——
I

knowledgeweb

realizing the semantic web

D2.5.3 Report on Implementation
and Optimisation Technigues for
Ontology Query Systems

Jeff Z. Pan (UoM)
Enrico Franconi, Sergio Tessaris (FUB), Dmitry Tsarkov, lan
Horrocks (UoM), Giorgos Stoilos, Giorgos Stamou (IT), Holger
Wache (VUA), Daniele Turi, Sean Bechhofer, and Lei Li (UoM)

Abstract.
EU-IST Network of Excellence (NoE) 1IST-2004-507482 KWEB
Deliverable D2.5.3 (WP2.5)

Keyword list: description logics, ontology language, query language, RDF, OWL DL, OWL-E

In D2.5.2 “Report on Query Language Design and Standardisation”, we have investigated query
answering of conjunctive queries in the OWL-QL framework, including treating RDF triples as
individual axioms of an ontology and extending the OWL-QL framework on queries related to
datatype expressions over OWL-E ontologies. In this deliverable, we look at implementation and
optimisation aspects of ontology query systems. We believe this work would be a very useful step
towards proposing standard Semantic Web query languages.

Document Identifier | KWEB/2004/D2.5.3/v1.0
Project KWEB EU-IST-2004-507482
Version v1.0

Date June 25, 2005

State draft

Distribution public

Copyright(© 2005 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel
35512 Cesson&vigre
France. PO Box 91226
Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polytechnique Redérale de Lausanne (EPFL)

Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitat Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I'Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person:&tdome Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejd|
E-mail address: nejdi@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta

E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asuniin Gomez Ferez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Sheffield (USFD)

Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fur Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitt Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas /Informatics and Telematics Institute
Free University of Bozen-Bolzano

Institut National de Recherche en Informatique et en Automatique

University of Manchester

University of Trento

Vrije Universiteit Amsterdam

Changes

)

| Version| Date | Author(s) | Changes |
0.1 12.04.05| Jeff Z. Pan creation
0.2 09.05.05| Jeff Z. Pan Adding the ‘FacT-DG” chapter
0.3 12.05.05| Dmitry Tsarkov and lan Hor; Adding the ‘FaCT++” chapter
rocks
0.4 16.05.05| Enrico Franconi and SergioAdding the “Query Formulation’
Tessaris chapter
0.45 16.05.05| Stefano David, Enrico Fran-Adding the “Query Engines” Sec
coni, and Sergio Tessaris | tion in Chapter 2
0.5 16.05.05| Giorgos Stoilos and GiorgosAdding the “Implementing an &7
Stamou Reasoner” chapter
0.6 16.05.05| lan Horrocks, Daniele Turi Adding the “Instance Store” chaf

and Sean Bechhofer, Lei Li

ter

Executive Summary

In D2.5.2 “Report on Query Language Design and Standardisation”, we have investigated
guery answering of conjunctive queries in the OWL-QL framework, including treating
RDF triples as individual axioms of an ontology and extending the OWL-QL framework
on queries related to datatype expressions over OWL-E ontologies. In this deliverable, we
look at implementation and optimisation aspects of ontology query systems. We believe
this work would be a very useful step towards proposing standard Semantic Web query
languages.

Contents

1 Introduction 1
2 Existing Semantic Web Query Engines 3
2.1 Methodologyofwork 3
2.1.1 Knowledge representation 4
2.1.2 Ontologylanguages, 4
2.1.3 Querytools 4
2.2 Thetestcases o i i 5
2.3 Evaluationresults 9
2.4 Conclusion and furtherworks, 11
3 FaCT++: An Efficient OWL Lite Reasoner 13
3.1 Architecture 14
3.2 Heuristics in Implementation 0 L. 15
3.3 Empirical Analysis 17
3.3.1 Rule-ordering Heuristics 18
3.3.2 Expansion-ordering Heuristics 19
3.3.3 Analysis 20
3.4 Discussionand FutureWork 22
4 FaCT-DG: Extending FaCT with Datatype Groups 24
4.1 Introduction 24
4.2 Preliminary 25
421 TheSHIQ(G)DL 25
422 DIG/llInterface 27
4.3 Architecture e 27
4.4 DIG/IOWL-E 29
45 FaCT-DG e 33
451 SystemOverview 33
45.2 ExtendedDLReasoner 33
4.5.3 Datatype Reasoning Components 35
4.6 Case Study: MatchMaking 36
4.6.1 Matchmaking 36

CONTENTS

4.6.2 WorkingExamples oL 37
4.7 ConclusionandOutlook, 38
Implementing an f-SZ Reasoner 40
5.1 Syntaxand SemanticsoftZ oL 40
5.2 AFuzzy Tableauforgp-SZ 42
5.3 Constructing angp-SZ Fuzzy Tableau 44
531 Example 46
54 Reductionto CriSBZ i i i e 47
Semantics Driven Support for Query Formulation 49
6.1 Introduction 49
6.2 Query interface: the user perspective 50
6.3 Queryinterface: insidethebox 52
6.3.1 Conjunctive queries. e 53
6.3.2 Reasoning services and query interface 54
6.3.3 Using a Description Logics Reasoner 55
6.3.4 Queryverbalisation. 57
6.4 DISCUSSION e e e e 58
Approximating Terminological Queries 60
7.1 OnImplementing Language Weakening 60
7.2 OnImplementing Knowledge Compilation. 61
7.3 Implementing Approximate Reasoning 62
7.3.1 Approximating Classification 63
7.4 Conclusion e 66
Querying Answering with Instance Store 67
8.1 Introduction 67
8.2 Instance Store L 68
8.2.1 AnOptimisedInstance Store 70
8.3 Implementation 70
8.4 Empirical Evaluation 0. 71
8.5 Related and Future Work Lo 75
Conclusion 77

June 25, 2005

KWEB/2004/D2.5.3/v1.0

Chapter 1

Introduction

In D2.5.2 “Report on Query Language Design and Standardisation”, from the theoreti-
cal aspect, we have investigated query answering of conjunctive queries in the OWL-QL
framework, including treating RDF triples as individual axioms of an ontology and ex-
tending the OWL-QL framework on queries related to datatype expressions over OWL-E
ontologies [Pan04]. In this deliverable, we look at implementation and optimisation as-
pects of ontology query systems. We believe this work would be a very useful step towards
proposing standard Semantic Web query languages.

It is worth noting that, by query systems, we mean both TBox query and retrieval
guery systems. Modern Description Logics reasoners, sueacasHor99], RACER[HMO01d],
DLP [PS99], Cerebrfaand Pellet, provide some basic querying support (also caBak
reasoning), including concept satisfiability, subsumption and classification queries. Some,
such asRACER, Cerebra and Pellet, support instance checking and retrieval (also called
ABoxreasoning). Based on basic reasoning tasks like retrieval, one can provide more
expressive (conjunctive) queries.

The deliverable is structured as follows. First of all, we provide a short survey of
many existing Semantic Web query engines (Chapter 2). Our aim is to present a big
picture about what functionalities these systems provide and how well they conform to
the Semantic Web standards.

The second part of the deliverable (Chapter 3 to 5) presents some newly developed DL
reasoning engines or algorithms, which provide some basic querying supp@T++
(Chapter 3) is a new generation of tRacT reasoner, which provides some new optimi-
sations for efficient reasoning support for OWL Lite ontologi€scT-DG (Chapter 4)
extends the~acT reasoner with support of datatype groups and uses a flexible archi-
tecture of supporting customised datatypes and datatype predicates. An algorithm for
f-SZ-concept satisfiability w.r.t. fuzzy knowledge bases is presented in Chapter 5.

The third part of the deliverable (Chapter 6 to 8) discusses several aspects on imple-

Ihttp://www.networkinference.com

1. INTRODUCTION

mentations of Semantic Web query systems. Chapter 6 describes the principles of the
design and development of intelligent query interface systems. Chapter 7 elaborates im-
plementation issues on approximating terminological queries.

While existing techniques foFBoxreasoning (i.e., reasoning about the concepts in
an ontology) seem able to cope with real world ontologies [Hor98b, HMO1b], it is not
clear if existing techniques f@kBoxreasoning (i.e., reasoning about the individuals in an
ontology) will be able to cope with realistic sets of instance data. This difficulty arises not
so much from the computational complexityABoxreasoning, but from the fact that the
number of individuals (e.g., annotations) might be extremely large.

To address this problem, Chapter 8 discusses how to combine Description Logic TBox
reasoning and databases to facilitate efficient query answering of retrieval queries over
extremely large numbers of individuals.

Chapter 9 concludes the deliverable.

2 June 25, 2005 KWEB/2004/D2.5.3/v1.0

Chapter 2

Existing Semantic Web Query Engines

In this chapter we present an evaluation of the most important tools for accessing and
manipulating RDF(S) (see[MM04]) and OWL (see [MvHO04]) ontologies. Our goal was

to understand the reasoning abilities of the tools with respect to the semantic definitions
of the problems at hand. We have tested the following systems: Jena, Sesame, RdfSuite,
Triple, RdfStore, 4Suite, RdfDB. The main results so far are: (1) RDF(S) is unable to
express basic representation needs typical in simple ontologies; (2) few tools are unable
to correctly handle RDF(S) ontologies; (3) as of today, no semantic web tool is able to
correctly handle even OWL-Lite ontologies, nor they plan to include it; and (4) the only
tool able to correctly handle OWL-Lite ontologies are the description logic inference en-
gine Racer and the Manchester OWL-QL Server [GHO04], which extends Racer to support
non-distinguished variables. The conclusion is that the current technology is unable to
handle correctly the W3C standard for representing ontologies.

2.1 Methodology of work

Roughly speaking the evaluation was performed by setting up some simple but tricky
ontology models, express them in the W3C standard languages RDF(S) and OWL and
evaluate the outcome of some of the most used Semantic Web query tools.

The work has been divided into three subsequent steps: the first and second step are
devoted to the acquirement of the technical background and logical understanding of the
involved technologies, whereas the third and final step is the practical one, in which simple
ontology models are set up and tested against the tools. These steps can be identified as:

1. the study oknowledge representation
2. the study of the W3®@ntology languages

3. the verification of the correctness of theery tools

3

2. EXISTING SEMANTIC WEB QUERY ENGINES

2.1.1 Knowledge representation

The starting point is the study of the Description Logics formalism, of the reasoning pro-
cesses and of the inference mechanism, to become acquainted with the theoretical back-
ground that is necessary to deal with ontologies and reasoning processes. In particular,
the key point is represented by two properties of inference: soundness and complete-
ness. Soundness means that every information added to the knowledge base trough the
inference process is correct (i.e., the new information is neither contradictory nor wrong);
whereas completeness means that the system is able to obtain all the possible additional
deducible information.

2.1.2 Ontology languages

We then different layers of expressiveness, which allow for different expressive needs.
The basic layer is represented by RDF(S), while the following are OWL/Lite, OWL/DL
and OWL/Full. Beside these standard OWL sublanguages, there is also a proposal for
OWL/Lite-! (an implementation of DLP[GHVDO03]), proposed by the SDK WSMO Work-

ing Group. However, since this work is intended to deal only with tools and language
that support W3C Standards, OWL/Lite- has not been taken into account. Moreover,
OWL/Full was also discarded, because it does not guarantee to have the capability to
complete the inference processes in a finite time, nor to be sound and complete.

2.1.3 Query tools

Finally, the last effort is about the tools: we had to decide

e which of them to use

e how to evaluate them

The former question was answered after the consideration that giving an answer to a
qguery requires the capability to take advantage from inference processes, so we decided
to examine only those tools that implement some kind of inference engine. The tools used
during the development of this paper are therefore: Jena, RDFSuite, Sesame, Triple and
Racer. Racer is not a Semantic Web Tool, but a reasoner developed inside the Description
Logics community, and it is used in this work as a comparison. The latter question found
its answer in the consideration that the best way to verify the correctness of the outcome is
to create easy but tricky ontology models, whose domains lie on the border of the layers
identified above, and check whether the results obtained by the tools coincide with the
result we expect from the models.

Ihttp://www.wsmo.org/2004/d20/d20.2/v0.2/20041123/

4 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

2.2 The test cases

The idea of our work was to create a set of models, starting from a very simple ontol-
ogy encoded in RDF(S), developing it by adding properties and classes to it (this model
will be referred to asCourse”), in order to incrementally explore the whole RDF(S)

and OWL capabilities. However, we soon realized that it was not possible to add much
complexity to our original model without having to switch to OWL. Hence we created

a second model'British”), with the purpose to shows the limits of RDF(S). The next
model (Teacher”) was set up to show that there are simple ontologies that can not be
expressed by the constructs of OWL/Lite-.

After developing our first model in OWL/Lite'ffriends”), we stopped investigating the
further layers, since we realized that at that point of expressiveness there is no Semantic
Web tool that can deal with ontologies of this complexity. In terms of expressiveness, our
four simple ontology models are placed among (and should represent a good coverage of)
all the layers of RDF(S) and OWICourseis entirely in RDF(S) British between RDF(S)

and OWL/Lite, Teacherin OWL/Lite, just outside OWL/Lite- andrriendsis in an encod-

ing in OWL/Lite of an OWL/DL ontology. This is possible since these two sublanguages
have the same expressive power. The rest of this section presents the models, that are also
presented graphically, along with the query we ask the ontology and the expected result.

To allow for a better understanding, the knowledge bases of the models are written in
Notation3 (see [BLO1]); moreover, the base namespaces of the ontologies are omitted.

The Course Model

rdfs:range

rdf:type Serg io Al

Teaches

Alessandro Q(x) :- Professor(x)

Figure 2.1: The Course model.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 5

2. EXISTING SEMANTIC WEB QUERY ENGINES

As it can be seen in Figure 2.1, our first model is a very simple ontology about pro-
fessors who teach courses. From this model we want an answer to the following query:

Q(X) := Professor(X)
that is, we want to know whether there are professors in the model and who they are.

This model has the purpose to force some basic constraint of RDF(S), nalisetybClassOf
and bothrdfs:rangeandrdfs:domain The former can be seen as a verification of the tax-
onomy in the domain, while the latter is more complicated, in the sense that it forces the
two basic constraints of a property: its domain (e.g., the classes that a Property can have
as subject in a RDFS statement) and its range (e.g., the object of the RDFS statement). In
other words, domain and range constrain subject and object of the property to be instances
of a certain class. Moreover, if multiple classes are given as domain (range) of the same
property, the subject (object) of the statement is an instance of all these classes.

Clearly, we can easily infer from the model that we have an answer to the query, which
is the set{ Alessandro, Serglo Alessandro is the result of the inference over the taxon-
omy of the domain and Sergio comes from the constraint on the domain of the property
Teaches.

Note that besides this answer, there is also an additional information deduced from the
model (Al is of type Course) and is due to the constraint on the range of the property
Teaches.

The Teacher Model

Despite its simplicity, this model has a need for expressiveness that places it outside the
extent of OWL/Lite-. The concept we want to express is “a teacher is someone who
teaches a course”. Figure 2.2 shows how this concept can be drawn as an OWL/Lite
graph. We also know that Sergio teaches Atrtificial Intelligence, which is a Course. This
ontology should return an answer to this query:

Q(X) := Teacher(X)

Like in the previous model, we wanted to force a constraint on a property. The difference
with RDF(S) is to be found in the expression of domain/range constraint: OWL allows
for having multiple ranges and domains by means of a Restriction on a Property. In this
case, Teacher is a Class, equivalent to another Class, which is a restriction on the property
teaches to those values that are instances of class Course. This restriction, along with the
knowledge of Sergio teaching a course (Al), is all we need to deduce that our answer set
is not empty but contains an elemefi§ergig-.

The Friends Model

This is perhaps the most trickier model we set up. It is about friends, lovers, Managers
and Employees and consists of only four individuals, two classes and three properties,

6 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Owl:someValuesFrom

OWL:equivalentClags
Teacher

OWL:onProperty

Teacher = dTeaches.Course

Teaches

Figure 2.2: The Teacher model.

how Figure 2.3 shows; we also consider the domain of our ontology to be composed only
by workers (i.e.worker 3 T).

We focus on an additional information, which is also included in the ontology; we
keep it distinct from the previous, since it is the key point in this ontology:

All workers are either Managers or Employee

But why is this information so important? First of all because it partitions the domain
in two parts: managers or employees, no other possibility. Moreover, this model can be
easily express in OWL/DL, where the statement above can be written as, for example,

<owl:Class rdf:about="#WORKER">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#MANAGER"/>
<owl:Class rdf:about="#EMPLOYEE"/>
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

A second method to write the above statement would be to use the negation(@g.ger =

- Employee, that corresponds to the OWL constrwetl:complementOf . Both this

two method need OWL/DL, since botwl:unionOf andowl:complementOf are

not allowed in OWL/Lite. However, it is not so immediate that the same information can
also be expressed in OWL/Lite, by adding a new property (e.g., hasBoss) and exploiting
OWL/Lite limited cardinality restriction.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 7

2. EXISTING SEMANTIC WEB QUERY ENGINES

We can say that a Manager is anyone whose hasBoss PropertydwisramCardinality
of 1, whereas Employee is anyone who hasahmaxCardinality of 0 on the same
Property.

Given this model we want to have an answer the following query:
Q(X) := hasFriend(X,Y) AN Manager(Y) A loves(Y, Z) N Employee(Z)

That is, we are looking for someone who has a manager as friend and this manager loves
an employee. Apparently, this query seems to have no answer, due to the lack on knowl-
edge about Andrea. However, we can take advantage from the sorealtgxhing by case

to find an answer. Hence consider Andrea, who might be (according to our model) either
Employee or Manager.

In the former case (i.e., Andrea is an Employee), we can deduce that Paul has a friend
(Simon), who is a manager, and Simon loves an Employee (Andrea). This gives a patrtial
answer to the proposed query.

Also in the latter case (i.e., Andrea is a Manager), Paul has a friend (Andrea) who is a
Manager, and Andrea loves an Employee (Caroline).

Since there is no other possible value for Andrea and in both cases we found in Paul an
answer to our query, we can state that the query has an anSvart}

Manager = (< 0 hasBoss)

Employee = (= 1 hasBoss)

df:type
Employee Caroline |Q(x) :- hasFriend(x,y) A Manager(y) A

loves(y,z) A Employee(z)

loves

Figure 2.3: The Friends model.

The British Model
We have now reached an expressiveness level at which all Semantic Web tools fail, so
let us make a step back and present an example that shows how RDF(S) may unveil its

inability to capture simple knowledge representation needs. Figure 2.4 shows such an
example. The idea of this ontology model is to express the following statements:

¢ ltalian people live in Italian cities

8 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

e British people live in British cities
e John is British

e John lives in London

with the intermediate deduction that John lives in a British city, we conclude that London
is a British city. Our query is actually:

Q(X) = GB(X)

Although we expressed this model in two RDF(S) versions, this query can not be an-
swered. The first version is, like in Figure 2.4, a hierarchy on the property hasResidence,
while the second a hierarchy on the classes (i.e., hasResidence has as domain the class
Citizen, which is subclassed by Italian and British and as range the class Country, sub-
classed by Italy and GB). Our ontology has an answer to the above quendor}, but

RDF(S) can not derive such an information. Hence we provided an OWL/Lite version of
this model, since OWL allows more constructs for disambiguating knowledge.

rdfs:subClassOf

rdfs:subClassOf

English

rdfs:type

John =

Figure 2.4: The British model.

Q(x) :- GB(x)

2.3 Evaluation results

Table 2.1 summarizes the result returned by the tools we considered when they are fed
with our models. There are two different aspects to consider, in the discussion of the

results. On the one side, in RDF(S), almost all tool can correctly answer to the queries,

on the other side, in OWL, there is still a lot of work to do.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 9

2. EXISTING SEMANTIC WEB QUERY ENGINES

Table of results
Jena| RDFSuite| Sesame Triple | Racer
Courses RDF(S)| ok no ok part ok
Teacher OWL/Lite| ok - - - ok
Friends OWL/Lite| er - - — ok
British OWL/Lite | ok - - — ok
ok: test passed no:. testnot passed
part: test partially passed er: test passed with the help of an external reasoner

- model not tested with the tool

Table 2.1: The outcomes of the tools

However, all of these tools are under development, thanks also to the request from the
Semantic Web community for tools that support OWL. In particular, below is a brief
presentation of the outcomes of each tool. Note that we only consider the tools only for the
part of inference implementation, which is the main point of this work, and we disregarded
their other useful feature (e.g., database storage, N3, OWL and RDF(S) input/output, and
SO on).

Jena (see [CDD 04], http://jena.sorceforge.net) is perhaps the most com-
plete tool (w.r.t. inference) available at the moment. It can correctly deal with (and infer
correct results from) all our ontology models, except from the friends model. However,
in that case, its API can rely on an external reasoner (such as Racer) by means of a DIG
interface: it sends the whole information to the reasoner, which will send back to the Jena
API the results of the inference.

RDFSuite (see [ACK01], http://athena.ics.forth.gr:9090/RDF) is an
application composed by three different tools, RSSDB, VRP and RQL. We focused on
RSSDB and VRP, but unfortunately, we found some trouble in using them: RSSDB pro-
duced some errors during the set up of the postgres database, while VRP did not find the
correct answers. In both cases, the results were notified to the authors; we are waiting
for some feedback from them, in order to recover from the errors and complete the tests.
RDFSuite has support only for RDF(S), so the OWL models were not tested.

Sesame (see [BKvHO02],http://www.openrdf.org) correctly found the results

in the RDF(S) model. However, it only has a limited support for OWL, in particular it
currently implements a set of rules that cover the DLP subset of OWL and therefore it
was not tested against the OWL models. Support for a more expressive fragment of OWL
is already planned, but yet an open issue.

10 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Triple (see [SDO02],http://triple.semanticweb.org) did not infer all the
results we expected, even in the RDF(S) model. In fact, Triple has only a simple set of
hardcoded rules, that allows only for inference over RDF(S) taxonomies, but not over
domain/range constraints of Properties. It has also support for DAML/QIl, but not for
OWL, so it was not tested with the OWL models. In more details, it can only infer the
result that Alessandro is a Professor in the Course model.

