(

⇀
v ) ∗ w (fuzzy rule axioms).

Omitting a degree or a weight is equivalent to specifying the value of 1. ¦
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According to the above definition, f-SWRL extends SWRL with fuzzy class asser-
tions, fuzzy property assertions and fuzzy rule axioms. We have some remarks here.
Firstly, in f-SWRL, there are two (i.e.≥ and≤) kinds of fuzzy assertions; as we have
already mentioned, we can simulate the form of(a : C) = m by considering two asser-
tions of the form(a : C) ≥ m and(a : C) ≤ m. Secondly, although f-SWRL supports
degrees in fuzzy assertions, it does not support degrees in fuzzy class axioms and fuzzy
property axioms because it is not very clear how to obtain degrees for them. Nevertheless,
it is worth noting that fuzzy class axioms and fuzzy property axiomshavefuzzy interpre-
tations instead of crisp interpretations (see Section 5.1.3). Furthermore, we allow the use
of truth constantsm [Pav79, Haj98] in the consequence of a fuzzy rule axiom. This could
enable us to simulate fuzzy assertions of the form(a : C) ≤ m with fuzzy rule axioms
(see Section 5.1.3).

5.1.2 Constraints on Semantics

In order to make the semantics of f-SWRL more intuitive, in this section we briefly clarify
the constraints of our desired semantics for f-SWRL. The proposed constraints provide
a unified framework for giving model theoretic semantics for f-SWRL based on fuzzy
intersections (t-norms), fuzzy union (s-norms), fuzzy negations, fuzzy implications and
weight operationsg(w, d) : [0, 1]2 → [0, 1], i.e. how to handle the degreed of an atom (in
antecedents) and its weightw. The properties of weight operations are defined later on
this section.

Firstly, one of the most useful relationships which is used to manipulate expressions
in propositional logic is themodus ponen, which states thatA ∩ (A ⇒ B) ⇒ B (if A
is true andA impliesB, thenB is also true). This suggests the following constraint on
fuzzy implications.

Constraint 7 The fuzzy implications used in the semantics of f-SWRL should satisfy the
modus ponen:

J (t(a,J (a, b)), b) = 1.

It is easy to verify that, e.g., the following two sets of fuzzy operations satisfy the above
constraint:

• {t(a, b) = min(a, b),JR(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}},
• {t(a, b) = a · b,JR(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}},

while the set of fuzzy operations{t(a, b) = min(a, b), u(a, b) = max(a, b), c(a) = 1 −
a,JS(a, b) = u(c(a), b)} does not (e.g., whena = 0.4, b = 0.5). In short, R-implication
satisfies Constraint 7, while S-implication does not.

Secondly, we require the weight operationsg(w, d) in antecedents satisfy the follow-
ing properties.
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Constraint 8 The weight operationsg(w, d) used in the semantics of f-SWRL should sat-
isfy the following properties:

1. monotone ind: if d1 < d2 theng(w, d1) < g(w, d2),

2. g(0, d) = 1, g(1, d) = d.

The intuition of Property 1 is immediate. Property 2 ensures that the weight 0 would
not affect the result of fuzzy intersections in the antecedent, and that the full membership
degree would participate in fuzzy intersections when the weight is 1.

It is easy to verify that, e.g., the following two weight operations satisfy the above
constraint:

• g(a, b) =

{
a · b if a 6= 0
1 if a = 0

,

• g(a, b) = JR(a, b),

while the weight operationg(a, b) = min(a, b) does not (e.g. whena = 0). Observe that
the former type of weight operation is t-norm based, while the latter one isR-implication
based.

Thirdly, in order to enable the use of weights in the head atoms as the weights of the
rule axiom, we have the following constraint.

Constraint 9 Given a fuzzy ruleA → c∗w, whereA is the antecedent of the rule andc is
the consequent atom with weightw, the semantics of f-SWRL should satisfy the following
property:

J (A(I), c(I)) ≥ w,

whereA(I) andc(I) are interpretations ofA andc, respectively.

Intuitively speaking, the above constraint requires that the degree of fuzzy implication
should be no less than the weight. This constraint is inspired by Theorem 5 from [DP01],

which shows an important property of the weighted rules of the formA
θ→C, whereθ is

a weight of the rule.

