
State of the art of current Semantic
Web Services initiatives

Lyndon Nixon and Elena Paslaru (FU Berlin)

with contributions from:
Michal Zaremba (NUIG), Enrica Dente (NUIG), Rubén Lara (UIBK), Walter

Binder (EPFL), Ion Constantinescu (EPFL), Radu Jurga (EPFL), Vincent
Schickel-Zuber (EPFL), Vlad Tanasescu (EPFL), Mark Carman (UniTn), Loris

Penserini (UniTn), Marco Pistore (UniTn)

reviewed by: Emilia Cimpian (NUIG)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Internal Deliverable D1 (WP2.4)
This internal deliverable serves as an introduction to the activities in the fields of Web Services
and Semantic Web Services. It provides a survey of the state of the art of current Semantic Web
Services initiatives and an analysis of these initiatives to identify semantic needs not covered
within existing research efforts. The document shall act as an input to the public deliverables of
the Semantic Web Services work package as well as to the other research work packages and to
the KnowledgeWeb project as a whole.
Keyword list: Web Services, Semantic Web Services

Copyright c© 2004 The contributors

Document Identifier KWEB/2004/WP2.4ID1/v1
Project KWEB EU-IST-2004-507482
Version v1.0
Date 29.June, 2004
State final
Distribution internal

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Śevigńe
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Ṕerez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universiẗat Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
École Polytechnique F́ed́erale de Lausanne
France Telecom
Freie Universiẗat Berlin
Institut National de Recherche en Informatique et en Automatique
National University of Ireland Galway
Universidad Polit́ecnica de Madrid
University of Innsbruck
University of Karlsruhe
University of Liverpool
University of Manchester
University of Trento

4

Changes

Version Date Author Changes

0.01 14.04.04 Lyndon Nixon,
Elena Paslaru

Proposed bare structure

0.05 23.04.04 Lyndon Nixon,
Elena Paslaru

Draft text from FU Berlin

0.06 03.05.04 Ruben Lara Comments on previous version
0.1 10.05.04 Lyndon Nixon Revision of v0.05 and contributions from

other partners added
0.2 24.05.04 Elena Paslaru Transformation to Latex
0.3 26.05.04 Lyndon Nixon Revision of text
0.4 07.06.04 Ruben Lara Addition of chapter 4
0.45 08.06.04 Elena Paslaru Added glossary, style changes
0.46 10.06.04 Lyndon Nixon Edited chapters 2.3 and 3.2
0.5 15.06.04 Lyndon Nixon Completed conclusion and executive

summary
0.7 21.06.04 Enrica Dente,

Ruben Lara
Final version of chapter 3.3

0.8 25.06.04 Walter Binder,
Ruben Lara

Further editing

0.9 28.06.04 Lyndon Nixon Minor corrections and cleaning up of ci-
tations

1.0 29.06.04 Lyndon Nixon Final version
15.07.04 Lyndon Nixon Post-review version

Executive Summary

The KnowledgeWeb Network of Excellence has as its major aim the promotion of the
transferral of Semantic Web technologies from academia to industry. However before
these technologies can be strongly promoted to business, research in the Semantic Web
and ontologies must reach maturity. New areas of business applicability such as the com-
bination of Semantic Web with Web Services, realizing intelligent ”Semantic Web Ser-
vices”, require serious new research efforts.

Work Package 2.4 in KnowledgeWeb is focused on supporting the research efforts in
bringing Semantic Web Services to maturity. In the course of the initial 18 months of the
project, the work package will produce the following deliverables:

- survey on the state of the art of current Semantic Web Services initiatives and anal-
ysis of current initiatives to identify semantic needs not covered within existing research
efforts;

- semantic requirements for Web Services description;
- definition of semantics for Web Services discovery and composition;
- state of the art on agent-based services;
- guidelines for the integration of agent-based services and web-based services.
This document is the first deliverable in the above list. It is intended to be an internal

deliverable distributed within the work package partners and acting as a firm basis for
a shared understanding of the current state of the art of Semantic Web Services and the
requirements currently arising out of the research initiatives in the field. It will also be
distributed within the KnowledgeWeb project as a whole to act as an informative intro-
duction to Semantic Web Services for all project participants including industry partners.

Additionally this document will act as an informed input to the following two deliver-
ables which will explore in more depth the semantic needs for describing Semantic Web
Services, particularly in terms of their discovery and composition.

As a groundwork for introducing and analyzing Semantic Web Services initiatives,
we have first explained Web Services in terms of their definition, rationale, application
and requirements. From this, we could examine the key standards and specifications in
the area and evaluate the effectiveness of the Web Services infrastructure for achieving its
aims. The findings from this were:

- Web Services are best defined as Web-based self-describing loosely-coupled mod-
ular software components which can be published, located and invoked by human or
machine clients;

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

- Web Services arose out of the limitations of conventional middleware and Enterprise
Application Integration (EAI);

- the research community proposes the fulfilment of complex business tasks with Web
Services but actual use cases tend to be focusing on simpler implementations;

- the Web Services infrastructure consists of a wide range of standards, specifications
and tools. While the core standards of SOAP, WSDL and UDDI fundamentally enable
Web Services, many other specifications have been required to add functionality. There is
overlap in some areas (e.g. in co-ordination and composition specifications) and compet-
ing specifications/tools from different vendors;

- complete with the extension specifications Web Services requirements are being
tackled in the current infrastructure. However the demands of wide scale Web deployment
of application integration solutions are not met by the current specifications and tools.

It is recognized by the Semantic Web Services research community that if Web Ser-
vices are to achieve their goals, they require mechanization of service recognition, ser-
vice configuration and combination (i.e., realizing complex workflows and business log-
ics with Web Services), service comparison and automated negotiation. The instability
and unreliability of the Web requires from Web Service-based systems an ability to main-
tain functional capabilities over a dynamically changing environment. The weakness of
service descriptions based on semi-formal natural language descriptions is overcome by
a combination of Web Services with Semantic Web technology.

In this overview of the state of the art of Semantic Web Services research we have
considered four primary initiatives in the area at the present time (June 2004):

- OWL-S : a Web Service framework modelled in the ontology language OWL. Its
main goal is to enable a user or a software agent to automatically discover, invoke, com-
pose, and interact with Web Services adhering to requested constraints.

- IRS-II : a framework and implemented infrastructure for accessing, modifying and
configuring the functionality of reusable problem-solving resources on the Internet. Web
Services are conceived as problem-solving services enriched with semantic descriptions
of their functionalities.

- Meteor-S : a project initiated to integrate Web Services standards with the Seman-
tic Web. This has focused on workflow management specifications, service description
language and peer-to-peer infrastructure for (semi-)automated publication and discovery.

- WSMF/WSMO : a conceptual model for the development and description of fully
functional Web Services and an ontology and formal language for describing aspects of
Semantic Web Services based upon that conceptual model.

The analysis of these initiatives is based upon a set of requirements that we derive for
Semantic Web Services. The main results of the analysis were:

- Web Service invocation is extended semantically but there still is lacking clear formal
semantic models of invocation;

- Web Service discovery has semantic representations of capabilities and goals but the
matching operations on those representations are immature;

- Web Service composition lacks a mature semantic description. Such a description
must be able to represent dynamic service selection and data and process mediation;

KWEB/2004/WP2.4ID1/v1 29.June, 2004 iii

- Web Service interoperation also lacks a mature semantic description. Existing ap-
proaches are ambiguous to interpret but a clear conceptual model exists that can be built
upon;

- other Web Service aspects still lack an semantically-based approach (e.g. transac-
tionality, security, trust, execution monitoring).

These results will feed into the further activities of the KnowledgeWeb Network of
Excellence, not only within the Work Package 2.4 but also orthogonally in the other re-
search work packages and within the future research of the project research partners.

As a result, this internal deliverable forms the beginning of a process whose final goal
is the realization of Semantic Web Services.

iv 29.June, 2004 KWEB/2004/WP2.4ID1/v1

Contents

1 Introduction 1

2 Web Services 3
2.1 General Description of Web Services . 3

2.1.1 Definition . 3
2.1.2 Rationale . 5
2.1.3 Practical Applications and Use Cases 7
2.1.4 Summary of Requirements . 11

2.2 Key Standards and Specifications . 16
2.2.1 SOAP . 17
2.2.2 WSDL . 18
2.2.3 UDDI . 20
2.2.4 Web Service Composition Languages 21
2.2.5 Web Services Interoperation . 24
2.2.6 Other Web Services specifications 26
2.2.7 W3C Working Groups . 27
2.2.8 Web Service Tools and Platforms 28

2.3 Evaluation . 30
2.3.1 Service Invocation . 30
2.3.2 Service Discovery . 31
2.3.3 Service Composition and Co-ordination 32
2.3.4 Evaluation Conclusion . 33

3 Semantic Web Services 35
3.1 Definition of Semantic Web Services . 35
3.2 Rationale for Semantic Web Services . 37
3.3 Current Semantic Web Service Initiatives 42

3.3.1 DAML-S/OWL-S . 42
3.3.2 IRS-II . 44
3.3.3 METEOR-S . 47
3.3.4 WSMF/WSMO . 53

4 Analysis of Semantic Needs 57

v

CONTENTS

4.1 Requirements of Semantic Web Services 57
4.2 Analysis of Current Initiatives . 61

4.2.1 WSMO . 61
4.2.2 OWL-S . 65
4.2.3 IRS-II . 70
4.2.4 METEOR-S . 72

4.3 Open Issues . 76

5 Conclusion 78

A Glossary 84

vi 29.June, 2004 KWEB/2004/WP2.4ID1/v1

Chapter 1

Introduction

One of the research aims of the Knowledge Web project is to integrate the European
research activity in the field of Semantic Web Services, and to identify open challenges to
feed ongoing research in areas such as scalability, heterogeneity, dynamics, and Semantic
Web language extensions.

The integration of the twin research fields of Semantic Web and Web Services has
been identified as a key application field for both. While Web Services extend the Web
from a distributed source of information to a distributed source of services, the Semantic
Web adds machine-interpretable information to Web content in order to provide intelligent
access to heterogeneous and distributed information. Similarly, Web Services can be de-
fined using Semantic Web concepts so that computer systems can automatically discover,
reason about and make use of Web Services. This joint application of Semantic Web and
Web Services is usually referred to as Semantic Web Services (Lara et al., 2003).

The Internal Deliverable D1 is intended to provide a survey of the state of the art of
current Semantic Web Services initiatives and an analysis of these initiatives to identify a
first set of semantic needs not covered within existing research efforts. This is to act as an
input to the first Deliverable of the Work Package 2.4, which shall be a draft of semantic
requirements for Web Services description. The results of this Internal Deliverable shall
make it possible to identify from the determined requirements for Semantic Web Services
those requirements not yet satisfactorily being considered in existing initiatives.

As a result it is expected to bring together the existing work with the development
of new research tasks for the remaining requirements and hence facilitate co-ordinated
research leading to a complete and consistent standardized infrastructure for the imple-
mentation of and interoperation with Semantic Web Services. On this basis, Semantic
Web Services can be promoted to industry as a practical and viable solution to business
needs.

This document is structured in the following way:

The following chapter shall act as a primer to Web Services. This will serve as a

1

1. INTRODUCTION

brief introduction to Web Services in terms of their rationale, sample use cases (both
exemplary and actual), requirements, the key standards and specifications in the field and
an evaluation of them.

This serves as a basis for Chapter 3 which introduces why the introduction of seman-
tics is applicable to the field of Web Services and introduces the current initiatives in
Semantic Web Service research.

The analysis of these initiatives is found in Chapter 4. This analysis is intended to
identify the semantic needs not being covered by the existing work. The basis for the
analysis is a set of requirements derived from the rationale for Semantic Web Services,
which are what Semantic Web Services are intended to comprehensively enable through
the complete standardized infrastructure which is the overall aim of our work.

2 29.June, 2004 KWEB/2004/WP2.4ID1/v1

Chapter 2

Web Services

2.1 General Description of Web Services

Before we introduce the initiatives in Semantic Web Services research and analyze them,
it is useful to make clear what is meant by Web Services, which aims we consider Web
Services to have, what specifications and technologies define the Web Services field and
what issues can be identified which lead us to consider the combined use of the Semantic
Web and Web Services.

2.1.1 Definition

While there is a general understanding of what is meant by Web Services, it is nevertheless
important at the outset to have a precise definition so that the work that we consider in this
field is not too broad, or too narrow. For example, a common brief description of a Web
Service would be an application which is available to others over the Web, though this
could make into a Web Service any procedural code available through an URL e.g. CGI
scripts or Java servlets. This is hence too broad a definition. Likewise the Wikipedia offers
“a collection of protocols and standards used for exchanging data between applications”.
1. This could however apply to CORBA, Enterprise Application Integration (EAI) and
other technologies pre-dating Web Services.

Several Web Service definitions can be found in the literature. An often quoted de-
scription comes from the IBM Tutorial from Web Services (Tidwell, 2000):

“self-contained, self-describing modular applications that can be published, located
and invoked across the Web”.

The Spencil Group defines Web Services2 as:

1Wikipedia entry on ”Web Services”, URL: http://en.wikipedia.org/wiki/Webservice
2Article ”Defining Web Services”, URL: http://www.perfectxml.com/Xanalysis/TSG/WebServices.asp

3

2. WEB SERVICES

“loosely coupled, reusable software components that semantically encapsulate dis-
crete functionality and are distributed and programmatically accessible over standard
Internet protocols”

From these descriptions it is possible to identify some required aspects of a Web Ser-
vice that differentiate it from the more general applications mentioned above:

• “self-contained” and “loosely coupled” refers to the application being complete in
itself i.e. the entire minimal functionality to realise the intended service is available
and hence the service requester does not have to provide any additional functionality
in order to make use of the service.

• “self-describing” and “semantically encapsulate discrete functionality” refers to the
application providing a description of itself which is made available for examination
by a human or machine.

• “modular” refers to the application being potentially a part of a larger application.
Generally this means that the service is capable of being incorporated with other
services in order to enable greater functionality (just as different procedures are
used together to realise applications).

• Finally, it is emphasized that the service is Web-based in all aspects of its oper-
ation with a service requester. It is “published” (made public, e.g. to a service
crawler), “located” (referenceable, e.g. through an URL) and “invoked” (exe-
cutable, i.e. “programmatically accessible”, through a call from another system,
e.g. over HTTP) on the World Wide Web.

An even more precise definition is provided by the W3C Web Services glossary (Haas
and Brown, 2004):

Definition: “A Web service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typically con-
veyed using HTTP with an XML serialization in conjunction with other Web-related
standards”.

This definition is certainly more standards-specific, as well as supplying a clearer
indication of how a Web Service should work. While arguably SOAP and WSDL are not
the only standards that can be used the definition does indicate how a Web Service should:

• provide a description that is machine-processable and identifies the interface for
accessing the service.

• interact with other systems (requesters) using messages with a XML serialization
in a format prescribed by the interface description.

4 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

These two last definitions are sufficient for determining the common characteristics /
base functionality of a Web Service. No restriction is given about the kind of functionality
a Web Service can provide. It can provide static or dynamic information or perform real
changes in the world, but what is essential in web services is their capability of providing
functionality in a distributed manner within or across organizational boundaries using
such widely accepted technologies as Internet related technologies.

This functionality should meet at least the following four aspects. Their definitions
are based on the W3C Web Services glossary (Haas and Brown, 2004).:

• Discovery - The act of locating a machine-processable description of a Web service-
related resource that may have been previously unknown and that meets certain
functional criteria. It involves matching a set of functional and other criteria with a
set of resource descriptions. The goal is to find an appropriate Web service-related
resource.

• Invocation - The act of a message exchange between a client and a Web service
according to the service’s interface in order to perform a particular task offered by
that service.

• Interoperation - defines the sequence and conditions under which multiple cooper-
ating independent agents exchange messages in order to perform a task to achieve
a goal state (also called co-ordination or choreography).

• Composition - defines the implementation of the sequence and conditions in which
one Web service invokes other Web services in order to realize some useful func-
tion, i.e. the pattern of interactions that a Web service agent must follow in order to
achieve its goal (also called orchestration).

The first two are explicit in how Web Services are defined, while the other two are
implicit in how Web Services would be used. In our discussion of Web Services we will
relate points back to these four aspects.

A full glossary of terms relating to Web Services can be found in appendix A.

2.1.2 Rationale

An important question of Web Services is not only “what they are” but of course “why
they are”. On one level they are regarded as merely a Web-friendly progression of long
existing ideas in the field of Remote Procedure Calls (RPC) and Enterprise Application
Integration (EAI). On the other they are hyped as the future basis of a service-oriented
Web and the solution to all business process integration problems.

The interest in and uptake of Web Services arises out of the limitations of conventional
middleware and EAI (Alonso et al., 2003).

KWEB/2004/WP2.4ID1/v1 29.June, 2004 5

2. WEB SERVICES

Middleware includes RPC, object brokers such as CORBA and message brokers for
EAI. It facilitates and manages the interaction between applications across heterogeneous
computer platforms. This is a significant requirement of business process automation,
as such processes tend to rely on functionality available from distributed computer sys-
tems. A typical example of such a case is the automatic teller machine (ATM) which
communicates over a local network with the information system of the bank.

Middleware handles heterogeneity with the use of specific interfaces to different ap-
plications. For different systems, different interfaces must be generated. Fundamentally,
interoperability was not possible when different systems integrated non-compatible mid-
dleware (e.g. Java based vs Microsoft .NET). On the other hand for compatible platforms
which were comparable in functionality, middleware became the accepted means to inte-
grate distributed systems.

Concrete middleware makes implicit assumptions about the nature of underlying sys-
tems. EAI is an evolution of middleware to cope with coarse-grained, heterogeneous
application integration. Message brokers are used to hide system heterogeneity and dis-
tribution from the application integrating those systems. Workflow management systems
enable the definition and maintenance of the integration logic. EAI platforms tend how-
ever to be expensive, complex and difficult to use and maintain.

Integration does also not just take place within a single company. There is also a
desire to automate business processes across several enterprises or make them available
to external clients (i.e. persons not accessing the service from the enterprises intranet).
Such scenarios are also referred to as B2B (business-to-business) or B2C (business-to-
customer). Natural use cases are logistics and e-commerce, where the company has a
vested interest in automating the ordering and delivery of supplies, or being able to offer
its services to paying customers on the Internet.

Classical middleware is implicitly limited to use on a LAN, yet these scenarios require
support for communication over a wide area network. This led to middleware extensions
such as the General Inter-ORB Protocol (GIOP) in CORBA. However businesses protect
their systems behind firewalls, from where ORBs can not communicate to remote sys-
tems. There is also no explicit agreement on the approach on how service discovery and
invocation may be realised.

The World Wide Web has become the universal gateway between remote systems
as the only communication possibility with firewalls is tunnelling through HTTP, which
assumes a Web server on both ends of the communication. While tunnelling could also be
used with middleware and EAI, these approaches are not designed with the requirements
of the Web architecture in mind.

The implicit lack of trust between autonomous business entities means that each par-
ticipant in a business process will want to keep control of their own business operations
and transaction data. Yet in inter-enterprise communication there is no obvious location
for the middleware as the participants are unlikely to agree to a centralised middleware
solution hosted by one of the businesses, or by a third party.

6 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

Also in EAI there is an assumption that interactions are short-lived. However in the
inter-enterprise case an operation could last much longer - hours or even days. Asyn-
chronous interactions could hold up processes for long periods, locking up business data
and services. Conventional middleware protocols are not designed for a distributed, peer-
to-peer communication scenario.

The lack of standardization at the system and communication protocol levels and the
lack of an appropriate infrastructure for B2B integration is a significant problem resulting
in costly and complex implementation and deployment of inter-enterprise system inte-
gration in an ad hoc point-to-point fashion. Web Services are designed in contrast to be
loosely coupled (and hence maximally re-usable) components available over the existing
network infrastructure of the Internet. Web Services are intended to provide a common,
simple and open framework for enabling the deployment and integration of business pro-
cesses.

Another benefit of Web Services is that existing (legacy) enterprise systems can be
wrapped in a Web Services interface and the system functionality can be made locatable
and invocable through the Web in a standardized manner.

The expected benefits of the Web Services approach with respect to middleware and
EAI can be summarized thus (Apshankar et al., 2002):

• Simpler: to design, develop, maintain and use compared to technologies like DCOM
or CORBA;

• Basis in Open Standards: rather than proprietary EAI solutions;

• Flexible integration: through maximal decoupling between the service provider and
service requester;

• Reduced investment: in comparison to EAI solutions such as message brokers;

• Broader scope: than EAI solutions which treat applications as single entities. Web
Services can be realised as small logical units and integration made on a granular
basis;

• Dynamic rather than static interface.

2.1.3 Practical Applications and Use Cases

The intended benefits of Web Services can be illustrated through the use of scenarios
(business use cases) and can be demonstrated in concrete implementations of the use of
Web Services as the means to business system integration. Existing scenarios used in the
Web Services literature and real examples of the use of Web Services are introduced here.
As a result, it can be seen how Web Services are intended to be used (according to the
research communities) and are being used (according to industry).

KWEB/2004/WP2.4ID1/v1 29.June, 2004 7

2. WEB SERVICES

Business Scenarios for Web Services

Scenarios vary from common simple (request/reply) business processes which can be
”outsourced” - rather than making multiple internal implementations, a shared Web ser-
vice is invoked from different heterogeneous business systems - to higher level imple-
mentations which require more complex service architectures for co-ordination, media-
tion, monitoring etc. It is clear that Web Services are seen as having applicability at both
levels. .

A common example of the former is that of a stock quotation service which takes as
input the code of the requested stock and returns the current stock price. Another typical
illustration is that of a currency conversion tool, which receives as input two strings -
currency codes - and returns an integer - the exchange rate between those two currencies.

Many such implementations, which cover a wide range of domains, have been pro-
duced by Web Service programmers and can be found and invoked from online Web
Service repositories such as the Xmethods site3. Other repositories available online in-
clude WebserviceList , RemoteMethods , WSIndex , Web Service Resource , Flash-DB
and Web Service of the Day . These sites serve as an important demonstration of Web
Service functionality at a simple, practical level.

The Java tutorial for Web Services4 uses as an illustration a coffee company that wants
to sell coffee on the Internet. Instead of maintaining a local inventory, the company builds
a system based on Web Services that can dynamically respond to customer orders. It uses
a discovery protocol to find available coffee distributors, negotiating with their systems to
determine the prices of available coffees and storing the distributor and price information
locally. It is now able to respond to customer requests by passing the respective coffee
orders to the most suitable distributor, arranging coffee delivery and invoice payment and
customer billing. This example represents a common business process (order manage-
ment) which requires interoperation between different systems (the customers’ systems,
the suppliers’ systems, the business system negotiating between the customers and sup-
pliers). It also identifies some typical business tasks which can be handled with Web
Services supplier discovery, order receipt and processing, inventory and price queries,
ordering, invoicing and customer billing.

A similar case is mentioned in the Developer.com tutorial (Ananthamurthy, 2004),
where the system generates new orders automatically when inventory is low. In this case
a monitoring application is responsible for invoking the Web Service whenever a certain
rule is met. The invocation of the Web Service, unlike the customer order in the previous
example, is from a computer system without human intervention. This application could
even be another Web Service, meaning that a Web Service could integrate operations of
other Web Services to realise new functionality.