Racer (see [HMO3], http://www.cs.concordia.ca/ ~haarslev/racer/)

IS a reasoning agent that supports inference over different ontologies, which can be ex-
pressed in different languages, among them DAML+OIil and OWL. It was used also with
Jena and with Oiled (the ontology editor we used for creating our models), to check the
correctness of our ontologies and that the queries could have an answer. It was also used
as a standalone tool, by means of RICE (a graphical interface for Racer), and it is actu-
ally the only tool, among the ones we tested, that offers inference support for OWL/DL
ontologies.

2.4 Conclusion and further works

After the development of this work, it is possible to identify several arguments that are of
interest and might be object of discussion. First of all, during the creation of the RDF(S)
models, a side-effect emerged, that involved the semantic of RDF(S) and in particular
the reasoning process over the domain and range of Properties. This has been briefly de-
scribed in section 2 and explained here. For example, consider the following snippet of
an RDF(S) ontology:
P rdfs:range B

C rdfs:subClassOf B

D rdfs:subClassOf B
where P is a Property and B, C, D are Classes.
The additional statememiClass P ztogether with the above KB, results in the inability
of RDF(S) to derive whether z is of type C or D: it is only possible to say that z is of type
B. There is no possibility in RDF(S) to further specify the knowledge to disambiguate the
statement. This limit is overcome by OWL, whose semantics is far more expressive than
the one of RDF(S) and manages in a better way the hierarchies of types in the domain of
an ontology, thanks to the capability to specify restrictions on Properties.
The next point is that, even tough RDF(S) is not so expressive (and therefore should be
fairly simple to be implemented), not every tool is able to handle ontologies expressed
in this language: it is the case of Triple, whose hard coded rules only allow inference on
types (Resources) but not on domain/range constraints of Properties, and of RDFSuite.
Perhaps the most relevant aspect revealed by this work applies to the actual software ap-
plications that are not able to correctly deal with all kind of OWL ontologies, not even
those expressed in OWL/Lite. In details, no tool can take advantage of the reasoning by

KWEB/2004/D2.5.3/v1.0 June 25, 2005 11

2. EXISTING SEMANTIC WEB QUERY ENGINES

case approach, which is probably the most powerful aspects of the DLs formalism (the
open world semantics); the example of théends model is the most significant one.
However, there is an exception: it is the case of RACER, a tool developed inside the
Description Logics community, which is actually the only software application that can
handle all OWL ontologies (except those written in OWL/Full). Some tool, like Jena can
rely on RACER, by means of an API that allows to connect to external reasoners, pass an
ontology to it, use it for computing inference over the ontology and retrieve the results.
An additional issue in the development of these kind of tools might be represented by the
use of non-standard ontology languages (e.g., like OWL-Lite-), that might lead to a waste
of efforts of the Semantic Web community, if such language would not be recognized as
standard.

A final remark is about query languages for ontologies. At the present time, there are dif-
ferent QL (RQL, RDQL, SeRQL and so on). They mainly differ in their syntax, because
all of them work in the same way: they iterate over a RDF or OWL model and search for
pattern in the triple stored in memory (or in the underlying database). A standard query
language would avoid wasting of efforts in the research and development of software that
implements these query languages.

The very last subject is about proposal and future work related to the present one. Im-
portant working and research areas to improve the development of Semantic Web Tools
might include:

¢ definition for a new standard query languages, improve the actual implementation
of the OWL inference engines, by adding new set of rules that allow to deduce all
possible implicit knowledge of a given ontology.

e investigate the best way to implement a reasoning by case approach, to take full
advantage from Description Logics formalism.

e further test (e.g., with RDFSuite of with new software applications that will be
released

¢ the creation of a whole suite of test cases to be proposed as standard for testing a
Semantic Web tool

12 June 25, 2005 KWEB/2004/D2.5.3/v1.0

Chapter 3

FaCT++: An Efficient OWL Lite
Reasoner

Most modern DL systems are based on tableaux algorithms. Such algorithms were first
introduced by Schmidt-Schauf3 and Smolka [SSS91], and subsequently extended to deal
with ever more expressive logics [BCN3]. Many systems now implement ti8<{7Z Q

DL, a tableaux algorithm for which was first presented in [HST99]; this logic is very
expressive, and corresponds closely to the OWL ontology language. In spite of the high
worst case complexity of the satisfiability/subsumption problem for this logic (ExpTime-
complete), highly optimised implementations have been shown to work well in many
realistic (ontology) applications [Hor98b].

Optimisation is crucial to the viability of tableaux based systems: in experiments us-
ing both artificial test data and application ontologies, (relatively) unoptimised systems
performed very badly, often being (at least) several orders of magnitude slower than opti-
mised systems; in many cases, hours of processing time (in some cases even hundreds of
hours) proved insufficient for unoptimised systems to solve problems that took only a few
milliseconds for an optimised system [Mas99, HPS98]. Modern systems typically employ
a wide range of optimisations, including (at least) those described in [BEHHPS99].

Tableaux algorithms try to construct a graph (usually a tree) representation of a model
of a concept, the structure of which is determined by syntactic decomposition of the con-
cept. Most implementations employ a space saving optimisation known aatkdech-
niquethat uses a top-down construction requiring (for PSpace logics) only polynomial
space in order to delineate a tree structure that may be exponential in size (with respect to
the size of the input concept). For the ExpTime logics implemented in modern systems,
however, guaranteeing polynomial space usage is no longer an option. Moreover, for log-
ics that support inverse roles (such&H7Z Q), a strictly top down approach is no longer
possible as constraints may be propagated both “up” and “down” the edges in the tree.

We describe an alternative architecture for tableaux implementations that uses a (set
of) queue(s) instead of (an adaption of) the standard top-down approach. This architec-

13

3. FACT++: AN EFFICIENT OWL LITE REASONER

ture, which we have implemented in our nBaCT++ system, has a number of advantages
when compared to the top-down approach. Firstly, it is applicable to a much wider range
of logics, including the expressive logics implemented in modern systems, because it
makes no assumptions about the structure of the graph (in particular, whether tree shaped
or not), or the order in which the graph will be constructed. Secondly, it allows for the
use of more powerful heuristics that try to improve typical case performance by varying
the global order in which different syntactic structures are decomposed; in a top-down
construction, such heuristics can only operate on a local region of the graph—typically a
single vertex.

3.1 Architecture

As discussed above, many implementations use a top-down expansion based on the trace
technique. The idea of the top-down expansion is to applyStneéle with the lowest

priority (i.e., only apply this rule when no other rule is applicable); the added refinement

of the trace technique is to discard fully expanded sub-trees, so that only a single “trace”
(i.e., a branch of the tree) is kept in memory at any one time.

This technique has the advantage of being very simple and easy to implement—a pro-
cedure that exhaustively expands a node label can be applied to the current node and then,
recursively, to each of its successors. It does, however, have some serious drawbacks. In
the first place, for logics with inverse roles, the top-down method simply breaks down as
it relies on the fact that rules only ever add concepts to the label of the node to which they
are applied or to the label of one of its successor nodes. The result is that, once the rules
have been exhaustively applied to a given node label, no further expansion of that label
will be possible. In the presence of inverse roles, expansion rules may also add concepts
to the labels of predecessor nodes, which could then require further expansion. Moreover,
discarding fully expanded sub-trees may no longer be possible, as the expansion of a con-
cept added to the label of a predecessor may cause concepts to be added to the label of a
sibling node that had previously been fully expanded.

In the second place, the top down method forces non-deterministic rules to be applied
with a higher priority than generating rules. As the size of the search space caused by
non-deterministic rule expansions is, in practice, by far the most serious problem for
tableaux based systems [Hor97], it may be advantageous to apply non-deterministic rules
with the lowest priority [GS96]. In fact, top-down implementations typically apply non-
deterministic rules with a priority that is lower than that of all of the other raleepthe
generating rules [HPS99].

ToDo List Architecture The FaCT++ system was designed with the intention of imple-
menting DLs that include inverse roles, and of investigating new optimisation techniques,
including new ordering heuristics. CurrentkaCT++ implementsSHZf, a slightly less
expressive variant a$HZ Q where the values in atleast and atmost restrictions can only

14 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

be zero or oné.

Instead of the top-down approadkgCT++ uses aloDo listto control the application
of the expansion rules. The basic idea behind this approach is that rules may become
applicable whenever a concept is added to a node label. When this happens, a note of the
node/concept pair is added to the ToDo list. The ToDo list sorts all entries according to
some order, and gives access to the “first” element in the list.

A given tableaux algorithm takes an entry from the ToDo list and processes it accord-
ing to the expansion rule(s) relevant to the entry (if any). During the expansion process,
new concepts may be added to node labels, and hence entries may be added to the ToDo
list. The process continues until either a clash occurs or the ToDo list become empty.

In FaCT++ we implement the ToDo list architecture as a set of queues (FIFO buffers).
It is possible to set a priority for each rule type (ef@.andd), and a separate queue is
implemented for each unique priority. Whenever the expansion algorithm asks for a new
entry, it is taken from the non-empty queue with the highest priority, and the algorithm
terminates when all the queues are empty. This means thatifthke has a low priority
(say 0), and all other rules have the same priority (say 1), then the expansion will be
(modulo inverse roles) top-down and breadth first; if stacks (LIFO buffers) were used
instead of queues with the same priorities, then the expansion would simulate the standard
top-down method.

3.2 Heuristics in Implementation

When implementing reasoning algorithms, heuristics can be used to try to find a “good”
order in which to apply inference rules (we will call thesge-orderingheuristics) and,

for non-deterministic rules, the order in which to explore the different expansion choices
offered by rule applications (we will call thesxpansion-orderindpeuristics). The aim

is to choose an order that leads rapidly to the discovery of a model (in case the input is
satisfiable) or to a proof that no model exists (in case the input is unsatisfiable). The usual
technique is to compute a weighting for each available option, and to choose the option
with the highest (or lowest) weight. Much of the “art” in devising useful heuristics is in
finding a suitable compromise between the cost of computing the weightings and their
accuracy in predicting good orderings.

Such heuristics can be very effective in improving the performance of propositional
satisfiability (SAT) reasoners [Fre95], but finding useful heuristics for description and
modal logics has proved to be more difficult. Choosing a good heuristic, or at least not
choosing a bad one, is very important: an inappropriate heuristic may not simply fail to
improve performance, it may seriously degrade it. Even more problematical is, given a
range of possible heuristics, choosing the best one to use for a given (type of) problem.

So far, the heuristics tried with DL reasoners have mainly been adaptions of those

1SHIf corresponds to the OWL-Lite ontology language [HPSvHO3].

KWEB/2004/D2.5.3/v1.0 June 25, 2005 15

3. FACT++: AN EFFICIENT OWL LITE REASONER

already developed for SAT reasoners, such as the well known MOMS heuristic [Fre95]
and Jeroslow and Wang’s weighted occurrences heuristic [JW90]. These proved to be
largely ineffective, and even to degrade performance due to an adverse interaction with
backjumping [BCM 03]. An alternative heuristic, first presented in [Hor97], tries to
maximise the effect of dependency directed backtracking (backjumping) by preferentially
choosing expansions that introduce concept with “old” dependencies. Even this heuristic,
however, has relatively little effect on performance with realistic problems, e.g., problems
encountered when reasoning with application ontologies.

We conjecture that the standard top-down architecture has contributed to the diffi-
culty in finding useful heuristics as it rules out many possible choices of rule-ordering; in
particular, the top-down technique may require generating rules to be applied with a low
priority, and so lead to non-deterministic rules being applied before deterministic generat-
ing rules. In contrast, the ToDo list architecture gives a much wider range of possible rule
orderings, and so has allowed us to investigate a range of new rule-ordering heuristics, in
particular heuristics that give non-deterministic rules the lowest priority.

Another factor that has contributed to the weakness of SAT derived heuristics is that
they treat concepts as though they were atoms. This is obviously appropriate in the case of
propositional satisfiability, but not in the case of concept satisfiability where sub-concepts
may have a complex structure. We have also investigated expansion-ordering heuristics
that take into account this structure, in particular a concept’s size, maximum quantifier
depth, and frequency of usage in the knowledge base.

Implementation in FaCT++ TheFaCT++ reasoner uses the standard backtracking search
technique to explore the different possible expansions offered by non-deterministic rules
(such as thel-rule). Before applying a non-deterministic rule, the current state is saved,
and when backtracking, the state is restored before re-applying the same rule (with a dif-
ferent expansion choice). When inverse roles are supported, it is possible for a sequence
of deterministic rule applications to propagate changes throughout the graph, and it may,
therefore, be necessary to save and restore the whole graph structure (in addition to other
data structures such as the ToDo li$tCT++ trys to minimise the potentially high cost

of these operations by lazily saving the graph, (i.e., saving parts of the graph only as ne-
cessitated by the expansion), but the cost of saving the state still makes it expensive to
apply a non-deterministic rule, even if the state is never restored during backtracking.

As discussed in Section 3.FaCT++ uses a ToDo list architecture with separate
gueues for each priority level. Different rule-ordering heuristics can, therefore, be tried
simply by varying the priorities assigned to different rule types. Low priorities are typi-
cally given to generating and non-deterministic rules, but the ToDo list architecture allows
different priority ordering of these rule types; in contrast, the top-down architecture forces
a lower priority to be given to generating rules.

FaCT++ also includes a range of different expansion-ordering heuristics that can be
used to choose the order in which to explore the different expansion choices offered by
the non-deterministici-rule. This ordering can be on the basis of the size, maximum

16 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

guantifier depth, or frequency of usage of each of the concepts in the disjunction, and the
order can be either ascending (smallest size, minimum depth and lowest frequency first)
or descending. In order to avoid the cost of repeatedly computing such vah@&$t+

gathers all the relevant statistics for each concept as the knowledge base is loaded, and
caches them for later use.

3.3 Empirical Analysis

In order to evaluate the usefulness of the heuristics implementéd@i++, we have
carried out an empirical analysis using both real-life ontologies and artificial tests from
the DL'98 test suite [HPS98].

Ontologies can vary widely in terms of size and complexity (e.g., structure of con-
cepts, and types of axiom used). We used three ontologies with different characteristics
in order to see how the heuristics would perform in each case:

WineFood A sample ontology that makes up part of the OWL test’J@DRO4]; it is
small, but has a complex structure and includes 150 GCls.

DOLCE A foundational (top-level) ontology, developed in the WonderWeb project [GGa}t
it is of medium size and medium complexity.

GALEN The anatomical part of the well-known medical terminology ontology [R&S;
it is large (4,000 concepts) and has a relatively simple structure, but includes over
400 GCls.

FaCT++ separates the classification process into satisfiability testing (SAT) and sub-
sumption testing (SUB) phases; the results from the SAT phase are cached and used to
speed up subsequent tests via a standard “model-merging” optimisation [HF8C3}+
allows different heuristics to be used in the two phases of the process; this is because the
tests have different characteristics: in the SAT phase, nearly all of the tests are satisfi-
able (ontologies typically do not give names to unsatisfiable concepts), while in the SUB
phase, up to one in four of the tests are unsatisfiable. We measured the time (in CPU
seconds) taken biyaCT++ to complete each phase.

In addition to the ontologies, we used artificially generated test data from the DL'98
test suite. Artificial tests are in some sense corner cases for a DL reasoner designed
primarily for ontology reasoning, and these tests are mainly intended to investigate the
effect of hard problems with very artificial structures on the behaviour of our heuristics.
For this purpose we selected from the test suite several of the tests that proved to be hard
for FaCT++.

2This ontology therefore has a much weaker claim to being “real-life”.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 17

3. FACT++: AN EFFICIENT OWL LITE REASONER

Each of these tests consists of a set of 21 satisfiability testing problems of similar
structure, but (supposedly exponentially) increasing difficulty; the idea of the test is to
determine the number of the largest problem that can be solved within a fixed amount of
processing time (100 seconds of CPU time in our case). The names of the tests are of
the form ‘test _p” or “test _n”", where ‘test ” refers to the kind of problem (e.g., the
“ph” tests are derived from encodings of pigeon hole sorting problems),@nd refers
to whether the problems in the test set are satisfiabl@(unsatisfiable). For these
tests we have reported the number of the largest problem solved in less than 100 seconds
(21 means that all the problems were solved), along with the time (in CPU seconds) taken
for the hardest problem that was successfully solved.

For all the testsFaCT++ v.0.99.2 was used on Pentium 4 2.2 GHz machine with
512Mb of memory, running Linux. Times were averaged over 3 test runs.

3.3.1 Rule-ordering Heuristics

In these tests we tried a range of different rule-ordering strategies. Each “strategy” is
shown as a sequence of letters specifying the priorities (highest first) of the different rule
types, where “O” refers to the-rule, “E” to the 3-rule, and “a” to any other rule type.
E.g., “a0” describes the strategy where theule has the lowest priority, and all other
rules have an equal higher priority.

Ontology testsThe results of using different rule-ordering strategies with the various
ontologies are shown in Table 3.7. All ontologies were tested with the best disjunction-
ordering heuristic, as determined in separate tests (see below).

KB | DOLCE| WineFood GALEN
SAT|SUB|SAT| SUB| SAT| SUB
a [0.7410.74]0.22| 2.44 |199.44|1678.11
a0|0.64]0.68 |0.14| 1.64 |29.80| 569, 64
aEQO0.58(0.57[0.15| 1.67 |9.88173.79
akE [0.60]0.58{0.27| 2.87 |13.35| 205.32
aOg0.61{0.59]0.27| 2.93 |13.22] 201.40

Table 3.1: Ontology tests with different rule-orderings

The first thing to note is that rule-orderings have relatively little effect on the DOLCE
and WineFood ontologies; in contrast, the performance of the best and worst strategies
differs by a factor of almost 10 in the GALEN tests. Even in the GALEN case, however,
the difference between the “-O” strategies (i.e., those that assign the lowest priority to
the LI-rule) and “-E” strategies (i.e., those that assign the lowest priority taithde)
is relatively small. In most cases the best result is given by the “aEQ” strategy, i.e., by
assigning the lowest priority to the-rule and the next lowest priority to therule, and
even when “aEQ” is not the best strategy, the difference between it and the best strategy

18 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

is very small. Moreover, the difference between the “aEO” and “aOE” strategies is small
in most cases, and never more than a factor of 2.

DL98 tests The results of using different rule-ordering strategies with the DL98 tests
are shown in Table 3.2. The first thing to note from these results is that rule-ordering
heuristics can have a much more significant effect than in the ontology tests: in some
cases the performance of the best and worst strategies differs by a factor of more than
100. In most tests, the “-E” strategies give the best results, with the difference between
“-O” and “-E” strategies being much more marked than in the case of the ontology tests.
In the case of the4 _n test, however, performance is dramatically improved (by a factor

of 20) when an “-O” strategy is used.

testt br.n | brp | dd.n | ph.n | php
lastitime|lasttime|lasttime|lasttime|lasttime
a | 8116.7 9 |20.520|94.8 11{99.0 7 |15.5
a0 |(11(38.211|38.1/21|0.8|10(10.8 7 |32.1
aE(Q 11|38.8 11|39.0 21| 0.8/ 10|10.9 7 |32.9
aE|11|17.112|18.3 21|15.7/11|97.4 7 |15.2
aOH 11|19.3 12(21.121/16.1 11|99.5 7 |15.9

Table 3.2: DL-98 tests with different rule-ordering strategies
3.3.2 Expansion-ordering Heuristics

In these tests we tried a range of different expansion-ordering heuristics. Each heuristic
is denoted by two letters, the first of which indicates whether the ordering is based on
concept size (*S”), maximum depth (“D”) or frequency of usage (“F”), and the second of
which indicates ascending (“a”) or descending (“d”) order. In each group of tests we used
the best rule-ordering heuristic as determined by the tests in Section 3.3.1.

Ontology testsFor the ontology tests, we tried different orderings for the SAT and SUB
phases of classification. The results are presented in Tables 3.3, 3.4 and 3.5; the first
figure in each column is the time taken by the SAT phase using the given ordering, and
the remaining figures are the subsequent times taken using different SUB phase orderings.

For DOLCE (Table 3.3), the difference between the best and worst orderings was a
factor of about 4, and many possible orderings were near optimal. For WineFood (Ta-
ble 3.4), the difference between the best and worst orderings was a factor of about 2, and
using Sd for SAT tests and Dd for SUB tests gave the best result, although several other
orderings gave similar results. For GALEN (Table 3.5), the difference between the best
and worst orderings was so large that we were only the orderings given allowed tests to
be completed in a reasonable time. The best result was given by using Da for both phases.

DL98 testsTable 3.6 presents the results for the DL98 tests. Each column shows the times
taken using different expansion orderings to solve the hardest problem that was solvable
within the stipulated time limit using any ordering.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 19

3. FACT++: AN EFFICIENT OWL LITE REASONER

SAT Sa| Da| Fa| Sd| Dd Fd
SUB|1.29|1.28|1.24|0.61| 0.6| 0.6
Sa | 2.53|2.52|252|2.46| 2.45| 2.41
Da | 2.53|2.53|2.53|2.44|2.44| 241
Fa | 0.91/0.91| 0.89| 0.97| 0.98| 0.88
Sd | 0.61|0.60| 0.60| 0.59| 0.59| 0.59
Dd | 0.60| 0.60| 0.60| 0.60| 0.59| 0.60
Fd | 1.33]1.34| 1.33|1.30| 1.34| 1.33

Table 3.3: DOLCE test with different expansion-orderings
SAT| Sa| Da| Fa| Sd| Dd| Fd
SUB | 0.26| 0.29| 0.19| 0.13| 0.13| 0.20
Sa | 3.15|3.57|3.27| 3.21| 3.21| 3.68
Da | 3.54| 3.57| 3.44| 3.20| 3.40| 3.47
Fa | 3.67|3.57|2.32| 2.12| 2.41| 2.35
Sd |1.77,1.80|1.71| 1.80| 1.80| 1.83
Dd | 1.69|1.77|1.87|1.66|1.78| 1.78
Fd | 2.30| 2.26| 2.75| 3.14| 3.54| 2.76

Table 3.4: WineFood test with different expansion-orderings
SAT Sa Da
SUB 18.76| 9.88
Sa | 276.90| 276.16
Da | 185.79| 172.89
Fd | 1049.74| 943.06

Table 3.5: GALEN test with different expansion-orderings

In almost every test, the difference between the best and worst strategies is large: a
factor of more than 300 in thé4 _n test. Moreover, strategies that are good in one test can
be very bad in another (the Sd and Dd strategies are the best ones in the branbh tasts (
andbr _p), but (by far) the worst in the4 _n test), and this is not strongly dependent on
the satisfiability result (in ther tests, all strategies perform similarly in both satisfiable
and unsatisfiable cases). The Fd strategy is, however, either optimal or near optimal in all
cases.