Furthermore, individual axioms (or facts) are special forms of rule axioms in SWRL.
This suggests yet another constraint on the semantics of f-SWRL.

Constraint 10 The semantics of f-SWRL should ensure that fuzzy individual axioms (fuzzy
facts) are special forms of fuzzy rule axioms.

It is worth noting that we do not require fuzzy class (or property) axioms be special forms
of fuzzy rule axioms. In some decidable sub-languages of SWRL, such as the DL-safe
SWRL [MSS04], class (or property) axioms are not special forms of rule axioms.
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5.1.3 Model-theoretic Semantics

In this section, we give a model-theoretic semantics for fuzzy SWRL, based on the con-
straints specified in the previous section. Although many f-SWRL axioms share the same
syntax as their counterparts in SWRL, such as class inclusion axioms, they have differ-
ent semantics because we use fuzzy interpretations in the model-theoretic semantics of
f-SWRL.

Before we provide a model-theoretic semantics for f-SWRL, we introduce the notions
of datatype predicates and datatype predicate maps.

Definition 11 (Datatype Predicate)A datatype predicate(or simplypredicate) p is char-
acterised by an aritya(p), or a minimum arityamin(p) if p can have multiple arities, and
a predicate extension (or simplyextension) E(p). ¦

For example,=int is a datatype predicate with aritya(=int) = 2 and extensionE(=int

) = {〈i1, i2〉 ∈ V (integer)2 | i1 = i2}, whereV (integer) is the set of all integers.
Datatypes can be regarded asspecialpredicates with arity 1 and predicate extensions
equal to their value spaces; e.g., the datatypeinteger can be seen as a predicate with arity
a(integer) = 1 and predicate extensionE(integer) = V (integer).1

Definition 12 (Predicate Map) We consider a predicate mapMp that is a partial map-
ping from predicate URI references to predicates. ¦

Intuitively, datatype predicates (resp. datatype predicate URIrefs) inMp are called built-
in datatype predicates (resp. datatype predicate URIrefs) w.r.t.Mp. Note that allowing the
datatype predicate map to vary allows different implementations of f-SWRL to implement
different datatype predicates.

Based on the constraints we specified in the previous section, we define the semantics
of f-SWRL as follows.

Definition 13 Letc, t, u be fuzzy negations, fuzzy intersections and fuzzy unions,g weight
operations that satisfy Constraints 8. Due to Constraint 7, we choose the R-implication
as the fuzzy implication. Given a datatype predicate mapMp, a fuzzy interpretation
is a triple I = 〈∆I , ∆D, ·I〉, where the abstract domain∆I is a non-empty set, the
datatype domain contains at least all the data values in the extensions of built-in datatype
predicates inMp, and·I is a fuzzy interpretation function, which maps

1. individual URIref andindividual-valuedvariables to elements of∆I ,

2. a class descriptionC to a membership functionCI : ∆I → [0, 1],

1See [Pan04] for detailed discussions on the relationship between datatypes and datatype predicates.
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3. an individual-valuedproperty URIrefr to a membership functionrI : ∆I ×∆I →
[0, 1],

4. andata-valuedproperty URIrefq to a membership functionqI : ∆I×∆D → [0, 1],

5. a truth constantm to itself: mI = m,

6. a built-in datatype predicate URIrefpred to its extensionpredI = E(Mp(pred)) ∈
(∆D)n, wheren = a(Mp(pred)), so that

builtInI(pred, z1, . . . , zn) =

{
1 if 〈zI1 , . . . , zIn〉 ∈ predI

0 otherwise,

7. the built-in propertysameAs to a membership function

sameAsI(x, y) =

{
1 if xI = yI

0 otherwise,

8. the built-in propertydifferentFrom to a membership function

differentFromI(x, y) =

{
1 if xI 6= yI

0 otherwise.

The semantics for fuzzy class descriptions have been previously presented in Ta-
ble 3.1.

A fuzzy interpretationI satisfies a class inclusion axiomC v D, writtenI |= C v D,
if ∀o ∈ ∆I , CI(o) ≤ DI(o).