The W3C Web Services group give as an illustrative example a travel reservation sys-

3Xmethods website, URL: http://www.xmethods.net
4Java tutorial for Web Services, URL: http://java.sun.com/webservices/docs/1.3/tutorial/doc/index.html

8 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

tem (He et al., 2004). This is representative of a more complex system where several
services possibly with quite different implementations on different systems - are being
chained together to realise an end-to-end functionality. In this case, it is the co-ordinated
booking of a vacation (transportation, hotel, car rental, excursions etc). There is also a
payment service infrastructure. The user inputs a destination and travel dates and the
service queries across transportation services for availability and fares. When transporta-
tion is available, a subsequent stage searches hotel availability and rates (and so on to car
rental, excursions etc). Finally, the payment service is invoked to take payment from the
user through a credit card. The example notes that the travel agency could have existing
agreements with service providers or could dynamically discover appropriate services in
response to customer queries.

Looking at the examples used by the research communities, they focus primarily on
intra-enterprise communication. The Web service repositories require the use of a discov-
ery mechanism but support solely manual means (i.e. a human must search through the
repository for the desired service). The tutorials use examples that make use of the Web
Service aspects of discovery, interoperation and composition.

Web Services Real-World Applications

Concrete applications of Web Services can be divided in two categories. In the first cat-
egory we encounter Web-based services which, prior to their Web Services implemen-
tation, have been known and accessible to humans through Web sites. In the second
category, real applications use Web Services to solve needs from intra-business and inter-
business integration tasks, as well as to support supply chain (B2B) and customer services
(B2C) from their internal corporate platforms.

The Web-based Services mentioned here are evolutions of Web-based systems whose
internal data and processes were either not available to external systems or only though
proprietary client-side tools and integration platforms.

• The Galileo travel reservation system which has moved to Web Services technolo-
gies5 in order to make its travel booking services more easily and openly available.
Deployed are services for itinerary viewing and booking, trip planning, processing
airport and city codes and real-time flight status.

• The Amazon website has made a Web Service available for accessing the compa-
nies’ data about stock, prices and availability so that it can be integrated into other
applications. Some examples of applications built using the Web Service are given
on the Amazon website.

• The search engine Google has also made public a Web Service for performing
searches on Google from other applications.

5Article ”Galileo travels down Web Services path”, URL: http://www.nwfusion.com/news/2002/0429galileo.html

KWEB/2004/WP2.4ID1/v1 29.June, 2004 9

2. WEB SERVICES

• TerraService is a Web Service of TerraServer, which serves up US Geological Sur-
vey maps and satellite photos of US locations.

• MapPoint offers a Web Service for machine access to location-based services such
as maps, driving directions and proximity searches from an address input. It can be
integrated on Web Sites to provide store location services, or with mobile devices
using GPS for user location to offer directions and proximity to points of interest.
A demo shows the service being used with a Web interface to allow users to locate
their nearest coffee stores6.

Web Services functionality is seen as most relevant to the application domains of En-
terprise Application Integration (EAI) and E-Commerce. There are business use cases
which are not being publicised as businesses see Web Services as a means to gaining
competitive advantage and want to protect technical details of their internal business pro-
cesses. Some reported use cases7 serve, however, to illustrate where businesses are al-
ready applying Web Services technologies.

• Eastman Chemical is using Web Services to offer customers application-based ac-
cess to their product catalogue in real time.

• The University of California at Berkeley is creating a unified communications sys-
tem. Web services provide for standardized message exchange to enable commu-
nication between the heterogeneous systems (e-mail, voice, fax). This can be done
by adding interfaces to the existing systems rather than costly replacements.

• Providence Health Systems is making medical and other records spread across dif-
ferent systems accessible to patients and medical staff through portal-based appli-
cations. A service-oriented architecture provides simple, re-usable interfaces for
incorporating patient data into an application, cutting development time.

• National Student Clearinghouse uses Web Services to retrieve degree and enrol-
ment verifications from nearly 7,000 educational centres and streamline requests
for those verifications from employers or others who need that information.

• The Colorado Department of Agriculture maintains a Captive Elk Facility Web ser-
vice to track 160 domestic elk herds in the state. The Web Service integrates data
from three different divisions and provides a Web portal tool for running reports on
that data.

• Hewitt Associates administers employee benefits for nearly 250 large companies.
Web Services support those companies with programmatic access to Hewitts em-
ployee data. Both Hewitt and its clients have been able to incorporate employee
data directly into applications.

6MapPoint Demo ”Fourth Coffee Company”, URL: http://demo.mappoint.net/fourthcoffee/MainForm.aspx
7Network World Fusion ”Tech Insider: Web Services”, URL:

http://www.nwfusion.com/techinsider/2003/0310techinsider1.html

10 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

• T-Mobile enables mobile content delivery services to interoperate with its opera-
tional services such as user identification, personalization and billing through Web
Services. Content providers can re-use T-Mobiles services from their content de-
livery applications rather than individually implement them. Also, their Service
Integration Platform uses Web Services to support access for mobile workers to
their corporate applications.

• Lydian Trust, a financial services company, has created an automated car loan pro-
cessing system called BizCap. It uses Web Services to retrieve car loan applications,
integrate data from partners, and perform evaluation tasks such as fraud and credit
card checks.

Considering the cases given here, there is an equal spread of inter-enterprise integra-
tion scenarios and intra-enterprise (B2B) as well as some cases of use in e-commerce
(B2C). However use cases do tend to take on less complex tasks than what is being
proposed as examples within the research community. Web Services are being used to
extract simple pieces of information out of remote systems (e.g. verify yes/no, return
single value), and the complex computational tasks that are required to realize the desired
functionality remain as an implementation task for the service requester.

Businesses are not yet ready to commit budgets and development time to more com-
plex Web Service implementation scenarios, which raises the question if Web Services are
indeed capable, in their current form, to respond to the sort of complex business processes
that they are, at least hypothetically, suited to realizing,

2.1.4 Summary of Requirements

In this final introductory section to Web Services we consider the requirements to be met
by the Web Services architecture if that architecture (i.e. standards and tools based on
those standards) is to be adequate enough to enable Web Services which achieve their ex-
pected potential. We need to consider here also the demands placed upon Web Services as
part of end-to-end business solutions where they may realize business-critical processes.

The Web Services infrastructure has these fundamental characteristics (Chitnis et al.,
2004):

• a standard way for communication

• a uniform data representation and exchange mechanism

• a standard meta language to describe the services offered

• a mechanism to register and locate Web Services

KWEB/2004/WP2.4ID1/v1 29.June, 2004 11

2. WEB SERVICES

The first three requirements relate to invocation of services, and the last to discov-
ery. We consider in more detail requirements for both these aspects, before also adding
requirements for the other aspects mentioned in the introduction: interoperation and com-
position. The key requirements are numbered in the text and are summarized in Table
2.1.

Invocation requirements

If a Web Service is to be invocable it must make its services available on the Internet at
a given location and through a specified interface which may receive and/or respond with
messages conforming to a given standard.

The requester shall be able to know which operations are offered by the service and
have a means to understand how they are invoked through a description available in a
standardized language (1). This language shall also support free text annotations to ensure
a human readable description of services and operations, so that it may also be understood
what the operations are meant to do.

The actual binding, including the protocol used and the message encoding shall be
independent of the Web Services external implementation (the interface). Likewise, the
Web Services internal implementation (the service functionality) shall be independent of
the interface in terms of the programming language used or the hardware on which the
Web Service is running(2). The W3C is promoting the use of XML (both in terms of
the Infoset and the Schema) for uniform data representation and exchange and the use of
URIs to reference concepts and resources as part of their requirement that Web Services
are integrated into the wider architecture of the World Wide Web.

Another evident requirement is that the Web Service shall function as it would appear
to according to its interface. In other words, the service should respond as it is expected
to when invoked, in terms of making all operations listed in the interface available and
implementing them in the way expressed(3). There should also be a means to express trust
in the service, so that service requesters could have a means to be sure that the service
will function properly, giving the correct response to their request(4). Other invocation
requirements would be reliability, error handling (when the service is, in fact, down) and
QoS (e.g. guaranteed response times)(5).

The W3C gives as other requirements (in addition to those mentioned above) for a
Web Services description language (Schlimmer, 2004):

• description of abstract policies required by or offered by Web Service;

• description can extend interfaces to define new ones;

• description of application level errors (6);

• message functionality can be given as one-way, request-response, solicit-response
or faults(7);

12 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

• message exchange can be described as synchronous or asynchronous(8);

• description to use URIs to reference values or services;

• messages can be unambiguously mapped to an operation;

• interfaces are associated to concrete protocols/data formats;

• support Web infrastructure extensibility, e.g. use of XML namespaces.

Discovery requirements

These descriptions are expected to be found through discovery mechanisms. While ser-
vices could be searched for and located manually using repositories like those mentioned
in the previous section, service discovery mechanisms may also be standardized so that
applications can use them (as a form of Web Service in itself) to find services program-
matically and through their description to invoke them.

A discovery mechanism then would require some form of standardized request and
response to be able to accept queries and return the matching services. In order that
these services are already indexed by the discovery service, it needs to also support a
publishing functionality. This can be expressed as an API(1). To enable matching, a
basis must be determined for relating query parameters to service descriptions. Such a
mechanism will only be useful if it allows expressive enough searches and returns services
with adequate functionality to match the request(2). As part of the response, access to
the service description will be necessary so that it is possible to correctly invoke the
service(3).

Interoperation requirements

To realise a Web Service often requires more than a single operation execution (such
as by e.g. currency conversion). Web Services apply to business practices which are
more complex, and require the execution of a number of operations in a particular order
(such as a travel booking service that first checks availability, then takes the payment and
finally makes the booking). This requires a conversation between the requester and the
service that must follow certain rules. These rules must be expressable in terms of linear
and sequential execution of operations. Other cases would be rules whose execution is
conditional on meeting a stated condition, or finite loops of execution(1).

A result of this model is also that the implementation must know and be able to wait
on a response before continuing. This may require monitoring of message state (i.e. to
know which response belongs to which conversation, or to track if a response has not
been received within a specified time)(2). Another conversational requirement is error
handling, and as part of a transactional implementation the facility to compensate for
earlier operations (i.e. an error in a later operation may require cancelling the effect of an

KWEB/2004/WP2.4ID1/v1 29.June, 2004 13

2. WEB SERVICES

earlier operation)(3). Finally, a co-ordination infrastructure needs to be in place to make
the conversational requirements available to a requester, so that their message exchange
with the service conforms to the rules of the conversation(4).

Another requirement that arises in the B2B domain is that of agreements between par-
ties on the execution of services. Individual parties wish to express their specific require-
ments and constraints on message and data exchange. This is already part of e-business
infrastructures (e.g. PIPs in RosettaNet or CPP in ebXML). It ensures that businesses
communicate with each other in an agreed way that conforms to their desired business
practices. In this case, the differing requirements of multiple business policies must be
negotiated to determine a conversation respecting them all, and the conversation manager
must monitor conversations that they respect those policies(5).

Additional requirements given by the W3C Choreography Working Group (Austin
et al., 2004):

• support for retries and time-outs, with rules for handling them

• error description and support for handling service errors

• support for conditional paths

• hierarchical composition model for re-use of choreographies

• support for recursive behaviour

• reference passing so that intermediaries can handle operations for the client

• demarcation of transactional boundaries to guide conversation implementation

• participants can be statically defined or dynamically bound e.g. through runtime
discovery

• ability to generate from conversational description code skeletons or test message
interactions

Composition requirements

Another aspect of Web Services is their composition. Web Services are often not exe-
cuted independently but as part of a larger process which involves multiple services. The
travel booking system, for example, will probably use one Web Service offered by a flight
booking service, another offered by a hotel reservation service and a third system which
validates and processes payment by credit cards.

We require here the means to adequately express a process which executes multiple
services to achieve a certain goal from a known input. A composition model must be
defined which represents that process in terms of the services to be invoked, how they

14 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

are to be invoked (operations, parameters, data values), and how they relate to one an-
other (data and control flow)(1). Composition models have been derived from workflow
models, which are very similar.

While composition raises a lot of requirements shared by interoperation (conversa-
tion), it additionally requires that the internal execution of a composed Web Service can
handle the heterogeneity of the participating services (i.e. the differences in their in-
terfaces between which data is being passed). Means to ensure correct data flow must
be implemented within a composed Web Service(2). This requires an adequate descrip-
tion of the relationships between interfaces, rather than simply the interfaces themselves.
Composition also requires specification of necessary pre- and post-conditions for services
(to ensure correct implementation of the execution rules)(3) and a means to monitor the
state of messages passing through the composed Web Service (as message state may be
part of an execution rule). Error states must also be expressable so that processes can be
stopped if an invalid event takes place, and error handling defined to ensure incomplete
processes compensate for what has already been invoked (e.g. undoing a reservation)(4).

As part of inter-enterprise Web Service implementations it is required that businesses
can hide details of their service implementations (including in terms of compositions)
from external requesters. Businesses may wish to provide system functionality to others,
but without giving any details of how that functionality is realised (5).

General requirements

The W3C Architecture document working group has produced a set of requirements for
the Web Services architecture as a whole (He et al., 2004). In addition to requirements
already mentioned above, they state as architectural requirements:

• modular and loosely coupled components

• extensible to allow for future evolution of technology and business goals

• simplicity and no high barriers to entry

• reliable, stable and evolving over time

• consistent and coherent

• a suitable level of alignment with the Semantic Web

• consistent with the architectural principles of the Web

• respecting privacy

• device independence

• support P2P interaction

KWEB/2004/WP2.4ID1/v1 29.June, 2004 15

2. WEB SERVICES

Web Service invocation - An standardized interface description

- Interface abstract from internal implementation details

- Operations function as described

- Trust

- QoS (reliability, response times)

- Definition of errors

- Message exchange one-way or with response

- Message exchange synchronous or asynchronous

Web Service discovery - An API for publishing and searching for services in a directory

- Search based on details of service functionality

- Access from found services to their description files

Web Service interoperation - Expressive conversation rules (parallel, conditional, repeated operations)

- Tracking conversation state

- Transactional operations and compensation (undoing done operations)

- Co-ordination infrastructure for guiding and proofing valid conversations

- Enterprise policy description and monitoring to respect that policy

Web Service composition - Definition of composition (e.g. using a workflow model)

- Handling data flow between heterogeneous service interfaces

- Pre- and post-conditions of service invocation (control flow)

- Specification of error states and compensatory actions if a process is prematurely stopped

- Hiding of composition details from external entities

Table 2.1: Web Services Requirements

Security will also be a major requirement for Web Services if they are to be widely
deployed for important business practices. Though the usage of open Internet protocols
(HTTP,TCP/IP) and ports (80) is the best solution to inter-enterprise application integra-
tion, network connections built in this way are not secure and businesses have a vested
interest in protecting access to their networks. Similarly, XML-based messages being ex-
changed over the Internet can be intercepted, and require provisions such as encryption if
sensitive data is to be protected.

In summary then in Table 2.1 we note the requirements considered to be the most
significant for each of the aspects of Web Services.

2.2 Key Standards and Specifications

Web Service standards are often reduced in the literature to a set of three (SOAP, WSDL
and UDDI) which represent the functionality of invocation, description and discovery
respectively. However, these standards do not cover all Web Service requirements and
a glut of other specifications have followed. An overview of these “complementary”

16 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

specifications is also given. In the future we expect that competing specifications may
converge and some functionalities subsumed by future versions of the “core” standards.

2.2.1 SOAP

SOAP (Simple Object Access Protocol)8 standardizes a lightweight structure for the ex-
change of information to and from Web Services. These structures, called SOAP mes-
sages, are the basis for Web Service invocation.

The messages are serialized in XML to support structured and typed invocation. They
are stateless, and realise an one-way communication. Applications can create more com-
plex interaction patterns by combining such one-way exchanges with features provided
by an underlying protocol and/or application-specific information. While SOAP is de-
livery mechanism-neutral, it specifies bindings to HTTP and SMTP (synchronous and
asynchronous forms of communication). Finally, SOAP includes a means to indicate how
a message should be processed by the entities which receive the message.

SOAP messages are basically XML documents which contain an envelope, which
consists of a header and a body. The header contains data to be processed by the nodes
receiving the message in its path from the sender to the recipient. SOAP elements can
indicate if the message is to be passed on or handled, and if the node must be able to un-
derstand the information contained in the header. The body contains data to be processed
only by the message recipient. It is generally assumed that the recipient will be able to
understand the data contained here. Both header and body data are outside of the scope
of the standard, and it is the implementer’s responsibility that the data can be correctly
handled.

Two aspects will influence how the header and body of a SOAP message are con-
structed: interaction style and encoding rules. Interaction style can either be document-
style (the body contains a XML document to be processed by the recipient) or RPC-style
(request/response where the request references an operation and its input parameters and
the response returns the result i.e. the output parameters). Encoding rules ensure that the
data is represented consistently in the XML serialization. The standard defines a SOAP
encoding for data structures as a basis for message consistency. However implementers
are free to decide on their own encoding rules (literal encoding).

Some proposals have been made to add to SOAP standardized means to express com-
mon functional requirements of Web Service invocation.

WS-Addressing9 resolves the problem that SOAP relies on the transport bindings to
indicate the address of the receiver, i.e. the recipients address is not part of the SOAP
message. The proposal specifies an ”endpoint reference” - an URI and a set of reference
properties - where the URI is normally an application which can resolve the intended

8Latest SOAP versions, URL: http://www.w3c.org/TR/soap
9Web Services Addressing, URL: http://www.ibm.com/developerworks/library/ws-add/

KWEB/2004/WP2.4ID1/v1 29.June, 2004 17

2. WEB SERVICES

recipient from the reference properties. By enabling addressing within SOAP messages,
delivery can be taken care of independent of any communication protocol.

WS-Routing10 resolves the problem that while SOAP has the notion of a message
delivery path comprising of a set of nodes which may process the message before handing
it on, the SOAP message can not in itself specify what the path should be. Rather the path
is determined by the underlying delivery protocol. The proposal permits specifying a
delivery path as part of the SOAP message, supporting pipeline architectures and ensuring
a message is handled by nodes with specific functionalities.

WS-Security11 is an extension to SOAP to enable integrity and confidentiality. It de-
fines a SOAP header block which can carry a signature, and defines how this header block
should be processed by the nodes receiving the message. Unlike HTTPS (which allows
the decrypting and re-encrypting of a message at every node), secure SOAP messages
should remain encrypted from the sender to the recipient. Additionally encryption can be
applied to just the SOAP message body or a section of the body (e.g. the element contain-
ing the credit card information). WS-Trust defines extensions to WS-Security for issuing
and exchanging security tokens and ways to establish and access the presence of trust re-
lationships, so that business entities can determine if they ”trust” the asserted credentials
of another entity with which they wish to communicate.

WS-ReliableMessaging12 is intended to support the guarantee of reliable message de-
livery between Web Services and clients in the presence of software component, system
or network failures. It specifies basic delivery assurances (AtMostOnce, AtLeastOnce,
ExactlyOnce or InOrder) that one entity can give to another. Traditional reliable messag-
ing functionality like message identification and numbering, as well as acknowledgement
mechanisms, are specified in the SOAP message.

2.2.2 WSDL

The Web Services Description Language (WSDL)13 is an XML format endorsed by the
W3C for describing Web Services. The language allows the description of a service to be
separated in two levels: one specifying interface details like operations and messages and
another specifying interoperability details like message encoding, message transport and
transport addresses.

In many ways the standard is similar to conventional middleware IDLs (interface def-
inition languages). In constract to IDLs, the WSDL structure is modular in order to allow
for the re-use of (parts of) descriptions, and allows for the combining of operations or

10Web Services Routing Protocol, URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-routing.asp

11Web Services Security, URL: http://www.ibm.com/developerworks/webservices/library/ws-secure/
12Web Services Reliable Messaging, URL: http://www.ibm.com/developerworks/webservices/library/ws-

rm/
13Web Services Description Language, URL: http://www.w3.org/TR/wsdl

18 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

groups of operations in one interface. The standard also includes the specification of dif-
ferent interaction paradigms (one-way, request/response, solicit/response, notification).

The interface-level specification captures the more abstract aspects of a service. It
is constructed through a four layer component structure (interface, operations, messages,
and types). These define respectively:

• Interface - a group of operations

• Operations - a service interaction, defined using a specified interaction paradigm

• Messages- a typed document of message parts, each with a name and a type

• Types - a datatype such as the primitives or complex types defined in XML Schema
(a WSDL document can specify another type system if desired)

The interoperability-level specification defines the lower level details required for con-
cretely interacting with the service. It is made up of services, endpoints and bindings.
These define respectively:

• Service - a logical grouping of endpoints

• Endpoints - a combination of a binding to a network address (URL) at which an
implementation of the interface may be accessed

• Bindings - specification of the message encoding and protocol binding (e.g. SOAP
over HTTP) for a given interface, as well as the services interaction style (document
or RPC).

The separation of these components in the description supports the flexibility of ser-
vice description and re-use of components. For example, the same interface could be
tied to several different endpoints each with a different binding. Interfaces could also
be combined with others in different combinations to form different services. Abstract
descriptions could be imported and combined with concrete bindings and endpoints to
describe implemented services.

WSDL documents can be seen as a contract specifying formally how the service shall
be interacted with, and where the service can be accessed. Implementers can use the
WSDL description to correctly implement their applications to call the service and han-
dle the response. As with middleware IDLs, it is also possible to use WSDL to generate
automatically the stubs for the Web Service implementation and service requester imple-
mentations.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 19

2. WEB SERVICES

2.2.3 UDDI

Universal Description, Discovery and Integration (UDDI) is an OASIS specification14

for a framework for publishing and locating Web Services. It aims to enable Web Service
discovery in a semi-automated fashion, building on the existing standards of XML, SOAP,
and WSDL.

The core idea of UDDI is a ”business registry”. This is the development of a concept
that has been around since RPC, that of the name and directory server. Just as the server in
RPC was responsible for passing to the client an address of a server which could execute
the desired procedure, the UDDI registry is intended to support developers in finding in-
formation about services that realise the functionality they require and to enable dynamic
binding (allowing clients to query the registry and obtain services of interest).

UDDI fundamentally defines data structures and an API for publishing service de-
scriptions to the registry and querying it for relevant published descriptions. The API is
also specified in WSDL using a SOAP binding, so that the registry can be accessed as a
Web Service and its characteristics can be described in the registry itself just as with any
other Web Service.

The information in an UDDI registry can be categorized into three types:

• White pages - listing of businesses, their contact details and services provided

• Yellow pages - classifications of businesses and services according to taxonomies

• Green pages - description of how a service may be invoked through reference to
external description files

In the UDDI data structure there are 4 main entities:

• businessEntities - the business name, address and other contact info

• businessService - the services offered by a businessEntity

• bindingTemplate - the technical information required to use a service

• tModel - a ”technical model”, a generic container for any kind of specification. It
could be a classification, an interaction protocol, or a service interface description.