3.3.3 Analysis

The different rule-ordering heuristics we tried had relatively little effect on the perfor-
mance of the reasoner when classifying the DOLCE and WineFood ontologies. With the
GALEN ontology, any strategy that gave a lower priority to theand U-rules worked
reasonably well, and the aEO strategy was optimal or near-optimal in all cases. The cru-
cial factor with GALEN is giving low priority to thed-rule. This is due to the fact that
GALEN is large, contains many GCls and also contains existential cycles in concept in-

20 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

order| br n | br p | d4.n | ph.n | ph_p
test 11| test 12| test 21| test 10| test 7
Sa | 226 | 24.8 0.9 81 | 295
Da | 226 | 24.8 09 | >300 | 245
Fa | >300 | >300 | 32.0 | 229 | 20.2
Sd | 170 | 183 | >300 | 38.7 | 24.7
Dd 171 | 183 | >300 | 19.7 | 19.3
Fd 22.2 | 251 0.8 6.2 | 15.3

Table 3.6: DL98 tests with different Or strategies

clusion axioms (e.g.¢’ T dR.D and D C JR~.C'); as a result, the graph can grow

very large, and this increases both the size of the search space (because GCI related non-
determinism may apply on a per-node basis) and the cost of saving and restoring the state
during backtracking search. Giving a low priority to theule minimises the size of the

graph and hence can reduce both the size of the search space and the cost of saving and
restoring. This effect is less noticeable with the other ontologies because their smaller
size and/or lower number of GCls greatly reduces the maximum size of graphs and/or
search space. In view of these resusCT++’s default rule-ordering strategy has been

set to aEC.

The picture is quite different in the case of the DL'98 tests. Here, different strategies
can make a large difference, and no one strategy is universally near optimal. This is
to be expected, given that some of the tests include very little non-determinism, but are
designed to force the construction of very large models (and hence graphs), while others
are highly non-deterministic, but have only very small models. Given that these extreme
cases are not representative of typical real-life ontologies, the test results may not be
directly relevant to a system designed to deal with such ontologies. It is interesting,
however, to see howadly the heuristics can behave in such cases: in fact the standard
aEO strategy is near optimal in two of the tests, and is never worse than the optimal
strategy by a factor of more than 2.

The expansion-ordering heuristics had a much bigger effect on ontology reasoning
performance (than the rule-ordering heuristics). In the case of DOLCE and WineFood,
almost any strategy that uses Sd or Dd in the SUB phase is near optimal. For GALEN,
however, using Da in both phases gives by far the best results. This is again due to the
characteristic structure of this ontology, and the fact that preferentially choosing concepts
with low modal depth tends to reduce the size of the graph. Unfortunately, no one strategy
is universally good (Da/Da is best for GALEN but worst for DOLCE and WineFood);
currently, Sd/Dd is the default setting, as the majority of real life ontologies resemble
DOLCE and WineFood more than GALEN), but this can of course be changed by the user
if it is known that the ontology to be reasoned with will have a GALEN-like structure.

3Top-down architectures necessarily give lowest priority totmale, and generally give low priority to
L-rule, which is why they work relatively well with ontologies.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 21

3. FACT++: AN EFFICIENT OWL LITE REASONER

For the DL'98 tests, the picture is again quite confused: the Sd strategy (the default in
the SAT phase) is optimal in some tests, but bad in others—disastrously so in the case of
thed4 _n test. As in the ontology case, the only “solution” offered at present is to allow
users to tune these settings according to the problem type or empirical results.

3.4 Discussion and Future Work

We have described the ToDo list architecture used inRR€T++ system along with

a range of heuristics that can be used for rule and expansion ordering. We have also
presented an empirical analysis of these heuristics and shown how these have led us to
select the default setting currently usedfaCT++.

These default settings reflect the current predominance of relatively small and simply
structured ontologies. This may not, however, be a realistic picture of the kinds of on-
tology that we can expect in the future: many existing ontologies (including, e.g., Wine-
Food) pre-date the development of OWL, and have been translated from less expressive
formalisms. With more widespread use of OWL, and the increasing availability of so-
phisticated ontology development tools, it may be reasonable to expect the emergence of
larger and more complex ontologies. As we have seen in Section 3.3.1, heuristics can
be very effective in helping us to deal efficiently with such ontologies, but choosing a
suitable heuristic becomes of critical importance.

In our existing implementation, changing heuristics requires the user to set the appro-
priate parameters when using the reasoner. This is clearly undesirable at best, and unreal-
istic for non-expert users. We are, therefore, working on techniques that will allow us to
guess the most appropriate heuristics for a given ontology. The idea is to make an initial
guess based on an analysis of the syntactic structure of the ontology (it should be quite
easy to distinguish GALEN-Ilike ontologies from DOLCE and WineFood-like ontologies
simply by examining the statistics that have already been gathered for use in expansion-
ordering heuristics), with subsequent adjustments being made based on the behaviour of
the algorithm (e.qg., the size of graphs being constructed).

Another limitation of the existing implementation is that a single strategy is used for
all the tests performed in the classification process. In practice, the characteristics of
different tests (e.g., w.r.t. concept size and/or satisfiability) may vary considerable, and
it may make sense to dynamically switch heuristics depending on the kind of test being
performed. This again depends on having an effective (and cheap) method for analysing
the likely characteristics of a given test, and syntactic and behavioural analyses will also
be investigated in this context.

22 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

KB DOLCE WineFood GALEN

SAT SUB SAT SUB SAT SUB

a 0.74 0.74 0.22 2.44 99.44 1678.11
388,991 | 393,067 | 151,862 | 1,647,946 | 36,650,895 | 601,211,001

a0 0.64 0.68 0.14 1.64 29.80 569,64
374,937 | 392,763 | 77,563 | 970,377 | 10,872,396 | 199,269,579

aEO| 058 0.57 0.15 1.67 9.88 173.79
350788 | 339105 78132 977314 | 3,809,184 | 64,980,980

aE 0.60 0.58 0.27 2.87 13.35 205.32
349474 | 325726 | 166282 | 1867639 | 5,828,901 87,152,612

aOE | 061 0.59 0.27 2.93 13.22 201.40
350165 | 330233 | 161152 | 1900658 | 5,719,005 | 85,216,183

Table 3.7: Ontology tests with different rule-orderings

KWEB/2004/D2.5.3/v1.0 June 25, 2005 23

Chapter 4

FaCT-DG: Extending FaCT with
Datatype Groups

4.1 Introduction

The OWL Web Ontology Language [BvHH04] is a W3C recommendation for express-

ing ontologies in the Semantic Web. Datatype support is one of the most useful features
OWL is expected to provide, and has brought extensive discussions in the RDF-Logic
mailing list [RDF01] and Semantic Web Best Practices mailing list [Sem04]. Recently,
Pan and Horrocks [PHO5] propose a small extension of OWL DL, called OWL-Eu, to add
customised datatypes into OWL DL. Pan [Pan04] proposes a further extension of OWL
DL to supportbothcustomised datatypesid datatype predicates. All these languages are
indeed based on Description Logics (DLs) integrated with datatype groups. In this paper,
we investigate implementations of DL systems that support these DLs.

The main contributions of the paper are as follows. Firstly, we propose a system
architecture of DL reasoners for DLs integrated with datatype groups and investigate
the flexibility of the architecture (Section 4.3). Secondly, we describe out implement
of an extension (calle&acT-DG) of the well knownFacT DL reasoner, using the tab-
leaux algorithm presented in [Pan04] (Section 4.5). FaeT-DG system supports the
SHIQ(G) DL (Section 4.2.1), and it allows users to use datatype expressions to represent
customised datatypes and datatype predicates. Furthermore, we describe how to extend
the general API interface DIG/1.1 (Section 4.2.2) of DL systems to DIG/OWL-E, which
is compatible with both OWL DL and OWL-E. Last but not least, we present a case study
of the FacT-DG system (Section 4.6).

24

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

4.2 Preliminary

421 TheSHIQ(G)DL

The SHZQ(G) DL is a sub-language of OWL-E and was first introduced in [Pan04].
TheSHZQ(G) DL extends the&SHZ Q DL with an arbitrary datatype group [Pan04]. In-
tuitively speaking, a datatype group is a group of built-in predicate URIrefs ‘wrapped’
around a set of primitive datatype URIrefs; it provides a unified formalism for datatypes
and datatype predicates. In a datatype group, datatype expressions can be used to repre-
sent customised datatypes and datatype predic&®L Q(G) allows the use Datatype
expressions can be used in its datatype group-based concept descriptions.

SHIQ(G) consists of an alphabet of distinct concept nam@y fole namesR)
and individual (object) named)(together with a set of constructors to construct con-
cept and role descriptions (also call§#Z Q(G)-conceptandSHZ Q(G)-roles respec-
tively). Now we briefly introduc&8HZ Q(G)-roles,SHZ Q(G)-concepts andHZ Q(G)-
RBox as follows. LetRN € Ra, R € Rdscs(SHZIQ(G)), TN € Rp andT €
Rdscp(SHZQ(G)). Valid SHZQ(G) abstract roles are defined by the abstract syntax:
R ::= RN | R, where for somer,y € AZ, (z,y) € REiff (y,2) € R~Z. The inverse
relation of roles is symmetric, and to avoid considering the roles suétraswe define
a functioninv which returns the inverse of a role, more precisely

RN~ if R= RN,
Inv(R) := { RN if R=RN".

Valid SHZ Q(G) concrete roles are defined by the abstract syritax= T'N. Let CN €
C, R € Rdscs(SHZQ(G)), Ty, ..., T, € Rdscp(SHZQ(G)) andT; £1},T; ET; for
alll <i<j<n,C/D e Cdsc(SHZQ(G)), E € Dexp(G),n,m € N,n > 1. Valid
SHZQ(G)-concepts are defined by the abstract syntax:

C == T|L|CN|-C|CnD|CuD |3RC|VRC | >mRC | <mR.C
3T,....,T,.E | VT\,...,To.E | >mTy,...,T,.E | <mTy,...,T,.E.

The semantics of datatype group-basedZ Q(G)-concepts is given in Table 4.1; the
syntax and semantic §HZ Q(G) datatype expressions is presented in Table 4.2. The
reader is referred to Section 4.6 for some exampl&sHéf Q(G)-concepts.

Let Ry, Ry € Rdsca(SHZIQ(G)), Ty, T» € Rdscp(SHZQ(G)), SN € R,aSHZQ(9)
RBox R is a finite, possibly empty, set of role axioms:

e functional role axiom&unc(SN);

e transitive role axiom&rans(R;);*

INote that a concrete rolB can not be a transitive role.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 25

4. FACT-DG: EXTENDING FACT WITH DATATYPE GROUPS

Constructor DL Syntax Semantics
top T AT
bottom 1 0
concept name CN CNT Cc AT
general negation -C AT\ O*
conjunction CnbD ctnD?
disjunction CuD cTuD?
nominals {o} {0} = {07}
exist restriction 3R.C {r e AT | Jy.(v,y) € RT Ay e CT}
value restriction VR.C {x € AT |Vy.(z,y) € RT — y € CT}
atleast restriction >mR.C {re AT |#{y]| (v,y) € RT Ay e CT} > m}
atmost restriction <mR.C {r e AT #{y | (z,y) € RE Ay € CT} <m}
expressive predicate 37%,...,T,.E | {x € AT | 3ty,... t,.(x,t;) € TT (for all
exists restriction 1<i<m)A{ty,...,t,) € EP}
expressive predicate V1i,...,T,.E | {x € AT | Vty, ... t,.(x,t;) € T (for all
value restriction) 1<i< m) <t1, .oy ty) € EP}
expressive predicate >mT, ..., T,.E| {x € AT [#{(t1,...,tn) | (z,t;) e 77 (for all
atleast restriction 1<i< m) At1y. .. tn) € EP} >m}
expressive predicate <mTy, ..., T,,.E| {z € AT [#{{t1,...,tn) | (=, > e T7 (for all
atmost restriction 1<i< m) Aty,... t,) € EP} <m}
Table 4.1:SHZ Q(G) concept descriptions
Abstract Syntax DL Syntax Semantics
rdfs:Literal Tp Ap
owlx:DatatypeBottom 1p 0
v a predicate URIref u uP
if u€ Dg, Ap \ uP
not (u) u if u € &g\ Dg, (dom(u))P \u
if u g @g, Un>1<AD \u
ONeOf (%171 - 50" " dn) | {517 iy "5 dn} | {517 d)PY U~ U {50 dn)P}
domain (vy,...,v,) [U1,. .., U] vP x o x oD
and (P, Q) PAQ PPN QP
or (P,Q) PvQ PP uUQP
Table 4.2.SHZ Q(G) datatype expressions

e abstract role inclusion axiom®;, C R,;

e concrete role inclusion axiom§ C T5.

We extendR to therole hierarchyof SHZQ(G) as follows:

R+

= (RUA{Inv(R) CInv(S) | RC S e R}, &)

where & is the transitive-reflexive closure @f overR U {Inv(R) C Inv(S) | RC S
€ R}. The tableaux algorithm for th8 HZ Q(G) DL is presented in [Pan04].

26 June 25, 2005

KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

4.2.2 DIG/1.1 Interface

DIG/1.1 is a simple API for a general DL system developed by the DL Implementation
Group (DIG). There is a commitment from the implementors of the leading DL reasoners
(FaCT [Hor98b], Racer [HM01d] and CereBy#o provide implementations conforming

to the DIG/1.1 specification. There are four kinds of requests from clients and a server:

1. Clients can find out which reasoner is actually behind the interface by sending an
IDENTIFIER request. The server then returns the name and the version of the
reasoner, together with the list of constructdms].L andASKoperations supported
by the reasoner.

2. Clients can request to add or release knowledge base URIrefs as a local idéntifiers
for TELL andASKrequests.

3. Clients can sendELL requests using th€ELL language of DIG/1.1 Th&@ELL
requests are monotonic, i.e., DIG/1.1 does not support removintgbke requests
that have been sent — the only work-around is to release the knowledge base and
start again. ATELL request must be made in the context of a particular knowledge
base (by using the knowledge base URIref). The server will response using the
basic responses.

4. Clients can senASKrequests using theSKlanguage of DIG/1.1. AMSKrequest
can contain multiple queries (with different IDs) and must be made in the context
of a particular knowledge base (by using the knowledge base URIref). The server
will response using thRESPONSEanguage of DIG/1.1.

The main drawback of DIG/1.1 is that it does not completely support OWL DL and
OWL-E.

4.3 Architecture

In this section, we propose a system architecture (see Figure 4.1) of DL systems for DLs
integrated with datatype groups. Here we use DIG/OWL-E (see Section 4.4) instead of
DIG/1.1 as the general DL reasoner interface in the new architecture.

There are two kinds of datatype reasoners in the framework. The first kind of datatype
reasoners are called datatype managers, which provide decision procedures to reduce the
satisfiability problem of datatype expression conjunctions to the satisfiability problems of
various datatype predicate conjunctions. Intuitively, a datatype manager transforms an in-
put datatype expression into a disjunction of predicate conjunctions, and then divides each

2http://www.networkinference.com
3A local identifier is reasoner-dependent; cf. [Bec03].

KWEB/2004/D2.5.3/v1.0 June 25, 2005 27

4. FACT-DG: EXTENDING FACT WITH DATATYPE GROUPS

OWL- API translates
OWL into DIG syntax

OWL/RDF
OWL Abstract Syntax

1

]

1

1

1

1

]

:

i e — _ 2

! | AL §
1 iy i L. - .

1 ™ — e

e ~ Applications \
: ..’

i i

1 - -

DL Reasoner

datatype expression conjunctions
to predicate conjunctions handled
by the Datatype Checkers

1
1
1
1 The Datatype Manager reduces the
1
1
1
1

Figure 4.1: Framework Architecture

disjunct into several sub-conjunctions. Each of these sub-conjunctions contains predicates
of certain base datatype. If there exist variables being used across these sub-conjunctions,
then the corresponding disjunctussatisfiableas the value spaces of base datatypes are
disjoint with each other; otherwise, the datatype manager can send these sub-conjunctions
to proper datatype checkers to decide their satisfiabilities. If all the sub-conjunctions of a
disjunct issatisfiable then the input datatype expressiorsaisfiable

The second kind of datatype reasoner are called datatype checkers. A datatype checker
decides the satisfiability problem of datatype predicate conjunctions, where the datatype
predicates are defined over a base datatype in a datatype group. More technical details
about the datatype managers and datatype checkers implemerffadTHDG will be
presented in Section 4.5.3.

As shown in Figure 4.1, when a client sends an identification request to the DIG/OWL-
E server, the server returns the names and versions of the DL reasoner, the datatype man-
ager and the datatype checkers. In addition, the server returns the description language
that the DL reasoner supports, the datatype expressions that the datatype manager sup-
ports, and the base datatype URIrefs and supported predicate URIrefs that the datatype
checkers support.

Then the client can upload the knowledge base using Eid. language and query
using theASKlanguage. To answer the query, the DL reasoner runs as usual, and asks the
datatype manager to decide the satisfiability problem of datatype expression conjunctions
whenever necessary. The datatype manager reduces the datatype expression conjunctions
to predicate conjunctions, and then pass them to the proper datatype checkers to check

28 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Typed Literals <typedValue lxform = “L” datatype = “DN” />
Datatype Expressions <dttop/>
<dtbottom/>

<predicate name = “PN” />

<dtnot name = “PN” />

<vset>Vy ...V, </vset>

<dtand>E; ... E, </dtand>

<dtor>E; ... E; </dtor>

<dtdomain> U; ... U, </dtdomain>
<dtexpression name = “EN”/>

Concrete Roles <dtratom name = “TN” />

Datatype <dtsome>T; ... T, E </dtsome>
Expression-related | <dtall>T; ... T, E </dtall>

Concept Descriptions <dtatmost num = “n”>T; ... T, E </dtatmost>
<dtatleast num = “n”> T, ... T, E </dtatleast>

Table 4.3: New constructors in the DIG/OWL-E description language

their satisfiability. Finally, the DL reasoner uses RESPONSHEanguage to return the
answer to the client.

In case we need to support a new form of datatype expression, we should update our
datatype manager; while in case we need to provide some new datatype predicates that
are defined over a new base datatype, then we should add a new datatype tHacker.
either cases, we do not have to update the DL reasoner.

4.4 DIG/OWL-E

To overcome the limitations of DIG/1.1 presented at the end of the last section, we pro-
pose DIG/OWL-E, which supports OWL-E (ViIAHOZ Q(G)) and extends the DIG/1.1
description language with the following constructors (see Table4.3):

1. Typed Literals: A <typedvalue> element represents a typed literal; e.g.,
<typedValue lxform = “s” datatype = “u”/>
represents the typed litera” "u.

2. Datatype Expressions

“4Value spaces of the base datatypes should be disjoint with each other.
SNotations of Table 4.3v; are typed literalsg; are datatype expressions or datatype expression names,
U; are unary datatype predicates or their relativised negations;;aau@ concrete roles.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 29

4. FACT-DG: EXTENDING FACT WITH DATATYPE GROUPS

(a) <dttop/> and <dtbottom/> correspond tadfs: Literal and owlx: Datatype-
Bottom in OWL-E, respectively.

(b) A <predicate> element introduces a predicate URI reference, aagtaot >
element represents a negated predicate URI reference.

(c) A <vset> element represents an enumerated datatype, i.e., a datatype defined
by enumerating all its member typed literals.

(d) A <atnot> element represents the relativised negation of a unary supported
predicate URIref.

(e) The <dtand>, <dtor> and<dtdomain> elements corresponds to thad, or
anddomain constructors defined in Definitio??, respectively.

3. Concrete Roles A <dtratom> element represents a concrete role. Note that at-
tributes kattribute> elements) are simply functional concrete roles.

4. Datatype Expression-related Concept Descriptions<dtsome>,
<dtall>, <dtatleast> and<dtatmost> elements corresponds to expressive predi-
cate exists restrictiord(, . . ., T,,. F), expressive predicate value restrictidfi(, ..., 7,.F),
expressive predicate qualified atleast restrictignn1, . . ., T,,. ') and expressive
predicate qualified atmost restrictioq{.17, . . ., T,,. F), respectively; note that
can either be a datatype expression or a datatype expression name.

Example 1 A Concept Description in DIG/OWL-E
TheAdultElephant concept can be defined in DIG/OWL-E as follows:

<tells ...>
<equalc>
<catom name = “AdultElephant”/>
<and>
<catom name = “Elephant” />
<dtsome>
<attribute name = “age” />
<predicate id = “owlxintegerGreaterThanx=20" />
</dtsome>
</and>
</equalc>
<defconcept name = “Elephant” />
<defattribute name = “age” />
</tells>

whereowlx: integerGreater Thanx= 20 is the URIref for the integer predicatefgg}. Here
we use the:dtsome> construct, instead of theintmin> construct; the main benefit is that
we can now use arbitrary predicate URIrefs, or even datatype expressions. &

DIG/OWL-E extends the DIG/1.TELL language by introducing the following new
axioms (see Table 4.4 on page 31):

1. Datatype Expression Axiom A <defdtexpression> element represents a datatype
expression axiom, which introduces a name “EN” for a datatype expression E.
Therefore, the datatype expression name can be used in datatype expression-related
concept descriptions and the concrete role range axioms.

30 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Datatype Expression Axiom <defdtexpression name = “EN”>

E
</defdtexpression>
Concrete Role Axioms <defcrole name = “RN” />

<impliescr> T; Ty </impliescr>

<equalcr> Ty Ty </equalcr>

<crdomain> T C </crdomain>

<crrange> T E </crrange>

<crfunctional> T </crfunctional>

Individual Axioms <sameindividual> I ... I, </sameindividual>
<diffindividual>1I; ... I, </diffindividual>

Table 4.4: New axioms in the DIG/OWL-EELL language

2. Concrete Role Axioms Many of the concrete role axioms are very similar to ab-
stract role axioms. We could have modified the existing abstract role axioms to
accommodate the concrete role axioms. We propose otherwise in order to maintain
backward compatibility. Another advantage is that we can easily disallow asserting
that an abstract role is a sub-role of (or equivalent to) a concrete one, or the other
way around. Note that the concrete role range axiom (represented by gnge>
element) is quite different from the abstract role range axiom (represented by a
<range> element) in that the range in the former one is a datatype expression or a
name of a datatype expression, instead of a concept.