A fuzzy interpretationI satisfies anindividual-valuedproperty inclusion axiomr v
r1, written I |= r v r1, if ∀o, q ∈ ∆I , rI(o, q) ≤ rI1 (o, q). I satisfies a functional
individual-valuedproperty axiomFunc(r1), writtenI |= Func(r1), if

∀o ∈ ∆I , inf
q1,q2∈∆I

J (t(RI(o, q1), R
I(o, q2)), q1 = q2) ≥ 1.

I satisfies a transitive property axiomTrans(r2), written I |= Trans(r2), if ∀o, q ∈
∆I , rI2 (o, q) = supp∈∆I t[rI2 (o, p), rI2 (p, q)], wheret is a triangular norm. A fuzzy inter-
pretationI satisfies adata-valuedproperty inclusion axioms v s1, writtenI |= s v s1,
if ∀〈o, l〉 ∈ ∆I × ∆D, sI(o, l) ≤ sI1 (o, l). I satisfies a functionaldata-valuedproperty
axiomFunc(s1), writtenI |= Func(s1), if

∀o ∈ ∆I , inf
l1,l2∈∆I

J (t(RI(o, l1), RI(o, l2)), l1 = l2) ≥ 1.

A fuzzy interpretationI satisfies a fuzzy class assertion(a : C) ≥ m, written I |=
(a : C) ≥ m, if CI(a) ≥ m. I satisfies a fuzzyindividual-valuedproperty assertion
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(〈a,b 〉 : r) ≥ m2, written I |= (〈a,b 〉 : r) ≥ m2, if rI(a,b ) ≥ m2. I satisfies a
fuzzydata-valuedproperty assertion(〈a, l〉 : s) ≥ m3, written I |= (〈a, l〉 : s) ≥ m3,
if sI(a, l) ≥ m3. The semantics of fuzzy assertions using≤ are defined analogously.I
satisfies an individual equality axioma = b, writtenI |= a = b, if aI = bI . I satisfies
an individual inequality axioma 6= b, writtenI |= a 6= b, if aI 6= bI .

A fuzzy interpretationI satisfies a fuzzy rule axioma1(
⇀
v1) ∗w1 ∧ · · · ∧ an(

⇀
vn) ∗wn →

c(
⇀
v ) ∗ w, written I |= a1(

⇀
v1) ∗ w1 ∧ · · · ∧ an(

⇀
vn) ∗ wn → c(

⇀
v ) ∗ w, if t(g(w1, a

I
1 (

⇀
v1

I

)), . . . , g(wn, aIn(
⇀
vn

I
))) ≤ JR(w, cI(

⇀
v
I
)). ¦

There are some remarks on the above definition. Firstly, as we have seen in the pre-
vious section, only R-implication satisfies Constraint 7. Therefore, we implicitly use R-
implication for fuzzy rule axioms (see below). In fact, given a fuzzy rule axiomA → C,
Definition 13 asserts that an fuzzy interpretationI satisfiesA → C if A(I) ≤ C(I),
whereA(I) andC(I) are interpretations of the antecedentA and conclusionC, respec-
tively. By applying using the property ofR-implications introduced in Chapter 2, it fol-
lows thatJR(A(I), C(I)) = 1. One of the consequences of such semantics is the support
of chainingof rules. Suppose that we have two fuzzy rule axiomsA1 → C1, C1 → C2, if
an fuzzy interpretationI satisfies both of them, i.e.A1(I) ≤ C1(I) andC1(I) ≤ C2(I),
it follows A1(I) ≤ C2(I). In other words,I also satisfies the fuzzy rule axiomA1 → C2.

Let us conclude this section by showing that f-SWRL satisfies all the constraints pre-
sented in Section 5.1.2.

Lemma 14 Given a f-SWRL rule axiomA → c ∗w, whereA is the antecedent of the rule
andc is the consequent atom with weightw, we haveJR(A(I), c(I)) ≥ w, whereA(I)
andc(I) are interpretations ofA andc, respectively.

Proof: According to the Definition 4, we haveA(I) ≤ JR(w, c(I)). Due to Property 1
of Lemma 1, we havet(w, A(I)) ≤ c(I); i.e., t(A(I), w) ≤ c(I). Due to Property 1 of
Lemma 1 again, we haveJR(A(I), c(I)) ≥ w.ut

Lemma 15 In f-SWRL, fuzzy assertions are special forms of fuzzy rule axioms.