As all of the first three entities make keyed reference to tModels, it follows that tMod-
els really form the core of the UDDI specification. Before anything can be published to
the UDDI registry, the tModels that will be referenced need to be defined. Some may
well be pre-defined by other standardization efforts (e.g. the UDDI specification includes

14UDDI Specifications, URL: http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

20 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

a tModel for classifying other tModels). Once a tModel is published to an UDDI registry
it is assigned an unique key. It is the use of the same tModel by different businesses and
services which supports both the design-time discovery and run-time binding of services.
tModels can in fact represent anything as the key basis for their use is the shared knowl-
edge of the tModels key and what it represents. The tModel’s intended meaning can be
determined by a human through the overviewDoc which the tModel internally references
and which should contain a human readable explanation of the tModel. For example, if a
particular client has been implemented to conform to the service interface referenced by
the tModel with the key 327, then the client can also dynamically bind to a suitable ser-
vice at run time by querying the registry for a service whose bindingTemplate references
the tModel with the key 327.

The UDDI API is designed to support the needs of three types of user: a service
provider publishing a service, a requester looking for services and other registries that
wish to exchange information. It supports fundamentally four types of operation, each
of which having a method specific to the data structure it is applied to: find, get, save
and delete. The ”find” methods enable the search functionality and ”get” retrieves the
information for a specific entity. ”save” and ”delete” permit the addition and removal of
entries into and out of the registry. Finally, there is also transfer methods for keeping
registries synchronized.

2.2.4 Web Service Composition Languages

This subsection gives an overview over several specifications related to the composition
of Web Services. The development of complex Web Services out of other Web Services
is not trivial. Composition middleware provides abstractions and infrastructures for the
definition and execution of composite services. Fundamentally it supplies a composition
language with which a composition schema (a model of the composite service) can be
expressed, with modelling constructs for the participating services, the order of their exe-
cution and how the execution parameters may be determined. Web Service composition
further develops the work in workflow management systems which have been applied to
the task of conventional middleware composition. We exemplarily describe one of these
composition languages, WSFL, in more detail.

WSFL The Web Services Flow Language (WSFL)15 is an XML language for the
description of the composition of Web Services. WSFL’s objective is to specifiy:

• Usage patterns internal to a Web Service composed from other services. This cor-
responds to the FlowModel defined below.

• External interaction patterns between composed Web Services. This corresponds to
the GlobalModel defined below.

15Web Services Flow Language, URL: http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

KWEB/2004/WP2.4ID1/v1 29.June, 2004 21

2. WEB SERVICES

The core concept of WSFL is the FlowModel - a special kind of directed graph which
is the basis for the composition model. GlobalModels build then on top of FlowModels
by defining how they can be brought together. Recursivity is introduced by allowing
FlowModels to refer other sub-FlowModels.

Central for a FlowModel is the concept of an activity. A FlowModel can define zero
or more activities. WSFL defines an activity as a business task to be performed as a single
step within the context of a business process contributing to the overall business goal to
be achieved.

Activities correspond to nodes in the directed graph and they are wired together
through controlLinks. A flow model can contain zero or more controlLinks. A control-
Link is a directed edge between a source activity and a target activity. All the controlLinks
in a FlowModel prescribes the order in which activities will have to be performed. The
endpoints of the set of all control links that leave a given activity A represent the possible
follow-on activities A1,...,An of activity A.

Which of the activities A1,...,An actually have to be performed in the concrete in-
stance of the business process (that is, the concrete business context or business situation)
is determined by so-called transitionConditions. Each controlLink defines exactly one
transitionCondition specified as a boolean expression (for now defined using the XPath
specification). The formal parameters of this expression can refer to messages that have
been produced by some of the activities that preceded the source of the control link in the
flow.

When an activity A completes, only the control links originating at A whose transition
conditions evaluate to true are followed to their endpoints. This set of activities is referred
to as the actual follow-on activities of A in contrast to the full set A1,...,An of possible
follow-on activities.

A condition imposed by the WSFL specification is that the activity controlLink graph
representation resulting from a FlowModel must be acyclic. However loops are supported
as do-until constructs.

An activity is called a fork activity if it has more than one outgoing controlLink. In
this case all the follow-on activities spawned-off by the controlLinks with a true transi-
tionCondition will be performed in parallel.

Typically, parallel work has to be synchronised at a later time. Synchronisation is
done through join activities. An activity is called a join activity if it has more than one
incoming controlLink. By default, the decision whether a join activity is to be performed
or not is deferred until all activities that could possibly reach the join are completed. The
decision is governed by a joinCondition that can be associated with any activity and that
can be a boolean expression.

Sometimes, a weaker semantics of synchronisation is appropriate and supported by the
model of WSFL: as soon as the truth-value of a joinCondition is known, the associated
join activity is dealt with accordingly (that is, either performed or skipped). Control flow

22 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

that reaches the corresponding join activity at a later time is simply ignored.

Activities that have no incoming controlLink and that have joinConditions that always
evaluate to true are called start activities. Activities that have no outgoing controlLink are
called end activities. All start activities are automatically scheduled for execution when
a FlowModel is initially instantiated. When the last end activity completes, the output of
the overall flow is determined and returned to its invoker.

Each activity has also an associated exitCondition which is again a boolean expres-
sion. The purpose of it is to determine whether or not an activity has to be considered
completed. If this is the case the next activities to be performed are determined and exe-
cution continues otherwise the activity is executed again.

Because WSFL does not allow for cyclic graphs exitConditions are also used for re-
alizing do-until loops. In this case the iteration is done based on the exitCondition of an
activity which is then implemented by a sub-FlowModel.

Each activity is performedBy a particular serviceProvider which defines a set of op-
erations. The operation invoked when an activity has to be executed may be perceived as
the concrete implementation of the abstract activity.

The ServiceProvider concept allows to specify the role that is expected to be played by
a potential business partner. Each ServiceProvider has a type defined by serviceProvider-
Type. A serviceProviderType is just a named set of portTypes. In turn a portType defines
one or more operations.

In order to be able to recursively compose FlowModels, WSFL’s vision is to perceive
them as serviceProviderTypes (that is, a set of portType operations). For that the WSFL
model provides a construct to export operations implementing encompassed activities.
These exported operations are grouped together to define the public interface of the Flow-
Model.

A global model defines the interaction between a set of serviceProviders. Interactions
are modelled using PlugLinks between operations on the ServiceProviderTypes involved
in the composition. Each PlugLink is defined between a source and a target operation. Op-
erations have to be dual, for example, a notification operation on one ServiceProvider can
be plug linked to a one-way operation on another ServiceProvider, or a solicit-response
operation can be plug linked to a request-response operation. Similar to FlowModels,
GlobalModels have associated one or more ServiceProviders and define themselves for
the external world as a ServiceProviderType.

BPEL4WS BPEL4WS16 appears as a candidate specification for defining and manag-
ing Web service based business processes. It is a technology for describing the behaviour
of Web Services in a business interaction, specifying a XML-based grammar for control
logic need to coordinate participating Web Services. BPEL4WS provides a language for
the specification of web service processes and interaction protocols. It builds on top of

16Business Process Execution Language for Web Services, URL:
http://www.ibm.com/developerworks/library/wsbpel/

KWEB/2004/WP2.4ID1/v1 29.June, 2004 23

2. WEB SERVICES

WSDL to define a process that provides and consumes multiple Web Service interfaces.
BPEL4WS is based on traditional business process and workflow technologies, and as a
development upon earlier proposals such as WSFL and XLANG it is now the central fo-
cus of most software vendors to become the primary Web Service composition language.
However, BPEL4WS solely supports the static binding of services in the composition.
This limitation results in BEPL4WS currently only being used in semi automatic substi-
tution use cases rather than plain composition.

BPML The Business Process Modelling Language (BPML)17 is a meta-language for
the modeling of business processes (and not specifically web services), just as XML is a
meta-language for the modeling of business data. BPML provides an abstracted execution
model for collaborative and transactional business processes based on the concept of a
transactional finite-state machine. BPML is complementary to WSCI (WSCI is described
in the next subsection). WSCI defines the interaction between services deployed across
multiple systems, while BPML defines the business process behind each service, mapping
business activities to message exchange. Together, they provide an end-to-end view that
depicts the role of each individual business process in the overall choreography, and the
business activities performed by each role. BPML builds on top of WSCI and is argued
to be a strict superset of BPEL4WS.

2.2.5 Web Services Interoperation

The basic Web Services infrastructure available through the standards SOAP, WSDL and
UDDI is sufficient for simple interactions with Web Services which involve a single oper-
ation invocation. However in real applications communication is typically more complex,
involving the invocation of several operations which may be constrained (e.g. in order
of invocation, and dependent on which responses are received). The sequence of mes-
sage exchanges between a client and a service is a conversation, and a specification of the
correct and accepted conversations for a particular service is known as the coordination
protocol.

WS-Coordination WS-Coordination18 is a proposal for a framework to support co-
ordination protocols. It is a meta-specification for the standardization of concrete forms
of coordination. It supports both central and distributed coordination (i.e. all participants
talk to the same coordinator, or each talks of its own coordinator).

Coordination is realized by including a data structure called a coordination context in
the SOAP message headers. The structure includes an identification of the coordination
protocol and an unique identifier for the actual instance of that protocol (i.e. for the cur-
rent conversation). The proposal does not however specify how to describe coordination
protocols.

17Business Process Modelling Language, URL: http://www.bpmi.org/bpml.esp
18Web Services Coordination, URL: http://www.ibm.com/developerworks/library/ws-coor/

24 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

Whatever coordination protocol is used, and in whatever domain is deployed, the same
generic requirements are present:

• Activation of a new coordinator for the specific coordination protocol for a particu-
lar application instance and their associated context;

• Registration of the participants with the coordinator such that they will receive that
coordinator’s protocol messages during the applications lifetime.

• Propagation of contextual information between the Web Services that comprise the
application.

• An entity to drive the coordination protocol through to completion.

WS-Transaction WS-Transaction19 builds on top of the WS-Coordination frame-
work to enable support for transactional interactions. Transactions are a set of operations
for which either all the operations in the set shall be successfully executed or none of them
shall be executed. If some (but not all) operations in a transaction have been executed be-
fore the transaction as a whole fails (due to some error or a cancellation command) then
the effect of the completed operations must be undone (rolled back). Transactional guar-
antees are also important for business processes being handled by Web Services (e.g. if a
client makes a reservation and then can not pay, the reservation should be cancelled).

The proposal specifies a standard protocol for long-running transactions (”business
activities”) as well as a means for specifying short-duration transactions (”atomic trans-
actions”). Fundamentally, participating Web Services shall update their persistent state
at each step of the transaction and be able to undo any step in the case of an abortion of
the transaction. The logic for undoing any operation is implemented in a compensation
operation, specific to the Web Service and outside of the WS-Transaction standard.

WSCI WSCI 20 is an XML-based interface description language that describes the
flow of messages exchanged by a Web Service participating in choreographed interactions
with other services.

It describes the dynamic interface of the Web Service participating in a given message
exchange by means of reusing the operations defined for a static interface by extend-
ing the WSDL interface description. This is expressed in terms of temporal and logical
dependencies among the exchanged messages, featuring sequencing rules, correlation,
exception handling, and transactions. With the concept of global model, WSCI provides
the ability to ”link” operations in a ”collaboration” between the interfaces defined by it.

The focus of WSCI is on tightly coupled application-to-application integration21 and
is not effective for loosely coupled B2B and EAI scenarios.

19Web Services Transaction, URL: http://www.ibm.com/developerworks/library/ws-transpec/
20Web Services Choreography Interface, URL: http://www.w3.org/TR/wsci/
21Analysis of WSCI by Jean-Jacques Dubray, http://www.ebpml.org/wsci.htm

KWEB/2004/WP2.4ID1/v1 29.June, 2004 25

2. WEB SERVICES

WS-CDL The Web Service Choreography Description Language (WS-CDL)22 is an
effort of the W3C that defines a standard for specifying the required ordered message
exchanges between Web Services in order to achieve a common business goal.

It describes the set of rules that explains how different services may act together, and in
what sequence. It differs from a composition specification language such as BPEL in that
it defines the information being exchanged between all participants rather than just by one
participant, models the global message exchange between participants without a specific
point of view rather than from the point of view of one participant, and provides reactive
rules to allow participants to determine what message exchange will occur next rather
than active rules to infer what to do next. Fundamentally, it is proposed as a complement
to Web Service composition by providing a shared choreography which services can use
at run time to verify that they can participate appropriately in a choreographed process.

2.2.6 Other Web Services specifications

Some other Web Service specifications do not fit into any of the aspects mentioned previ-
ously. We consider those specifications in this section.

WS-Policy WS-Policy 23 is a base set of constructs that can be used and extended
by other specifications to describe requirements, preferences, and capabilities of service
interfaces.

WS-Policy is to be used with other Web Service standards (like UDDI, WSDL, SOAP,
etc). The policy is described by an XML-based structure called policy expression which
contains domain specific Web Service policy information and a set of grammar elements
to indicate how the contained policy assertions apply. A policy contains one or more pol-
icy assertions which represent individual preferences, requirements, capabilities or other
properties. Choice sets can be specified among policy assertions by operators like Exact-
lyOne, All, or OneOrMore, which express whether all assertions are to be met or exactly
one among them for example (a numeric attribute allows specifying preferences when
multiple choice is possible). Assertions are stated according to specific extensions like
WS-PolicyAssertions which provide an initial set of assertions to address some common
needs of Web Services applications (for example TextEncoding, SpecVersion, or Lan-
guage), or non specific ones like WS-Security.

WSIF
The Web Services Invocation Framework (WSIF)24 is an API used to hide from the devel-
oper the type of binding used by a Web service. It answers the fact that WSDL is generic
and allows the specification of many different bindings, other than SOAP. Since the SOAP
binding is dominant for Web Services, most invocation API’s simply ignore this fact and
provide SOAP as the only possible binding for a WSDL description of service. In WSIF

22Web Services Choreography Description Language, URL: http://www.w3.org/TR/ws-cdl-10/
23Web Services Policy Framework, URL: http://www.ibm.com/developerworks/library/ws-polfram/
24Web Services Invocation Framework, URL: http://ws.apache.org/wsif/

26 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

some other Providers (binding specifications) have been developed for EJB’s and Java
classes. Documentation is given which allow to specify bindings for other applications.

2.2.7 W3C Working Groups

The Web Services Activity of the W3C25 has as its ultimate goal to develop a set of
technologies in order to lead Web services to their full potential.

XML Protocol WG

The XML Protocol Working Group was originally chartered to develop an XML-based
messaging framework, which resulted in SOAP - see 2.2.1. The Working Group is now
working on attachments and optimization of the transmission of SOAP messages.

Web Services Description WG

The Web Services Description Working Group, chartered to design a language for de-
scribing interfaces to Web services and how to interact with them, produced the WSDL
standard (see 2.2.2). The working group is now working on WSDL version 2.

Web Services Architecture WG

This W3C Working Group focuses on the description of Web Services components and
on their relationships, aiming to give a common defintion of a Web Service architecture.
Web Service concepts are approached through the use of four model orientations which
are respectively focused on message, service, resource, and policy aspects of Web Ser-
vices. Models are interdependent and each of them define specific roles, concepts, and
relationships. Web Service architecture is further discussed in terms of requirements of
common business issues like security, reliability, and management. The Working Group
published in February 2004 a set of documents presenting a Web Services Architecture.

Web Services Choreography WG

This W3C Working Group focuses on the description of requirements for the organiza-
tion of Web Service interactions. This interaction between services is called choreography
and defines concepts common to most process organization technologies like roles, activ-
ities, interaction types (e.g synchronous or asynchronous) and control structures between
activities (like sequence, choice or parallel). The group also focuses on the WS-CDL lan-
guage (short for Web Services Choreography Description Language) which is intended

25W3C Web Services Activity, URL: http://www.w3.org/2002/ws/

KWEB/2004/WP2.4ID1/v1 29.June, 2004 27

2. WEB SERVICES

to serve as a common interface between companies implementing their choreography re-
quirements in lower level specifications like BPEL4WS or EJBs.

2.2.8 Web Service Tools and Platforms

Since the advent of Web Services many software vendors have embraced the technology
and support it in their products. The spectrum of products supporting Web Services reach
from database systems over application servers over standard applications to office suites;
corresponding support in tools is available too (Leymann, 2003).

Microsoft

Web Services support is a primary concern through the whole .NET framework API im-
plementation and design, as well as in companys the supporting IDE (Visual Studio .NET)
and web server (IIS). Support for Web Services is enforced by each new version of these
tools (Microsoft Windows Server 2003, Microsoft .NET Framework 1.1, and Microsoft
Visual Studio .NET 2003, and IIS 6.0.

The Longhorn SDK is published as a technology preview by Microsoft; it is a thor-
ough refactoring of the actual .NET Framework, keeping backward compatibility but in-
troducing many new features heavily based on XML and distributed services. Under this
code-name are held other code-named components which improve for example the pre-
sentation and storage layers of the platform. One of them, called Indigo26 will be the
communication subsystem of the platform, allowing applications to better access remote
objects or communicate with Web Services.

IBM

IBM provides the ETTK (Emerging Technologies Toolkit)27 which evolved from the
package known as the Web Services Toolkit (WSTK). It is a very rich solution based on
WebSphere, the company’s application server, but oriented towards many emerging tech-
nologies. It contains a tutorial, an embedded version of the IBM Websphere Application
Server, a JDK, technology previews of security functions such as WS-Security, and even
a offer semantic orientation with what is called Semantic SDO (short for Semantically-
Adapted Service Data Objects) which adds the ability to use RDF and OWL (the W3C
Web Ontology Language) as a mean of attaching semantic metamodels to object descrip-
tions. One can then use that model to navigate and query the data model independently
of any change to it, since it is accessed through the semantic interface.

26Understanding “Indigo Web Services, URL: http://longhorn.msdn.microsoft.com/lhsdk/indigo/
conunderstandingmessagebuswebservices.aspx

27Emerging Technologies Toolkit, URL: http://www.alphaworks.ibm.com/tech/ettk

28 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

SUN

SUN provides the JWSDP (Java Web Services Developer Pack)28. It is a full solution
to be used with the java language, fully supported by SUN’s IDE (Sun One Studio) and
application server (Sun One Application Server), but provided for download with the free
Tomcat J2EE server. Sun also provides a thorough tutorial about using Web Services
with Java tools. But the package consists mainly in XML oriented APIs (JAXB, JAXP),
dynamic web technologies (Java Servlets, JSP, JSF, JSTL), with a Web Service orientation
only represented by:

• The Java API for XML Registries (JAXR) - which allows access to an UDDI reg-
istry as a special case.

• The Java API for XML-based RPC (JAX-RPC) - which allows the use of SOAP
based RPC in Web Services applications.

• The SOAP with Attachments API for Java (SAAJ) - which enables developers
to produce and consume messages conforming to the SOAP 1.2 specification and
SOAP with Attachments note. It is a low-level API mainly used by JAX-RPC to
access the SOAP packet.

ASF (Apache Software Foundation)

Not a fully featured package29 but a series of APIs and implementations which are in-
tended to be used with ASF Web Servers (Apache and Tomcat, ASF’s JSP compliant web
server). The Axis project provides Web Services implementation over Tomcat. WSIF (see
more complete description at 2.2.6) provides a way of contacting web services through
runtime WSDL inspection. There are also many other projects in incubation (term used
by ASF for not completely mature realisations) like WSFX (Web Service Functionality
Extensions) providing additional functionality as specified for example in the WS-* spec-
ifications (most of them are described above). These functionalities include: Addressing
(an implementation of the Web Services Addressing (WS-Addressing), published by the
IBM, Microsoft and BEA as a joint specification, on top of Apache Axis), Sandesha (an
implementation of WS-ReliableMessaging Specification), WSS4J (an implementation of
the Web Services Security (WS-Security) which is a Java library that can be used to sign
and verify SOAP Messages with WS-Security information).

Web Services Friendly Tools

Web Service Friendlyness (wsf) is a term stamped to express some level of awareness
offered by an application to the concept of Web Services and collateral standards. All

28JWSDP, URL:http://java.sun.com/webservices/webservicespack.html
29Web Services Project @ Apache, URL: http://ws.apache.org/

KWEB/2004/WP2.4ID1/v1 29.June, 2004 29

2. WEB SERVICES

application servers of the major IT vendors have taken on Web Services and have quite
good “wsf. Open source applications servers like JBoss (in the JBoss.net flavor, which
in fact integrates Web Services with J2EE) follow this movement. Most application soft-
ware doesn’t yet feel the necessity to access Web Services, but wfs seems to be something
taken very seriously in all new Microsoft products. For example in Visual Studio .NET
2003 a developer can add a reference to a Web Service like he can do with other kinds
of software components. InfoPath 2003, another new Microsoft product, a WYSIWYG
XML form builder which allows Web Service discovery through an UDDI registry and
to easily build a form-shaped interface to it. Microsoft BizTalk Server 2002/2004 is able
to orchestrate calls to Web Services as well as to adapt legacy servers in order to quickly
build a Web Service interface. The 2004 version also provides BPEL4WS support for
Web Service description and orchestration.

2.3 Evaluation

This introductory chapter has explained what Web Services are, why there is a need for
them, illustrated scenarios in which Web Services are deployed to meet that need, and as
a result derived what is required of Web Services technologies. The current technologies
in the Web Services field have then been introduced: both core standards such as those for
invocation, description and discovery, as well as the secondary specifications which are
arising from the early identification of missing requirements (e.g. service composition,
interoperation, reliability, security).

Do these technologies enable all that Web Services require in order to solve enter-
prise application integration needs including wide ranging, complex, large scale, business-
critical inter-enterprise scenarios?

2.3.1 Service Invocation

Web Services are invoked through messages conforming to an interface described in a
document which is accessible to other systems that want to interact with them. The in-
ternal implementation of the service is independent of the invocation procedure, so that
invoking systems do not need to know in which programming language the service is
implemented, on what hardware it is running or in which operating system it is being
executed.

The invocation procedure itself may be carred out using different data formats and
communication protocols (Leymann, 2003), providing a high degree of interoperability
and allowing different parties to interact seamlessly. This is also important to enable
several services to be combined to realize a certain functionality.

Using the Web as the network through which invocation takes place also allows ser-

30 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

vices to be accessed irrespective of physical location. However SOAP messages travelling
over the Internet, if they are to be used for business critical processes, need to be reliable,
secure and trustworthy. The standardization efforts in this area are still in progress and are
very important if SOAP based Web Services are to become part of future critical business
process infrastructures.

However SOAP is simply a meta-structure for the invocation messages. The required
knowledge for the correct processing of the contents of a message header or body could
be application specific. While some standards aim to specify commonly required header
data, the required message body structure for a service is given in its WSDL file. This
is generally restricted to defining a XML structure for a document-style interaction or
parameter name and accepted values (as a XML Schema datatype) for RPC-style interac-
tion. This description is insufficient however to precisely and unambiguously define what
is meant by certain XML elements or operation parameters, and raises the possibility of
erroneous message generation. For example, a parameter ”Temperature” with a datatype
of integer is insufficient for a developer to know if Celsius or Fahrenheit values should be
sent.