3. Same and Different Individual Axioms: A <sameindividual> element asserts that
two individual names are interpreted as the same individual, wkitg £f individual>
element asserts that two individual names are interpreted as different individuals.
Note that these two individual axioms are convenient, but not necessary, for people
to use OWL and OWL-E.

Example 2 A Datatype Expression Axiom in DIG/OWL-E
The sumLessThan15 customised datatype predicate can be defined by the following DIG/OWL-
E datatype expression axiom:

<tells>
<defdtexpression name = “sumNoGreaterThanl5”>
<dtand>
<predicate id = “owlxintegerAddition” />
<dtdomain>

<dtnot id = “owlxintegerGreaterThanx=15" />
<predicate id = “owlxintegerGreaterThanx=0"/>
<predicate id = “owlxintegerGreaterThanx=0"/>
<predicate id = “owlxintegerGreaterThanx=0"/>
< /dtdomain>
</dtand>
< /defdtexpression>
</tells>

whereowlx: integer Addition is the URIref of the integer predicate™. The datatype ex-
pressionrsumNoGreaterThan1b is a conjunction, where the first conjunct is the predicate

KWEB/2004/D2.5.3/v1.0 June 25, 2005 31

4. FACT-DG: EXTENDING FACT WITH DATATYPE GROUPS

Individual Query| <relatedIndividualValues>
T
</relatedIndividualValues>

Table 4.5: New queries in the DIG/OWL-ASKIlanguage

Individual Value | <individualValuePairSet>

Pair Sets <indvalPair> I, V; </indvalPair>
<indvalPair> I; V, </indvalPair>

</individualValuePairSet>

Typed Value Sets <typedValueSet> V; ... V, </typedValueSet>

Table 4.6: New responses in the DIG/OWLRESPONSEnguage

URIrefowlx: integer Addition, and the second conjunct is a domain constraint, which sets
the domains of all its four arguments: the first one (corresponding to the sum of addition)
should be integers that are no greater than 15, and the rest are positive integers. Based
onsumNoGreaterThan15, we can define themallltem concept as follows:

<tells>
<defconceptname = “Item” />
<defconceptname = “Smallltem” />

<equalc>
<catom name = “SmallItem”/>
<and>
<catom name = “Item”/>
<dtsome>

<dtratom name = “hlwSumInCM’ />
<dtratom name = “heightInCM’/>
<dtratom name = “lengthInCM’ />
<dtratom name = “widthInCM’ />
<dtexpression name = “sumNoGreaterThan15” />

</dtsome>
< /and>
</equalc>
</tells> &

DIG/OWL-E extends the DIG/1.ASK language by introducing a new form of in-
dividual query. With a<relatedIndividualValues> element, clients can request the in-
stances (pairs of individual and typed values) of a concrete role. Accordingly, DIG/OWL-
E extends the DIG/1.RESPONSHanguage (see Table 4.6) with individual value pair
sets kindividualValuePairSet> elements) and typed value sets. Furthermore, a response
to an identifier request in DIG/OWL-E should include the list of base datatype URIrefs,
supported predicate URIrefs and the supported datatype expression constructors.

32 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

45 FacT-DG

The goal of this section is to describe a datatype extension &fahe reasoner [Hor99.
FacT was the first sound and complete DL system to demonstrate the usefulness of ex-
pressive Description Logics for developing practical applications [MHO3].

Our implementation is designed for two purposes. Firstly, it is meant to be a light-
weight test bed for thg-augmented tableaux algorithm of t§&{Z Q(G) DL presented [Pan04].
Secondly, it aims to show the flexibility of the framework architecture presented in Sec-
tion 4.3. As a concept-proof prototype, it provides no implementation of the DIG/OWL-E
interface.

45.1 System Overview

As per the framework presented in Section 4.3, our prototype is actually a hybrid rea-
soner that has three highly independent components: (i) a DL reasoner that is built based
on theFacT reasoner and supports t§¢{ZQ(G) DL (see Section 4.2.1), (ii) a datatype
manager which decides the satisfiability of datatype expression conjunctions, and (iii)
two simple datatype checkers for integers and strings. The DL reasoner asks the datatype
manager to check the satisfiability of datatype queries generated by the tableau algorithm
of SHZQ(G). The datatype manager asks the two datatype checkers to check the sat-
isfiability of predicate conjunctions. Although all the three components of our system

is implemented in Lisp, in principle they doot have to be implemented in same the
programming language.

45.2 Extended DL Reasoner

The extendedracT DL reasoner supports datatype group-based concept descriptions. It
implements the tableau algorithm {8HZ Q(G) [Pan04]. We usually apply these rules (in

the following order3p-rule, > p-rule, Vp-rule, choose,-rule and< p-rule) on an abstract

node just before we further check its abstract successors and query the datatype manager
to check resulting datatype constraints. It may need to query the datatype manager again
if new datatype constraints are added later, e.g., from some of its abstract successors via
some inverse roles.

The DL reasoner is independent of the forms of datatype expressions that the datatype
manager supports. It does not have to understand the syntax of datatype expressions, and
it simply leaves them untouched and passes them to the datatype manager. Therefore, the
DL reasoner does not have to be modified even if the datatype manager is upgraded to
support some forms of new datatype expressions.

6 FacT for ‘Fast Classification of Terminologies’.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 33

4. FACT-DG: EXTENDING FACT WITH DATATYPE GROUPS

We extend thd=aCT syntax by introducing datatype expressions (see Table 4.7) and
datatype expression-related concept descriptions (see Table 4.8), where we use a positive
integern to indicate the number of concrete roles used in the concept descriptions.

ExtendedracT Syntax OWL-E Abstract Syntax
TOPD rdfs: Literal
BOTTOMD owlx: DatatypeBottom
(andE; ... E,) and#, ..., E,)

(orEy ... E)) or(Ey,..., E,)

(neg p) neg(p)

(domaind; ... d,) domain,...,d,)

Table 4.7: FaCT datatype expressions

ExtendedracT Syntax |DL Standard Syntax
TOP T
BOTTOM 1
(andC4,...,C,) Cn...n¢C,
(orCq,...,Co) Ciu...uG,
(notC) -C
(somek C) JR.C
(al R C) VR.C
(atleastn R C) >mR.C
(atmostm R C) <mR.C
(dt-somen Ty ... T, E) ir.,....,T,.E
(dt-allnTy ... T, E) vTy,...,T,.E
(dt-atleasto m Ty ... T, E) | >mT4,...,T,.E
(dt-atmosto m 7 ... T, E)|<mT4,...,T,.E

Table 4.8: FaCT concepts

The syntax of TBox and RBox axioms remains the sam€&agsr. Users can now
use datatype expression-related concept descriptions in TBox axioms. Note that, as in the
OWL DL ontology language, the set of abstract role names and the set of concrete role
names should be disjointptherwise the system will report an error. Users can define
concrete role inclusion axioms and functional axioms. Note that if users use an abstract
role and a concrete role in a role inclusion axiom, the system will report an error. The
syntax of TBox queries remains the sameFasT too; i.e., this datatype extension of
FacT provides concept satisfiability, concept subsumption and classification checking.

"By definition they are disjoint because abstract domains are disjoint with datatype domains.

34 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

4.5.3 Datatype Reasoning Components

The datatype reasoning components of the hybrid reasoner include a datatype manager
and two simple datatype checkers (concrete domain reasoners). The datatype manager
reduces the satisfiability problem of datatype expression conjunctions to the satisfiability
problem of predicate conjunctions that the datatype checkers can handle.

Datatype Checkert1 Datatype Checker2
Sat. Checking Func. sint-dcf-sat sstr-dcf-sat
Base Datatype URIref | xsdinteger xsd:string
Inequality Pred. URIref | owlxintegerInequality owlx stringInequality
Other Supported owlx integerEquality owlx stringEquality
Pred. URIrefs owlxintegerLessThan

owlxintegerGreaterThan

owlx integerLessThanOrEqualTo

owlx integergreaterThanOrEqualTo
owlx integerInequalityx=n

owlx integerEqualityx=n
owlxintegerLessThanx=n

owlx integerGreaterThanx=n

owlx integerLessThanOrEqualTox=n
owlx integergreaterThanOrEqualTox=n

Table 4.9: Registration information of our datatype checkers

The datatype manager is independent of the kinds of datatype predicates that the
datatype checkers support. Theoretically it can work with an arbitrary set of datatype
checkers, as long as the datatype checkers satisfy the following conditions.

1. the domains of the base datatypes that the datatype checkers support are pairwise
disjoint;

2. each datatype checker provides the following registration information:
(a) its satisfiability checking function,
(b) its base datatype URIref,

(c) the inequality predicate URIref for its base datatype,
(d) the set of supported predicate URIrefs for its base datatype;

3. each registered datatype checker supports the syntax of predicate conjunctions that
the datatype manager uses in its queries.

There are several remarks here. Firstly, base datatypes are primitive and are dis-
joint with each other. If a datatype is more general than another datatype supported in
the system, it can not be the base datatype (but a derived one). The disjointness of the

KWEB/2004/D2.5.3/v1.0 June 25, 2005 35

4. FACT-DG: EXTENDING FACT WITH DATATYPE GROUPS

value spaces of base datatypes is a useful property for the algorithm of the datatype man-
ager. Secondly, although we assume that each datatype checker supports only one base
datatype, it is easy to extend it to the case where a datatype checker supports multiple
base datatypes. Furthermore, although we require each registered datatype checker sup-
ports the syntax of predicate conjunctions that the datatype manager uses, it should not be
difficult to translate the syntax between the datatype manager and datatype checkers.

Table 4.9 lists the registration information of the two datatype checkers implemented
in our hybrid reasoner.

It is straightforward, but important, to observe that the system is very flexible. For ex-
ample, to support new datatypes and predicates, we simply need to add datatype checkers
that satisfy the above three conditions.

4.6 Case Study: Match Making

We invite the reader to consider a use case of our hybrid reasoner; i.e., how to use our
prototype to support matchmaking.

4.6.1 Matchmaking

Let us consider the following scenario: agents advertise services with their capabilities
through a registry and query the registry for services with specified capabilities. Match-
making is a process that takes a query as input and return all advertisements which may
potentially satisfy the capabilities specified in the query.

We can use th6 HZ Q(G) DL to describe service capabilities for both advertisement
and query. More precisely, the capability (either in advertisements or queries) of a ser-
vice can be represented as 8hZQ(G) class or class restriction, e.g. the capability
that memory size should be either 256Mb or 512Mb, can be represented the datatype
expression-related conceptiemoryUnitSizeInMb.(=a56 V =512).

Usually, we are not only interested in finding the exact match, viz., there could be
several degrees of matching. Following [LHO3], we consider five levels of matching:

1. Exact If the capabilities of an advertisemenrt and a requesk are equivalent
classes, we call it an exact match, noted’as= Cf.

2. Plugln If the capability of a requesk is a sub-class of that of an advertisemdnt
we call it a Plugin match, noted 8%; C Cy4.

3. Subsumelf the capability of a request is a super-class of that of an advertisement
A, we call it a Subsume match, noted@s C Ck.

36 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

4. Intersection If the intersection of the capabilities of an advertisemérand a re-
questR are satisfiable, we call it a Intersection match, noted@s, M Cr C L).

5. Disjoint Otherwise, we call it a Disjoint (failed) match , noted@smn Cr C 1.

4.6.2 Working Examples

To gain a further insight into the above five levels of matching, it is often helpful to have
some working examples. Suppose, in a scenario of computer selling, that an agent would
like to buy a PC with the following capabilities:

e theprocessor must bePentium4;
e thememoryUnitSizeInMb must be 128;

e thepriceInPound must be less than 500.

This can be represented by the followif$(Z Q(G) concept:

Cri = PCnMdprocessor.Pentium4 M
dmemoryUnitSizeInMb. :fgg] M dpriceInPound. <fg(§0}

Figure 4.2 presents five example matching advertisement§'forin five different
matching levels. Among thend, 4, is the exact match. In realistic situations, however, it
is not to easy have an exact match, since advertisements might provide more general or
more specific information. For exampl@,, states thapriceInPound is only less than
700 and that thenemoryUnitSizeInMb can be either 128 or 256 (represented by the
datatype expressioafgg} \% :fggq). (43 adds two restrictions order Dates: firstly, the
order date must be in August and September of 2004, which is represented by the datatype
EXpreSSior(Zf%mosm] A Sf%owssl}) v (zf%mogol} A Sf%omgzo]); secondlyorder Dates
should be sooner than (represented by the binary predicéte Deliver Dates, indi-
cating thatPCs will be delivered on some datter orders are made. As a result,
C'4o andCy3 are Plugln match and Subsume matchCgf;, respectively.C' 4, says the
priceInPound is greater than 400, and tliePU FreqInG H » of their PCs is 2.8% it is
an Intersection match. Finally, 45 advertises that thei?Cs have exactly two memory
chips, with thememoryUnitSizeInMb of each chip is 256, and thEardDisk Brand
andU S BK ey Brand in their PCs are the same (represented by the binary predieat
hence it is a disjoint (failed) match.

8Note that=7% is not a supported predicate for our prototype: our prototype will not reject it and
(2.8]

even provides minimum checking for it; i.e.,q’ff;‘gﬁ and :[T;_‘gﬁ are both in a predicate conjunction, this
conjunction isunsatisfiable

KWEB/2004/D2.5.3/v1.0 June 25, 2005 37

4. FACT-DG: EXTENDING FACT WITH DATATYPE GROUPS

Exact matchC 4

PC M dprocessor.Pentium4n

=1memoryUnitSizelnMb. :ﬁgs} M dpriceInPound. <f§(§0}

Pulgin match:C4s = PCT dprocessor.Pentium4ri
>1memoryUnitSizeInMb.(=Tt, v =it)

, ~[128] v T[256]
M dpriceInPound. <f%0]

Subsume matcht 43 PC M dprocessor.Pentium4n
>1memoryUnitSizelnMb. :f?2t8} M dpriceInPound. <f§80]
M YorderDate.((>

int int
120040801] <{20040831])
int int : int
(2@0040901] A §f§0040930])) MYorder Date, deliver Date. <'

Intrsect. matchC 44

PC M dprocessor.Pentium4n

>1memoryUnitSizelnMb. :Hgs} MdpriceInPound. >f2(§0]

N <1priceInPound. Tp M 3CPU FreqInGH z. :f;‘éﬁ

Disjoint match:C 45

PC M dprocessor.Pentium4n

=2memoryUnitSizelnMb. :fggﬁ} M dpriceInPound. <f?go]

<L2memoryUnitSizeInMb. :fggfﬂ

MVHardDiskBrand,USBK eyBrand. =5"

Figure 4.2: Example matching advertisements

4.7 Conclusion and Outlook

This chapter proposes a flexible framework architecture to provide reasoning services for
Description Logics integrated with datatype groups.

Users The framework enables the users to use customised datatypes and datatype pred-
icates. In addition, it provides minimum checking for unsupported datatype predi-
cates.

DIG/OWL-E interface Our general DL API does not need to be updated when new
datatype predicates are supported by datatype reasoners.

DL reasoner In the framework, the DL reasoner can implemgraugmented tableaux
algorithms for a wide range df-combined DLs, including expressive ones like
SHIQ(G), SHOQ(G) andSHIO(G), and less express but more efficient ones
like the datatype group extensions of DL-Lite [CD®04] andELH [Bra04]. To
support new DLs, we only need to upgrade the DL reasoner.

Datatype Checkers To support datatype predicates of some new base datatypes, we only
have to add new datatype checkers.

38 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Many of the above flexibilities have been witnessed byRheT-DG system, which is an
extension of théd=acT DL reasoner with support for customised datatypes and datatype
predicates.

As for future work, on the one hand, we will investigate the complexity oSth Q(G)
DL and see if the known optimisation techniques [TH0O, VHO1, HMO02] for concrete do-
mains can be applied i@-augmented tableaux algorithms and the datatype manager al-
gorithm of theFacT-DG system. On the other hand, we would like to investigate the
performance of th&acT-DG system in some ontology applications.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 39

Chapter 5

Implementing an f-S7Z Reasoner

Many applications and domains, nowadays, use some form of knowledge representation
language in order to improve their capabilities. Such examples of applications are the
World Wide Web [BLHLO1] or multimedia applications [ABS03, BSCO00]. In the ar-
chitecture of these applications, ontologies play a key role as they are used as a source of
shared and precisely defined terms that can be used in metadata. This led to the creation of
suitable ontology languages like OWL and DAML+OIL. Both these languages are based
on highly expressive description logics to represent knowledge and support a wide range
of reasoning services. Although DLs provide considerable expressive power, they feature
expressive limitations regarding their ability to represent vague and imprecise knowledge.
The role and significance of handling uncertainty has been pointed out many times in lit-
erature, and many applications like multimedia [$85%], decision making [Zim87], and

many more have incorporated mathematical frameworks in order to handle various types
of uncertainty. One such important theory is fuzzy set theory. Unfortunately, few work
has been done in the context of DLs and the semantic web.

In this chapter we present an extension of the description l8@iavith fuzzy set
theory. We provide detailed reasoning algorithms which are both sound and complete.

5.1 Syntax and Semantics of £7

In fuzzy SZ, f-SZ for short?, the basic fuzzy DL fALC [Str01] is extended with fuzzy
transitive and inverse roles. The set of transitive rédeds a subset of the set of rol&s
In addition, for any rolek € R, the roleR™ is interpreted as the inverse Bf Similarly to
[HS99] we introduce two functions. The first one is the functianwhich given a roleR
it returns its inverselR—, and given an inverse rolé&—, it returns the roleR. At last, for

1In a previous approach to fuzzy DLs the prefixs used [Str04] but this letter is reserved by DLs with
fixed point constructof BMNPSO02]. In some other approaches [TM98, HKS02] the namig is used
but this can easily be confused withCC.F (ALC plusfunctional restrictionfHS99]), when pronounced.

40

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

transitive rolesk € R, we define the functiorans(R) which returnstrue iff R € R,
orlnv(R) € R,. Complex fSZ concepts are defined by the following syntax rule:

C,D—T|L|A|~C|CUD|CND|3RC|VRC

A terminology or T'Bozx, is defined by a finite set dtizzy concept inclusioaxioms
of the form A C C andfuzzy concept equalitiesf the form A = C. Observe that”
represents an arbitrary concept, whidlean atomic one. This is because dealing with
general terminologiefHS99] still remains an open problem in fuzzy concept languages.

LetI = {a,b,c, ...} be a set of individual names. #zzy assertiofiStr01] is of the
form (a : Cin) or ((a,b) : Rxin), wherex stands for>, >, < and<. We call assertions
defined by>, > positiveassertions, while those defined By < negativeassertions. A
finite set of fuzzy assertions defines a fuzgigoz A. In [StrO1] the concept of conjugated
pairs of fuzzy assertions has been introduced, in order to represent pairs of assertions that
form a contradiction. The possible conjugated pairs are defined in table 5.1, where
represents a concept expression.

(p<m) | (¢ <m)
n>m n>m
Yl n>m n>m

(¢
(¢

~—

>n
>n

Table 5.1: Conjugated pairs of fuzzy assertions

A fuzzy setC' C X is defined by itamembership functiofy.c), which given an ob-
ject of the universal seX it returns the membership degree of that object to the fuzzy
set. By using membership functions we can extend the notion oftarpretation func-
tion[BMNPS02] to that of auzzy interpretation More formally a fuzzy interpretation
7 consists of a paifAZ,-Z), where A” is the domain of interpretation, as in the clas-
sical case, andf is an interpretation function which maps an individuato an ob-
jecta’ € AT and a conceptl (role R) to a membership functiod? : AT — [0, 1]

(RT : AT x AT — [0,1]), which defines the fuzzy subsdf (R?) of AT (AT x AZ).
For example itz € A thenAZ(a) gives the degree that the objecbelongs to the fuzzy
conceptA, e.g. A% (a) = 0.8.

In order to extend a fuzzy interpretation to cover arbitrary concepts, created by the
syntax rule, we have to interpret the concept forming operdtors!, M,3,V). As in
previous approaches to fuzzy DLs [StrO01, HKS02, ST04] we use the standard operations
to interpret the above concept constructors. These are the Lucasiewicz négatjor
1—a), the Gdel t-norm(t(a, b) = min(a, b)), the Gddel t-conorm(u(a, b) = maz(a, b)),
the Kleen-Dienes fuzzy implicatioq7 (a,b) = maxz(1 — a,b)) and the supremum and
infimum for the existential and universal quantifiers. We refer to the language created by
the above operations ag$-SZ after the initials of the name of the fuzzy implication.
The semantics ofif-SZ are depicted in table 5.2.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 41

5. IMPLEMENTING AN F-SZ REASONER

TIa) = 1
1% = 0
(=C)(a) = 1-C%(a)

(CUD)*(a) = max(C*(a), D*(a))

(CnD)*(a) = min(C*(a), D*(a))

(VR.C):(a) = infyepz{maz(l — R*(a,b),C*(b))}

(AR.CY(a) = suppeaz{min(R*(a,b),C* (b))}

(R7)*(b,a) = R¥(a,b)
ForR e Ry R%(a,c) > suppeaz{min(R%(a,b), R*(b,c))}

Table 5.2: Semantics &fZ-concepts

A fuzzy concepU is satisfiableff there exists some fuzzy interpretati@for which
there is some: € A’ such thatC?(a) = n, andn € (0,1]. A fuzzy interpretatior
satisfies & Box 7T iff Ya € ATAZ(a) < D*(a), for eachA C C, andVa € ATA%(a) =
D*(a), for eachA = C.

A fuzzy interpretation satisfies a fuzzyBox A if it satisfies all fuzzy assertions in

A. In this case, we say is amodelof A. An interpretatioriZ satisfies a fuzzy assertion
if,

(a:C>n) if C¥(a?) >n,
(a:C<n) if C¥(a?)<n,
{(a,b) : R>n) if RE(a%,b?) >n,
{(a,b) : R<n) if REa) <n

The satisfiability of fuzzy assertions with and< is defined analogously.