Proof: (a : C) ≥ m can be simulated by>(a) → C(a) ∗m. According to Definition 4,
we have1 ≤ JR(m,CI(a)). Due to Property 2 of Lemma 1, we haveCI(a) ≥ m, which
is the interpretation of(a : C) ≥ m.

(a : C) ≤ m can be simulated byC(a) → m, wherem is a truth constant. According
to Definition 4, we haveCI(a) ≤ JR(1,m). Due to Property 4 of Lemma 1, we have
CI(a) ≤ m, which is the interpretation of(a : C) ≤ m.

Similarly, (〈a, b〉 : r) ≥ m can be simulated by>(a) ∧ >(b) → r(a, b) ∗ m, and
(〈a, b〉 : r) ≤ m can be simulated byr(a, b) → m.ut

Based on Definition 4, Lemma 2 and Lemma 3, we have the following theorem.
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Theorem 16 f-SWRL satisfies Constraints 1-4.

5.2 Examples

In this section, we use some examples to further illustrate the semantics of f-SWRL.

Example 2 Suppose that a casting or production company retains fuzzy knowledge, in
the form of f-SWRL rules, about specific characteristics of the models it represents, to
advertising companies. An excerpt of such a fuzzy knowledge base could contain the
following axioms:

• Mary is Tall with a degree no less than 0.65:(Mary : Tall) ≥ 0.65.

• Mary is Light with a degree no less than 0.9:(Mary : Light) ≥ 0.9.

• Susan is Tall with a degree no less than 0.8:(Susan : Tall) ≥ 0.8.

• Susan is Light with a degree no less than 0.6:(Susan : Light) ≥ 0.6.

• One isThin if one isTall (with importance factor 0.7) andLight (with importance
factor 0.8):

Tall(?p) ∗ 0.7 ∧ Light(?p) ∗ 0.8 → Thin(?p).

The interpretation of the above rule axiom is as follows:

t(g(0.7, TallI(?pI)), g(0.8, LightI(?pI))) ≤ JR(1, ThinI(?pI)).

In this example, we first use the following operations:

t(a, b) = min(a, b),JR(a, b) =

{
1 if a ≤ b
b if a > b

, g(a, b) =

{
a · b if a 6= 0
1 if a = 0

According to Definition 13, we have

ThinI(Mary I) ≥ min(0.7 · 0.65, 0.8 · 0.9) = min(0.455, 0.72) = 0.455,

while

ThinI(Susan I) ≥ min(0.7 · 0.8, 0.8 · 0.6) = min(0.56, 0.48) = 0.48.

As a result, by using t-norm based weight operationsSusan is thinner thanMary .

If we choose another set of operations, the conclusion, however, can be completely
different.

For example, now we use the following operations:
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t(a, b) = a · b,JR(a, b) =

{
1 if a ≤ b
b/a if a > b

, g(a, b) = JR(a, b).

According to Definition 13, we haveThinI(Mary I) ≥ JR(0.7, 0.65) · JR(0.8, 0.9) =
0.929 ·1 = 0.929, whileThinI(Susan I) ≥ JR(0.7, 0.8) ·JR(0.8, 0.6) = 1 ·0.75 = 0.75.
As a result,Mary is substantially thinner thanSusan in this setting. ♦

The above example indicates that t-torm based weights give quite different meaning than
JR based weights.

Example 3 Suppose we have an f-SWRL knowledge base as follows:

• Tomis Happy with a degree no less than 0.7:(Tom: Happy) ≥ 0.7,

• Tomis aparent of Jane : 〈Jane , Tom〉 : parent,

• Tomis a brother of Kate : 〈Kate , Tom〉 : brother,

• if one’sparent is Happy, then one isHappy (with importance factor 0.8):

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8,

• if one’sbrother is Happy, then one isHappy (with importance factor 0.4):

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4.

Let us use the two sets of operations in Example 2 with this knowledge base.