In other words, a WSDL file is lacking semantics and may not sufficiently specify
what a service means in order that a developer can pass messages correctly to it, and
while human-readable references can clarify issues in a case of manual development,
it precludes any possibility of (semi-)automated invocation. For example, an appropriate
functionality for a certain service can only be determined from its WSDL description if the
name of the operation is precisely known. Other services who offer the same functionality
through a differently named operation would not be identifiable as equivalent.

2.3.2 Service Discovery

Service registries can make Web Services available as soon as they are advertised, just
as web sites are crawled and indexed in search engines. The UDDI query mechanism is
intentionally simple, with fewer constructs than a general query language such as SQL.
While this makes querying a rather cumbersome task, it enables simple implementation
of query services. While registries can provide a centralised repository of services, dis-
tributed searching (i.e. searches that are propagated between registries) is not possible,
nor is extending the search criteria to additional characteristics stored outside of the reg-
istry (e.g. dynamic characteristics such as current service response time, which would be
maintained by the service provider).

The UDDI search criteria can be based on business or service details, with the re-
quested values either being static (e.g. the business entities name) or based on a tModel.
In order to make the proper search query, the tModel for the desired criteria must be
known in advance, making it necessary to first manually examine the content of the reg-
istry and read the relevant overviewDocs. This is a significant effort that discourages the
use of more than one UDDI registry, which will use other tModels with different keys.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 31

2. WEB SERVICES

The syntactic basis of the Web Service publication mechanisms means that discovery
is a task which requires human supervision, such as with a Web search engine. The
ambiguity of textual descriptions and the non-machine-understandability of the tModels
is insufficient to support fully automated discovery. Manual search is complicated by
publishers not interpreting consistently the meaning of fields in the UDDI data structure.
While Web data is unstructured, Web search engines benefit from years of research while
UDDI is a new technology and search mechanisms are still immature.

Another consequence of the syntactic format of Web Service descriptions is the diffi-
culty of matching advertised Web Services to requesters wishes. General service discov-
ery is not likely to be based on which business is providing a service or in which domain
the business operates, but a specification of the functionality desired by the client. This
specification can at best be given in the form of a service interface and matching services
found through interface (e.g. parameter name and data-type) comparison, which is cer-
tainly not a conclusive basis to determine if a Web Service has the precise functionality
the requester desires.

2.3.3 Service Composition and Co-ordination

Business scenarios have identified value in the chaining together of Web Services, whether
in the calling of one service from another or many services being called as part of a
business workflow. Specifications to define the necessary rules for the service invocation
have been reviewed.

Handling multiple operations or Web Services raises issues resulting from the het-
erogeneity of data in distributed systems. In this case, the issue is how responses in one
structure and format may be wrapped into the necessary structure and format for the next
request. This must be expressed in the business logic. The mappings must be statically
implemented to individual operations and services, with a syntactical representation being
insufficient for some form of dynamic mapping.

Another issue is that of differences in service invocation behaviour. Mediation is
required to resolve such inconsistencies and form an error-free service coordination or
composition. Also service responses or errors may change the state within the workflow
and may necessitate ”balancing” mechanisms (such as transactional compensations). As
with the dataflow, the service heterogeneity can complicate the task of coordination or
composition and presently these problems are handled through process-specific rules in
the coordination or composition specification, which makes the specifications difficult
to edit or re-use (e.g. in the case of replacing one participating service with another).
It is also possible that ad hoc coding in the implementation logic is required to ensure
necessary data format conversions or compensation mechanisms.

Composition models also benefit from dynamic service selection i.e. a service is spec-
ified in abstract terms and is resolved to an actual service endpoint at execution. However
this resolution is based on the WSDL service description, which as noted above, lacks

32 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

semantics and hence is not expressive enough for service bindings based on a general
formulation of a desired functionality.

Coordination and composition are much more complex tasks requiring more compli-
cated models and specifications in comparison with the ”core” Web Services standards
of SOAP, WSDL and UDDI. Here the standardization efforts are also in a much earlier
phase.

2.3.4 Evaluation Conclusion

Web Services are in a position to fulfil business needs by making functionalities offered
by internal business systems widely accessible. The service can then be requested from
clients over the Web or integrated with other applications. Once an application has been
configured to work with a Web Service, which through intuitive tools and simple open
standards can be a cost- and time-saving exercise compared to middleware solutions, it
can take advantage of that service’s functionality from within its own application logic.

However the Web Service infrastructure that has been introduced in this chapter has
chosen the path of simple functionality support, in order to encourage uptake and devel-
opment (just as HTML and XML were widely used as a result of being open, simple
standards). This is however a mismatch with the apparent goals of Web Services, raising
the question of whether they can truly handle the complex real world integration needs of
enterprises.

Considering the deployment of Web Services throughout the current systems using
RPC and EAI solutions (where Web Services are being promoted as the next generation
- see 2.1.2) and eventually in all B2B interactions, Web Services need to demonstrate a
high level of scalability, efficiency, reliability, expressiveness, security and manageability
(Bussler et al., 2003).

The current core Web Services infrastructure of SOAP, WSDL and UDDI is based on
the primitive notion of synchronous remote invocation following a simple client-server
model. Complex integration problems, such as B2B interactions based on peer-to-peer
communication, are not in the scope of these core standards.

The Web is constantly growing and changing. Web-based services need also to be able
to scale to and operate with this fast-moving global environment. While Web Services, as
presented in this chapter, have benefits for Web-based access to computational function-
ality and for the needs of business application integration, the reviewed infrastructure is
not able to support the complexity of large scale (Web-based) integration tasks.

The potential of making services available across the Web is to build a services-
oriented Web architecture. This is about discovering globally distributed, heterogeneous,
standalone software processes and permitting their composition and interoperation to pro-
duce re-usable, flexible and dynamic Web Services which can be employed by agents and
enterprise systems to realise a required functionality.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 33

2. WEB SERVICES

The following chapter turns to the proposed Web Service infrastructure that aims to
realize this potential. This infrastructure aims to do this by introducing semantic tech-
nologies to Web Services i.e. ontologies and knowledge representations.

34 29.June, 2004 KWEB/2004/WP2.4ID1/v1

Chapter 3

Semantic Web Services

3.1 Definition of Semantic Web Services

We introduce the concept of Semantic Web Services as an extension of Web Services as
defined in section 2.1.1. To understand how this extension came about, we quote (Lara
et al., 2003):

Web Services extend the Web from a distributed source of information to a distributed
source of services. The Semantic Web has added machine-interpretable information to
Web content in order to provide intelligent access to heterogeneous and distributed in-
formation. In a similar way, Semantic Web concepts are used to define intelligent Web
services i.e., services supporting automatic discovery, composition, invocation and inter-
operation. This joint application of Semantic Web concepts and Web Services in order to
realize intelligent Web Services is usually referred as Semantic Web Services.

The Semantic Web Services paradigm aims to cope with the need to automatically
search, negotiate, select and interact with relevant Web Services among distributed actors
in dynamic network environments where information sources, communication links, and
actors themselves may appear and disappear unpredictably. An interesting metaphor to
model such dynamic scenarios comes from the multi-agent systems area. In this case,
a scenario is characterized by agents that provide services, agents that request services,
and middle agents. Specifically, the matching process that allows requesters needs to be
satisfied is demanded of middle agents, e.g., broker and matchmaker agents (Paolucci
et al., 2002),(Tomaz and Labidi, 2003).

The ability of middle agents to autonomously provide the best matching between the
service request and the service provider strongly depends on the ways of conceptualizing
and organizing semantic information about services. To deliver on such a task, several
researchers, e.g. (Horrocks et al., 1999),(Sycara et al., 2002), are dealing with formal lan-
guages to support a rich declarative specification of a wide variety of information about
Web Services in order to allow agents for automatic service discovery, selection, compo-

35

3. SEMANTIC WEB SERVICES

sition, negotiation and contracting, invocation, monitoring of progress, and recovery from
failure.

In order to make clear what we mean when we talk about Semantic Web Services,
it may be useful to elicit the requirements of the Semantic Web Services languages
(McGuinness et al., 2003)in terms of needed functional capabilities. We identify the
following main requirements:

• Advertising and matchmaking. Such capabilities make it possible to discover new
services that match the initial service request, e.g., customer needs. At this level,
formalisms that allow services for a semantic description can be useful for the
matching algorithms, e.g., for details (Li and Horrocks, 2003),(Paolucci et al.,
2002), (Tomaz and Labidi, 2003).

• Negotiation and contracting. Even once the matching process has established a cor-
respondence between the request and the service, it may still not be the case that
the requester can actually use the service. Therefore, the negotiation and contract-
ing processes are needed, which again rely upon a formal description of the service
capabilities.

• Process modeling and composition. This aspect deals with composite services char-
acterized by non-trivial internal structure. At this level, formalisms that describe
data type, sequential patterns of operation, or patterns of valid interactions, can be
useful in reasoning about the process models of the Web Service and for defining
service compositions.

• Process enactment. Since composite services are structured as workflows, the ser-
vice requester must be able to monitor the service execution. For example, if a
service is far from being finished, the requester can decide to stop it.

In order to effectively satisfy the above requirements, which match with the aspects of
discovery, interoperation, composition and invocation introduced in 2.1.1, the Semantic
Web approach requires that data describing Web Services be not only machine readable,
as is currently the case, but also machine understandable. In this way software agents
can interact in an automated fashion with the semantically described services (Li and
Horrocks, 2003):

Semantic Web Services aim to describe and implement Web Services so as to make
them more accessible to automated agents. Here, ontologies can be used to describe
services so that agents (both human and automated) can advertise and discover services
according to a semantic specification of functionality (as well as other parameters such
as cost, security, etc.).

36 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

3.2 Rationale for Semantic Web Services

In the previous chapter, it has been noted that Web Services are being used for business
process integration as a successor technology to RPC and EAI. However the greatest
potential benefits of this approach - the use of the Web as network infrastructure and Web
standards such as XML for message exchange - are the root of the key problems of the
current Web Service infrastructure.

Web Service deployment requires a significant level of manual effort. A human pro-
grammer is required to ensure and maintain correct service operation. There are associ-
ated business costs in time and expenditure. If Web Services are to become more attractive
to businesses in terms of expenditure and ROI (return of investment) there is a need for
greater automation.

Web Services also rely on the Web architecture to function. The Web is a dynamic,
variable and changing place. Network connections and resources can change suddenly.
The current Web Service infrastructure requires a stability and reliability that is not real-
istic to expect from the Web. Human oversight must be permanently available to react to
changes in other Web services and in the network. This ties the usage of Web Service tech-
nologies, whether as a provider or requester, to a long term commitment to maintenance
of a Web Service-based system. Hence another need for Web Services is self-maintaining
systems.

Finally, the standardization of Web Services has focused on using XML as a common
data representation format. This has many benefits in that XML is open, extensible, ex-
changeable, and is supported by many tools and related specifications. However XML
documents are verbose and often not particularly human-readable. Their correct expres-
sion depends on the understanding of the XML tags by the human developer. The am-
biguities that can arise cause invalid messages or message formulation or failed service
discovery. XML Schema types, as pure syntax, have no relationship to the concepts they
describe. The range of standards and specifications that have been produced do not share
a common conceptual model of what Web Services are, which can impact on Web Service
interoperability.

By taking the Web Service infrastructure onto the level of the Semantic Web, se-
mantics will be applied to the issues of automation, self-maintenance (autonomy) and
a common conceptual model. We can illustrate the areas which could be improved by
the use of semantics by considering the service aspects evaluated in 2.3, namely service
invocation, service discovery and service composition and coordination.

Service Invocation

Invocation requires the transmission of a message (e.g. in SOAP) to the service. The
service will only execute correctly (i.e. not enter a fault state or return a fault message)
if the content of the message respects the formal description of the service interface (i.e.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 37

3. SEMANTIC WEB SERVICES

contains the requisite parameters, each of which has a valid value). To make invocation
efficient, the message could be validated according to the interface description before
sending.

However as far as the interface description is syntactic, the message validation can
only also be syntactic (e.g. check the use of the correct datatypes for parameter values).
This means that syntactically correct messages will be considered valid and sent, even
when their content is inconsistent. If instead, a service interface specifies permitted val-
ues on its parameters in terms of ontological classes, then messages for this service can
be checked in terms of ontological axioms (e.g. sub/superclassing). This validation could
also be extended by semantic rules for specified classes and the given service. For exam-
ple, consider the case of a travel agency Web Service, which books flights, accommoda-
tion, car hire and so on. In this case semantic rules might include trivial ”consistency”
checks (e.g., arrival date should be at least one day before departure date in the case of
a hotel), or real application conditions (e.g., apartments can be booked only for periods
longer than one week), or even conditions that apply to a particular instance of a service
(e.g., a given Web server can book hotels only in Tuscany).

Furthermore, a semantically enriched service interface can support developers in cor-
rectly invoking services according to the meaning of the content being passed in the mes-
sage. For example, a parameter for Temperature could be validly invoked with the Celsius
value rather than Fahrenheit (as the syntactic validation checks only for an integer) yet the
result from a service expecting a Fahrenheit value would likely be interpreted incorrectly.

A semantic description of the service interface will also support modelling the invo-
cation in the most effective way to meet the requester’s needs. It does this by representing
how the service will react to different messages, so that a client can decide the best mes-
sage structure to send. For instance, the travel agency can specify that a message contain-
ing an optional hotel name will result in booking that specific hotel and if the name is not
specified then any hotel in the specified town could be selected.

Until now it has still been assumed that the requester has prior knowledge of the ser-
vice to be invoked and hence knows how to align the internal application data to the data
requirements of the service interface. However semantics can support automated invo-
cation, where the service description represents its required data in terms of ontological
concepts which are ”understood” by the requester. The requester could then dynamically
map internal variables to service invocation parameters.

A further aspect of automated service invocation is the construction of a message
from the service interface. While this is already possible from WSDL, the provision of
semantics solves the problems of data mapping and consistency checking as already men-
tioned. In the case of document-style SOAP interaction the requester must construct an
XML document from the internal application data. Where the service interface provides
only syntactic constraints (in XML Schema), message construction is only possible for
services known of at design time. Semantics enable however the dynamic generation of
XML from a shared understanding of the application data and the service invocation doc-

38 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

ument. This forms the basis for service negotiation and contracting as mentioned in the
previous section.

Service Discovery

Web Service discovery aims to provide a framework for the location of services to meet a
specific need. Current discovery approaches can be likened to Web search engines, in that
they require individuals to formulate queries and sort through the results for the most rele-
vant resources. This does not scale well to complex business processes which may require
the regular location of multiple Web Services with constantly changing requirements.

Businesses require automated service discovery. This is particularly important for
Web Service composition. Composite Web Services contain multiple Web Service refer-
ences which are generally static (fixed within the composition model) or dynamic (in the
sense of a formulated query to a UDDI registry). The former approach means that when
a specified service fails, the entire composed process fails. The latter approach can not
take into account changes in client requirements at run-time or new requirements, which
arise during execution. Run-time dynamic matching of services with actual functional
requirements solves these problems.

A second benefit of dynamic discovery is the ability to select the most appropriate
service at run-time. Selection criteria could be related to QoS issues (e.g. find the service
with the currently quickest response time) or contextual issues (e.g. find the service whose
response best matches the preferences of the current user).

Dynamic service discovery is made possible using service classification meta-data
containing concepts described formally in an ontology, e.g., by means of a description
logic based knowledge representation as opposed to UDDI’s tModels. Service queries
can be as expressive as the underlying service classification meta-data model, and there-
fore far richer, than would be possible with UDDI/WSDL-based approaches. Queries
could include logical expressions and support reasoning across concepts. The discovered
services will depend on the matching effectiveness. If the customer’s needs and the ad-
vertised services are described according to a common ontology, it possible to perform
an automatic crossing between customer’s requests and supplier’s advertisements. In par-
ticular, as outlined in several approaches (e.g., (Li and Horrocks, 2003),(Paolucci et al.,
2002)), different matching degrees have been considered. Specifically, according to (Li
and Horrocks, 2003), the matching can be exact, i.e., the request and the advertisement
coincide; plugin, i.e., the request is a sub-concept of the advertisement; subsume, i.e.,
the advertisement is a sub-concept of the request; intersection, i.e., when the intersection
of request and advertisement gives as result a non empty set; and disjoint, i.e., when the
intersection of request and advertisement gives as result an empty set.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 39

3. SEMANTIC WEB SERVICES

Service Composition and Co-ordination

In a service-oriented architecture user goals are achieved by locating and communicating
with distributed software processes advertised by service providers. In Web Services the
advertising, distribution and communication with these services takes place on the Web.

While simple goals may be achieved by a simple request/response interaction (as mod-
elled in SOAP/RPC) it is inconceivable that all potential user goals will be directly im-
plemented by a corresponding service. Rather, complex goals can be achieved by co-
ordinating the interaction between two or more services. The functionality to achieve the
complex goal can be packaged into a single Web Service (offering a single interface to
other clients with the same goal) through service composition. Business processes have
complex goals, so there is a business need for both the co-ordination and composition
of services. As an example in this section, we return to the travel agency Web Service,
which realises the goal of booking a holiday by the invocation of other services for flights,
hotels, car hire, etc.

Co-ordination requires a correct understanding of the meaning of the messages in a
conversation, if a developer is to implement the rules for a conversation between services
correctly. Semantics can formally describe this meaning. Another aspect of this would
be supporting an application in carrying out a valid conversation with a service by the
semantic interpretation of the services declared choreography. This is required where the
service, and hence its choreography, is not known a priori, such as with dynamic service
selection.

Co-ordination also involves conversation monitoring, whether this is done by the par-
ticipating services (checking that their own choreography is being respected) or by a co-
ordinator. Monitoring of choreographies expressed syntactically can not flag semantic
errors. Where the choreography is using semantics, ontological axioms and additional
rules for consistency checking can be utilised to ensure that a conversation between ser-
vices is ”meaningful”. For example, when conversing with a car hire service, a request-
availability operation will be invoked, followed by reservation and payment. Now, if the
first operation is invoked by giving “Smart Car as a parameter, and such an automobile
is found to be available, then no conversation (process flow) rule will be violated if the
booking is completed. However, given a booking party of 5, a semantic process may infer
that such an automobile is indeed too small.

The co-ordinator could also become a service mediator with semantic co-ordination.
In other words, a mediation process could dynamically determine the valid conversation
required between a set of services to realize a certain goal. Dynamic mediation would
not only seek to ensure that the resulting conversation respects individual service chore-
ographies but also respects run-time variables such as service state and data content. This
would release developers from the need to specifically create co-ordination protocols for
realising tasks with a static set of known services. Rather, dynamic discovery could be
used and the required conversations determined at run-time. The travel agency Web Ser-

40 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

vice for example may change the services it accesses for bookings based on advertised
changes in QoS, or tailor them to the clients’ preferences. The different services may
require a different choreography for making a booking, in which case the travel agency
will need to dynamically alter its conversational process.

Composition also benefits from semantics in that dynamic service selection can be
incorporated into the composition model. Effective service retrieval is based on semanti-
cally rich queries, and these queries can be formulated within the composition model in
terms of internal data and state only when the model itself has an understanding of the
semantic concepts represented by that data and state.

The availability of semantic descriptions of service functionality for discovery pur-
poses could also be utilised for composition. Rather than seeking to match a user’s goal to
a single service in a semantic discovery framework, a user’s goal is matched to a compo-
sition of services. In other words, service functionalities are treated as sub-functionalities
which are combined to form more complex functionality that achieves the user’s goal. The
resulting combination of services can be expressed using a composition model. Within
the model, different services are invoked, each with its own service interface and data
structures. From the internal view of the model (the orchestration) the flow of data and
state information should be consistent. Hence composition needs interfaces between the
internal view of the composition process and the heterogeneous views of the participating
services. While composite services using static service selection can be authored with
these interfaces explicitly declared, automating the task of inter-operability between het-
erogeneous services would lessen development time and make composite services more
maintainable. Automation becomes a necessity in the case of dynamic service selection.
Semantics enable such automation by providing a shared understanding of the execu-
tion domain between the internal and external views of the composition model. This is
achieved by either sharing or aligning ontologies.

The consistency of a service composition model is measured in the validity of its
data and state flow, with the stated goal of a certain result (in terms of data and state) at
the conclusion of the execution of the composed service. However, changes in state are
not exclusively syntactic as Web Service execution can result in changes in the state of
the world, which is not directly measurable within a computer system. Such changes in
state are best modelled in ontologies, where concepts from the world can be represented
and their relationships expressed, and constraints can be stated which determine if an
execution result is meaningful and hence enable the success of a composite service in
achieving a goal.

In a semantic composition model, this involves describing service execution not only
in terms of the input and output data-types, but also in terms of the preconditions (read as
”constraints on service invocation”) and effects (read as ”repercussions of service invoca-
tion”) on a formal model of the situation within which the invocation will take place. As
an example, the price of the trip (a service output) may be calculated by summing the cost
of the flight, the hotel, the car hire, and the agency servicing fee. This mapping between

KWEB/2004/WP2.4ID1/v1 29.June, 2004 41

3. SEMANTIC WEB SERVICES

the input order and the output price can be described among the effects of the service.
The payment, meanwhile, can be modeled as an effect, which updates the model of the
domain, by reducing the amount of money in the bank account of the user. A reasoning
system using the service could then aim to meet user requirements for a travel booking
while minimizing the total price.

More sophisticated use of preconditions and effects can be envisaged for handling ex-
ecution roll-back. For instance, when organizing a trip, we want to make sure that both the
hotel and the flights are booked, and that the reservations respect certain constraints (e.g.,
the check in date for the hotel is also the arrival date at the destination). If we discover that
this is not possible (e.g., after booking the hotel we see that there are no available flights
left), we want to cancel all reservations (i.e., cancel the hotel reservation). One can see
that a model of the domain and of preconditions and effects of Web Service invocations
are necessary to define these kinds of conditions on Web Service compositions.

3.3 Current Semantic Web Service Initiatives

Software agents, in order to automatically discover, invoke, compose, and interoperate
with Web Services, require a description of the properties and capabilities of such ser-
vices in a computer-interpretable form, and the means by which the services can be ac-
cessed. Current specifications such as UDDI, WSDL, SOAP, BPEL and BPML cannot
fully semantically represent the components Web Services make use of in order to support
automated service discovery, invocation, composition and interoperability (Rajasekaran
et al., 2004). The technologies investigated in this section aim to support these tasks.
They attempt to achieve this by augmenting Web Services with the semantic description
of various aspects of Web Services.

3.3.1 DAML-S/OWL-S

OWL-S is a Web Service ontology framework based on OWL1. Its main goal is to enable
a user or a software agent to automatically discover, invoke, compose, and interact with
web resources offering a service that adheres to requested constraints. (Polleres et al.,
2004)

Previous releases of OWL-S were referred to as DAML-S and were built upon the
DARPA Agent Markup Language and Ontology Inference Language, DAML+OIL (Ankolekar
et al., 2002). DAML+OIL is a description logic (DL) based Web ontology language which
describes the structure of a domain in terms of classes (concepts in DL) and properties
(roles in DL).

Partners working on the OWL-S language include BBN Technologies, Carnegie Mel-

1OWL-S 1.0 release, URL: http://www.daml.org/services/owl-s/1.0/

42 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

lon University, Nokia Research Centre, Stanford University, SRI International, USC In-
formation Sciences Institute, University of Maryland, Baltimore County, University of
Toronto, Vrije Universiteit Amsterdam, University of Southampton, De Montfort Univer-
sity and Yale University.