A fuzzy ABox A is consisteniff there exists an interpretatiah that satisfies each
fuzzy assertion in the fuzzyt Box. We then say thaf is amodelof .A. Theentailment
andsubsumptiomproblems can be reduced #Box consistency as shown in [StrO1].

5.2 A Fuzzy Tableau for fxp-S7

Consistency of anl Box A can be checked with tableaux algorithms that try to prove the
satisfiability of an assertion by constructing a model for it [HSTOO]. This is accomplished
by providing a set of decomposition rules which unfold the possibly complex concept
expressions appearing . The model is represented by a so-calednpletion-forest

a collection ofcompletion-treesome of whose nodes correspond to individuals in the
model, each node being labelled with a set of triples of the fabim<, n) which denote

42 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

the type, the concept and the membership degree that the individual of the node has been
asserted to belong to concept As for fuzzy assertions, also when we are dealing with
triples of a single node, the concepts of conjugated, positive and negative triples can be
defined in the obvious way. Since expansion rules decompose the complex concepts, the
concepts that appear in triples are subconcepts of the initial concept. Subconcepts of a
conceptD are denoted byub(D). Hence, the set of all subconcepts that appear within

an ABox is denoted byub(A). In the following we assume that all concepts are in their
NNF form.

In the present paper we will extend the notions tdlaleaufor an ABox A [HSTO00],
to afuzzy tableauln the following we use the symbois and< as a placeholder for the
inequalities>, > and<, < and the symbaki as a placeholder for all types of inequations.
Furthermore we use the symbeois , >~ and<i~ to denote theireflections For example
the reflection oK is > and that of> is <.

Definition 1 If A is an fxp-SZ ABox, R, is the set of roles occurring itd together

with their inverses], is the set of individuals ind and X is the set{>, > < <}. A

fuzzy tableau T ford is defined to be a quadrupl&,(L, £, V) such that:Sis a set of
individuals, £ : S — 244 x X x [0, 1] maps each individual to a set of triples which
denote the membership degree and the type of assertion of each individual to a concept
that is a subset ofub(A), £ : Ry — 25 x X x [0, 1] maps each role to a set of triples
which denote the membership degree and the type of assertion of a pair of individuals to
the role inR4, andV : I, — Smaps individuals occurring itd to elements irs. For all

s,t €S C,E € sub(A), andR € Ry, T satisfies:

1. If (=C,px,n) € L(s), then(C,0<x—,1 —n) € L(s),

2. f (CNE,>,n) € L(s) then(C,> n) € L(s) and(E,>,n) € L(s),

3. (CUFE,<,n)e L(s)then(C,<,n) € L(s)and(E,<,n) € L(s),

4. If (CUE,>,n) € L(s)then(C,>,n) € L(s) or (E,>,n) € L(s),

5 If (CNE,<,n)e L(s)then(C,<,n) € L(s)or (E,<,n) € L(s),

6. If (VR.C,>,n) € L(s) and there exists a triplé(s,t),>,n,) € E(R) which is

€
conjugated with (s, t), <,1 — n) then,(C, > ,n) € L(t),

7. If (GR.C,<,n) € L(s) and there exists a triplé(s,t),>,n;) € E(R) which is
conjugated with((s, t), <, n) then,(C, <,n) € L(t),
€

8. If <E|R.C,2,n>
(C,>,n) € L(1),

L(s), then there exists € S such that((s, t), >,n) € £(R) and

9. If (VR.C, <,n) € L(s), then there exists € Ssuch that{(s,t), >,1 —n) € E(R)
and(C,<,n) € L(t),

KWEB/2004/D2.5.3/v1.0 June 25, 2005 43

5. IMPLEMENTING AN F-SZ REASONER

10. If (3R.C,<,n) € L(s), Trans(R) and there exists a triplé(s,t),>,n1) € E(R)
which is conjugated witk(s, t), <, n) then,(3R.C, <,n) € L(t),

11. If (VR.C,>,n) € L(s), Trans(R) and there exists a tripl€(s, t),>,n,) € E(R)
which is conjugated witki(s, ¢), <, 1 — n) then,(VR.C, >, n) € L(t),

12. ((s,t),,n) € E(R) iff ({t,s),>x,n) € E(Inv(R)),

13. There do not exist two conjugated triples in any set of triples for any individual
z €S,

14. If (a : Cxin) € A, then(C >, n) € L(V(a)),

15. If {((a,b) : Rxin) € A, then{((V(a),V(b)),,n) € E(R)
Analogous properties apply if we substituteby > and< by <.

Lemma 2 A fuzzySZ-ABox A is consistent iff there exists a fuzzy tableau.for

5.3 Constructing an fx p-SZ Fuzzy Tableau

In order to decided Box consistency a procedure that constructs a fuzzy tableau for an
fxp-SZ ABox has to be determined. In the current section we will provide the technical
details for constructing a correct tableaux algorithm.

The application of the expansion rules on the concepts of @nx result in the cre-
ation of acompletion-forest The nodes of the forest correspond to the individuals that
have been generated in order to satisfy positive and negative existential and value re-
strictions, respectively, and the edges between two nodes, to the relations that connect
two individuals. Nodes are labelled with a set of tripl&s) (node triple3, which con-
tain concepts that are subsetssah(.A), augmented with the membership degree and
the type of assertion that the node belongs to the specific concept. More precisely we
defineL(z) = {(C,>,n)}, whereC' € sub(A), < € {>,>,<,<} andn € [0,1].
Furthermore, edgeér,y) are labelled with a sef((x,y)) (edge triple} defined as,
L((z,y)) = {(R,>,n)}, whereR € R4. The algorithm expands each tree either by
expanding the sef(z), of a noder with new triples, or by adding new leaf nodes.

If nodesx andy are connected by an edde, y), theny is called asuccessoof
x andzx is called apredecessonf y, ancestoris the transitive closure gfredecessor
A nodezx is called anR — neighbour of a nodex if either y is a successor of and
L({z,y)) = (R,x,n) ory is a predecessor afandL((y, x)) = (Inv(R), <, n). We then
say that the edge tripleonnectse andy. If we replacex with > we get the notion of a
positive R-neighbour and if by we get that of anegativeR-neighbour.

44 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Rule Description
(=) ifl. (—=C,>,n) e L(x)
2. and(C,<,1—n) & L(x)
then L(z) — L(z) U{(C,<x",1—n)}
(M) if1. (CyNCy>,n)L(x), zis notindirectly blocked, and

2. {(Ci,>,n),(Co,>,n)} € L(x)
then L(z) — L(z)U{(Cy,>,n),(Co,>,n)}

(Ug) ifl. (CyUCy <,n) € L(x), xis notindirectly blocked, and
2. {(C1,<,n),(Cy,<,n)} € L(x)
then L(z) — L(x) U{(C1, <, n), (Ca, <, n)}

(Us) if1. (CyUCy>,n) € L(x),xis notindirectly blocked, and
2. {<Cl,|>,n>,<02,|>,n>}ﬂ£($) :®
then L(z) — L(z) U{C} for someC € {(C1,>,n), (Ca,>,n)}

(Mg) if1. (CyNCy <,n)L(x), zis notindirectly blocked, and
2. {(Cl,<l,n>,<02,<l,n)}ﬂ£($) :®
then L(z) — L(z) U{C} for someC € {(C1,<,n), (Ca, <, n)}

(I>) if1. (3R.C,>,n) € L(z), z is not blocked,
2. x has noR-neighboury connected with a tripléR*, >, n) and(C, >, n) € L(y)
then create a new nodewith £((z,y)) = {(R,>,n)}, L(y) = {(C,>,n)},

(Va) ifl. (VR.C,<,n) € L(z), z is not blocked,
2. x has noR-neighboury connected with a tripléR*, >, 1 — n) and(C, <, n) € L(y)
then create a new nodewith £L((x,y)) = {(R,>,1 —n)}, L(y) = {(C, <, n)},

(V) if1. (VR.C,>,n) € L(z), z is not indirectly blocked, and
2. x has a positivez-neighboury with (C, >, n) ¢ L(y) and
3. (R*,i>7,1—n) is conjugated with some edge triple connectingndy
then L(y) — L(y) U{(C,>,n)},

(34) if1. (3R.C,<,n) € L(z), z is not indirectly blocked and
2. z has a positiveR-neighboury with (C, <,n) ¢ L(y) and
3. (R*, <,n) is conjugated with some edge triple connectingndy
then L(y) — L(y) U{(C,<,n)},

(V1) if1. (VR.C,>>,n) € L(z), Trans (R), z is not indirectly blocked, and
2. x has a positivek-neighboury with (VR.C, >, n) ¢ L(y) and
3. (R*,i>7,1— n) is conjugated with some edge triple connectingndy
then L(y) — L(y) U{(VR.C,>,n)},

(3+) if1. (3R.C,<,n) € L(z), Trans (R), z is not indirectly blocked and
2. z has a positiveR-neighboury with (3R.C, <, n) ¢ L(y) and
3. (R*, <,n) is conjugated with some edge triple connectingndy
then L(y) — L(y) U{(IR.C,<,n)},

Table 5.3: Tableaux expansion rules

KWEB/2004/D2.5.3/v1.0 June 25, 2005 45

5. IMPLEMENTING AN F-SZ REASONER

A nodezx is blockedif for some ancestoy, y is blocked orl(z) = L(y). A blocked
nodez is indirectly blockedf its predecessor is blocked, otherwise itisectly blocked
If 2 is directly blocked, it has a unique ancesgdhat blocks it.

The algorithm initializes a forest 4 to contain a root node}, for each individual
a; € Toccurring in thed Box A and additionally{ (C;, i, n) } U L(z}), for each assertion
of the form(a, : Ci>an) in A, and an edgéxz, =) if A contains an assertiofia;, a;)
Ri<an), with {(R;,>a,n)} U L((x, 7)) for each assertion of the foriifa;, a;) : Ri<n)
in A. F4 is then expanded by repeatedly applying the rules from table 5.3. We use the
notation R* to denote either the rol& or the role returned binv(R). Observe in table
5.3 if a value or existential restriction in a nodeare to be propagated to a nogethe
membership degrees of the propagated concepjsnould be the same as the ones in
nodex. The proof of this property is a quite technical one and it is omitted from here.

In description logics the notion ofdashis used in order to denote that a contradiction
has occurred in the completion forest. In our framework a node said to contain a
clashif and only if there exist two conjugated triples within a single node, or one of the
following triples exists within a node:

(L,>,n),(T,<,n),forn > 0,n < 1respectively
(L,>,n), (T, <,n)
(C,<,0),(C,>,1)

Lemma 3 Let A be an f;p-SZ ABox. Then

1. The tableaux algorithm terminates

2. A has a tableau if and only if the expansion rules can be applied guch that
they yield a complete and clash-free completion forest.

Theorem 4 The tableaux algorithm is a decision procedure for the consistencysaf f-
ABozxes and the satisfiability and subsumption a$¥ concepts with respect ®mple
terminologies.

Theorem 4 is an immediate consequence of lemma 3. Moreover, in [StrO1], it was proved
that subsumption of fuzzy concepts can be reducetilox satisfiability. More precisely,
CCDIiff A={{a:C >n),{a: D < n)}, withn € {ny,n2}, n; € (0,0.5] and

ny € (0.5, 1], is unsatisfiable.

5.3.1 Example

To see the expressive power of the extended language lets consider an example. Suppose
we have the fuzzyl Boz:

46 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

A= {{((PLANE,WING) : hasBigPart > 0.7),
(WING,ENGINE) : hasBigPart > 0.8),
(ENGINE,COOLINGSY STEM) : hasBigPart > 0.6),
{

COOLINGSYSTEM : Faulty > 0.6)}

andRBox, R = {(hasBz'gPaTt)}. We want to know ifPLAN E has a a big faulty part

at a degree greater than 0.6. In order to answer, we test the consistency of the system
AU {(PLANE : 3hasBigPart.Faulty < 0.6)}. First, we initialize a completion-
forest, as described in section 5.3 and then apply the expansion rules of table 5.3. Cause
of the 3, rule the existential restrictions would be propagated along the path and thus
we would have(3hasBigPart. Faulty, <,0.6) € L(ENGINE). Then, rule3. would
add(Faulty,<,0.6) € LICOOLINGSY STFEM) which causes a clash with the triple
(Faulty, >,0.6) € L(COOLINGSY STEM). So we can conclude that there is a faulty

big part at a degree greater or equal than 0.6.

5.4 Reductionto CrispSZ

In [StrO4] a reduction of £ - ALC to classical (crisp)ALC was provided. The purpose

of this reduction is to reduce the reasoning problem from the fu2Z¢ language to

the crisp.ALC and use existing optimized reasoners, like FaCT [Hor98c] to perform in-
ference services. Apart from using the optimized reasoners that exist for classical DLs
this approach additionally solves the problem of general terminologies [Baa90]. Such a
reduction is also possible in the case HtSZ. For example, in [StrO4], the fuzzy asser-
tion (a : VR.C' > 0.7) is transformed to the crisp assertion VR~ 3.C>o.7, WhereR- 3

(C>o.7) is a newly introduced crisp role (concept) in the system. This means that if a pair
(a,b) : R-o3 exists the classical rule for propagating value restrictions [HSTOO] would
addV R~ 3.C>o.7 to b, which is correct according to what was said in section 5.3.

In [StrO4], for a fuzzy roleR that appears in the fuzzy KB, and for two membership
degrees;, ¢, € [0, 1], with ¢; > ¢y, that appear in a fuzzyt Box A, two new terminologi-
cal axiom of the formk-., C R-., andR-., C R-., were added in the crisp KB in order
for the classical deduction algorithm to derive correct conclusion for the ALC. To
complete the reduction, in the presence of transitive role axionisaifs(R) appears in
the fuzzyR Boz, then for each new rol&,..., with ¢ € [0, 1], we need a new transitive role
axioms in the crispR Box of the formTrans(R..). Observe that the reduced language
is actuallySHZ (ALCH in the case of the reduction of5-ALC), whereH denotes
role hierarchies [HS99], and n6tZ (respectivelyALC) [StrO4]. It is well known [HS99]
that the presence of role hierarchies makes DL lo§xsTIME-hard. Practically good
behavior for such logics [Hor98c] is due to the fact that realistic knowledge bases contain
few role inclusion axioms. But the reduction @ff-SZ would create up t@|R|(JNV|—1)
role inclusion axioms, wher® and " are the number of different roles and membership
degrees appearing in the fuzzy KB (plus degrees 0, 0.5 and 1) [StrO4], respectively. For
example for 10 different roles and membership degrees we would have about 200 role in-

KWEB/2004/D2.5.3/v1.0 June 25, 2005 a7

5. IMPLEMENTING AN F-SZ REASONER

clusion axioms, an unnecessarily big number. Moreover, if in the future we consider the
extension of languages such&&Z with fuzzy set theory, this number can become even
greater. Yet, we have no practical results about reasoning with classical DL reasoners in
such reduced languages.

Since fuzzy DLs that use the min-max operations and the Kleene-Dienes fuzzy impli-
cation are directly compatible to classical DLs, there would also be subject to the same or
similar optimization methods, used in DL reasoners [Hor98c].

48 June 25, 2005 KWEB/2004/D2.5.3/v1.0

Chapter 6

Semantics Driven Support for Query
Formulation

In this section we describe the principles of the design and development of an intelligent
query interface system; which, in the rest of the section, will be simply cgliedy tool

This system is meant to support a user in formulating a precise query —which best captures
the user information needs — even in the case of complete ignorance of the vocabulary of
the underlying information system holding the data. The final purpose of the tool is to
generate a conjunctive query ready to be executed by some evaluation engine associated
to the information system.

6.1 Introduction

The intelligence of the interface is driven by an ontology describing the domain of the data
in the information system. The user can exploit the ontology’s vocabulary to formulate
the query, and she/he is guided by such a rich vocabulary in order to understand how
to express her/his information needs more precisely, given the knowledge of the system.
This latter task — callethtensional navigatior- is the most innovative functional aspect

of our proposal. Intensional navigation can help a less skilled user during the initial
step of query formulation, thus overcoming problems related with the lack of schema
comprehension and so enabling her/him to easily formulate meaningful queries. The
user may specify her/his request using generic terms, refine some terms of the query or
introduce new terms, and iterate the process. Moreover, users may explore and discover
general information about the domain without querying the information system, giving
instead an explicit meaning to a query and to its subparts through classification.

In the literature there are several approaches at providing intelligent visual query sys-
tems for relational or object oriented databases (see [CCLB97] for an extensive survey).
However, to our knowledge, the work presented in this section is among the first well-

49

6. SEMANTICS DRIVEN SUPPORT FOR QUERY FORMULATION

founded intelligent systems for query formulation support in the context of ontology-
based query processing. The strength of our approach derives from the fact that the
graphical and natural language representation of the queries is underpinned by a for-
mal semantics provided by an ontology language. The use of an appropriate ontology
language enables the system engineers to precisely describe the data sources, and their
implicit data constraints, by means of a system global ontology (see [@&)L The

same ontology is leveraged by the query interface to support the user in the composition
of the query, rather than relying on a less expressive logical schema. The underlying
technology used by the query interface is based on the recent work on query containment
under constraints (see [CDGL98, HSTTO00]).

6.2 Query interface: the user perspective

Initially the user is presented with a choice of different query scenarios which provide a
meaningful starting point for the query construction. The interface guides the user in the
construction of a query by means of a diagrammatic interface, which enables the genera-
tion of precise and unambiguous query expressions. Moreover, interface presentation and
behaviour are entirely guided by the ontology. This is achieved by leveraging the correct
and complete automatic reasoning on the ontology language (see Section 6.3).

Query expressions are compositional, and their logical structure is not flat but tree
shaped; i.e. a node with an arbitrary number of branches connecting to other nodes. This
structure corresponds to the natural linguistic concepts of noun phrases with one or more
propositional phrases. The latter can contain nested noun phrases themselves.

A guery is composed by a list of terms coming from the ontology (classes); e.g. “Sup-
plier” and “Multinational”. Branches are constituted by a property (attributes or associa-
tions) with its value restriction, which is a query expression itself; e.g. “selling on Italian
market”, where “selling on” is an association, and “Italian market” is an ontology term.

The focus paradigm is central to the interface user experience: manipulation of the
query is always restricted to a well defined, and visually delimited, subpart of the whole
query (thefocug. The compositional nature of the query language induces a natural nav-
igation mechanism for moving the focus across the query expression (nodes of the corre-
sponding tree). A constant feedback of the focus is provided on the interface by means
of the kind of operations which are allowed. The system suggests only the operations
which are “compatible” with the current query expression; in the sense that do not cause
the query to be unsatisfiable. This is verified against the formal model describing the data
sources.

One of the main requirements for the interface is that it must be accessed by any
HTML browser, even in presence of restrictive firewalls. This constraints the its design,
which overall appearance is shown in Figure 6.1.

The interface is composed by three functional elements. The first one (top part) shows

50 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

a representation of the query being composed, and the current focus. The second one is
the query manipulation pane (bottom part) containing tools to specialise the query. The
third component is the result pane containing a table which presents the actual results.
The first two components are used to compose the query, while the third one is used to
specify the data which should be retrieved from the data sources. We concentrate on the
query building part; therefore we wont discuss the query result pane, which allows the
user to define the columns of a table which is going to organise the data from the query
result.

Query textual representation The first component consists of a tree representing the
guery expression in a natural language fashion. The user selects subparts of the query
for further refinement. The selection defines the current focus, which will be represented
in the diagrams described in the following sections. The selected subexpression can be
modified (refined or extended) by means of the query manipulation pane. When a node
is selected, then the system automatically selects the whole subtree rooted at the node
selected by the user.

Itis important to stress that, although natural language is used as feedback to represent
the query, this is used in generation mode only. Since the user does not write queries
directly, there is no need to parse any natural language sentence or to resolve linguistic
ambiguities.

Query manipulation pane The elements in the pane represent the current selection,
and the operations allowed in its context. It is organised as a set of pop-up menus enabling
the refinement of the current focus. There are several menus corresponding to different
operations; however, the interface shows only the menus for the operations which make
sense w.r.t. the current query.

The first menu, labeled @&neralize or specialize, enables what we caubstitution
by navigation i.e. the possibility of substituting the selected portion of the query with a
more specific or more general terms. The proposed terms in the menu are either more
specific or more general w.r.t. the query expres$iom the focus viewpoiry selecting
one of these terms, the user can substitute the whole focus with the selected term. The
purpose of the substitution group is twofold: it enables the replacement of the focus and
it shows the position of the selection w.r.t. the terms in the ontology.

It can be the case that in the ontology there are terms which are equivalent to the
selected part. In this case the user is offered to replace the selection with the equivalent
term by the activation of thReplace Equivalent button.

A different refinement enabled by the interface isdpmpatible terms These are
terms in the ontology whose overlap with the focus can be non-empty. These ontology
terms can be added to the head of the selection by usingdtiea concept pop-up
menu. For example, “Student” is among the compatible terms for the focus “Employee”,

KWEB/2004/D2.5.3/v1.0 June 25, 2005 51

6. SEMANTICS DRIVEN SUPPORT FOR QUERY FORMULATION

SQoogle

Information Query Start Compose Results Configure
Domains

Supplier
|-- selling
| |-Trousers
| |-- with price ;
| | |-, <60Euro;
| | |- [add restriction]
| |-- witl sice
| |-- [add restriction]
|-- situated in
|-- Warehouse

|genera\|ze or specialize

T

=4

Iadd a concept

Iadd a property =

Done

Figure 6.1: Query building interface.

but “Textile” is not. The compatible terms are automatically suggested to the user by
means of appropriate reasoning task on the ontology describing the data sources.

Analogously, the user can add properties to the foassociationge.g. “Industry
with sector”), and/omttributes(e.g. “Employee whose name is”). The main difference
between the two kinds of property lies on the class representing the range of the property.
In the attribute case it is a basic data type like “String” or “Integer”, while for an asso-
ciation it is a generic class. This can be performed by meansadidaa property
pop-up menu, which presents the possible alternatives. Name and value restrictions for
each property are verbalised using meta information associated to the terms in the ontol-
ogy. For example, the association “with sector” with the restriction “Textile” is shown as
“belonging to the textile sector”.

Note that the terms and the properties proposed by the system depend on the overall
guery expression, not only on the focus. This means that subparts of the query expression,
taken in isolation, would generate different suggestions w.r.t. those in their actual context
in the query.