Firstly, we use the following operations:

t(a, b) = min(a, b),JR(a, b) =

{
1 if a ≤ b
b if a > b

, g(a, b) =

{
a · b if a 6= 0
1 if a = 0

According to Definition 13, we haveJR(0.8, HappyI(Jane I)) ≥ min(1 ·1, 1 ·0.7) = 0.7.
Due to Property 1 of Lemma 1, we haveHappyI(Jane I) ≥ 0.7. As forKate , we have
JR(0.4, HappyI(Kate I)) ≥ min(1 · 1, 1 · 0.7) = 0.7; hence,HappyI(Kate I) ≥ 0.4.
Hence,Jane is happier thanKate .

Now we use the following operations:

t(a, b) = a · b,JR(a, b) =

{
1 if a ≤ b
b/a if a > b

, g(a, b) = JR(a, b).

According to Definition 13, we haveJR(0.8, HappyI(Jane I)) ≥ JR(1, 1) · JR(1, 0.7) =
0.7; hence,HappyI(Jane I) ≥ t(0.8, 0.7) = 0.56. As forKate , we have

JR(0.4, HappyI(Kate I)) ≥ JR(1, 1) · JR(1, 0.7) = 0.7;

hence,HappyI(Kate I) ≥ t(0.4, 0.7) = 0.28. Again,Jane is happier thanKate . ♦
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So far we have only seen fuzzy assertions of the form(a : C) ≥ m; in the next
example, we will use fuzzy assertions of the form(a : C) ≤ m.

Example 4 Suppose we have a slightly different f-SWRL knowledge base from that in the
previous example.

• Jane is Happy with a degree no larger than 0.75:(Jane : Happy) ≤ 0.75,

• Kate is Happy with a degree no larger than 0.85:(Kate : Happy) ≤ 0.85,

• Tomis aparent of Jane : 〈Jane , Tom〉 : parent,

• Tomis a brother of Kate : 〈Kate , Tom〉 : brother,

• if one’sparent is Happy, then one isHappy (with importance factor 0.8):

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8 (5.4)

• if one’sbrother is Happy, then one isHappy (with importance factor 0.4):

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4, (5.5)

Here we use the following operations:

t(a, b) = min(a, b),JR(a, b) =

{
1 if a ≤ b
b if a > b

, g(a, b) =

{
a · b if a 6= 0
1 if a = 0

.

From (5.4), we haveHappyI(TomI) ≤ JR(0.8, HappyI (Jane I)) ≤ JR(0.8, 0.75) =
0.75. Hence,HappyI(TomI) ≤ 0.75. From (5.5), we haveJR(0.4, HappyI(Kate I)) ≥
HappyI (TomI). Then we haveHappyI(Kate I) ≥ min(0.4, HappyI(TomI)).

It is easy to verify that we have the same results if we use the other set of operations.
♦

5.3 Uncertainty extensions to RuleML

RuleML 2 is a family of markup languages intended in encoding and exchanging rules
in the Semantic Web. It includes languages capable of capturing many widely known
systems of rule languages, such as datalog, hornlog, production rules, and more. For
example, returning to our models knowledge base, we can use RuleML to encode a rule
which determines which models qualify for a certain commercial and which do not. More
precisely, such a rule could look as follows,

2http://www.ruleml.org
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<Implies>
<head>

<Atom>
< opr><Rel>qualify</Rel></ opr>
<Var>person</Var>

</Atom>
</head>
<body>

<And>
<Atom>

< opr><Rel>long hair</Rel></ opr>
<Var>person</Var>

<Atom>
<Neg>

<Atom>
< opr><Rel>good quality</Rel></ opr>
<Var>person</Var>

<Atom>
</Neg>

</And>
</body>

</Implies>

Intuitively, the above rule states that if ones hair are long and of good quality she qualifies
for acting in the commercial.

Like SWRL, RuleML is not capable of representing vague and imprecise knowledge,
hence a fuzzy extension is required to capture such expressiveness. As it is argued in other
fuzzy extensions of concept based or rule based systems, the only syntactic change that
is needed is in the representation of facts (assertions). In this case we have the notion of
a fuzzy assertion[SST+05b], or afuzzy fact. Intuitively, a fuzzy fact asserts the minimum
degree to which a specific individual belongs to a specific atom. We have seen several
examples of fuzzy facts in the previous section.