The OWL-S ontology was developed to provide service descriptions with additional
semantic information enabling service descriptions to be made and shared. This additional
information consists of a set of markup constructs (i.e basic classes and properties) which
can be used to declare and describe services.

OWL-S can support complex services as well as simple services. In the OWL spec-
ification, complex services are referred to as services which are composed of multiple
services. These often require more than one interaction between the user and the service
where the user has to provide information based on certain conditions.

According to the OWL-S ontology specification, a service can be defined through the
use of core components the Service class is made of: the Service Profile, the Service
Model, the Service Grounding and the Resource Ontology.

The Service Profile sub-class of the service class tells agents ”what the service does”.
This sub-class aims to support automatic service discovery. Its sub-classes include the
organization providing the service, the service name, functional aspects of the service
such as inputs, outputs, pre-conditions and effects (”IOPE”), which point to the func-
tionality instances in the Service Model, non-functional aspects of the service such as
the contact information of the individuals or organization responsible for the service and
additional features used to specify the characteristics of the service (e.g category of the
service, quality of service and service parameters such as max response time and geo-
graphic availability).

The Service Model sub-class tells agents ”how a service works”. This sub-class aims
to support automatic service invocation. In order to control the interaction with a service,
it defines the transformation of data from a set of inputs to a set of outputs (e.g from credit
card number to a receipt). In order to describe the state change during the execution of a
process, it makes use of pre-conditions and effects (e.g. if the card number is valid and
the account is not overdrawn, charge the card and organize the physical transfer of goods
from the seller to the buyer). The inputs, outputs, pre-conditions and effects should be de-
scribed as in the Profile Model sub-class. The Service Model sub-class models three types
of processes: atomic, composite and simple. The same processes are defined in the Profile
sub-class. The Service Model sub-class defines the control flow and the data flow of the
constituent processes of a service. The operation descriptions and message descriptions
in WSDL can have an OWL-S process attribute mapped to the OWL-S atomic process
in the Service Model ontology. WSDL abstract types can also be mapped to different
types of OWL-S inputs and outputs of atomic processes. These describe a mapping to an
invocable description.

The Service Grounding sub-class specifies ”how agents can interoperate with a ser-
vice” via messages. Its components enable the transformation from inputs and outputs

KWEB/2004/WP2.4ID1/v1 29.June, 2004 43

3. SEMANTIC WEB SERVICES

of OWL atomic processes to concrete atomic process grounding constructs, which can be
transmitted in WSDL 1.1 messages. OWL classes of inputs and outputs can be defined
as extensions in separate documents and referenced in WSDL descriptions by using the
OWL-S parameterType property of the referenced input or output object. Also, the seri-
alization of the message parts of an OWL type can be specified in the encodingStyle at-
tribute. The use of WSDL for grounding presents the following limitations. Each WSDL
operation may have an OWL-S process attribute indicating the name of the OWL-S atomic
process. However, the current WSDL specification does not make this possible. Also, ac-
cording to the OWL-S specification, OWL atomic processes can make use of conditional
outputs. However, there is only a single output message specification for a given opera-
tion in WSDL 1.1. This limits the expression of conditions and the reasoning based on
them.

The Resource Ontology contains classes of attributes to express pre-conditions of pro-
cesses and sub-classes for resource composition. However, due to limitations in the Re-
source ontology and limitations in the expression of rules in OWL, it is not clear in the
OWL-S specification how post-conditions can be used to support automatic service com-
position and interoperability.

3.3.2 IRS-II

IRS-II, which stands for Internet Reasoning Service, is a framework and implemented
infrastructure for Semantic Web Services, conceived as reusable online problem-solving
resources. (Motta et al., 2003)

Partially supported by the Advanced Knowledge Technologies (AKT) Interdisciplinary
Research Collaboration, the group of researchers working on the IRS-II project includes
the University of Aberdeen, Edinburgh, Sheffield, Southampton, the Open University and
the Dipartimento di Scienze dell’Informazione at the University of Bologna.

The primary goal of the IRS-II project is to support the discovery and retrieval of
knowledge components (i.e. services) from libraries distributed over the Internet and
their semi-automatic configuration in order to realize specific tasks according to user re-
quirements. The benefits IRS-II claims to provide are scalability and flexible mediation
between problem and services. (Crubzy et al., 2003)

IRS-II has two key features. Firstly, it is built on knowledge modelling research on
reusable components for knowledge-based systems. Secondly, it makes use of the Unified
Problem-Solving Method-Development Language (UPML) framework for knowledge an-
notation of problem solving resources, built within the IBROW project. (Omelayenko
et al., 2000) IRS-II separates the problems to be solved (i.e. task model) from the differ-
ent ways to solve them (i.e Problem Solving Methods) from where these problems can be
solved (i.e. domain model). The domain-independent problem solving methods (PSMs)
can be used to address stereotypical knowledge intensive problems such as diagnosis, de-
sign and classification. The UPML framework in IRS-II enables flexible n:m mappings

44 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

between problems and methods. Hence matchmaking agents can reason about the task-
method competence matching of a method in a given scenario. In the UPML framework
problem solving is modelled as finding a solution (i.e. an output class) that best explains
a set of known facts (i.e. input observables) about an unknown object. PSMs are selected
if their post-condition fulfills the goal expression of the task and if their pre-conditions do
not contradict the assumptions of the task. IRS-II uses four UPML classes of components:
domain models, task models, PSMs and bridge adapters. A description of each of these
components follows.

Domain models are classes used to identify groups of similar objects.

Task models are achievable functions. Each task is specified in terms of input roles
(e.g observables, match criteria, solution criteria and score comparison criteria), output
roles (i.e solutions), pre-conditions (e.g observables and candidate solutions should be
non-empty), assumptions (e.g the output of the task will include at most one solution) and
default goal (e.g find a solution which is admissible with respect to the given admissibility
criterion). Symbol level requirements (i.e input and output roles) are mapped to XML
Schema types in the SOAP bindings.

Problem Solving Methods (PSMs) are abstract descriptions of reasoning processes
which can be used to solve tasks in different domains. Each PSM includes the follow-
ing sub-tasks: data abstractions, solutions abstractions and solutions refinement. Data
abstractions are used to collect, select or apply abstraction mechanisms (e.g has a high
temperature). Solutions abstractions are used to match abstractions to possible expla-
nations and ranking with respect to a set of observed features or according to a match
criterion (e.g has fever). Solution refinements are used to collect, select or apply abstrac-
tion mechanisms to generate more specialized solutions according to domain knowledge
about the solutions. (e.g has yellow fever) Each sub-task is defined using specific input
and output roles (e.g has-observables, has-solutions) specified by the user or provided
as defaults as well as general pre-conditions and assumptions on domain knowledge and
pre-conditions (i.e logical goal expressions). (Motta and Lu, 2000)

At the practical level both task models and PSMs make use of ontologies (i.e a library
of resources formally modelled and pragmatically annotated), metadata annotations in
RDF format (e.g Dublin Core) and costs. Bridge adapters map relations between ontolo-
gies of two types of components for the components to be configured, connected together
and executed in different systems. The adapters need to be defined when PSMs don’t
comply with both the ontology and with the SOAP encoding of inputs and outputs. The
adapters can map PSMs (e.g classification) to domain models (e.g identification of ap-
ples). They can also map PSM abstractions (e.g sweetness) to tasks (e.g sugar-level clas-
sification) providing a solution for dealing with ontology mismatches. Finally, they can
adapt existing resources (e.g introduction of fuzziness) to generate specialized solutions.

The IRS process model consists of eight phases: task selection, task configuration,
domain selection, task verification, PSM selection, PSM configuration, PSM verification
and application execution.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 45

3. SEMANTIC WEB SERVICES

To enable task selection and configuration, the solution space of classes of similar ob-
jects (i.e set of possible solutions) is mapped to domain knowledge (e.g hierarchy). The
input observables (i.e set of possible features) are also mapped to domain knowledge (e.g
attribute). The tasks are selected as refinements of high level tasks that match with the
requirements of the domain knowledge. So the attributes are transformed by way of map-
ping relations into task-complaint inputs. The same mappings can be used for the outputs
to conform to the domain ontology. Task-domain ontology mapping relations, which are
the architectural elements of domain-specific configuration knowledge, are stored in a
task-domain bridge as reusable resources. IRS-II provides structured mapping templates
which help users select the tasks.

In the domain selection phase IRS-II checks the input roles and the assumptions that
the task defines on domain knowledge and notifies the users about inputs that do not
satisfy the assumptions of the task. If required, it directs them back to the configuration
step. According to the specification, not all assumptions can be verified.

During task verification users can select a domain model from a UPML complaint
library with reusable mappings. Alternatively, they can provide their own knowledge
base with mappings.

The PSM selection and configuration phase is carried out as follows. PSM descrip-
tions that match the configured task are computed using a set of PSM-task bridges. The
input and output roles of the PSM are mapped to the inputs and outputs of the config-
ured task. Alternatively, matches can be computed with a competency matching process
based on first-order logic, functionality that the current IRS implementation does not pro-
vide yet. Users can select the PSM that they think better matches the task. The PSM
configuration can be mapped to a domain and stored as a PSM-domain bridge.

During the PSM verification phase IRS-II checks the goal of the task against the pre-
conditions of the PSM and the assumption of the task against the preconditons of the PSM
and notifies the users about any domain input that does not satisfy the PSM requirements
and, if necessary, it directs them back to the configuration step.

During the application execution phase IRS-II acquires user case data and interprets
the domain-task, task-PSM and domain-PSM mapping relations. It transforms the user
specified attributes into the inputs of the configured PSM and invokes this to realize the
configured task. This way it retrieves the location and type of PSM code. Finally domain
outputs are filled in with the results of the PSM execution.

Finally, in addition to the features described so far, IRS-II can publish standard Web
Services from programming code such as Java. It achieves this by adding wrappers to the
Java code.

IRS-II supports RDF so PSMs can be published as RDF resources on the Web. In We-
bOnto all the components of the UPML framework, including their operational contents,
are modeled in the Operational Conceptual Modeling Language (OCML), an Ontolingua-
derived language. OCML provides a relation mapping mechanism to enable the matching

46 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

of PSMs to queries in Web Service discovery and to tasks in Web Service invocation
and composition. According to the UPML framework, each PMS library can use a spe-
cific knowledge-modeling language to describe its resources. (e.g OIL, OWL) However,
the need for interoperability requires the use of shared ontologies and common modeling
languages or standard knowledge-level APIs (e.g Protéǵe supports OKBC).

The IRS-II architecture includes brokering and registry mechanisms and consists of
three components which use the SOAP protocol to communicate with each other: the
IRS server, the IRS publisher and the IRS client. The IRS server contains the Semantic
Web Services descriptions (i.e domain models, tasks and PSMs) and the mapping rules to
connect knowledge descriptions to specific Web Services. In one implementation a plug-
in extension to the ontology modeling tool Protéǵe 2000 is integrated to enable library
providers to define their own PSMs with properties that can be browsed. In a second im-
plementation it is integrated with the WebOnto ontology server, with the OCML modeling
and reasoning platform and with a library of problem solving resources accessible online
through an API. The IRS publisher can link Web Services to their semantic descriptions
in the IRS server and can generate wrappers to transform standalone Java code into a Web
Service described by a PSM. The IRS client takes user case input (e.g attributes and types)
and invokes Web Services. This can also be done programmatically through a set of client
APIs which are task-centric. On selection of a task to be achieved the broker locates an
appropriate PSM and then invokes the corresponding Web Service.

3.3.3 METEOR-S

Started in 2002 at the LSDIS Lab at the University of Georgia as the follow on project
of Meteor (i.e Managing End-To-End Operations), a project focused on techniques from
the Semantic Web, Semantic Web Services and workflow management, Meteor-S aims
to integrate Web Services standards such as Business Process Execution Language for
Web Services (BPEL4WS), Web Service Description Language (WSDL) and Universal
Description, Discovery and Integration (UDDI) with Semantic Web technologies. (Verma
et al., 2004)

The Meteor-S project contributors include Faculty Members, active students and Alumni
from the Computer Science Department based at the LSDIS lab at the University of Geor-
gia. 2

The main goal of the Meteor-S project is to provide Web Services with enhanced dy-
namism and scalability through the application of semantics in the Annotation, Discovery,
Composition, Quality of Service and Execution of Web Services. In order to achieve this
goal, it has added semantics to the following layers of the Web Services conceptual stack:
Publication and Discovery Layer, Description Layer and Flow Layer. In the Publication
and Discovery Layer the input and output data of Web Services are mapped to ontolo-

2METEOR-S: Semantic Web Services and Processes. URL: http://lsdis.cs.uga.edu/Projects/METEOR-
S/index.php

KWEB/2004/WP2.4ID1/v1 29.June, 2004 47

3. SEMANTIC WEB SERVICES

gies. The Description Layer includes annotations of operational data of Web Services,
pre-conditions and effects. The Flow Layer is based on BPEL4WS and uses State Ma-
chines, Petri nets and activity diagrams to formally represent the flow of a service in a
process or the operations in a service for verification, simulation and exception handling
of the process model. It also uses the QoS model for Web Services to describe operational
metrics of services and processes. (Sivashanmugam et al., 2003)

The Meteor-S project was developed in three phases. The first phase consists of the
Semantic Discovery Infrastructure (MWSDI), which leverages peer-to-peer networking as
a scalable infrastructure for automated and semi-automated Web Service publication and
discovery. The Semantic Annotation of WSDL (WSDL-S), which was developed in the
second phase, also supports service discovery. The Semantic Web Process Composition
Framework (MWSCF),which represents the third phase of the Meteor-S project, consists
of tools supporting the automatic service discovery and composition, control flow and data
flow based on process and business constraints. (Sivashanmugam et al., 2004) (Aggarwal
et al., 2004) Here is a detailed description of each of these phases.

The Semantic Discovery Infrastructure (MWSDI) is an infrastructure of registries for
the semantic publication and discovery of Web Services. It makes use of ontologies and
it categorizes registries based on domains. Its architecture is divided into four layers:
the Data layer which is a P2P network of registries providing Web Services, the Opera-
tor Services layer which maintains the services provided by the operator peers, and the
Semantic Specifications layer (i.e ontologies spread across all the layers) which supports
service publication. The Data layer consists of UDDI registries mapped to one or more
domains classes in the Registry ontology. It provides access to one or more services de-
pending on the search query. The Communications layer consists of a P2P infrastructure
for distributed components to interoperate. The Gateway Peer is the only peer that con-
trols access to the network for new operators to join the network and updates the Registry
Ontology for all peers. The Operator Peer acts as provider of operator services and the
Registry Ontology. The auxiliary peers make sure the Registry Ontology is available. The
client peers can connect to the network to discover Web Services. They can achieve this
by creating and sending a template to the Operator Peer and by invoking the Operator
Service.

The P2P network was implemented using the JXTA framework to enable interoper-
ability and support for all platforms and devices. It makes use of the following protocols:
the Peer Discovery Protocol, to enable peers to discover each other, the Pipe Binding
protocol to bind a pipe (i.e communication channel) to more than one peer at runtime,
the Operator Peer Initiation protocol to define the process for adding a new registry to
the Registry ontology and the Client Peer Interaction protocol to enable a client to enter
the network and request the Registry ontology for either discovery or publication of Web
Services. The Client Peer Interaction protocol enables the client to enter the network as a
guest peer and makes a request for the Registry ontology. One of the peers in the network
provides the ontology. The ontology is displayed by the user client interface. The user se-
lects a specific domain. The user sends the Web Service publication (or discovery) details

48 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

to the corresponding Operator Peer. The Operator Peer executes the relevant Operator
Service to publish the Web Service in the registry it maintains (or to query the registry
and return the services published in the registry to the client).

The Operator Services layer maintains the services provided by the operator peers
such as the semantic discovery and publication of Web Services in UDDI. The client
peer uses this layer to communicate with the registries. The users can select registries,
discover services and publish services in registries through the use of templates. This
layer translates the templates to a registry specific format in order to perform specific
functions. It can also provide additional value-added services (e.g wrapper service to
translate registry entry details in UDDI data structures specifications and vice versa during
the SOAP message processing)

The Semantic Specifications layer, which consists of the ontologies used to support
the semantics based publication of Web Services, enables a number of operations. It
allows adding domain-specific semantics operations, and pre-conditions and effects to
WSDL descriptions, registering the descriptions in domain specific registries and locating
registries and services based on user requirements. This is achieved by matching the
inputs and outputs of the service requirements provided by the user with the semantic
annotations of the services stored in the registries. The input and output types in the
WSDL descriptions are mapped to input and output taxonomies (i.e tModels) and grouped
in a domain specific ontology (e.g departureCity and arrivalCity are mapped to airportCity
in outputs AirTravel taxonomy), which contains the terminology used by Web Services
in a domain. The tModels names are mapped to domain ontology concepts (i.e key-value
pairs stored in UDDI registries). CategoryBags are also used for the categorization. As a
result, a query can be restricted to one group of related partners.

Web Service functional properties such as operations, inputs, outputs, pre-conditions
and effects are mapped to an ontology. Web Service non-functional properties such as
name, version, API supported, operator details, QoS and constraints are also mapped
to an ontology. The mapping is provided as a service in the service layer. Two types
of mapping were implemented: manual mapping in WSDL files stored in UDDI data
structures and semi-automatic mapping stored in UDDI.

The Semantic Annotation of WSDL (WSDL-S) project (Rajasekaran et al., 2004) fo-
cuses on adding semantic descriptions to WSDL and to UDDI in order to provide seman-
tic discovery. Its tools are the Semantic Web Service Designer, the Semantic Descriptor
Generator, the Publishing Interface, the Discovery Engine and the XML repositories.

The Semantic Web Service Designer is used to add semantic descriptions to the source
code. The services are designed by providing associations between service inputs, out-
puts, port types, exceptions and ontological concepts and constraints for pre-conditions
and pre-conditions. For each operation the tags describe input and output parameters,
exceptions and constraints, which themselves include pre-conditions and post-conditions,
interface-specific annotations and service parameters (e.g ”location”, ”quality of service”
and ”reliability”). The constraints are represented as Boolean expressions.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 49

3. SEMANTIC WEB SERVICES

The Semantic Descriptor Generator is used to add semantics to the WSDL descrip-
tions to specify ”what the service does”. It takes as input the annotated source code (e.g
Java) and maps Java types into XML Schema datatypes by means of a hash table. It makes
use of an interface and can be called by an application through an API. In this last case
it performs more stringent matching. The descriptor generator uses other components:
the Document Generator, the Type Converter and the Validator. It can generate annotated
WSDL1.1, WSDL-S and OWL-S files associated with the annotated source code. Each
operation in the port type of a WSDL file can be mapped to a concept. The message types
can be described using XML Schema Definition (XSD), OWL or UML/XMI.

As part of the descriptor generator, a WSDL-S Meta-Model was developed. Accord-
ing to this model, which presents extensions to WSDL 1.0, the namespace feature can
reference classes and properties from the RosettaNet ontology using OWL for example.
Each operation can have an action attribute. Exceptions tags can be used to represent
the exceptions thrown by an operation. The constraints (i.e. Boolean expressions) are
converted into SWRL rules specified in WSDL-S documents. WSDL inputs, outputs,
exceptions and constraints tags have element attributes. Pre and post condition tags can
also be used to depict the conditions for an operation to be executed. Java data types can
be transformed into XSD types. It appears that type system round-tripping (i.e transfor-
mation of XSD types into Java types, Java types into OWL types, OWL types into XSD
types and the other way round) is not simple.

The Publishing Interface advertises services (i.e annotated files) in enhanced UDDI, a
layer above UDDI which can handle semantic data. Four enhanced UDDI data structures
are used to accommodate semantic information: the Business Entity structure, which
holds the provider information, the Business Service structure, which provides the service
description and the Binding template, which provides service access information with
references to domain and location of T-Models. T-Models provide service parameters
descriptions (i.e each KeyName is associated to a KeyValue which points to a concept
in the ontology). Category bags are used within the first three UDDI data structures for
categorizing services based on semantics.

The Discovery Engine, which contributes to both the discovery and composition of
Web Services, queries semantically enhanced UDDI data structures and compares con-
cepts and properties of concepts to produce effective ranked responses. The results ben-
efit from the UDDI categorization based on domain and locality of service, and from the
operation-ontology and message part-ontology mappings. The services are selected by
computing the degree of similarity of the input and output semantics of the candidate ser-
vices to the requirements template. The match can also be determined by computing the
similarity of the pre-conditions and effects semantics of the candidate services to the re-
quirement templates. This can be achieved by using preconditions and effects tags. It can
also use additional ranking criteria. These include cost, availability, reliability, domain
specific QoS and analysis of constraints on operation. It can also use heuristics based on
subsumption-relations, data-type matching between requestor specified constraints and
provider specified concepts, common ancestor, property or child, in order to compare on-

50 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

tological concepts specified in the query with those published in the registry. Finally, in
order to rank relevant services, it can use metrics based on properties comparison, data
types and cardinality matches and distance from the common parent. When the discov-
ery engine is called by the execution engine, it needs to perform more stringent matching
because there is no human intervention to adjust it.

A number of repositories are used during process design, service discovery and pro-
cess generation. There are ontologies to map inputs and outputs (i.e data types) and oper-
ations. These are used in service description and in the annotation of semantic templates.
They are published in UDDI and use T-Models ID to be identified. There are also seman-
tic Process Templates that can be edited, categorised and stored. Each of these templates
is stored in a particular collection that represents a category based on the identifier. Fi-
nally, the Activity/Services interface definitions in WSDL syntax are stored in a different
repository. They can be browsed and selected in order to link to an activity during the
design of a process.

The Semantic Web Process Composition Framework (MWSCF), which supports the
automatic discovery and composition of services, makes use of the following tools: the
WSDL files with the descriptions of the process operations of the participating Web Ser-
vices, a BPEL file containing the process definition and the BPEL4WS orchestration
server. It also uses the MWSDI and data in repositories (i.e ontologies, activity inter-
faces and process templates) to convert the process templates into executable format. The
MWSCF adds four types of semantics to the description of Web Services: Data semantics,
which enable agents to communicate with Web Services; Functional semantics, which en-
able agents to invoke a Web Service; Quality of service semantics, which enable agents
to select Web Services that satisfy their requirements; and Execution semantics, which
enable agents to interoperate with Web Services. Data semantics consist of inputs, out-
puts and exceptions mapped to OWL classes or standard vocabularies such as RosettaNet.
Functional semantics consist of a set of related operations, pre-conditions and postcondi-
tons mapped to concepts in an ontology. Quality of service semantics consist of metrics
based on service time, cost, availability and reliability. Execution semantics consist of the
process flow information and the data dependencies between Web Services.

The dynamic composition of Web Services in Meteor-S is achieved by automatically
binding Web Services to abstract processes, based on process and business constraints.
The descriptions of constraints, cost estimation and service optimization are used to sup-
port the constraints analysis and quality selection of services. The Semantic Web Process
Composition Framework uses WSDL4J for processing WSDL files, the Jena toolkit and
DAML API for building and processing ontologies and the BPEL4WS industry standard
for modeling workflow patterns.