6.3 Query interface: inside the box

In this section we describe the underpinning technologies and techniques enabling the user
interface described in the previous sections. We will start by describing our assumptions
on the query language, followed by system perspective over the described query building
process. The whole system is supported by formally defined reasoning services which

52 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

are described in Section 6.3.2. Finally, we introduce the verbalisation mechanism which
enables the system to show the queries in a natural language fashion.

6.3.1 Conjunctive queries

Since the interface is build around the concept of classes and their properties, we consider
conjunctive queries composed by unary (classes) and binary (attribute and associations)
terms.

The body of a query can be considered as a graph in which variables (and constants)
are nodes, and binary terms are edges. A query is connected (or acyclic) when for the
corresponding graph the same property holds. Given the form of query expressions com-
posed by the interface introduced in Section 6.2, we restrict ourselves to acyclic connected
gueries. This restriction is dictated by the requirement that the casual user must be com-
fortable with the language itselfNote that the query language restrictions do not affect
the ontology language, where the terms are defined by a different (in our case more ex-
pressive) language. The complexity of the ontology language is left completely hidden to
the user, who doesn’t need to know anything about it.

To transform any query expression in a conjunctive query we proceed in a recursive
fashion starting from the top level, and transforming each branch. A new variable is
associated to each node: the list of ontology terms corresponds to the list of unary terms.
For each branch, it is then added the binary query term corresponding to the property, and
its restriction is recursively expanded in the same way.

Let us consider for example the query “Supplier and Multinational corporation selling
on Italian market located in Europe”, with the meaning that the supplier is located in Eu-
rope. Firstly, a new variable:() is associated to the top level “Supplier and Multinational
corporation”. Assuming that the top level variable is by default part of the distinguished
variables, the conjunctive query becomes

{z1 | Supplz,), Mult_corp(x,), ...},

where the dots mean that there is still part of the query to be expanded. Then we consider
the property “selling on”, with its value restriction “Italian market”: this introduces a new
variablez; ;. The second branch is expanded in the same way generating the conjunctive

query
{z1 | Supplx;), Mult_corp(x;), selLon(zy, z1 1), It_marketx, 1), loc_in(z, z12), Eur(z12) }.
This transformation is bidirectional, so that a connected acyclic conjunctive query can

be represented as a query expression (in the sense of Section 6.2) by dropping the variable
names.

10Our technique can deal with disjunction of conjunctive queries, even with a limited form of negation
applied to single terms. See [CDGL98, HSTTO0O] for the technical details.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 53

6. SEMANTICS DRIVEN SUPPORT FOR QUERY FORMULATION

Since a query is a tree, the focus corresponds to a selected sub-tree. It is easy to
realise that each sub-tree is univocally identified by the variable corresponding to a node.
Therefore, the focus is always on variable, and moving the focus corresponds to selecting
a different variable. Modifying a query sub-part means operating on the corresponding
sub-tree modifying the corresponding query tree.

Substitution by navigationorresponds to substitute the whole sub-tree with the cho-
sen ontology term. The result would be a tree composed by a single node, without any
branch, whose unary term is the given ontology term. Inrédimement by compatible
terms the selected terms are simply added to the root node as unary query terms. For
theproperty extensioradding an attribute or associations corresponds to the creation of a
new branch. This operation introduces a new variable (i.e. node) with the corresponding
restriction. When an attribute is selected, and a constant (or an expression) is specified,
then this is added as restriction for the value of the variable.

6.3.2 Reasoning services and query interface

Reasoning services w.r.t. the ontology are used by the system to drive the query interface.
In particular, they are used to discover the terms and properties (with their restrictions)
which are proposed to the user to manipulate the query.

Our aim s to be as less restrictive as possible on the requirements for the ontology lan-
guage. In this way, the same technology can be adopted for different frameworks, while
the user is never exposed to the complexity (and peculiarities) of a particular ontology
language.

In our context, an ontology is composed bged of predicate@unary, binary), together
with a set of constraintsestricting the set of valid interpretations (i.e. databases) for the
predicates. The kind of constraints which can be expressed defines the expressiveness of
the ontology language. Note that these assumptions are general enough to take account
of widely used modelling formalisms, like OWL-DL or UML.

We do not impose general restrictions on the expressiveness of the ontology language;
however, we require the availability of twadecidablereasoning services: satisfiability
of a conjunctive queryand containment test of two conjunctive queries, both w.r.t. the
constraints. If the query language includeséngptyquery (i.e. a query whose extension
is always empty), then query containment is enough (a query is satisfiable iff it is not
contained in the empty query). As described in Section 6.2, the query building interface
represents the available operations on the query w.r.t. the current focus; i.e. the variable
which is currently selected. Therefore, we need a way of describing a conjunctive query
from the point of view of a single variable. The expression describing such a viewpoint is
still a conjunctive query; which we calbcused This new query is equal to the original
one, with the exception of the distinguished (i.e. free) variables: the only distinguished
variable of the focused query is the variable representing the focus. In the following we

54 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

represent ag” the queryg focused on the variable. For example, the query
q = {x1, 212 | Mult_corp(z,), selLon(zy, z1 1), It_marketz, 1), loc.in(xy, x1), Eur(z,) },
focused in the variable, ; would simply be

¢t = {x11 |Mult_corp(z,), selLon(zy, z1 1), It_-marketz; ;),loc.in(xy, x1), Eur(z; 2)}.

The operations on the query expression require two different types of information:
hierarchical (e.g. substitution by navigation), and eompatibility (e.g. refinement and
new properties).

Let us consider the substitution by navigation with the more specific terms (the cases
with more general and equivalent terms are analogous). Given the focused;¢ueey
are interested to the unary atomic teris.t. the query{y | 7'(y)} is contained inj* and
it is most general (i.e. there is no other query of that form contained,iand containing

{y [T}

Refinement by compatible terms and the addition of a new property to the query re-
quire the list of terms “compatible” with the given query. In terms of conjunctive queries,
this corresponds to add a new term to the query. The term to be added should “join” with
the query by means of the focused variable, and must be compatible in the sense that
the resulting query should be satisfiable. This leads to the use of satisfiability reasoning
service to check which predicates in the ontology are compatible with the current focus.
With unary terms this check corresponds simply to the addition of the T&um to the
focused query”, and verify that the resulting query is satisfiable.

The addition of a property requires the discovery of both a binary term and its restric-
tion: the terms to be added are of the fofm| R(x,y), T(y)} if the focused variable is
x. As for the refinement by compatible terms, the system should check all the different
binary predicates from the ontology for their compatibility. This is practically performed
by verifying the satisfiability of the query* > {x | R(x,y)}, for all atomic binary pred-
icatesR in the signature and whergis a variable not appearing in? Once a binary
predicateR is found to be compatible with the focused query, the restriction is selected
as the most general unary predicdtesuch that the query® < {z | R(z,y),T(y)} is
satisfiable.

6.3.3 Using a Description Logics Reasoner

Although our approach is not tight to any ontology language, in the test implementation
of our system we are using Description Logics (DLs). The reasons for this choice lie in
the facts that DLs can capture a wide range of widespread modelling frameworks, and the
availability of efficient and complete DL reasoners.

2Herer represents a natural join.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 55

6. SEMANTICS DRIVEN SUPPORT FOR QUERY FORMULATION

We adopted the Description Logi&s{Z Q (see [HS02]); which is expressive enough
for our purposes, and for which there are state of the art reasoners. Note that the adoption
of SHZQ allow us to use ontologies written in standard Web Ontology languages like
OWL-DL (see [HPSO03b]).

For space limitations we are not going to describe in detail the undeHigQ DL;
the reader is referred to the above mentioned bibliographic references. The ontology con-
tains unary (concepts) and binary (roles) predicates, and the constraints are expressed by
means of inclusion axioms between concept or role expressions. One of the key features
of SHZ Q is the possibility of expressing the inverse of a role; which is extremely useful
for converting tree—shaped queries into DL concept expressions.

Given the restriction to tree—shaped conjunctive query expressions, together with the
availability of inverse roles, a focused query (see Section 6.3.2) corresponds to a concept
expression (see [HT02]). Therefore, all the reasoning tasks described in Section 6.3.2
correspond to standard DL reasoning services. Again, this is not a restriction imposed by
the underlying technology, since general conjunctive queries can be dealt with techniques
described in [CDGL98, HSTTOO].

The idea behind the transformation of a query expression into a single concept de-
scription is very simple, and it is based on the fact that a concept expression can be seen
as a query with a single distinguished variable. To focus the query on a variable, we start
from the variable itself, then we traverse the query graph by encoding binary terms into
DL existential restrictions and dropping the variable names. The fact that queries are tree—
shaped ensures that variable names can be safely ignored. Let us consider for example
the query expression

{Mult_corp(z,), Italian(x,), selLon(zy, 1 1), It_marketz; 1)}.
The DL expression corresponding to the query focused,qris
(It_market1 3selLon™ (Mult_corpr Italian));

where sellon™ corresponds to the inverse of sel role.

As explained in Section 6.3.2, we need two kinds of information: hierarchical and
compatibility. These, in the DL framework, are provided by the standard reasoning ser-
vices of satisfiability and taxonomy position of a concept expression respectively. The
first service verifies the satisfiability w.r.t. a knowledge base; while the second classifies
a concept expression (i.e., provides it w.r.t. the ISA taxonomy of concept nanRes)-
soning tasks described in Section 6.3.2 can be straightforwardly mapped into satisfiability
and classification.

For example, checking the compatibility of the term Italian with the query

{Mult_corp(z,), selLon(zy, z1 1), It-marketz 1)},

3DL systems usually provide an efficient way of obtaining the taxonomic position of a given concept
expression.

56 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

is performed by checking the satisfiability of the concept
Italian™ Mult_corpr dsell.onlt market

Compatibility of binary terms is performed analogously by using an existential restriction;
e.g.,dselLonT.* To discover the restriction of a property we use classification instead of
repeated satisfiability. The idea is to classify the query focused on the variable introduced
by the property. For example, to discover the restriction of @elhpplied to the query
expression

{1 | Mult_corp(z,), Italian(z,) },

we classify the expressiafsellLon™ (Mult_corpr Italian)). The DL reasoner returns the

list of concept names more general and equivalent to the range of the relatiam sell
when restricted to the domaiiMult_corpr Italian). This is exactly the information we

need to discover the least general predicate(s) which can be applied to the property in the
given context.

Our implementation uses the DL reasoner Racer (see [HM01c]); which fully supports
the SHZ Q DL. The interaction with the DL reasoner is based on the DIG 1.0 interface
API (see [BMCO03a]), a standard to communicate with DL reasoners developed among
different DL systems implementors. This choice makes our system independent from a
particular DL reasoner, which can be substituted with any DIG based one.

6.3.4 Query verbalisation

The system always presents the user with a natural language transliteration of the terms
in conjunctive query. This is performed in an automatic way by using meta information
associated with the ontology terms, both classes and properties. The verbalisation of the
ontology terms must be provided in advance by the ontology engineers. For the ver-
balisation we use an approach similar to the one adopted by the Object Role Modelling
framework (ORM, see [Hal01, ORMO3]).

Each class name in the ontology has associated a short noun phrase (usually one or
two words), which represents the term in a natural language fashion. For example, to the
classPStudents associated “Postgraduate student” The user will see only the associated
sentence, whil®Students just used in the internal ontology representation.

For (binary) associations the ontology engineer has to provide two different verbali-
sations for the two directions. For example, let assume that the ontology states that the
associatioroccroomlinks the two classeBStudenandRoom Then the engineer asso-
ciates to the association the verbalisation “occupies” for the direction RStadento
Room and the verbalisation “is occupied by” for the other direction.

“Note the use of th& concept representing the whole domain (any possible concept).

KWEB/2004/D2.5.3/v1.0 June 25, 2005 57

6. SEMANTICS DRIVEN SUPPORT FOR QUERY FORMULATION

Attributes need one direction only, since they are never used from the point of view
of the basic data type. In this case, the engineer is only required to provide the attribute
verbalisation from the point of view of the class.

6.4 Discussion

The work here described deals with a relatively new problem, namely providing the user
with a visual interface to query heterogeneous data sources through an integrated ontology
(that is, a set of constraints), and a specific literature does not exist yet. By looking at the
extensive survey on Visual Query System (VQS) presented in [CCLB97] it easy to see
that only little work has been done in the specific context we are dealing with. Some
preliminary work was done by one research group [BF96, Fra00, BNP0O, BF02]. Similar
work, from the point of view of the visual interface paradigm, was carried out in the
context of the Tambis project [MGP98, BSR9]; however that system lacked of the
well founded support provided by a logic-based semantics. Also [BMR99] contains some
interesting approach from the point of view of the visual interface, but again the system
has a different background semantics.

In fact, only recently research has started to have a serious interest in query processing
and information access supported by ontologies. Recent work has come up with proper
semantics and with advanced reasoning techniques for query evaluation and rewriting
using views under the constraints given by the ontology — also called view-based query
processing [UII97, CGLO0O0]. This means that the notion of accessing information through
the navigation of an ontology modelling the information domain has its formal founda-
tions.

This paper has presented the first well-founded intelligent user interface for query for-
mulation support in the context of ontology-based query processing. This paper hopefully
proved that our work has been done in a rigorous way both at the level of interface design
and at the level of ontology-based support with latest generation logic-based ontology
languages such as description logics, DAML+OIL and OWL. However, there are open
problems and refinements which have still to be considered in our future work.

The system uses the verbalisations described in Section 6.3.4 to transform the con-
junctive query into a natural language expression closer to the user understanding. In the
course of the SEWASIE project some effort will be dedicated to explore semi-automatic
techniques to rephrase the expressions in more succinct ways without loosing their se-
mantic structure.

Another important aspect to be worked out is the understanding of the effective method-
ologies for query formulation in the framework of this tool, a task that needs a strong
cooperation of the users in its validation. This task is proceeds in parallel with the in-
terface user evaluationThe other crucial aspect is the efficiency and the scalability of

5An on-line prototypical version of the query building tool is available at the WRp://frida.

58 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

the ontology reasoning for queries. We are currently experimenting the tool with various
ontologies in order to identify possible bottlenecks.

inf.unibz.it/sewasie

KWEB/2004/D2.5.3/v1.0 June 25, 2005 59

Chapter 7

Approximating Terminological Queries

This chapter elaborates an implementation issues related to approximating Semantic Web
inferences. For this purpose this chapter focuses on the algorithms described and evalu-
ated in D2.1.2 “Methods for Approximate Reasoning” and reports some implementation
details.

In general there are three possibilities for approximating Semantic Web inferences
(see also D2.1.2 “Methods for Approximate Reasoning”):

Language Weakeningwhere the representation formalism is simplified by omitting some
constructs.

Knowledge Compilation where the ontology is translated into another representation
formalism. During the translation the knowledge can be simplified or some infor-
mation can be lost.

Approximate Deduction The inference itself is approximated.

From an implementation point of view Language Weakening and Knowledge Compi-
lation can be handled by the same principle. A brief overview will be given in Section
7.1 and 7.2. The following Section 7.3 discusses the implementation of Approximate
Deduction.

7.1 On Implementing Language Weakening

Trough Language Weakening an ontology can be simplified by omitting some parts, e.g.
all sub terms consisting of a negation such-d@s Therefore Language Weakening can

be done a priori. Before any query will be answered the ontology can be transferred into
a simplified one where some constructors are omitted. The translator can be seen as a
black box which takes an ontology as input and returns the simplified ontology as output.

60

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Given the simplified ontology an appropriate reasoner can answer the queries. In the
case of Language Weakening the reasoner may be specialized for the simplified ontology
where, now, some constructs need not be considered but its inference principle will not
be changed.

Apart from the translation of the ontology it may also be required to translate the
guery in an appropriate query format. The query has to be reformulated with respect to
the translation of the ontology itself and the new representation formalism of the simpli-
fied ontology. The query translation should reflect the assumptions and simplifications
which were made during the ontology translation. Therefore the translator should be
able to translate the query into the format which meets the requirements of the simplified
ontology and its intended reasoning methods.

7.2 On Implementing Knowledge Compilation

Knowledge Compilation aims at pre-processing the ontology off-line such that on-line
reasoning becomes faster and can also be done a priori. Moreover from an implementation
point of view it can be seen as an extension of implementing Language Weakening. A
translator translates ontology and query into a new target format. In contrast to Language
Weakening the target format may be different from the source format. Therefore the
reasoner may be replaced completely by a new one which is able to reason with the
new format. For example, an OWL DL ontology can be translated into disjunctive logic
programs which can be handled by resoluti¢ggee D2.1.2 “Methods for Approximate
Reasoning” for more details).

The translator may use further services during its compilation. For example it can
use a description logic reasoner. The DL reasoner determines the subsumption hierarchy
which the translator extracts and includes in the new simplified ontology. During query
answering the subsumption hierarchy need not be recalculated. In other words the compi-
lation makes implicit knowledge explicit. For Knowledge Compilation also an additional
task must be handled by the translator. Because query and ontology are in a different
format the answers to a query will also be in different format. Therefore it may also be
necessary to translate back the results to the original format.

To summarize, Language Weakening and Knowledge Compilation can be implemented
using a translator which translates ontology, queries and their respective answers from
source format into target format and back.

1The approach is currently under development.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 61

7. APPROXIMATING TERMINOLOGICAL QUERIES

7.3 Implementing Approximate Reasoning

Approximate reasoning concentrates on the dynamic part only when a concrete query is
sent to the system which uses approximate reasoning to answer that query. The design of
such an approximated inference engine will be the focus of this section.

The first design decision during the development of an approximated inference engine
is: should the approximated inference engine completely replace the normal engine or
should the approximated inference engine use the normal engine as much as possible.

The complete replacement has the same properties as a translator because it can be
seen as a black box which receives a query as input and returns the answers as output.
However it ignores all the improvements and optimizations which was made in the last
years during the development of normal reasoners, i.e. description logic reasoners like
Fact [Hor98a],Fact++ (see chapter 3) or Racer [HMO01la]. The charming alternative uses
the normal description logic reasoner as much as possible and can profit from the im-
provements and optimizations in a description logic reasoner.

Approximation with using a description logic reasoner is possible because most in-
ferences in many description logics can be reduced to satisfiability tests with respect to
an ontology. For example, the subsumption check, i.e. whether a concept exptession
more specific tha (C' T D), can be reformulated as a satisfiability test whéire =D
is checked for unsatisfiability. The more complex inference services like classification or
instance retrieval can be reduced to a sequence of satisfiability/subsumption test. Infer-
ences of a normal description logic reasoner can be divided into two groups: the basic
inference, i.e. the satisfiability cheGkand the set of complex inferences which can be
reduced to the basic inference.

An approximated inference method can exploit this dichotomy of inferences. It can
approximate the complex inferences by adopting the reduction to the basic inference. This
means that approximation changes the generation of the sequence of satisfiability tests.
For example an approximated classification generates a different sequence of satisfiabil-
ity test as the normal classification. The satisfiability check itself can be performed by
a normal DL reasoner; only the generation of the sequence will be changed. Therefore,
optimization improvements for the complex inferences may be lost or may be adopted by
the approximated complex inference, but the improvements for performing each individ-
ual satisfiability test are still usable.

The approximated sequence can differ from the normal sequence by the order in which
satisfiability tests will be performed. For example, the Cadoli-Schaerf approximations
introduce a number of simplified satisfiability tests for each normal satisfiability test. The
simplified tests can be performed more efficiently and avoid some expensive normal tests
(see D2.1.2 “Methods for Approximate Reasoning” for more details).

2The subsumption check can also serve as a basic inference where the compound inferences can be
reduced to. For simplicity we use the satisfiability check.

62 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Apart from the complex inferences also the basic inference can be approximated. The
engine which normally performs the satisfiability test can be replaced by an approximated
one. More formally, for an expressiah the approximated inference engipe checks
the satisfiability with respect to an ontology/TB@x i.e. 7 |~ ®. ¢ indicates which
approximation method is used.

The approximated inference engine — as every normal reasoner — must afalyze
Even for description logics the complexity of reasoning depends on the language used
to representb. More precisely, the operators used in the definitions of terms suéh as
determine the complexity of the reasoning. If the approximated engine omits parts of
or at least approximate the reasoning needed for some operators then the reasoning per-
formance can possibly be improved. However, the same effect of improving reasoning
performance can be achieved by simplifyigvith the function¢ to £(®) and then using
normal inferences. For example if the approximated reasepeymits some parts i@
the same parts can be omittedsif®). Approximating the reasoning for given operators
function ¢ can simulate the approximation by simplifying the operator®inin other
word, there is a strong correlation between many approximated erjginasd a simpli-
fied expressiorg for normal inference$— . Most approximations can be simulated by
simplifying ¢ to {(®) and the use a normal reasoner:

Thed — T &)

Given this correlation there is no practical need for an approximated inference engine
for the basic inference. In order to approximate the DL reasoning it is enough in most
cases to only approximate the complex inference and to approximate the basic inference
by simplifying the checked expression. For the satisfiability test a normal DL reasoner can
still be used. By this approach many different approximation methods can be investigated
and evaluated without the expensive cost for the development of a full (but approximated)
DL reasoner. Furthermore the optimizations and the improvements of current DL reasoner
are still accessible.

7.3.1 Approximating Classification

As an example for an Approximate Deduction we explain the implementation of the ap-
proximate classification described in D2.1.2 “Methods for Approximate Reasoning”. The
approximation method proposed by Cadoli and Schaerf [SC95] was applied to the classi-
fication of a number of concepts and evaluated for realistic ontologies. Cadoli and Schaerf
[SC95] propose a method which starts with a maximally simplified expression and checks
for satisfiability. If this test fails the next more complex expression is checked. This pro-
ceeds until the first test succeeds or until the original expression is reached.

The normal classification procedure does not have to be changed (Algorithm 1, see
D2.1.2 “Methods for Approximate Reasoning”). For classifying a concept expregsion

KWEB/2004/D2.5.3/v1.0 June 25, 2005 63

7. APPROXIMATING TERMINOLOGICAL QUERIES

Algorithm 1 classification
Require: A classified concept hierarchy with root
Require: A query concept)
Visited ;=2
Result :=z
Goals :={T}
while Goals# @ do
CeGoalswhere{direct parents o€} C Visited
Goals := Goals, {C}
Visited := Visitedu {C}
if unsatisfiable M —-C') then
Goals := GoalsJ {direct children ofC}
Result := (Resulu {C}) \ {all ancestors o€}
end if
end while
Eliminate equal concepts in Result
if |Resulf = 1 A unsatisfiable(' 1 —Q) then

Equal :="yes’
else

Equal :=‘no’
end if

return Equal, Result

into the concept hierarchy a number of subsumption tests are generated. The most specific
concepts w.r.t. the subsumption hierarchy which passed the subsumption test are collected
for the results. During classification a sequence Query

of satisfiability test is generated.