We can make these fuzzy assertions explicit to the system by encoding them as RuleML
fuzzy facts [SSTP05]. Some the above mentioned fuzzy facts can be encoded by the fol-
lowing syntax:

<Atom>
<degree><Data>0.8</Data></degree>
< opr><Rel>long hair</Rel></ opr>
<Ind>Mary</Ind>

</Atom>
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<Atom>
<degree><Data>0.6</Data></degree>
< opr><Rel>long hair</Rel></ opr>
<Ind>Susan</Ind>

</Atom>

Moreover, as for the hair quality one could write the following fuzzy facts:

<Atom>
<degree><Data>0.6</Data></degree>
< opr><Rel>good quality</Rel></ opr>
<Ind>Mary</Ind>

</Atom>

<Atom>
< opr><Rel>good quality</Rel></ opr>
<Ind>Susan</Ind>

</Atom>

Observe that in the last fuzzy fact, for Susan’s hair quality, we have not specified the
degree to which we believe that the object “Susan” belongs to the fuzzy atom “goodquality”.
In this case the membership degree of the tuple to the fuzzy atom is taken to be 1 by de-
fault.

From the above examples we can see that the syntactic changes that need to take place
are minimal and only involve the syntax of fuzzy facts. So the additional change that
needs to take place in the XML Schema definition of the elementAtom [HBG+05] is the
following:

<xs:group name="Atom.content">
...................

<xs:choice>
<xs:sequence>

<xs:element name="degree" type="degree.type" minOccurs="0"
maxOccurs="1"/>

<xs:choice>
<xs:element ref="opr"/>

....................
</xs:group>

The XML Schema definition of the new tagdegree could be given by the following
schema definition:
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<xs:attributeGroup name="degree.attlist"/>
<xs:group name="degree.content">

<xs:sequence>
<xs:element ref="Data"/>

</xs:sequence>
</xs:group>
<xs:complexType name="degree.type">

<xs:group ref="degree.content"/>
<xs:attributeGroup ref="degree.attlist"/>

</xs:complexType>
<xs:element name="degree" type="degree.type"/>
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Chapter 6

Conclusions

In this report we have investigated fuzzy extensions to Semantic Web languages, like the
ontology languages of Description Logics and OWL, and the rule languages SWRL and
RuleML. Such extensions have gained considerable attention within the research commu-
nity since many applications from different domains are facing a vast amount of uncertain
and vague knowledge and information. Hence, in these domains applications have to
directly deal with such types of information in order to provide good quality results. Ex-
amples of such domains are multimedia analysis, where the color, shape and texture of
objects within an image are vague and geospatial applications, where spatial relations
relative to distances, like “close”, “far”, etc are also imprecise.

In the current deliverable we report on very important theoretical results in this direc-
tion, achieved as work of the current work package. More precisely, as we have presented,
we can now fully support reasoning in a fuzzy OWL language for some specific fuzzy op-
erations. This implies an extension of the syntax and semantics of the OWL language,
the reduction of fuzzy OWL ontologies to fuzzy Description Logics, the syntax and se-
mantics of fuzzy Description Logics and a reasoning algorithm for the very expressive
fuzzy DL, fKD-SHOIN . Finally, following the current research in the Semantic Web,
we investigate the extension of several popular rule languages, like the SWRL language
and the RuleML.

In addition to the above theoretical results we have also started the implementation of
a prototype reasoning platform for fuzzy Description Logics. This new platform, FiRE,
currently supports reasoning in the language fKD-SHIN with simple TBoxes and with
no optimization.

As for future research we are mainly focusing in three different directions. Firstly, we
are investigating reasoning support in expressive fuzzy DLs for other norm operations,
as well as reasoning in various clusters of combinations of fuzzy DLs and fuzzy rules.
Secondly, we are seeking ways fuzzy DLs and OWL can assist the process of image and
video analysis, identification and automatic annotation, hence providing knowledge based
image analysis applications. Finally, we focus on implementations. More precisely, we
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are investigating the application of DL optimization techniques to the case of fuzzy DL
algorithms, extending FiRE engine to support nominals and GCIs and integrating FiRE
with RDF and OWL stores to support large number of data.
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