The MWSCF architecture makes use of the following components: the Abstract Pro-
cess Builder, used to design and abstractly represent the control flow between the services,
the Discovery Engine, used to support semantic publication and discovery, the Constraint
Analyser, used to rank services based on business and process constraints, and the Process

KWEB/2004/WP2.4ID1/v1 29.June, 2004 51

3. SEMANTIC WEB SERVICES

Execution Engine, used to bind the matched services to their abstract process and execute
them.

The Abstract Process Builder enables programmers to use Semantic Process Tem-
plates (SPT) to design the semantics of each activity and the control flow used to form
an executable process. This feature supports dynamic discovery of the services required
to carry out each activity and the generation of the appropriate executable process based
on the discovered services. The functional semantics of an activity (i.e inputs, outputs,
pre-conditions and effects) are specified using a Semantic Activity Template describing
the requirements of a service. The internal distributor services for the operations that
don’t change are statically bound to the process while the services that are decided at run
time (e.g supplier services) are dynamically bound to the process. The semantic activity
template needs to be designed for the services that are bound to the process dynami-
cally. During discovery the semantic requirements of the activity and QoS requirements
specified in the semantic activity template are compared with candidate semantically an-
notated WSDL service operations linked to QoS specifications (to be specified in WSEL
- the Web Services Endpoint Language - a proposal from WSFL for the description of
non-functional characteristics of services) for ranking and selection purposes. The pro-
cess builder, in order to compose the activities, specifies the activities and control flow
constructs (e.g sequence, flow, switch) in a semantic process template in XML format.
This process template contains a collection of activities linked to BPEL control flow con-
structs. Receive and reply constructs in the template are mapped to an operation in the
WSDL file which captures the messages received and returned by the process. The pro-
cess template specifies the discovery QoS criteria and ranking details for each activity so
that the relevant services to carry out activities of type interface or semantic template can
be discovered and selected for the composition of the services. The most relevant ser-
vice is retrieved by performing three operations: automated service discovery, constraint
analysis and constraint optimization, based on user constraints.

Given a template, the Discovery Engine returns the services that best match the tem-
plate. The service descriptions in the WSDL files, which are mapped to a domain specific
ontology, are semantically compared to the requirements and ranked.

The Constraint Analyzer, in order to enable the dynamic selection of services, uses
constraint representation and cost estimation. The Constraint representation module,
which represents the required business and technological constraints and partnerships,
can be derived from the RosettaNet ontology. The Cost estimation module queries the
Constraint representation module to estimate the cost of various factors affecting the se-
lection of a service for the processes. These include querying and cost estimation (i.e
cost of procurement, delivery time, compatibility with other suppliers, relationship with
supplier, response time of supplier, reliability of service), service dependencies (ie the
selection of one service will affect choices for other services) and process constraints set
on actual values or estimated values on QoS specifications (e.g time, cost, availability,
reliability). The process level quality QoS is calculated as the aggregation of QoS of all
the services in the process. The values of the parameters can be pre-set or estimated. In

52 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

order to set the priorities between these factors (e.g time, cost and supply time), the Cost
estimation module assigns costs to them based on one or more of the following: the re-
sults obtained from querying the Constraint Representation module, the results obtained
from querying an internal database or the results obtained from querying the suppliers’
Web Services.

The Constraint Optimizer converts the Process constraints (e.g time, cost, cost partner
preference) into constraints for an Integer Linear Programming Solver called Lindo. It
uses an equation to weight the cost and preference of a service according to the process
designer. The function for the optimization is extracted from the service template with
operations and constraints defined by the user. This function will rank the constraints
from optimal to near optimal solutions. The Process Designer can then select the optimal
constraints and send them to the run time module.

The Process Execution Engine uses the run time module (i.e Process generator) to
convert the abstract process and service templates into a BPEL4WS Web process which
can be executed in any BPEL execution engine. Users can specify the process flow and
data dependencies between the Web Services using BPEL4WS. They also need to specify
the location of the WSDL files. The Binder takes the optimal set of services bound to
the abstract process and builds an abstract executable BPEL file (i.e with placeholders
for service details to be filled in). The BPEL placeholders (i.e the invoke elements in
the generated process) are filled in with the service description and location details (i.e
portType and namespace) extracted from the WSDL file. The input and output container
details of the invoke elements are generated from the data flow details provided by the
user. WSDL data, data flow provided by the user and the flow constructs in the template
generate a BPEL executable process. An in-memory model of the process is written in a
BPEL file. This is validated by the BPEL4WS orchestration server, it is deployed and it
can then be invoked by another Web Service.

3.3.4 WSMF/WSMO

WSMF

The Web Service Modeling Framework (WSMF) defines a rich conceptual model for the
development and the description of Web Services in order to bring this technology to its
full potential. (Fensel and Bussler, 2002a)

In order to achieve the objective stated above, WSMF establishes the use of the prin-
ciple of maximal decoupling and strong mediation. (Fensel and Bussler, 2002b) It also
defines a number of components which should be used in order to model an ontology
and formal language for describing Semantic Web Services. These components are as
follows: Goals, Ontologies, Web Services and Mediators.

Goals are problems that Web Services need to solve. They include pre-conditions (i.e
what a service expects to receive) and post-conditions (i.e what a service returns in re-

KWEB/2004/WP2.4ID1/v1 29.June, 2004 53

3. SEMANTIC WEB SERVICES

sponse to an input). Ontologies are used to link machine processable content with human
meanings based on consensual terminology. Web Services are black box and grey box
descriptions of various Semantic Web Services aspects. They include different levels of
acknowledgement (i.e message reception, understanding and exchange layer) and support
the declarative specification of Web Service composition through the use of constraints.
The key role of Mediators is to bypass interoperability problems and provide a human-
understandable description of the goal. They include adaptors enabling the combination
of objects that differ in syntactical input and output descriptions and specific mediators
used to mediate between data structures, message exchange protocols and business logics
(i.e compensation for data mismatches and process sequencing mismatches).

WSMF does not define a concrete syntax or the semantics for the framework. Ac-
cording to the WSMF specification, this could be achieved through the use of WSFL or
OWL-S and the Process Specification Language (PSL). On the contrary, WSMF defines
the conceptual model for the development and description of Web Services and its key
elements.

WSMO

The Web Service Modeling Ontology (WSMO), developed as a refinement and extension
of WSMF, is an ontology and formal language for describing various aspects of Semantic
Web Services. (Roman et al., 2004a). These include the components defined above. The
WSMO specification, which is currently under development, uses a layered approach,
which includes the definition of three different ontologies: WSMO Lite (i.e a basic on-
tology), WSMO Standard (i.e a mature set of concepts) and WSMO Full (i.e the full
ontology).3

The WSMO working group is an initiative from the SDK Cluster, which includes the
Knowledge Web project contributions. The Knowledge Web project deliverables will con-
tribute to the development of WSMO. Other partners are HP Galway, British Telecommu-
nications, Open University, Tiscali and many other partners from industry and research.

WSMO aims to meet three goals: to describe the domain of Semantic Web Services,
to define a conceptual model for a formal language design and to define an execution
environment which can enable the complete definition and execution of Web Services’
interactions. (Sinuhe et al., 2004) Also, it has been designed based on the following
domain-specific principles. Firstly, the external interfaces/behavior should be different
from the internal interfaces/behavior. Secondly, it proposes the use of a peer to peer
approach instead of a client-server approach. Thirdly, it makes use of instance description
instead of type description.

Non functional properties and value constraints are classified in two categories: core
properties (i.e Dublin Core Metadata Element Set plus the version element), which are

3WSMO Working Drafts, URL: http://www.wsmo.org/2004/

54 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

defined globally and Web Services-specific properties, also related to the QoS, the quality
aspect of a Web Service.

Ontologies define formal semantics to enable information processing by a computer
and to link these semantics with meanings agreed by humans (i.e real-world semantics).
WSMO aims to achieve this by providing concepts, relationships among the set of con-
cepts and their semantic properties captured by logical expressions. In WSMO these
logical expressions, which consist of non functional core properties defined by a logical
constraint, are named axioms.

Concepts have attributes with names and types (i.e range), can change overtime and
can have super-concepts specified by an ”isa relation”. They also have methods that can
be invoked on each instance of a concept and that can take parameters. The possible values
that instances can take are the range. The possible values that the parameters can take are
the domain. Instances of concepts can be defined through the use of the ”instanceof”
relation.

Relations are used to define the interdependencies between several instances of con-
cepts as a set of n-tuples (i.e links in UML) with respect to a domain. Relationships that
are used in more than one domain (e.g symmetry, transitivity, reflexivity) can be defined
implicitly through the use of axioms. A relation uses parameters to specify the interrelated
concepts. The semantic properties of relations can be constrained to different levels.

In WSMO the Goals specify the objectives a requestor has when consulting a Web
Service. Goals are defined through the following elements: non-functional properties,
used mediators, pre-conditions and effects.

The Mediators define a number of elements: non-functional properties (i.e. core prop-
erties), a source and a target component, a mediation service pointing to a goal or a Web
Service with some mapping and a reduction, which consists of a logical formula to de-
scribe the difference between the functionality described in the goal and the Web Service
functionality. WSMO divides mediators into two classes: refiners and bridges. Refiners
can be used to generate new components as a refinement of existing ones. They include
goal mediators (i.e ggMediators) and ontology mediators (i.e ooMediators). Goal me-
diators can link a source goal to a target goal. They can also use and combine existing
goals. Ontology mediators can be used to import ontologies for merging or transforming
these into different ontologies. They can also resolve representation mismatches between
ontologies. Bridges, the second class of mediators, enable two components with inter-
operability problems (i.e functionality mismatch, data mismatch, protocol and/or process
mismatch) to work together. Bridges include wgMediators and wwMediators. The wg-
Mediators link Web Services to goals and use ontology mediators to map different ontolo-
gies to each other while the wwMediators can be used to link two Web Services to enable
them to interoperate with each other.

Web Services in WSMO are described using the following elements: non-functional
properties, used mediators, service capability, service interface, choreography and orches-
tration.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 55

3. SEMANTIC WEB SERVICES

Non functional properties are Web Service specific properties. The Service capability
(i.e the defined goals) consists of non-functional properties (i.e core properties), used
mediators for importing ontologies with ooMediators and for linking a capability to a
goal by using wgMediators, pre-conditions which define the conditions over the input,
post-conditions which define the relation between input and output, assumptions which
define the conditions before the input and also the effects which describe the status of the
service after the execution.

The Service Interface component describes how the service operates. It consists of the
following elements: non-functional parameters (i.e core properties) and used-mediators
(i.e ooMediators) importing ontologies to make concepts and relations accessible to the
Interface.

The Choreography component (i.e the service requester point of view) tells a service
requester how to communicate with a Web Service in order to consume its functionality. It
is the service that advertises its capabilities to potential service requestors. It decomposes
a Web Service capability into sub-capabilities. The inputs and outputs define a message
exchange pattern (MEP) to describe the specific capability of a Web Service. The MEP
specifies a sequence of conditional speech acts that send or receive messages. State-less
MEPs model stimulus-response patterns and state-based MEPs model conversations. The
collection of these messages defines the state description of a MEP.

The Orchestration component (i.e the service provider point of view) determines how
a service makes use of other service providers to achieve its capability. Like the Chore-
ography component, it decomposes a Web Service capability into sub-capabilities. These
sub-capabilities are used to define the activities in a problem solving pattern (PSP) for the
Web Service capability, which consists of state-less or state-based descriptions. The PSP
specifies a sequence of conditional activities. Each time a Web Service needs to be in-
voked, a proxy needs to be declared by declaring a goal or by linking it to a wwMediator.
The collection of these messages defines the state description of a PSP.

In WSMO many attributes of goals, mediators, ontologies and Web Services consist of
axioms and rules defined by formal logical expressions. The WSMO use cases make use
of F-Logic (Kifer et al., 1995) to represent these logical expressions. This choice offers
the advantages of a conceptual high-level approach typical of a frame-based language and
the expressiveness, the compact syntax, and the well defined semantics from logics.

The next stated goal of WSMO is to build a layer to support fully flexible eCommerce
and eWork.

56 29.June, 2004 KWEB/2004/WP2.4ID1/v1

Chapter 4

Analysis of Semantic Needs

4.1 Requirements of Semantic Web Services

Web Services have added a new level of functionality to the current Web, making the first
step to achieve seamless integration of distributed components. Nevertheless, current Web
Service technologies only describe the syntactical aspects of a Web Service and, therefore,
only provide a set of rigid services that cannot adapt to a changing environment without
human intervention. The human programmer has to be kept in the loop and scalability as
well as economy of Web Services are limited (Fensel and Bussler, 2002a).

The vision of Semantic Web Services is to describe the various aspects of a Web Ser-
vice using explicit, machine-understandable semantics, enabling the automatic location,
combination and use of Web Services. The work in the area of Semantic Web is being ap-
plied to Web Services in order to keep the intervention of the human user to the minimum.
Semantic markup can be exploited to automate the tasks of discovering services, execut-
ing them, composing them and enable seamless interoperation between them (McIlraith
et al., 2001), thus providing what are also called intelligent Web Services.

The description of Web Services in a machine-understandable fashion, enabling the
automatic location and configuration of distributed functional components based on the
requester needs, is supposed to have a great impact in areas of e-Commerce and Enter-
prise Application Integration. Semantic Web Services can constitute a solution to the
integration problem, as they aim at enabling dynamic, scalable and reusable cooperation
between different systems and organizations. These great potential benefits have led to
the establishment of an important research area, both in industry and academia, to realize
Semantic Web Services.

Due to the big efforts devoted to research on the description and effective use of Se-
mantic Web Services, and due to the potential impact these new technologies can have in
industry, it is essential to analyze the state and achievements of current initiatives in order
to guide future research in the area.

57

4. ANALYSIS OF SEMANTIC NEEDS

In this section, we provide an analysis of the most prominent initiatives in the area,
namely: WSMO, OWL-S, IRS-II and METEOR-S. The aim of this analysis is to contrast
current initiatives against a set of requirements for Semantic Web Services in order to
provide a reference evaluation for these four initiatives.

In order to perform the analysis, we define in the following a set of requirements the
semantic description of a Web Service must fulfill. In (McGuinness et al., 2003), a first
draft of the requirements for a Semantic Web Services description language is provided.
However, some of these requirements are not clear enough and others go into too much
detail for the purpose of this document. As a complete and detailed set of requirements
for the description of Semantic Web Services will be provided within the Knowledge Web
deliverable 2.4.1, we here start by providing a set of general requirements that can serve
to provide a first analysis of current initiatives and can considerably help to identify open
issues in current initiative. The deliverable 2.4.1 will go deeper into these requirements
and will revisit (McGuinness et al., 2003) as a point of reference for the deliverable. Here
we group some of these requirements and skip some others that are too specific at this
point.

We group the requirements these initiatives must fulfill into the following categories:

• Discovery: Web Services have to be located after they are made available by ser-
vice providers. Semantic Web Services should enable the automatic location of
Web Services that provide a particular functionality and that adhere to requested
properties (McIlraith et al., 2001). The discovery process should be based on the
semantic match between a declarative description of the service being sought, and
a description of the service being offered. This problem requires not only an algo-
rithm to match these descriptions, but also a language to declaratively express the
capabilities of services (Paolucci et al., 2002). Therefore, the following require-
ments should be fulfilled in order to enable the effective and dynamic location of
Web Services:

– 1) A standard language to express the capability i.e. functionality of a given
service and the goal i.e. request of a given requester.

– 2) The description of the service functionality must be independent of the
underlying implementation, service binding, message exchange pattern, etc.

– 3) An efficient and well-defined mechanism to locate the Web Services match-
ing the requester needs.

Notice that most of the requirements fall in the functional requirements defined in
(McGuinness et al., 2003), although we skip some more detailed (and arguable)
requirements found there.

• Composition: Web Services can be composed in order to provide a new function-
ality based on the functionality of the constituent services. An initiative that aims at

58 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

realizing Semantic Web Services must provide a way to define how a Web Service
is composed:

– 4) A language for defining the orchestration of the service i.e. the composition
of such service has to be provided, and this language needs to have defined
formal semantics.

– 5) The orchestration must allow the use of both statically defined i.e. hard-
wired Web Services and dynamically located Web Services.

Notice that these requirements fall into the process modelling requirements in (McGuin-
ness et al., 2003). The details of the type of constraints (e.g. ordering constraints,
state constraints, resource constraints) that are required is out of the scope of this
document.

• Interoperation : One of the main purposes of Web Services is the automation of
application integration within and across organizational boundaries. This implies
necessarily the need for interoperation between services. This interoperation can be
between services in an organization or crossing different organizational boundaries.
To ensure automatic interoperation, description means must be defined declara-
tively using explicit semantics. Therefore:

– 6) A formal language for defining the choreography i.e. the conversational
behaviour of the service must be provided.

– 7) The composition of the service i.e. the internals of how the service achieve
its offered functionality must be clearly separated from how the service in-
teroperates with the outside world. That means that the orchestration of the
service must be clearly separated from its choreography.

These requirements include requirements on process modelling and process enact-
ment from (McGuinness et al., 2003), although in a lower level of detail.

• Heterogeneity: The use of distributed and independent Web Services implies to
deal with heterogeneous terminologies, data formats, and interaction models. There-
fore, mediation is required to bypass the inherent heterogeneity of Web Services in
an automatic way:

– 8) Data mediation is needed to bypass data heterogeneity.

– 9) Process mediation is needed to bypass different interaction. patterns

These requirements are not explicitly considered in (McGuinness et al., 2003).
However, we consider them as essential due to the inherent heterogeneity of dis-
tributed sources.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 59

4. ANALYSIS OF SEMANTIC NEEDS

• Invocation: The semantic description of the Web Service must include a link to a
grounding i.e. an invocable description of the service:

– 10) Grounding information must be given for every service.

This requirement is included in (McGuinness et al., 2003) under the enactment re-
quirements category.

• Support: A viable proposal for Semantic Web Services must include a supporting
implementation and the modelling of some realistic use cases:

– 11) Existence of supporting implementation.

– 12) Realistic use cases modelled.

Requirement 11) can be related to the metaproperties that a Semantic Web Service
language must fulfill, defined in (McGuinness et al., 2003). However, 12) is not
mentioned in the list of requirements given, although we consider it of great impor-
tance to evaluate the applicability of a given proposal.

• Other requirements: Besides the requirements listed before, other requirements
have to be met by any Semantic Web Services initiative in order to provide an
effective and ready-to-use solution:

– 13) Error definition and handling.

– 14) A human-readable description of the service must be available in order
to allow not only machines but also humans to browse and search available
services.

– 15) Other non-functional properties such as contact information must be in-
cluded in the description of the Web Service.

– 16) Transaction support, including compensation mechanisms in case of fail-
ure. Transaction contexts have to be defined both in the orchestration and the
choreography of the service.

– 17) Definition of the reliability of the service.

– 18) The Web Service must include trust information and trust policies.

– 19) The Quality of Service (QoS) must be defined.

– 20) The Web Service must include security mechanisms and define security
policies for the provision of the service.

– 21) Monitoring of the execution of the service.

– 22) Extensibility of the approach to adapt potential future requirements and
use cases.

60 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

Most of these various requirements are also found in (McGuinness et al., 2003), al-
though some of them in greater detail. As explained before, we will limit ourselves in this
document to general requirements.

The details of the analysis of the different existing initiatives, based on the require-
ments above, can be found in the following subsections.

4.2 Analysis of Current Initiatives

4.2.1 WSMO

The Web Service Modeling Ontology - (WSMO Standard, currently at version 0.2) (Ro-
man et al., 2004b) is an initiative to create an ontology for describing various aspects
related to Semantic Web Services, with a defined focus: solving the integration prob-
lem. WSMO takes into account specific application domains (e-Commerce and e-Work)
in order to ensure the applicability of the ontology for these areas. WSMO is led by the
Semantic Web Services working group of the SDK cluster1, which includes more than
50 academic and industrial partners.

WSMO follows a layered approach. There are three WSMO species envisioned:
WSMO-Lite (Roman et al., 2004c), WSMO-Standard (Roman et al., 2004b)and WSMO-
Full (Priest and Roman, 2004). WSMO-Lite represents a minimal yet meaningful sub-
set (in the context of Web service integration) of WSMO-Standard for which an execu-
tion environment is easily implementable, whereas WSMO-Full aims to extend WSMO-
Standard and to incorporate a B2B perspective. For the analysis, we will consider WSMO-
Standard and refer to the WSMO-Full extensions where necessary.

Discovery requirements

1) WSMO distinguishes the provider point of view and the requester point of view,
providing different elements to express the service capability and the requester needs. A
goal in WSMO specifies the objectives that a client may have when she/he consults a Web
Service. A Web Service capability defines the service by means of what the service offers
to the requester i.e. what functionality the service provides.

The elements used to capture the functionality requested in the goal are post-conditions
and effects. Post-conditions are defined as the state of the information space that is de-
sired. Effects are defined as the state of the world that is desired. Goals in WSMO contain
neither pre-conditions nor assumptions, capturing only the results (both in terms of infor-
mation and state change) that the requester requires.

The capability defines both pre-conditions (what the service expects for enabling it
to provide its service, defining conditions over the input) and post-conditions (what the
service returns in response to its input, defining the relation between the input and output).

1http://sdk.semanticweb.org/

KWEB/2004/WP2.4ID1/v1 29.June, 2004 61

4. ANALYSIS OF SEMANTIC NEEDS

It also defines assumptions (similar to pre-conditions, but referencing aspects of the state
of the world beyond the actual input) and effects (the state of the world after the execution
of the service). In this way, the capability of the service models the state change caused
by the execution of the service both in the information space and in the world.

Pre-conditions, post-conditions, assumptions and effects, both in the goal and in the
capability, are described as an axiom, which is an arbitrary logical expression. To describe
these logical expressions, F-Logic (Kifer et al., 1995) is used.

We only find one missing element in the description of the functionality requested:

• Goals in WSMO completely capture the functionality desired by the requester, but
there is not a defined way to express what information the user is willing to disclose
in order to achieve such functionality, which is also a relevant aspect of the user
request. A first approach to describe this information can be found in (Olmedilla
and Lara, 2004).

2) In WSMO, the functional description of the service is independent of the imple-
mentation details. The grounding of the service is specified as part of the choreography
and orchestration descriptions.

3) In WSMO, the proof obligations necessary to perform discovery of Web Services
are being described (Keller et al., 2004), and some services are being modelled and
matched (Stollberg et al., 2004). However, this work is not finished yet, so future ver-
sions of this work and potential additional work will further clarify if an efficient and
well-defined discovery mechanism can be established for WSMO Semantic Web Services.

Composition requirements

4) A language for defining the orchestration of the service will be defined (it can be
found in the work plan for WSMO). However, there is no available information about this
language yet.

5) The WSMO orchestration specifies a set of proxies that the service uses in order
to fulfill its functionality. Proxies can be goals or wwMediators. This way, both dynamic
(on the fly) composition (by declaring proxies consisting of goals descriptions) and static
composition (by linking proxies to wwMediators) are supported (Roman et al., 2004b).