For the approximated classification the satis-
fiability test has to be replaced. Two different ap- || Awproximae
proximations, the”' " - and C*-satisfiability, are Classt T
implemented by the Algorithms 2 and 3. The =
approximations are easily constructed in linear t
time. In contrast to the normal classification ‘mbwmeﬂs&igy H Taxonomy ‘
each satisfiability test is replaced by a series of I I
satisfiability test. When the approximation at a ! 016 Interfoce |
certain levell does not lead to a conclusion the
level I is increased by one and the next satisfia- ‘
bility test of the series is generated. Please note Racer Rt \
that the result of the approximated satisfiability
tests for both kinds of approximations must
different.

b : ,
Iglgure 7.1: Architecture of experimen-
tal setup.

64 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Algorithm 2 C'"-satisfiability
Require: A complex concept expressian
Require: A Query@
1:=0
repeat
Current :=(Q M -C);]
Result := unsatisfiable(Current)
if Result = ‘true’then
break
end if
I:=1+1
until Current =Q N -C'
return Result

Algorithm 3 C-satisfiability
Require: A complex concept expressi@n
Require: A Query@
1:=0
repeat
Current :=(Q M -C)t
Result := unsatisfiable(Current)
if Result = ‘false’then
break
end if
[:=1+1
until Current =Q M -C'
return Result

The replacement of a particular satisfiability test with a series of satisfiability tests
may indicate that reasoning performance can not be improved. But each satisfiability test
from the series is performed on a simplified expression which implies a cheaper satis-
fiability test. Cadoli and Schaerf [SC95] hope that a series of cheap tests can beat one
expensive test — the replaced original test. Unfortunately first experiments reported in
D2.1.2 “Methods for Approximate Reasoning” do not support their thesis.

Each DL reasoner (e.g., Fact [Hor98a], Fact++ (see chapter 3), or Racer [HMO1a])
implements the classification functionality internally. In order to approximate classifica-
tion independently from the implementation of a particular DL reasoner, the classification
method must be (re)implemented. The classification procedure must be built on top of an
arbitrary DL reasoner according to Algorithm 1. The satisfiability tests are propagated
to the DL reasoner through the DIG interface [BMCO03Db] as depicted in Figure 7.1. The
approximated classifier can also act as a separate server; if only it implements a DIG
interface and acts as HTTP-server waiting for queries.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 65

7. APPROXIMATING TERMINOLOGICAL QUERIES

7.4 Conclusion

We gave a brief overview over architectures to approximations for Semantic Web reason-
ing. Language Weakening and Knowledge Compilation need a translator which transform
the ontology and query into a new representation. Approximate Deduction can concen-
trate on approximate complex inferences which are reduced to satisfiability tests. But in
most cases a mixture of these architectures will occur. As shown in the case of Knowl-
edge Compilation showed (see D2.1.2 “Methods for Approximate Reasoning”), where
an OWL DL ontology is compiled into a disjunctive logic program, the inference itself
can also be approximated. In this example the disjunctions in head of the clauses in the
logic program are ignored. It is also a further example for a strong correlation between
approximate inference and simplified expressions for normal inferences.

However the approximate deduction assumes one query which will be approximated.
But in many cases the application will generate many very similar queries. Instead of
sending each query one by one the application should send all queries together and let
the reasoner decide in which order and to which degree the queries will be evaluated and
answered. Surely such a strategy provides more potential for approximation.

66 June 25, 2005 KWEB/2004/D2.5.3/v1.0

Chapter 8

Querying Answering with Instance
Store

8.1 Introduction

In this chapter, we present thestance StordiS) system, which provides efficient re-
trieval using a hybrid database/reasoner architecture: a relational database is used to per-
sist instances, while a TBox reasoner is used to infer ontological information about the
classes they belong to; moreover, part of this ontological information is also persisted in
the database.

TheiS only supports a very limited form of reasoning about individuals, i.e., answer-
ing instance retrieval queries w.r.t. an ontology and a set of axioms asserting class-instance
relationships. With this restriction it is not possible to assert, e.g., that John is the brother
of Peter (where John and Peter are individuals), bistpossible to assert, e.g., that Pe-
ter has at least three brothers, all of whom are either Doctors or Dentists. This kind of
reasoning turns out to be useful in a wide range of applications, in particular those where
domain models are used to structure and investigate large data sets. In the Gene Ontology
(GO) application described below (in the section on Empirical Evaluation), for example, a
complex model of gene structure and function is used to annotate and query gene product
data; the gene produtd33 CANALs, for example, described as an instance of the class
of gene products thdake part in intracellular signalling cascadearepart of chloro-
plast and have théunction of protein domain specific binding activifwhere properties
are shown in bold and classes in italics).

It is clear that, from a theoretical point of view, this functionality could be reduced
to pure TBox reasoniny.The iS is, however, able to deal witlmuchlarger numbers of
individuals than would be possible using a standard Description Logic reasoner.

IAnswering such queries is not trivial, however, as the query class can be a complex description that
does not occur in the ontology.

67

8. QUERYING ANSWERING WITH INSTANCE STORE

In order to evaluate théS design, and in particular its ability to provide scalable
performance for instance retrieval queries, we have performed a number of experiments
using theiS to search over a large gene ontology and its associated very large number of
individuals—instances of concept descriptions formed using terms from the ontology.

8.2 Instance Store

An ABox A is role-free if it contains only axioms of the form: C, wherex is an indi-
vidual andC' is a (possibly complex) concept. We can assume, without loss of generality,
that there is exactly one such axiom for each individuat a£”' L/ —=C holds in all inter-
pretations, and two axioms: C' andx : D are equivalent to a single axiom: (C' 11 D).

It is well known that, for a role-free ABox, instantiation can be reduced to TBox sub-
sumption [Hol96, Tes97]; i.e., ik = (7, .A), andA is role-free, therK = x : D iff

z:C € AandT = C C D. Similarly, if £ = (7,.A) andA is a role-free ABox, then

the instances of a conceptcould be retrieved simply by testing for each individutah

Aif K E = : D. However, this would clearly be very inefficientf contained a large
number of individuals.

An alternative approach is to add a new axiolC D to 7 for each axiomz : D
in A, whereC, is a new atomic concept; we will call such concepgeudo-individuals
Classifying the resulting TBox is equivalent to performing a complete realisation of the
ABox: the most specific atomic concepts that an individuas an instance of are the
most specific atomic concepts that subsurhe Moreover, the instances of a concépt
can be retrieved by computing the set of pseudo-individuals that are subsunied by

The problem with this latter approach is that the number of pseudo-individuals added
to the TBox is equal to the number of individuals in the ABox, and if this number is very
large, then TBox reasoning may become inefficient or even break down completely (e.g.,
due to resource limits).

We now introduce some new notation used, for convenience, in this papet. &or
TBox, A the set of atomic concepts (concept names) occurrirg, iandC' a (possibly
complex) concept, we define:

e C|r={a|a€ Aanda C C},i.e.,C|risthe set whose members are the atomic
concepts inZ that are subsumed hy (note that this could include concepts that
are equivalent t@).

e [Clr ={a|a€ A CLC aandthereisna’ € AwithC C o« andd’ C a},
i.e., [C]r is the set whose members are the most specific atomic concepthat
subsume”' (note that ifC' is itself an atomic concept ift, then[C'|r = {C}).

The basic idea behind th& is to overcome this problem by using a DL reasoner to
classify the TBox and a database to store the ABox. Our starting point is the ‘semantic

68 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

indexing’ of [Sch94], taking the atomic concepts in the ontology as indexing concepts, so
we use the database also to store a complete realisation of the ABox, i.e., for each individ-
ual x, the concepts that realises (the most specific atomic concepts thiaistantiates).

The realisation of each individual is computed using the DL (TBox) reasoner when an
axiom of the formz : C'is added to theS ABox.

A retrieval query(to theiS (i.e., computing the set of individuals that instantiate a
concept()) can be answered using a combination of database queries and TBox reason-
ing. Given aniS containing a KB(7, .4) and a query concefg®, retrieval involves the
computation of the following sets of individuals for which we introduce a special notation:

e [, denotes the set of individuals i that realisesomeconcept in) | 7;

e [, denotes the set of individuals i that realiseeveryconcept in[Q] 7.
The S algorithm to retrieve the instances@fcan be then described as follows:

1. use the DL reasoner to compuie] 7;
2. use the database to retrieve the set of individuigls

3. use the DL reasoner to check whetligrs equivalent to any atomic conceptin
if so then returry; andexit;

4. use the DL reasoner to compyt@ | r;
5. use the database to retrieve the set of individuigls

6. use the DL reasoner to checl()fsubsumes (hence is equivalent to) the conjunction
of the concepts inQ|7; if so then return/; U I andexit,

7. use the DL reasoner and the database to comfutee set of individuals: € I
such thatr : C'is an axiom in4 andC' is subsumed by;

8. returnl; U I3 andexit

Proposition. The above procedure is sound and complete for retrieval, i.e., given a con-
cept@, it returns all and only individuals inl that are instances @j.

The above is easily proved using the fact that we assume, without loss of generality,
that for each individuat there is exactly one axiom of the form: C' in A.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 69

8. QUERYING ANSWERING WITH INSTANCE STORE

8.2.1 An Optimised Instance Store

In practice, several refinements to the above procedure are used to improve the perfor-
mance of theS. In the first place, as it is potentially costly, we should try to minimise the

DL reasoning required in order to compute realisations (when instance axioms are added
to the ABox) and to check if individuals i, are instances of the query concept (when
answering a query).

One way to (possibly) reduce the need for DL reasoning is to avoid repeating com-
putations for “equivalent” individuals, e.g., individuats, x5 wherex; : C; andx,y : Cy
are ABox axioms, and’; is equivalent ta”;. Since checking for semantic equivalence
between two concepts would require DL reasoning (which we are trying to avoid), the
optimisediS only checks for syntactic equality using a database lookup. (The chances of
detecting equivalence via syntactic checks could be increased by transforming concepts
into a syntactic normal form, as is done by optimised DL reasoners [Hor03], but this
additional refinement has not yet been implemented in®)elndividuals are grouped
into equivalence sets, where each individual in the set is asserted to be an instance of a
syntactically identical concept, and only one representative of the set is addedi$ the
ABox as an instance of the relevant concept. When answering queries, each individual in
the answer is replaced by all the individuals in its equivalence set.

Similarly, we can avoid repeated computations of sub and super-concepts for the same
concept (e.g., when repeating a query) by caching the results of such computations in the
database.

Finally, the number and complexity of database queries also has a significant impact
on the performance of th&. In particular, the computation df can be costly a§) |
may be very large. One way to reduce this complexity is to store not only the most specific
concepts instantiated by each individual, but to sereryconcept instantiated by each
individual. As most concept hierarchies are relatively shallow, this does not increase the
storage requirement too much, and it greatly simplifies the computatidn dfis only
necessary to compute the (normally) much smaller set of most general concepts subsumed
by 2 and to query the database for individuals that instantiate some member of this set.
On the other hand, the computation Bfis slightly more complicated ag must be
subtracted from the set of individuals that instantiate every concépljig. Empirically,
however, the saving when computifigseems to far outweigh the extra cost of computing
12.

8.3 Implementation

We have implemented th& using a component based architecture that is able to exploit
existing DL reasoners and databases. The core component is a Java application talking to
a DL reasoner via the DIG interface [Bec03] and to a relational database via JDBC. We

70 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

have tested it witlFacT [Hor98b], FaCT++ [Tsa05] anBRACER [HMO1d] reasoners and
MySQL, Hypersonic, and Oracle databases.

initialise(Reasoner, Database, TBox)
addAssertion(Individual, Concept)
retract(Individual)

retrieve(Concept) . Set (Individual)

Figure 8.1: Basic functionality oS

The basic functionality of théS is illustrated in Figure 8.1. The four basic operations
areinitialise , Which loads a TBox into the DL reasoner, classifies the TBox and
establishes a connection to the databaskelAssertion , which adds an axiom: D
to theiS; retract , which removes any axiom of the forin C' (for some concept’)
from theiS; andretrieve , which returns the set of individuals that instantiate a query
concept®. As theiS ABox can only contain one axiom for each individual, asserting
i - D wheni : C is already in the ABox is equivalent to first removing C (using
retract) and then asserting: (C' 11 D).

In the current implementation, we make the simplifying assumption that the TBox
itself does not change. Extending the implementation to deal with monotonic extensions
of the TBox would be relatively straightforward, but deleting information from the TBox
might require (in the worst case) all realisations to be recomputed.

8.4 Empirical Evaluation

In order to test the performance of ti¢ we chose a real world problem with more that

half a million instances. The Gene Ontology®) consortium publishes every month a
database [Gen03] of gene products referring to terms in a large (25,180 concepts) ontol-
ogy. The structural simplicity of the ontology (little more than a taxonomy of classes)
means that its transitive closure can be precomputed and stored in the database so that,
when a client searches for the gene products whose descriptions are subsumed by a set
of terms, the answer can be returned without using a reasoner. Together with other func-
tionality provided by the database, this provides biologists with a service which is highly
valued and widely used.

We built a GOIS by mining (the SWISS-PROT fragment of) the Gene Ontology
database and extracting 653,762 gene product descriptions which we loaded ii8o the
using theaddAssertion method. In our mining we exploited the fact that gene terms form
three more or less separate taxonomies of ‘processes’, ‘components’ and ‘functions’. We
therefore added three corresponding new properties (i.e., DL roles) to the gene ontology
and described gene products using them. For instance, we asserte¢BB&ANALs an
instance of the class of gene products tia#e part in intracellular signalling cascade
arepart of chloroplast and have théunction of protein domain specific binding activity
(We denote roles in bold and concepts in italics.)

KWEB/2004/D2.5.3/v1.0 June 25, 2005 71

8. QUERYING ANSWERING WITH INSTANCE STORE

This does not take into account annotations and other information present in the GO
database, but our aim was simply to test a large set of realistic and interesting data. Exten-
sions in the structure of the ontology (as envisaged in GONG [WSGAO03]) would allow
more complex assertions to be made and more complex queries to be asked.

As well as providing an enhanced query answering mechanism for GO annotated
gene products, bioinformatics applications of iBenclude its use to guide gene anno-
tation [BTMS04] and, more recently, to investigate the structure of data mined from the
InterPro database of protein families.

Another exampléS application is in theMONET project [CDTO04], where it is used
in a web-services broker. MONET envisages mathematical web-services being registered
with a broker, along with ontology based descriptions of their capabilities, and discov-
ered by clients using service requests consisting of similar descriptions of the required
functionality. TheiS has been used to perform the matching of service requests against
capability descriptions in a proof-of-concept prototype of the broker. A typical service
description specifies the ‘GAMS’ classification of the service, the problem it solves, in-
put and output formats, the directives it accepts, the software used to implement it, and
the algorithm it implements. All this involves several classes and roles in nested conjunc-
tions from an ontology containing thousands of classes interconnected by means of tens
of roles. The structural richness of the ontology means that services can then be matched
using, e.g., a bibliographic reference to their implemented algorithm. The MOSET
contains too few instances for its performance to be an issue, but it does illustrate the
expressive possibilities of th& approach.

GO Tests

We have tested the retrieval performance of the SQ@ising a set of queries; their de-
scriptions are similar in structure to the description of the assertion for the above gene
product1433 CANAL.i.e. a conjunction of processes, components and functions (each
conjunct possibly empty). The query set was formulated with the help of domain experts
and consists of twelve queries that might be posed by a biologist. They are designed to
test the effect on query answering performance of factors such as the number of individ-
uals in the answer, whether the query concept is equivalent to an atomic concept (if so,
then the answer can be returned without compufyngy /3), and the number of candidate
individuals in I; for which DL reasoning is required in order to determine if they form
part of the answer. The characteristics of the various queries with respect to these factors
is shown in Table 8.1.

The tests were performed using Linux, Intel Pentium 4 CPU 2.40GHz, 256MB RAM,
MySQL 4.1.10a, and FaCT++ 0.99.3.

In these tests, we explore the performance of$hasing the GO TBox and differently
sized and randomly selected subsets of the GO ABox.i$heas first initialised with the
GO TBox (it took FaCT++ approximately 85 CPU seconds to classify the TBox), then,

72 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

Table 8.1: Query characteristics

Query Equivalentto | No. of Instances| No. of “candidates”
Atomic Concept in Answer in I

Q1 Yes 6,527 0
Q2 No 4 19
Q3 No 13 0
Q4 Yes 96,105 0
Q5 Yes 27 0
Q6 No 13,449 0
Q7 No 11,820 0
Q8 No 12 604
Q9 No 19 0
Q10 Yes 4,563 0
Q11 Yes 1 0
Q12 No 16 7,867

for each ABox, we measured the time (in CPU seconds) taken to load the ABox into the
IS and the time taken to answer each of the queries.

Table 8.2:iS load and realise times (CPU seconds)

Number of Distinct Load & Realise
Individuals | Descriptions

100 88 5

500 330 18

1,000 591 34
5,000 2,014 207
10,000 3,299 507
50,000 9,853 1,947
100,000 15,181 3,555
200,000 23,564 7,071
400,000 35,964 14,281
653,762 48,584 23,790

The time taken by theS to load and realise the various ABoxes are shown in Ta-
ble 8.2. Note that it increases more slowly than the size of the ABox: for ABox size
100, theiS takes about 50ms to add each individual axiom; by the time the ABox size
has reached 653,762 this has fallen to approximately 35ms per axiom. In view of the
equivalent individuals optimisation employed by tls&ehowever, it may be more relevant
to consider the time taken per distinct description: this increases from about 60ms per
description for the size 100 ABox (which contains 88 distinct descriptions) to approxi-
mately 0.5s per description for the size 653,762 ABox (which contains 48,584 distinct
descriptions).

Note the load/realise operation only needs to be performed once—an added advantage
of theiS is that the database provides for persistence of the realised ABox. Depending on
the nature of the application, it may also be more normal for instance data to be added to
theiS over time rather than all at once as in our experiment.

Tables 8.3 and 8.4 give the results for ti®when answering each of the twelve
gueries described in Table 8.1. In addition to the time taken (in CPU seconds) to answer

KWEB/2004/D2.5.3/v1.0 June 25, 2005 73

8. QUERYING ANSWERING WITH INSTANCE STORE

the queries, the number of candidate individualiis also given (where this is non-zero)

as this is one of the major factors in determining the “hardness” of the query: for each
individual in I, theiS must use the DL reasoner to determine if the individual instantiates
the query concept. The time taken to answer these queries is also plotted against the size
of the ABox in Figure 8.2; note the logarithmic scales on both axes.

Table 8.3:iS query times (CPU seconds) and cardinalitylofor queries Q1-Q7
Indivis || Q1 Q2 Q3| Q4] Q5[Q6] Q7
ISTIS [[2[[IS IS | 1S IS | 1S
100 || 0.2 | 1.0 0.1 01|01 01|01
500 || 0.5 1.1 0.1 03] 0.1 01|01
1,000 || 1.1 | 1.3 0.1 03] 0.2 01| 0.2
5,000 (| 1.7 | 1.5 0.1 03| 04 05| 0.3
10,000 || 0.8 | 1.3 0.1 06| 0.1 0.7 | 0.2
50,000 || 1.7 | 1.6 0.4 1.8 | 0.2 18| 04
100,000 25| 1.8 0.5 3.0 0.2 29| 0.6
200,000 4.1 | 2.5 1.0 6.0 | 0.3 59| 1.6
400,000 || 6.3 | 3.3 16| 120| 0.3 | 10.0| 2.0
653,762 || 6.9 | 5.3 24| 178 | 06 | 165 | 29

BIAIWINNDNN -

P
oo

Table 8.4:iS query times (CPU seconds) and cardinalityofor queries Q8-Q12
Indiv'ls Q8 Q9 [Q10 | Q11 Q12
IS [1] IS IS ST 1S | 15l
100 0.1 1 0.1 0.1 0.1 0.3 14
500 0.1 1 0.1 0.1 0.1 0.9 45
1,000 0.1 3 0.1 0.1 0.1 15 82
5,000 11 15 0.3 0.1 0.1 3.8 269
10,000 0.9 21 0.3 0.1 0.1 5.8 460
50,000 3.4 90 1.3 0.1 0.1 | 18.6 | 1,459
100,000 5.9 | 140 2.6 0.6 0.1 | 28.0| 2,313
200,000 || 12.9 | 255 5.8 1.3 0.1 416 | 3,673
400,000 || 21.6 | 435 | 10.3 2.0 0.1 | 57.9 | 5,780
653,762 || 36.0 | 604 | 12.8 | 3.8 0.1 | 80.0 | 7,867

As can be seen, the time taken to answer queries becomes quite large when the num-
ber of individuals in/; is large. In these cases, the time taken to check if these individuals
instantiate the query concept (roughly 0.01s per individual) dominates other factors. The
number of “distinct” individuals in the answer also has a significant impact on query an-
swering performance: when there are many such individuals, the database query required
in order to compute the complete answer set (i.e., retrieving the union of the equivalence
sets of these individuals) can be quite time consuming. In the case of Q6 with the largest
ABox, for example, the relevant database query takes 14.7s (out of a total of 16.5s).

When the query concept is determined to be semantically equivalent to an atomic
concept in the TBox, as is the case with Q1, Q4, Q5, Q10 and Q11, then no further DL
reasoning is required. In these cases, the time taken to answer the query changes much
more slowly with ABox size, and is mainly determined by the answer size. With Q4, for
example, the time taken to answer the query rises to over 17s with the largest ABox, when
the answer contains 96,105 individuals.

74 June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

1[]‘ L T T T T T T T UL | T T T T T T
= Q1 o
Q2 I

i

Timec Consumed in scconds(CPL time)

Mumbers of individuals

Figure 8.2:iS query times -v- ABOX size

8.5 Related and Future Work

There is a long tradition of coupling databases to knowledge representation systems in or-
der to perform reasoning, most notably the work in [BB93]. However, in our architecture
we do not use the standard approach of associating a table (or view) with each class and
property. Instead, we have a fixed and relatively simple schema that is independent of the
structure of the ontology and of the instance data. iBhs, therefore, agnostic about the
provenance and structure of data: it uses a new, dedicated database for each ontology, but
the schema is always the same.

Another example is the Parka system [ASH95]. Parka is not limited to role-free
ABoxes and can deal with very large ABoxes. However, Parka also supports a much
less expressive description language, and is not based on standard DL semantics, so it is
not really comparable to thi&.

The architectural choices made in the implementation ofi$hensure that we use
appropriate technologies for appropriate tasks. It is clear that at some point the reasoner
must be used in order to retrieve individuals, but in our approach it is only used when

KWEB/2004/D2.5.3/v1.0 June 25, 2005 75

8. QUERYING ANSWERING WITH INSTANCE STORE

necessary. Databases are well suited to handling large volumes of data and are optimised
for the performance of operations such as joins and intersections.

The functionality of theS is limited, but is sufficient to support several interesting
applications, and allows us to deal with volumes of instance data that cannot, to the best of
our knowledge, be handled by any other system that would guarantee sound and complete
guery answering.

In the presentS, roles are allowed to appear at the class level, as in the GQakde
part in, but no role assertion between instances is allowed, i.e., we cannot assert that
instancex is related via role to instancey. We are currently working on an extension of
theiS that uses thprecompletiontechnique [Hol96] to overcome this limitation (although
at the cost of some restrictions on the structure of the ontology).

76 June 25, 2005 KWEB/2004/D2.5.3/v1.0

Chapter 9

Conclusion

In this report, we have investigated some aspects of implementation and optimisation
techniques of Semantic Web query systems.

Firstly, we have provided a brief survey of some Semantic Web query engines, com-
paring some well known query engines, including Jena, Sesame, RdfSuite, Triple and
Racer. This survey shows that some engines fail to pass our tests even within RDFS.
Within the systems that we testdglacer (from the DL community) is the only query
system that passes all our tests on RDFS and OWL ontologies.

As system architectures play an important role in Semantic Web reasoning and query-
ing systems, we have covered this topic with two chapters. In Chapter 3, we have pre-
sented the ToDo list architecture, which is implemented inF®€T++ system. This ar-
chitecture allows different priority ordering of rule-ordering heuristics, which can be very
effective on performance improvements. In Chatper 4, we have provided a bigger picture,
where datatype reasoners are introduced into DL systems. This architecture, implemented
in the FacT-DG DL reasoner, is very flexible in that different datatype checkers can be
easily plugged in or taken out of the system, depending on the needs of applications.
Equally importantly, to the best of our knowledg&cT-DG is the first DL reasoner that
supports customised datatypes and datatype predicates.

Thirdly, we have also presented algorithms of reasoning with i BL. Reasoning
with fuzzy DLs is a very popular research topic these days. To the best of our knowledge,
we are the first to provide reasoning support for fuzzy knowledge base satisfiability with
the presence of fuzzy transitive role axioms.

Last but not least, we have also investigated some other aspects on implementations
of Semantic Web query systems. Chapter 6 has described the principles of the design and
development of intelligent query interface systems. Chapter 7 has proposed some ideas on
three approaches to approximating DL reasoning, in particular the approximate deduction
approach. Most importantly, in Chapter 8, we have presented how to combine Description
Logic TBox reasoning and databases to facilitate efficient query answering of retrieval
queries over extremely large numbers of individuals, which are not interconnected by

77

9. CONCLUSION

role assertions.

As for future work, it would be interesting to investigate optimisations for role-enabled
instance Store, as well as optimisation techniques for query answering over rule-extended
knowledge bases.

78 June 25, 2005 KWEB/2004/D2.5.3/v1.0

Bibliography

[ABS03]

[ACK*01]

[ASHO5]

[Baa90]

[BB93]

[BCM*03]

[Bec03]

[BF96]

J. Alejandro, Tseng Belle, and J. Smith. Modal keywords, ontologies and
reasoning for video understanding.Rroceedings of the International Con-
ference on Image and Video RetrievaD03.

Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris
Plexousakis, and Karsten Tolle. The ics-forth rdfsuite: Managing volu-
minous rdf description bases. International Semantic Web COnference

(SemWeb-01p001.

W. A. Andersen, K. Stoffel, and J. A. Hendler. Parka: Support for extremely
large knowledge bases. In G. Ellis, R. A. Levinson, A. Fall, and V. Dahl,

editors,Knowledge Retrieval, Use and Storage for Efficiency: Proceedings
of the First International KRUSE Symposiypages 122-133, 1995.

F. Baader. Augmenting Concept Languages by Transitive Closure of Roles:
An Alternative to Terminological Cycles. Research Report RR-90-13,
Deutsches Forschungszentruir Kiinstliche Intelligenz GmbH (DFKI),
1990. An abridged version appeaered in Proc. [JCAI-91,pp.446-451.

Alexander Borgida and Ronald J. Brachman. Loading data into description
reasoners. IRroc. of the ACM SIGMOD Int. Conf. on Management of Data
pages 217-226, 1993.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editofBhe Description Logic HandbookCUP,
2003.

Sean Bechhofer. The DIG Description Logic Interface: DIG/1.1.
URL http://dl-web.man.ac.uk/dig/2003/02/interface.
pdf , Feb 2003.

P. Bresciani and E. Franconi. Description logics for information access. In

Proceedings of the AI*IA 1996 Workshop on Access, Extraction and Inte-
gration of KnowledgeNapoli, September 1996.

79

BIBLIOGRAPHY

[BFO2]

[BFH194]

[BKVHO2]

[BI99]

[BLO1]

[BLHLO1]

[BMC03a]

[BMCO3b]

Paolo Bresciani and Paolo Fontana. A knowledge-based query system for
biological databases. IRroceedings of FQAS 200%2olume 2522 ol ec-
ture Notes in Computer Sciengeges 86—89. Springer Verlag, 2002.

Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and
Hans-dirgen Profitlich. An empirical analysis of optimization techniques
for terminological representation systems or: Making KRIS get a move on.
Applied Atrtificial Intelligence4:109-132, 1994.

J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic ar-
chitecture for storing and querying rdf and rdf schema. International
Semantic Web Conference (ISWC;@)02.

Tim Berners-lee. Weaving the Web: The Original Design and Ultimate
Destiny of the World Wide Weblarper, San Francisco, 1999.

Tim Berners-Lee. Notation 3, 2001. http://www.w3.org/
Designissues/Notation3

Tim Berners-Lee, James Hendler, and Ora Lassila. The semanticSeeb.
entific American2001.

Sean Bechhofer, Ralf Mller, and Peter Crowther. The dig description logic
interface. InProceedings of the 2003 International Workshop on Descrip-
tion Logics (DL2003)volume 81 of CEUR Workshop Proceeding2003.

Sean Bechhofer, Ralf Mler, and Peter Crowther. The dig description logic
interface. InProceedings of DL2003 International Workshop on Descrip-
tion Logics Rome, September 2003.

[BMNPSO02] F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schnei@lee De-

[BMR99]

[BNPOO]

[Bra04]

80

scription Logic Handbook: Theory, implementation and applicaticam-
bridge University Press, 2002.

Francesca Benzi, Dario Maio, and Stefano Rizzi. VISIONARY: a
viewpoint-based visual language for querying relational databakeds.
Lang. Comput.10(2):117-145, 1999.

Paolo Bresciani, Michele Nori, and Nicola Pedot. A knowledge based
paradigm for querying databases.Database and Expert Systems Applica-
tion, volume 1873 olecture Notes in Computer Scieng@ages 794-804.
Springer Verlag, 2000.

Sebastian Brandt. On Subsumption and Instance Probleff i w.r.t.
General TBoxes. IProceedings of the 2004 International Workshop on
Description Logics (DL2004)CEUR-WS, 2004.

June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

[BSCO0]

[BSN*+99]

[BTMS04]

[BVHH*04]

[CCLB97]

[CDD*04]

[CDGLYS]

[CDGL*04]

[CDRO4]

[CDTO04]

[CGL*98]

A. B. Benitez, J. R. Smith, and S. Chang. MediaNet: a multimedia infor-
mation network for knowledge representation.Froc. SPIE Vol. 4210, p.
1-12, Internet Multimedia Management Systems, John R. Smith; Chinh Le;
Sethuraman Panchanathan; C.-C. J. Kuo; Eg¢sges 1-12, October 2000.

Sean Bechhofer, Robert Stevens, Gary Ng, Alex Jacoby, and Carole A.
Goble. Guiding the user: An ontology driven interface. UIDIS 1999
pages 158-161, 1999.

M. Bada, D. Turi, R. McEntire, and R. Stevens. Using Reasoning to Guide
Annotation with Gene Ontology Terms in GOASIGMOD Record (special
issue on data engineering for the life sciencdsine 2004.

Sean Bechhofer, Frank van Harmelen, James Hendler, lan Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein eds.
OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/,
Feb 2004.

Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo
Batini. Visual query systems for databases: A survégurnal of Visual
Languages and Computing(2):215-260, 1997.

Jeremy J. Carroll, lan Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: implementing the semantic web
recommendations. IWWW (Alternate Track Papers & Posterap04.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the
decidability of query containment under constraintsPinc. of PODS’98
1998.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo
Rosati, and Guido Vetere. DL-Lite: Practical Reasoning for Rich DLs. In
Proc. of the 2004 Description Logic Workshop (DL 2002 UR Electronic
Workshop Proceedinghttp://ceur-ws.org/VVol-104/ , 2004.

Jeremy Carroll and Jos De Roo. OWL web ontology language test cases.
W3C Recommendation, 2004.

Olga Caprotti, Mike Dewar, and Daniele Turi. Mathematical service match-
ing using Description Logic and OWL. IRroceedings of 3rd International
Conference on Mathematical Knowledge Management (MKMaglume
3119 ofLNCS Springer-Verlag, 2004.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele
Nardi, and Riccardo Rosati. Information integration: Conceptual model-
ing and reasoning support. Proc. of the 6th Int. Conf. on Cooperative
Information Systems (CooplS'9@ages 280-291, 1998.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 81

BIBLIOGRAPHY

[CGLOO]

[DCv*02]

[Fra00]

[Fre95]

[Gen03]

[GGM*+02]

[GHO4]

[GHVDO3]

[GS96]

[Hal01]
[HKS02]

[HMO1a]

[HMO1b]

82

D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using
views over description logics knowledge bases.Ptoc. of the 16th Nat.
Conf. on Atrtificial Intelligence (AAAI 20002000.

Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, lan Hor-
rocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea
Stein. OWL web ontology language 1.0 reference, July 2002. Available at
http://www.w3.org/TR/owl-ref/

Enrico Franconi. Knowledge representation meets digital librarieBrdo.
of the 1st DELOS (Network of Excellence on Digital Libraries) workshop on
“Information Seeking, Searching and Querying in Digital Librarie&000.

J. W. Freeman.mprovements to Propositional Satisfiability Search Algo-
rithms PhD thesis, University of Pennsylvania, 1995.

Gene Ontology Consortium. Gene Ontology Databastp://www.
godatabase.org/dev/database , 2003.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari,
and Luc Schneider. Sweetening ontologies with DOLCHEioc. of EKAW
2002 2002.

Birte Glimm and lan Horrocks. Query answering systems in the semantic
web. INCEUR workshop proceedings of KI-2004 Workshop on Applications
of Description Logics (ADL 20045eptember 24 2004.

Benjamin N. Grosof, lan Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: Combining logic programs with description logic.
In Proc. of the Twelfth International World Wide Web Conference (WWW
2003) pages 48-57, 2003.

Fausto Giunchiglia and Roberto Sebastiani. A SAT-based decision proce-
dure forALC. In Proc. of KR'96 pages 304-314, 1996.

Terry A. Halpin. Augmenting UML with fact orientation. IHICSS 2001.

Steffen Hblldobler, Tran Dinh Khang, and Hans-Petelbi®t A fuzzy
description logic with hedges as concept modifiers. Pmceedings In-
Tech/VJIFuzzy'20Qages 25-34, 2002.

V. Haarslev and R. Mller. Description of the racer system and its applica-
tions. 2001.

V. Haarslev and R. Nller. High performance reasoning with very large
knowledge bases: A practical case study. Phoc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 20012001.

June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

[HMO1c]

[HMO1d]

[HMO2]

[HMO3]

[Hol96]

[Hor97]

[Hor98a]

[Horo8b]

[Hor98c]

[Hor99]

[Hor03]

[HPS98]

Volker Haarslev and Ralf Kller. Racer system description. Automated
Reasoning: First International Joint Conference, IJCAR 20@lume 2083
of Lecture Notes in Computer Scien&pringer-Verlag Heidelberg, 2001.

Volker Haarslev and Ralf iller. RACER System Description. linter-
national Joint Conference of Automatic Reasoning (IJCAR20@dyme
2083, 2001.

Volker Haarslev and Ralf Mller. Practical Reasoning in RACER with a Con-
crete Domain for Linear Inequations. Rroceedings of the International
Workshop on Description Logics (DL-2002), Toulouse, Frangages 91—
98, April. 2002.

V. Haarslev and R. Nller. Racer: A core inference engine for the semantic
web. INnEON, 2003.

Bernhard Hollunder. Consistency checking reduced to satisfiability of con-
cepts in terminological systemann. of Mathematics and Artificial Intelli-
gence 18(2—-4):133-157, 1996.

lan Horrocks. Optimising Tableaux Decision Procedures for Description
Logics PhD thesis, University of Manchester, 1997.

I. Horrocks. The FaCT system. In H. de Swart, edifarfomated Reason-
ing with Analytic Tableaux and Related Methods: International Conference
Tableaux’98 number 1397 in Lecture Notes in Artificial Intelligence, pages
307-312. Springer-Verlag, May 1998.

I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In
International Conference of Knowledge Representation (KR88)es 636—
647, 1998.

I. Horrocks. Using an expressive description logic: FaCT or fiction? In
Principles of Knowledge Representation and Reasoning: Proceedings of
the Sixth International Conference (KR'9®gnges 636—-647, 1998.

I. Horrocks. FaCT and iFaCT. limternational Description Logics Work-
shop (DL99) pages 133-135, 1999.

I. Horrocks. Implementation and optimisation techniques. In Franz Baader,
Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editorghe Description Logic Handbook: Theory, Implementa-
tion, and Applicationspages 306—-346. CUP, 2003.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption optimiza-
tions. Ininternational Description Logics Workshop (DL98P98.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 83

BIBLIOGRAPHY

[HPS99]

[HPS03a]

[HPS03b]

[HPSVHO3]

[HS99]

[HS02]

[HST99]

[HSTOO]

[HSTTOO]

[HT02]

[JW90]

[LHO3]

84

I. Horrocks and P. F. Patel-Schneider. Optimising description logic sub-
sumption.Journal of Logic and Computatio®(3):267—-293, 1999.

lan Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. IfProc. of the 2nd International Semantic
Web Conference (ISWX003.

lan Horrocks and Peter F. Patel-Schneider. Three theses of representation
in the semantic web. IRroc. of the Twelfth International World Wide Web
Conference (WWW 20Q3)ages 39-47. ACM, 2003.

lan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHZQ and RDF to OWL: The making of a web ontology languageof
Web Semanti¢4.(1):7-26, 2003.

I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchieslournal of Logic and Computatiqord:385—-410,
1999.

lan Horrocks and Ulrike Sattler. Optimised reasoning§@tZ Q. In Proc.
of the 15th Eur. Conf. on Artificial Intelligence (ECAI 200Ppages 277—
281, July 2002.

lan Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
expressive description logics. Rroc. of LPAR’99 pages 161-180, 1999.

I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the
Description LogicSHZ Q. In David MacAllester, editoiCADE-2000 num-
ber 1831 in LNAI, pages 482—-496. Springer-Verlag, 2000.

lan Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies. How to
decide query containment under constraints using a description logic. In
Logic for Programming and Automated Reasoning (LPAR 200@ume
1955 ofLecture Notes in Computer Scienpages 326—343. Springer, 2000.

lan Horrocks and Sergio Tessaris. Querying the semantic web: a formal ap-
proach. In lan Horrocks and James Hendler, edifersg. of the 2002 Inter-
national Semantic Web Conference (ISWC 20@8mber 2342 in Lecture
Notes in Computer Science. Springer-Verlag, 2002.

R. Jeroslow and J. Wang. Solving propositional satisfiability problémas.
of Mathematics and Artificial Intelligencé:167-187, 1990.

Lei Li and lan Horrocks. A Software Framework For Matchmaking Based
on Semantic Web Technology. Rroc. of the Twelfth International World
Wide Web Conference (WWW 2003 ges 331-339. ACM, 2003.

June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

[Mas99]

[MGP9S]

[MHO3]

[MMO4]

[MvHO4]

[ORMO3]

[Pan04]

[PHO5]

[PS99]

[RDFO1]

[RRS'01]

[SC95]

[Sch94]

Fabio Massacci. TANCS non classical system comparisonPra. of
TABLEAUX’99 1999.

Norman Murray, Carole Goble, and Norman Paton. A framework for de-
scribing visual interfaces to databasé&svis. Lang. Comput9(4):429-456,
1998.

Ralf Moller and Volker Haarslev. Description Logic Systems. In Franz
Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editorBhe Description Logic Handbook: Theory,
Implementation, and Applicationpages 282—-305. Cambridge University
Press, 2003.

Frank Manola and Erik Miller. Rdf primer, 2004http://www.w3.
org/TR/rdf-primer/

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language Overview . Technical report, W3C Recommendation, Feb 2004.

http://www.orm.net , 2003.

Jeff Z. Pan.Description Logics: Reasoning Support for the Semantic.Web
PhD thesis, School of Computer Science, The University of Manchester,
2004.

Jeff Z. Pan and lan Horrocks. OWL-Eu: Adding Customised Datatypes
into OWL. InProc. of Second European Semantic Web Conference (ESWC
2005) 2005.

Peter F. Patel-Schneider. DLP. Description Logics1999.

http://lists.w3.org/archives/public/www-rdf-logic/. =~ W3C Mailing List,
starts from 2001.

J. E. Rogers, A. Roberts, W. D. Solomon, E. van der Haring, C. J. Wroe,
P. E. Zanstra, and A. L. Rector. GALEN ten years on: Tasks and supporting
tools. InProc. of MEDINFO2001pages 256-260, 2001.

M Schaerf and M Cadoli. Tractable reasoning via approximatotificial
Intelligence 74:249-310, 1995.

A. Schmiedel. Semantic indexing based on description logics. In F. Baader,
M. Buchheit, M.A. Jeusfeld, and W. Nutt, editoReasoning about struc-
tured objects: knowledge representation meets databases. Proceedings of
the KI'94 Workshop KRDB’94ACEUR, September 1994.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 85

BIBLIOGRAPHY

[SDO2]

[SemO04]

[SSS91]

[SST+05]

[STO4]

[StrO1]

[Str04]

[Tes97]

[THOO]

[TM98]

[Tsa05]

[UI197]

86

M. Sintek and S. Decker. Triple—a query, inference, and transformation
language for the semantic web. Iimernational Semantic Web Conference
(ISWC-02) 2002.

http://lists.w3.org/archives/public/public-swbp-wg/. W3C Mailing List,
starts from 2004.

M. Schmidt-Schaufd and G. Smolka. Attributive concept descriptions with
complementsArtificial Intelligence 48:1-26, 1991.

Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Pan, and lan Hor-
rocks. A fuzzy description logic for multimedia knowledge representation.
In Proceedings of the European Workshop on Multimedia and the Semantic
Weh 2005.

D. Sanchez and G.B. Tettamanzi. Generalizing quantification in fuzzy de-
scription logic. InProceedings 8th Fuzzy Days in Dortmy2@04.

U. Straccia. Reasoning within fuzzy description logidsurnal of Artificial
Intelligence 14:137-166, 2001.

Umberto Straccia. Transforming fuzzy description logics into classical de-
scription logics. InProceedings of the 9th European Conference on Logics
in Artificial Intelligence (JELIA-04)number 3229 in Lecture Notes in Com-
puter Science, pages 385-399, Lisbon, Portugal, 2004. Springer Verlag.

Sergio Tessaris. Questions and answers: reasoning and querying
in Description Logic. PhD thesis, The University of Manchester,
1997. URL http://www.cs.man.ac.uk/ ~tessaris/papers/
phd-thesis.ps.gz

Anni-Yasmin Turhan and Volker Haarslev. Adapting Optimization Tech-
niques to Description Logics with Concrete Domains. Pimceedings of
the International Workshop in Description Logics 2000 (DL2000), Aachen,
Germany pages 247-256, 2000.

C. Tresp and R. Molitor. A description logic for vague knowledge.lnn
proc of the 13th European Conf. on Atrtificial Intelligence (ECAI;98H98.

D. Tsarkov. FaCT++. http://owl.man.ac.uk/factplusplus ,
2005.

J. D. Ullman. Information integration using logical views. Pnoc. of the
6th Int. Conf on Database Theory (ICDT'9'pages 19-40, 1997.

June 25, 2005 KWEB/2004/D2.5.3/v1.0

D2.5.3 Report on Implementation and Optimisation Techniques for Ontology Query SystemsIST Project IST-2004-5

[VHO1] Anni-Yasmin Turhan Volker Haarslev, Ralf Mller. Exploiting Pseudo Mod-
els for TBox and ABox Reasoning in Expressive Description Logics. In
Proceedings of International Joint Conference on Automated Reasoning,
IJCAR’2001, R. Gor, A. Leitsch, T. Nipkow (Eds.),Siena, Italy, Springer-
Verlag, Berlin, pages 61-75, Jun. 2001.

[WSGAO03] Chris J. Wroe, Robert D. Stevens, Carole A. Goble, and Michael Ashburner.
A methodology to migrate the gene ontology to a description logic envi-
ronment using daml+oil. IProceedings of the 8th Pacific Symposium on
Biocomputing (PSBHawaii, January 2003.

[Zim87] H.J. Zimmermann. Fuzzy Sets, Decision Making, and Expert Systems
Kluwer, Boston, 1987.

KWEB/2004/D2.5.3/v1.0 June 25, 2005 87