Interoperation requirements

6) A formal language to describe the choreography of a Web Service is being defined
in WSMO (Roman et al., 2004d). However, this definition is at a preliminary stage and it
has to be further specified and tested.

7) A service in WSMO has an interface, which describes how the functionality of the
service can be achieved (i.e. how the capability of a service can be fulfilled) by providing
a twofold view on the operational competence of the service: Choreography decomposes

62 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

a capability in terms of interaction with the service (service user’s view), and orchestra-
tion decomposes a capability in terms of functionality required from other services (other
service providers’ view). It can be seen that in WSMO composition and interoperation
are clearly separated, as the choreography defines how to communicate with the Web Ser-
vice in order to consume its functionality, and the orchestration defines how the overall
functionality is achieved by the cooperation of more elementary service providers (Ro-
man et al., 2004b).

Heterogeneity requirements

8) WSMO includes mediation components that are used to bypass heterogeneity prob-
lems. Different types of mediation are distinguished, as described in chapter 3. These
mediators point to a goal that declaratively describes the mediation service needed or to
a Web Service that actually implements the mapping. This mediation service is in charge
of performing the necessary data mediation. However, an issue is open:

• It is not defined how this data mediation will work, as no examples of data mediation
are available yet.

9) The mediators describe before will also apply to process mediation. But:

• No examples of process mediation are available yet.

Invocation requirements

10) The grounding information of WSMO services will be included in WSMO in the
choreography and orchestration definitions (Roman et al., 2004b), although the grounding
is not defined in the current version of WSMO.

Support requirements

11) Three implementations are being developed that will support WSMO. The first one
is WMSX, that will create an execution environment for the dynamic discovery, selection,
mediation, invocation and inter-operation of WSMO Semantic Web Services. This plat-
form is going to be a sample implementation of the Web Services Modelling Ontology
(WSMO). The second one is an adaptation of the IRS-II platform to use WSMO descrip-
tions of Web Services. The third one will be the Semantic Web FRED2.

12) The WSMO working group is devoting a considerable part of his work to the
modelling of real use cases. At the moment, the modelling of a B2B and a B2C use
cases is being done (Stollberg et al., 2004). WSMO will take use cases from the projects
participating in the SDK cluster and model them to test the applicability of the approach
(see (Bussler, 2004), (Lara, 2004) and (de Bruijn, 2004) for details). However, complete
modelled examples are not available yet.

2http://www.deri.at/research/projects/swf/

KWEB/2004/WP2.4ID1/v1 29.June, 2004 63

4. ANALYSIS OF SEMANTIC NEEDS

Other requirements

13) The definition of errors is not explicitly consider in WSMO, although it will be
included in the choreography of the service. However, this definition is not given yet.
Error handling is also not explicitly considered at the moment.

14) WSMO introduces a set of core non-functional properties that are defined globally
and that can be used by all the modelling elements of WSMO. These properties include
the Dublin Core Metadata Element Set plus a version element. The Dublin Core elements
include human-readable description of all the elements of WSMO, including the service.

15) Extensions for core non-functional properties specific for the service such as se-
curity, trust, etc. are also provided. In addition, these core properties can be extended if
required in order to capture specific non-functional properties of any WSMO element.

16) Transaction and compensation is not considered in WSMO at the moment, al-
though it will be included in the orchestration and choreography definitions.

17) In the extension of the WSMO core non-functional properties to include Web
Service specific non-functional properties, the reliability of the service is defined.

18) Trust information is also included in the Web Service specific non-functional prop-
erties. However, trust policies are not defined. A first approach to include trust policies in
WSMO can be found in (Olmedilla and Lara, 2004).

19) QoS is included as part of the Web Service specific non-functional properties.

20) Security is also part of the Web Service non-functional properties, although secu-
rity policies are not treated in detail.

21) Monitoring of the execution of the service is not present in WSMO.

22) WSMO is extensible in every direction due to the loose-coupling of all its ele-
ments. All the modelling elements are defined independently and the core elements of
WSMO are linked via mediators, which guarantees the extensibility of the ontology.

Summary

Our conclusion from the analysis of WSMO is that this initiative is appropriately cov-
ering the discovery requirements with the exception of the information the requester is
willing to disclose to achieve the desired functionality. A first approach to add this in-
formation is related in (Olmedilla and Lara, 2004). Composition requirements are well
addressed at the conceptual level, but a concrete language to describe the orchestration
has not been provided yet. The same applies to interoperation, where the separation be-
tween the choreography and the orchestration is well-defined, but a language to define
the choreography of the service is still to come. Regarding mediation, we find a similar
situation; the conceptual elements to bypass heterogeneity problems are in place, but a
more concrete view (mainly via examples) on how the mediation will actually take place
would help to better evaluate the conceptual approach. The tool support for WSMO Web
Services is being developed and it is heading on the right direction. However, the imple-

64 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

mentations are not available at this moment, so they cannot be evaluated in detail. The
modelling of real use cases is started and there is an explicit intention to model a mean-
ingful set of use cases, but this task is still in progress. Some of the other requirements
we have used for the analysis are not covered at the moment. Some of these requirements
will be fulfilled when the choreography and orchestration in WSMO is defined, and some
others have to be addressed separately.

Summarizing, WSMO is a conceptually strong approach that provides a good base for
the realization of Semantic Web Services. However, and due to the still short life of the
initiative, some aspects are still undefined and some of the results of the WSMO working
group3 are still in progress. WSMO appears as a promising initiative, that has to still fill
some gaps and show in the near future its real applicability to real use cases. Although our
first analysis is positive, a really accurate evaluation of WSMO is not completely possible
at this point in time, as it is still at its first stage.

4.2.2 OWL-S

As outlined in section 3.3.1, OWL-S (OWL Services Coalition, 2003) is a collaborative
effort by BBN Technologies, Carnegie Mellon University, Nokia, Stanford University,
SRI International and Yale University to define an ontology for semantic markup of Web
Services. OWL-S, currently at version 1.0, is intended to enable automation of Web
Service discovery, invocation, composition, interoperation and execution monitoring by
providing appropriate semantic descriptions of services.

The purpose of OWL-S is to define a set of basic classes and properties for declaring
and describing services i.e. an ontology for describing Web Services that enable users and
software agents to automatically discover, invoke, compose and monitor Web resources
offering services, under specified constraints.

In order to determine to what extent OWL-S initiative is applicable in a real setting,
we will go through the general requirements outlined in the previous section and will
describe to what extent they are met.

Discovery requirements

1) In OWL-S, the Service Profile describes the intended purpose of the service, both
describing the service offered by the provider and the services needed by the requester.
The profile specifies what functionality the service provides, the specification of the con-
ditions that must be satisfied for a successful result, and the results of the service execu-
tion. This is described by using four different elements: inputs, outputs, preconditions
and effects (IOPEs).

In OWL-S, a Web Service is viewed both as a data transformation process i.e. a trans-
formation from a set of inputs to a set of outputs, and as a state transition in the world i.e.

3http://www.wsmo.org/

KWEB/2004/WP2.4ID1/v1 29.June, 2004 65

4. ANALYSIS OF SEMANTIC NEEDS

some effects in the world emerge after the execution of the service. Information trans-
formation is expressed in OWL-S using inputs and outputs, and state change is expressed
using preconditions and effects. OWL-S also include the possibility of defining condi-
tional outputs and effects i.e. outputs and effects that will actually be delivered by the
service only if the defined conditions are met.

The functionality of the Web Service is also described in the Service Model using
again IOPEs. The consistency between the service profile and the service model is not
imposed in OWL-S. The descriptions contained in the profile and in the model can be
inconsistent without affecting the validity of the OWL expression (although it may result
in a failure to provide the service functionality). However, the OWL-S specification en-
visions that the set of inputs, outputs, preconditions and effects (IOPEs) of the service
profile are a subset of the ones defined by the service model.

It can be seen that OWL-S defines, mainly via the profile and service model concepts,
a standard way to express the capability of a service and the goal of a requester. However,
the following problems are encountered:

• OWL-S conditions are limited to OWL class expressions at its current state. Ex-
tensions towards a fully fledged rule language like SWRL (Horrocks et al., 2004)
or DRS (McDermott, 2004) are under discussion. However, at the moment there
is not a language available to describe pre-conditions, effects, and conditions for
conditional outputs and effects.

• OWL-S does not distinguish between the provider point of view and the requester
point of view, as it uses a single concept (the profile) to model both the service
capability and the requester needs. This unification is conceptually not clear and,
furthermore, it can introduce problems if different aspects have to be expressed for
the goal and for the service capability.

• The relation between IOPEs is not captured in OWL-S i.e. the relationship between
the inputs, outputs, preconditions and effects of the service are not described. As
OWL-S does not provide means for arbitrary logical expressions or rules, the de-
scription of the functionality of the service and of the requester needs remains lim-
ited.

2) In OWL-S, the description of the service functionality is decoupled from the under-
lying implementation, service binding, message exchange pattern, etc. The grounding of
the service, which links the semantic description of the service to an invocable interface,
is defined separately. Therefore, this requirement is fulfilled by OWL-S.

3) Some work has been done to define discovery algorithms for OWL-S Semantic
Web Services, such as the work described in (Paolucci et al., 2002) and (Li and Hor-
rocks, 2003), among others. These approaches mainly rely on subsumption reasoning
over IOPEs to determine if a given OWL-S service meets the requester requirements.
However, several limitations are found:

66 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

• Efficient subsumption reasoning in Description Logics is at the moment limited to
T-Box reasoning i.e. reasoning about concepts. As A-Box reasoning i.e. reasoning
about instances is not feasible in an efficient way, current approaches model every
service profile as a new class. Although this solution leads to a computationally
effective solution, it is conceptually arguable. Different service profiles should be
modelled as instances of the service profile concept define in the OWL-S ontology.

• The matchmaking algorithm is based on inputs and outputs, while preconditions
and effects are usually not considered. Therefore, the applicability of the proposed
mechanisms to dynamically discover OWL-S services is not yet proved for general
descriptions of Web Services.

• Discovery in OWL-S inherits the limited description of functionality commented in
requirement 2). Assuming that OWL-S descriptions should be improved to capture
more accurately the functionality of the service, the validity of current discovery
approaches in a real setting is not clear.

Composition requirements

4) OWL-S allows to define in the process model composite processes, including the
definition of what other processes constitute the composite one. It also includes control
constructs to specify the control flow of the constituent processes and mechanisms to
define the data flow between these processes. Nevertheless, we have not found a definition
of an explicit formal semantics for the modelling of the orchestration.

5) In OWL-S, the processes or services fulfilling the subgoals of a given service are
hard-wired in the orchestration of the service. It is not possible to include a service profile
(a user request) and automatically locating an appropriate service when defining how a
given Web Service will be composed. Therefore, the dynamism of OWL-S compositions
is limited.

Interoperation requirements

6) In OWL-S, only the service model can be seen as defining the conversational be-
haviour of the service. However, it is not clear whether that is the purpose of the service
model or if the real purpose of such model is to define the orchestration i.e. composition
of the Web Service.

7) As stated before, there is no separation between the orchestration and the chore-
ography of a given service, that is, the internal details of how a Web Service achieves its
functionality and the external behaviour of such service are messed up. Furthermore, it is
not clear what is the role of the OWL-S service model. This issue should be clarify and a
clear separation between the orchestration and the choreography of the service should be
defined in OWL-S.

Heterogeneity requirements

KWEB/2004/WP2.4ID1/v1 29.June, 2004 67

4. ANALYSIS OF SEMANTIC NEEDS

8) Data mediation is not considered in OWL-S, leaving this issue unresolved.

9) Process mediation is not considered either.

Invocation requirements

10) OWL-S links a Web Service to its grounding by using the property supports. A
Web Service can have multiple groundings (although an atomic process can have only
one grounding) and a grounding must be associated with exactly one service. OWL-S
does not dictate the grounding mechanism to be used. Nevertheless, the current version
of OWL-S provides a pre-defined grounding for WSDL, mapping the different elements
of the Web Service to a WSDL interface. Although a grounding mechanism is provided
in OWL-S, the following problems arise:

• Groundings are associated to the atomic processes defined in the service model, but
this association is not described in the model but only in the grounding. Therefore,
the groundings for the atomic processes of the model can only be located by navi-
gating from the service model to the service (via the describes property), and from
there to the service grounding (via the supports property).

• OWL-S imposes that an atomic process must have exactly one grounding, which
limits the number real implementations an OWL-S Web Service can have. This
leads to some problems when defining real services, as described in (Sabou et al.,
2003).

Support requirements:

11) Some work has been done to exploit the semantic information of OWL-S Semantic
Web Services. This work has concentrated and the dynamic discovery of services. After
a service has been selected, the grounding is used to invoke the service as a conventional
Web Service. However, little work has been done to exploit additional OWL-S descrip-
tions besides the functionality description found in the profile or the service model. One
of the few examples of a (limited) exploitation of the OWL-S process model can be found
in (Paolucci et al., 2003)). There is not an implementation that fully exploits the OWL-S
semantic description of services. Taking into account that the initiative has been running
for around 3 years, this can be interpreted as a symptom of problems and caveats in the
OWL-S approach to semantically describe Web Services.

12) Some realistic use cases are modelled using OWL-S, such as the interaction with
Amazon.com (Paolucci et al., 2003). However, there is not a set of available use cases
in different application domains that help to prove the applicability of OWL-S in a real
setting and, as mentioned in the previous point, the available use cases only make a limited
use of OWL-S descriptions, only exploiting some of the aspects described by the OWL-S
ontology.

Other requirements:

68 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

13) OWL-S does not model error information and does not consider any error handling
mechanism. Although errors can be captured by using OWL-S conditional outputs, this
characterization of errors is not explicit, as the definition of a conditional output does not
necessarily imply that one of the possible outputs is an error.

14) The OWL-S service profile includes human-readable information, contained in
the properties serviceName and textDescription.

15) Non-functional properties are explicitly modelled in OWL-S. The contact infor-
mation of the service is included as a property of the service profile. In addition, an ex-
pandable list of non-functional properties and a service category (using a categorization
external to OWL-S) is given.

16) No transaction support is present in OWL-S.

17) The reliability of the service can be modelled using the expandable list of non-
functional properties defined in the profile. However, this has not been done at the mo-
ment.

18) Trust information could be again modelled using non-functional properties. How-
ever, the modelling of trust policies may require an explicit and more elaborated mod-
elling beyond non-functional properties. Furthermore, information disclosure policies
might be necessary in the definition of preconditions.

19) The Quality of Service can also be modelled using non-functional properties.

20) Security is not explicitly considered in OWL-S, although there is some work done
in the area by Denker et al. (Denker et al., 2003), which proposes some ontologies for
security annotation of OWL-S services and mechanisms for matchmaking of the requester
and provider security capabilities and requirements.

21) Monitoring was mentioned in earlier versions of OWL-S. However, at its current
version the monitoring of the execution of Web Services is not considered.

22) OWL-S is extensible through the use of explicit expandable properties (such as
non-functional properties in the profile) and through OWL subclassing. However, the
tight coupling of some elements in OWL-S (such as the use of the Service class and the
expected reference from the service profile to the IOPEs of the service model) can slightly
limit the extensibility of the OWL-S ontology.

Summary

OWL-S aims at providing an ontology for semantically annotating Web Services in
order to enable Web Service discovery, invocation, composition, interoperation and exe-
cution monitoring. Nevertheless, it can be seen from the analysis above that the tasks that
should be enabled by OWL-S are not successfully performed. Discovery is one of the
most mature areas, although current approaches are still limited and the OWL-S ontology
itself is under-defined in several aspects. Invocation is achieved though the definition of
the OWL-S grounding and there are some examples of its use e.g. (Richards and Sabou,

KWEB/2004/WP2.4ID1/v1 29.June, 2004 69

4. ANALYSIS OF SEMANTIC NEEDS

2003), (Sabou et al., 2003) or (Paolucci et al., 2003). However, some problems, specially
regarding the cardinality of the grounding, are still encountered. Regarding composition
and interoperation, they are not clearly separated and so far only a limited use of the ser-
vice model has been accomplished. Monitoring is not even considered in the last version
of OWL-S. Tool support is very limited despite the relatively long life of the initiative, and
the modelling of real use cases has not been shown to fully exploit or being able to make
use of the complete OWL-S semantic descriptions. Regarding other type of requirements,
while some of them are reasonably covered, issues such as transactions or trust have not
been solved. In a nutshell, OWL-S has shown its capability to perform certain tasks ex-
ploiting semantic annotations, while it is lacking essential features to make Semantic Web
Services viable in a real setting. Therefore, some issues has to be solved or corrected in
order to make OWL-S realize Semantic Web Services.

4.2.3 IRS-II

IRS-II (Internet Reasoning Service) (Motta et al., 2003) is a framework to support the
publication, location, composition of execution of heterogeneous Web Services. The
framework relies on the semantic description of the service functionality. The IRS-II
framework can be seen as an adaptation of the UPML (Fensel et al., 2003)framework to
the Web Services domain.

Discovery requirements

1) IRS-II distinguishes between tasks (what to do) and methods (how to achieve
tasks) (Motta et al., 2003). Both tasks and methods are described by means of inputs,
outputs, preconditions and postconditions, that provide the functional description of the
service in terms of information and state of the world change. Tasks, Problem Solving
Methods (PSMs) and domain models (Fensel et al., 2003) are represented in OCML, an
Ontolingua-derived language (Motta et al., 2003). Therefore, IRS-II provides a language
to express the service capabilities and the user goals.

2) The semantic descriptions of available Web Services is independent of the under-
lying implementation, service binding, etc.

3) IRS-II aims to support a dynamic, knowledge-based service selection (Motta et al.,
2003). The user specifies the capability he requires (the task) and a PSM that performs this
task has to be selected. The semantic description of the task is used as a query that returns
the available PSMs that satisfy such query. However, in the available examples IRS-II
tasks are tied to PSMs via the ”Tackles-Task-Type” property, which gives an explicit link
between PSMs and a type of tasks. Therefore, it is not clear if the discovery algorithm
used can work without such explicit links.

Composition requirements

70 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

4) IRS-II does not provide a language to describe the service orchestration.

5) As the orchestration of the service is not defined, this requirement cannot be met
by IRS-II.

Interoperation requirements

6) The conversational behaviour of the service is not described in IRS-II.

7) As neither orchestration nor choreography are described in IRS-II, this requirement
does not apply to the framework.

Heterogeneity requirements

8) In the UPML framework, bridges are introduced to bypass heterogeneity problems.
However, such bridges are not used at the moment in IRS-II and, as a consequence, data
mediation is not available.

9) Process mediation is missing in IRS-II.

Invocation requirements

10) Competence specifications i.e. the semantic description of services functionality
is mapped to specific Web Services that can be invoked. The IRS Publisher links Web
Services to their semantic descriptions within the IRS server. It is possible to have multi-
ple services described by the same semantic specifications (i.e., multiple implementation
of the same functionality), as well as multiple semantic specifications of the same service
(Motta et al., 2003). The association between the PSM and the Web Service endpoint is
stored in the IRS server.

Support requirements

11) The IRS-II framework counts with an implemented infrastructure. Such infras-
tructure consists of several tools that communicate using SOAP:

• The IRS-Publisher links Web Services to their semantic descriptions within the IRS
server. It also supports publishing of existing programming code, automatically
transforming programming code into a Web Service (Motta et al., 2003). At the
moment, the IRS-Publisher supports this functionality for Java and Lisp programs.

• The IRS server stores the descriptions of Semantic Web Services. Both the method
descriptions (PSMs) and the concrete implementations are registered in the IRS
server.

• The IRS broker locates PSMs fulfilling a given task.

• The IRS client serves as an interface for the user to the IRS infrastructure.

12) An scenario from the health-care domain is presented in (Motta et al., 2003).

KWEB/2004/WP2.4ID1/v1 29.June, 2004 71

4. ANALYSIS OF SEMANTIC NEEDS

However, a wider and more representative set of modelled use cases is missing.

Other requirements

13) Error handling is very basic and its improvement is planned as part of the future
work in IRS-II (Motta et al., 2003).

14) A human-readable description of the service is not provided.

15) Other non-functional properties are missing in the description of the IRS-II ele-
ments.

16) IRS-II does not provide transaction support.

17) The definition of the reliability of the service is not given.

18) Trust information is also missing.

19) The Quality of Service of the service is not defined.

20) IRS-II does not provide security support.

21) Monitoring is not considered.

22) The approach is based on UPML, a solid and extensible conceptual model. There-
fore, IRS-II can be extended to meet missing requirements and future use cases. In fact,
there will be an extension of IRS-II to follow the direction of WSMO.

Summary

IRS-II is very close to UPML, a solid conceptual approach to the reuse of software
components. Therefore, it provides a good basis to realize Semantic Web Services. How-
ever, it is a too direct application of UPML to the Web Services domain, without consid-
ering special requirements of this domain. Although it provides a good infrastructure for
the storage, location and execution of IRS-II Web Services, it presents several limitations
and does not fulfill many of the requirements analyzed.

4.2.4 METEOR-S

As described in section 3.3.3, the main goal of the Meteor-S (?) project is to provide web
services with enhanced dynamism and scalability through the application of semantics
in the Annotation, Discovery, Composition, Quality of Service and Execution of Web
Services, building on top of existing standards and initiatives such as WSDL, UDDI and
BPEL4WS.

In the following, we will analyze the results of Meteor-S against the requirements we
have introduced for Semantic Web Services.

Discovery requirements

72 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

1) In METEOR-S, Web Services are annotated semantically in order to enhance the
discovery process. The METEOR-S Web Services Discovery Infrastructure (MWSDI)
adds semantics (using ontologies) at two levels (Verma et al., 2004): at the level of indi-
vidual Web Services and at the level of the registries that store the services.

For the annotation of individual Web Services, a bottom-up approach is followed i.e.
WSDL message types, both inputs and outputs, are mapped to the appropriate concepts
in domain specific ontologies.

In addition to the annotation of WSDL inputs and outputs, WSDL operations are also
mapped to ontological concepts from an operations domain ontology (Sivashanmugam
et al., 2003). In the annotation of WSDL operations, preconditions and effects are also
added, interpreted as logical conditions that must hold for performing the operation, and
as changes in the world caused by the execution of the operation, respectively.

The user goals are expressed using service templates based on the concepts from the
domain ontologies. In such template, information about the operation being sought and
their inputs and outputs are given, and optionally preconditions and effects can also be
specified.

The aim of annotating registries is to enable the classification of Web Services based
on their domain. Services are specialized in a given domain, and will store Web Services
related to that domain. A specialized ontology, the registries ontology, is used to annotate
registries, mapping the registries to a given domain and giving additional information
about the registry, relations with other registries and relations to other domains.

It can be seen that METEOR-S provides a way to specify service capabilities and user
goals. However, some limitations are found. These limitations are similar to the ones
identified for OWL-S, as the approach both initiatives follow is quite similar:

• METEOR-S does not provide a expressive language to describe preconditions and
effects, thus limiting the description of the service capability.

• The relation between the different elements that describe the service template for
the requester and the service functionality is not captured i.e. the relationship be-
tween the inputs, outputs, preconditions and effects of the service are not described.
As METEOR-S does not define a way to express arbitrary logical expressions or
rules, the description of the functionality of the service and of the requester needs
remains limited.

2) METEOR-S is based on annotating WSDL descriptions of services. Therefore,
the description of the service functionality is independent of the implementation, service
binding, etc. but it does impose the use of WSDL, thus limiting the applicability of such
description to WSDL.

3) An algorithm has being developed for the discovery of METEOR-S Semantic Web
Services (Sivashanmugam et al., 2003). First, the operation specified in the service tem-
plate is matched against the operations described in the available Web Services. Then,

KWEB/2004/WP2.4ID1/v1 29.June, 2004 73

4. ANALYSIS OF SEMANTIC NEEDS

inputs and outputs are matched. Finally, preconditions and effects are checked. As the
approach followed for the mapping is similar to the one followed for OWL-S descriptions,
it suffers from the same problems:

• Efficient reasoning is limited to T-Box reasoning.

• The discovery algorithm inherits the limited description of functionality discussed
in requirement 2).

Composition requirements

4) In METEOR-S, a framework for defining composition of Web Services have been
defined. This framework is based on BPEL4WS, with extensions to support the specifi-
cation of the so-called semantic process templates (Sivashanmugam et al., 2004). These
templates use BPEL4WS constructs together with semantic activity templates to enable
dynamic location of suitable Web Services. Based on these templates, executable BPEL4WS
business processes are generated. It can be seen that BPEL4WS is the underlying or-
chestration language in METEOR-S. As BPEL4WS lacks defined formal semantics, the
METEOR-S composition language inherits this caveat.

5) In the specification of a semantic process template, three possibilities are present
in METEOR-S: specifying an activity in the process using a concrete Web Service imple-
mentation, specifying an activity using a Web Service interface, or specifying an activity
using a semantic activity template. The second possibility allows the dynamic discov-
ery of an appropriate service to perform the process activity based on mere syntactical
aspects (WSDL interface), which is very limited. The second possibility allows the dy-
namic discovery of services based on their METEOR-S semantic annotations. Therefore,
this requirement is met by the METEOR-S composition language.

Interoperation requirements

6) No choreography language is provided in METEOR-S.

7) This requirement does not apply to METEOR-S because of 6).

Heterogeneity requirements

8) Data mediation is not addressed.

9) Process mediation is not addressed.

Invocation requirements

10) Grounding information is given in METEOR-S, although this grounding is limited
to WSDL. In fact, as METEOR-S annotates WSDL documents, the WSDL grounding is
obviously an element always present in METEOR-S Semantic Web Services.

74 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

Support requirements

11) The exists an implementation of the METEOR-S Web Services Composition
Framework (MWSCF), including a process builder, XML repositories and a process exe-
cution engine. In addition, a discovery infrastructure (MWSDI) has been implemented.

12) We have not found in our analysis any complete real use case modelled, which is
crucial to test the applicability of METEOR-S.

Other requirements

13) Error definition and handling is not present in METEOR-S, besides the error def-
inition and handling included in BPEL4WS as the underlying composition language for
METEOR-S.

14) No human-readable information is explicitly modelled in METEOR-S.

15) Non-functional properties are not considered.

16) As in 13), the transaction support in METEOR-S is the one provided by BPEL4WS.

17) Reliability issues are not addressed in METEOR-S.

18) Trust information and trust policies are lacking.

19) Quality of Service is very well addressed in METEOR-S. A predictive QoS model
to compute the QoS for workflows automatically based on the specification of atomic
tasks QoS is provided. A model to specify QoS, and algorithm to compute, analyze and
monitor workflow QoS metrics, as well as a simulation system, have been developed
(Cardoso, 2002).

20) Security mechanisms and security policies are not defined in METEOR-S ser-
vices.

21) The monitoring of the execution of the service is provided only at the QoS level
(Cardoso, 2002).

22) The extensibility of METEOR-S is not clear. Due to the bottom-up approach
followed, starting from the annotation of WSDL service descriptions, a well-defined on-
tology to define all the aspects of a Web Service is not provided. We believe that its too
tight coupling to WSDL descriptions and to BPEL4WS makes its extension to consider
other languages quite difficult.

Summary

METEOR-S provides a bottom-up approach to the semantic description of Web Ser-
vices. By building on top of WSDL, UDDI and BPEL4WS, METEOR-S is more likely to
provide short-term results but its potential to provide a complete description of Semantic
Web Services is rather limited. It is of special value the work done in the modelling of
quality of service aspects, both at the level of individual Web Services and at the level of

KWEB/2004/WP2.4ID1/v1 29.June, 2004 75

4. ANALYSIS OF SEMANTIC NEEDS

workflows, and the development of prototypes to support the discovery and composition
of Web Services. However, many of our requirements are not fulfilled by METEOR-S,
and its bottom-up approach can be a benefit in the short term but might prevent it from
providing a complete formalism to describe Semantic Web Services.

4.3 Open Issues

The analysis conducted in this section of the current initiatives to semantically describe
Web Services shows that none of them have realized the Semantic Web Services vision
yet. However, we can see that the different approaches present strengths and weaknesses,
and that some of the requirements are met by certain approaches while other requirements
are not fulfilled or not addressed at the moment.

Discovery requirements are not completely fulfilled by any of the initiatives. WSMO
provides a good description of the service capabilities and requester goals, but a well-
defined discovery mechanism that makes use of these descriptions is still in progress.
OWL-S presents serious limitations to capture the service capabilities and does not offer
a differentiation between service capabilities and user goals and, as a result, the discov-
ery mechanisms proposed that make use of OWL-S descriptions are not sufficient to be
applicable in a real setting. IRS-II discovery mechanism has to be further elaborated,
and METEOR-S presents the same problems as OWL-S, as their service descriptions are
quite similar. Therefore, WSMO and IRS-II seem to be the most promising proposals re-
garding discovery, but they have to further work in providing a well-defined and efficient
discovery mechanism.

Regarding composition, WSMO has not provided a language to describe orchestration
yet, although dynamic discovery of the services to be used is identified as a requirement
that has be met by such language. OWL-S lacks a formal semantics for its composition
model and does not allow dynamic use of services in the composition. IRS-II does not
provide a composition language. METEOR-S bases its composition in BPEL4WS and
allows dynamic composition. However, BPEL4WS has not defined formal semantics.
Therefore, it can be seen that composition is an important open issue not covered by any
of the proposals analyzed.

Interoperation requirements are also not covered at the moment. WSMO has not de-
fined its choreography language yet, although it is stated that it will provide a clear sepa-
ration from the orchestration of the service. In OWL-S, it is not clear if the choreography
of the service is provided by the service model and, in fact, the purpose of the service
model is not completely clear. Neither IRS-II nor METEOR-S define the choreography
of the service.

Mediation to bypass heterogeneity problems, although it is an essential issue to be
addressed in the Web Services domain, is ignored by most of the initiatives. Only WSMO
addresses it, although how the data and process mediation will be realized is not fully

76 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

defined yet.

All the initiatives provide a grounding mechanism, although it is under-defined in
WSMO, it presents some problems in OWL-S, and it is limited to WSDL in the case of
METEOR-S.

Support requirements are also not completely covered. IRS-II and METEOR-S pro-
vide a good set of tools that support some aspects of Semantic Web Services, although
they do not offer the full support needed to use Semantic Web Services in a real setting.
Real use cases modelled are missing in all the initiatives. Only WSMO explicitly consid-
ers this modelling as an essential requirement to test the applicability of the solution.

Many of the other requirements considered in our analysis are not covered. Transac-
tion support, trust, security and execution monitoring are not properly addressed. QoS is
only addressed in detail by METEOR-S. Regarding extensibility, WSMO and IRS-II are
the most easily extendible proposals. They are similar in this regard, as they both have
their roots in the conceptual model provided by UPML.

In conclusion, important requirements are to be met if Semantic Web Services want to
show its viability as a solution for the integration problem. We perceive WSMO as the, in
some aspects and due to its short life, less mature initiative, but also the most promising.
It has a good focus on the problems to solve and a good conceptual model as starting
point. Its cooperation with IRS-II, which will provide a WSMO-compliant implementa-
tion of its infrastructure, also contributes to this perception. METEOR-S can have faster
practical applications due to its bottom-up approach based on existing industry standards
or proposals, but it is less likely to provide a solution for the integration problems that
considers all the aspects that have to be solved, as its extensibility is fairly limited. OWL-
S will need to address some of its unsolved problems and accomplish the modelling of
real and complex use cases to show that its approach is really viable.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 77

Chapter 5

Conclusion

This document has provided an overview of the field of Web Services and Semantic Web
Services, and has described and evaluated the current initiatives in terms of enabling the
goals of Semantic Web Services, that is, automatic discovery, composition, invocation
and interoperation of Web Services through the use of Semantic Web technologies.

The final aim of the internal deliverable has been to identify the needs of Semantic
Web Services which are not being adequately considered by the current research. Our
analysis has found that:

- in Web Service invocation, initiatives extend the interface description semantically
and reference a service endpoint (e.g. in WSDL). This still needs models with clearer
formal semantics for the implementation of semantically based invocation frameworks.

- in Web Service discovery, some initiatives have developed complete models for ex-
pressing service capabilities and user goals. However dynamic discovery mechanisms are
still an open area which may lead to changed demands upon those models.

- in Web Services composition, some initiatives define workflow model-based ap-
proaches which do not have any formal semantics. Only OWL-S defines composition at
a semantic level but its model does not support dynamic service selection. The hetero-
geneity of services is a vital issue to be resolved yet data and process mediation is only
mentioned in the WSMO initiative.

- in Web Services interoperation there is not yet a clear semantic model. Choreography
is ambiguous to interpret in OWL-S and WSMO does include choreography as part of its
conceptual framework but development of a choreography language is currently at a very
early stage. Co-ordination of services is only mentioned in WSMO (wwMediators).

- other Web Services requirements apply also to Semantic Web Services such as trans-
actionality, security, trust and execution monitoring. Significantly no initiative has yet
considered these (solely QoS issues which have been well defined in Meteor-S).

From this identification of semantic needs, the subsequent public deliverables of the

78

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

Semantic Web Services work package in KnowledgeWeb will focus on comprehensively
describing these semantic needs that are required to be expressed in Semantic Web Ser-
vice models if automatic discovery, composition, invocation and interoperation is to be
realizable for concrete business use cases.

Furthermore, Semantic Web Services require conceptual models and execution frame-
works which support the needs of scalability, heterogeneity and dynamics. These are the
focus on the other work packages in the Research track of KnowledgeWeb, and there will
be on-going synergy between these work packages and the Semantic Web Services group,
so that the findings of the other groups may eventually contribute to Semantic Web Ser-
vice models which are scalable, mediated and dynamic enough for real-world application.

Semantic Web Services are part of an ultimate vision to enable automated, self-maintaining
software agents which can infer and perform tasks for human and machine clients. There
is still large hurdles to jump over before this vision can be thought of as being a realis-
tic and reachable goal. However, with the current initiatives which are moving towards
this goal one step at a time and the co-ordination being promoted as part of the Knowl-
edgeWeb Network of Excellence to ensure research results can be shared and efforts not
needlessly duplicated, the research communities have an opportunity to move even more
effectively forwards.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 79

Bibliography

Aggarwal, R., Verma, K., Miller, J., and Milnor, W.: 2004, Dynamic web service com-
position in METEOR-S, inProceedings of the IEEE International Conference on
Services Computing, 2004

Alonso, G., Casati, F., Kuno, H., and Machiraju, V.: 2003,Web Services, Springer
Ananthamurthy, L.: 2004, Introduction to Web Services,

http://www.developer.com/services/article.php/1485821
Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D., McDermott,

D., McIlraith, S. A., Narayanan, S., Paolucci, M., Payne, T., and Sycara, K.:
2002, DAML-S: Web Service Description for the Semantic Web, http://www-
2.cs.cmu.edu/ terryp/Pubs/ISWC2002-DAMLS.pdf

Apshankar, K., Clark, M., Chang, H., Fernndez, E., Fletcher, P., Hankinson, W., Hanson,
J., Irani, R., Mittal, K., et al.: 2002,Web Services Business Strategies and Architec-
tures, Expert

Austin, D., Barbir, A., Peters, E., and Ross-Talbot, S.: 2004,Web Services Choreography
Requirements, http://www.w3.org/TR/ws-chor-reqs/

Bussler, C.: 2004,WSMO in DIP, http://www.wsmo.org/2004/d19/d19.1/
Bussler, C., Maedche, A., and Fensel, D.: 2003, Web services: Quo vadis?,IEEE

Intelligent Systems18(1), 80–82
Cardoso, J.: 2002,Quality of Service and Semantic Composition of Workflows, Ph.D.

thesis, University of Georgia
Chitnis, M., Tiwari, P., and Ananthamurthy, L.: 2004,Introduction to Web Services Part

2: Architecture, http://www.developer.com/services/article.php/1495021
Crubzy, M., Motta, E., Lu, W., and Musen, M. A.: 2003, Configuring On-

line Problem-Solving Resources with the Internet Reasoning Service, http://www-
smi.stanford.edu/pubs/SMIReports/SMI-2003-0958.pdf

de Bruijn, J.: 2004,WSMO in SEKT, http://www.wsmo.org/2004/d19/d19.3/
Denker, G., Kagal, L., Finin, T., Paolucci, M., and Sycara, K.: 2003, Security for daml

web services: Annotation and matchmaking, inProceedings of the Second Interna-
tional Semantic Web Conference (ISWC), Sanibel Island, Florida, USA

Fensel, D. and Bussler, C.: 2002a, The web service modeling framework WSMF,Elec-
tronic Commerce Research and Applications1(2)

Fensel, D. and Bussler, C.: 2002b, WSMF in a Nutshell,
http://informatik.uibk.ac.at/users/c70385/wese/wsmf.iswc.pdf

80

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

Fensel, D., Motta, E., Benjamins, V., Decker, S., Gaspari, M., Groenboom, R., Grosso,
W., Musen, M., Plaza, E., Schreiber, G., Studer, R., and Wielinga, B.: 2003, The
unified problem-solving method development language UPML,Knowledge and In-
formation Systems (KAIS): An international journal5(1)

Haas, H. and Brown, A.: 2004,Web Services Glossary, http://www.w3.org/TR/ws-gloss/
He, H., Haas, H., and Orchard, D.: 2004,Web Services Architecture Usage Scenarios,

Technical report, W3C
Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., and Dean, M.:

2004, SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
http://www.daml.org/rules/proposal/

Horrocks, I., Sattler, U., and Tobies, S.: 1999, Practical reasoning for expressive de-
scription logics, in A. V. H. Ganzinger, D. McAllester (ed.),LPAR’99, pp 161–180,
Springer Verlag

Keller, U., Lara, R., Polleres, A., and Lausen, H.: 2004,Inferencing Support for Semantic
Web Services: Proof Obligations, http://www.wsmo.org/2004/d5/d5.1/

Kifer, M., Lausen, G., and Wu, J.: 1995, Logical foundations of object oriented and
frame-based languages,Journal of the ACM42(4), 741–843

Lara, R.: 2004,WSMO in Knowledge Web, http://www.wsmo.org/2004/d19/d19.2/
Lara, R., Lausen, H., Arroyo, S., de Bruijn, J., and Fensel, D.: 2003, Semantic web ser-

vices: description requirements and current technologies, inInternational Workshop
on Electronic Commerce, Agents, and Semantic Web Services, In conjunction with the
Fifth International Conference on Electronic Commerce (ICEC 2003), Pittsburgh, PA

Leymann, F.: 2003, Web services: Distributed applications without limits - an outline, in
Proceedings Database Systems For Business, Technology and Web BTW 2003

Li, L. and Horrocks, I.: 2003, A software framework for matchmaking based on semantic
web technology, in12th international conference on World Wide Web (WWW03)

McDermott, D.: 2004,DRS: A Set of Conventions for Representing Logical Languages
in RDF, http://www.daml.org/services/owl-s/1.0/DRSguide.pdf

McGuinness, D., Parsia, B., Payne, T., Tate, A., Martin, D., Kifer, M., Gruninger,
M., and Grosof, B.: 2003, Semantic Web Services Language Requirements,
http://www.daml.org/services/swsl/requirements/swsl-requirements.shtml

McIlraith, S., Son, T., and Zeng, H.: 2001, Semantic web services,IEEE Intelligent
Systems16(2)

Motta, E., Domingue, J., Cabral, L., and Gaspari, M.: 2003,IRS-II: A Frame-
work and Infrastructure for Semantic Web Services, http://www.cs.unibo.it/ gas-
pari/www/iswc03.pdf

Motta, E. and Lu, W.: 2000,A Library of Components for Classification Problem Solving,
http://kmi.open.ac.uk/projects/ibrow/Documents/ClassLibr Dv1.0.pdf

Olmedilla, O. and Lara, R.: 2004, Trust negogiation for semantic web services, in
First International Workshop on Semantic Web Services and Web Process Composition
(SWSWPC 2004)

Omelayenko, B., Crubzy, M., Fensel, D., Ding, Y., Motta, E., and Musen, M.: 2000,Meta
Data and UPML, UPML Version 2.0, http://www.cs.vu.nl/ upml/upml2.0.pdf

KWEB/2004/WP2.4ID1/v1 29.June, 2004 81

BIBLIOGRAPHY

OWL Services Coalition: 2003, OWL-S: Semantic Markup for Web Services,
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

Paolucci, M., Ankolekar, A., Srinivasan, N., and Sycara, K.: 2003, The DAML-S vir-
tual machine, inProceedings of the Second International Semantic Web Conference
(ISWC), pp 209–305, Sanibel Island, Florida, USA

Paolucci, M., Kawamura, T., Payne, T., and Sycara, K.: 2002, Semantic matching of
web services capabilities, in I. Horrocks and J. Handler (eds.),1st Int. Semantic Web
Conference (ISWC), pp 333–347, Springer Verlag

Polleres, A., Lara, R., and Roman, D.: 2004,D4.2v01 Formal Comparison WSMO/OWL-
S, http://www.wsmo.org/2004/d4/d4.2/v0.1/

Priest, C. and Roman, D.: 2004,Web Service Modeling Ontology - Full (WSMO - Full),
http://www.wsmo.org/2004/d12/

Rajasekaran, P., Miller, J., Verma, K., and Sheth, A.: 2004,Enhancing Web Services
Description and Discovery to Facilitate Composition, Technical report

Richards, D. and Sabou, M.: 2003, Semantic markup for semantic web tools: A DAML-
S description of an RDF-store, inProceedings of the Second International Semantic
Web Conference (ISWC), Sanibel Island, Florida, USA

Roman, D., Lausen, H., and Keller, U.: 2004a,D2v02. Web Service Modeling
Ontology - Standard (WSMO - Standard) WSMO Working Draft 06 March 2004,
http://www.wsmo.org/2004/d2/v02/20040306/

Roman, D., Lausen, H., and Keller, U.: 2004b,Web Service Modeling Ontology - Stan-
dard (WSMO - Standard), http://www.wsmo.org/2004/d2/

Roman, D., Lausen, H., Oren, E., and Lara, R.: 2004c,Web Service Modeling Ontology -
Lite (WSMO-Lite), http://www.wsmo.org/2004/d11/

Roman, D., Vasiliu, L., Stollberg, M., and Bussler, C.: 2004d,Choreography in WSMO,
http://www.wsmo.org/2004/d14/

Sabou, M., Richards, D., and Splunter, S.: 2003, An experience report on using DAML-S,
in WWW 2003 workshop on E-services and the Semantic Web (ESSW03), Budapest,
Hungary

Schlimmer, J.: 2004,Web Services Description Requirements, http://www.w3.org/TR/ws-
desc-reqs/

Sinuhe, A., Stollberg, M., and Ding, Y.: 2004,D3.1v01. WSMO Primer, DERI Working
Draft 19 April 2004, http://www.wsmo.org/2004/d3/d3.1/v0.1/

Sivashanmugam, K., Miller, J. A., Sheth, A. P., and Verma, K.: 2004,Framework for
Semantic Web Process Composition, Technical report

Sivashanmugam, K., Verma, K., Sheth, A., and Miller, J.: 2003, Adding semantics to web
services standards, inProceedings of the International Conference on Web Services
(ICWS’03), 2003

Stollberg, M., Lausen, H., Keller, U., Lara, R., and Polleres, A.: 2004,WSMO Use Case
Modeling and Testing, http://www.wsmo.org/2004/d3/d3.2/

Sycara, K., Widoff, S., Klusch, M., and Lu, J.: 2002, Larks: Dynamic matchmaking
among heterogeneous software agents in cyberspace,Autonomous Agents and Multi-
Agent Systems5(2), 173–203

82 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

Tidwell, D.: 2000, Web Services: The Web’s Next Revolution,
http://www.ibm.com/developerWorks

Tomaz, R. F. and Labidi, S.: 2003, Increasing matchmaking semantics in intelligent com-
merce system, inIEEE/WIC International Conference on Web Intelligence (WI’03),
Halifax, Canada

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., and Miller, J.: 2004,
A scalable P2P infrastructure of registries for semantic publication and discovery of
web services

KWEB/2004/WP2.4ID1/v1 29.June, 2004 83

Appendix A

Glossary

Sources for the glossary were the W3C Web Services Glossary1 and the Semantic Web
Services Languages Requirements document2.

advertisement A service description or capability request that is submitted to some in-
dividual or intermediary (e.g. a discovery service), with the intention of being ”dis-
covered” in response to (or matched with) a request.

agent An agent is a program acting on behalf of a person or organization.

architecture The software architecture of a program or computing system is the structure
or structures of the system. This structure includes software components, the exter-
nally visible properties of those components, the relationships among them and the
constraints on their use. A software architecture is an abstraction of the run-time
elements of a software system during some phase of its operation. A system may be
composed of many levels of abstraction and many phases of operation, each with
its own software architecture.

authentication Authentication is the process of verifying that a potential partner in a
conversation is capable of representing a person or organization .

authorization The process of determining, by evaluating applicable access control in-
formation, whether a subject is allowed to have the specified types of access to a
particular resource. Usually, authorization is in the context of authentication. Once
a subject is authenticated, it may be authorized to perform different types of access.

binding An association between an interface, a concrete protocol and a data format. A
binding specifies the protocol and data format to be used in transmitting messages
defined by the associated interface. The mapping of an interface and its associated

1http://www.w3.org/TR/ws-gloss/
2http://www.daml.org/services/swsl/requirements/swsl-requirements.shtml

84

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

operations to a particular concrete message format and transmission protocol. See
also SOAP binding.

capability A capability is a named piece of functionality (or feature) that is declared as
supported or requested by an agent.

capability request A description of a desired service. This may be in terms of functional
and/or non-functional properties, that define the salient properties of a required
service, and desired characteristis that assist in the filtering and ranking of matching
service descriptions.

choreography A choreography defines the sequence and conditions under which multi-
ple cooperating independent agents exchange messages in order to perform a task
to achieve a goal state. Web Services Choreography concerns the interactions of
services with their users. Any user of a Web service, automated or otherwise, is
a client of that service. These users may, in turn, be other Web Services, applica-
tions or human beings. Transactions among Web Services and their clients must
clearly be well defined at the time of their execution, and may consist of multiple
separate interactions whose composition constitutes a complete transaction. This
composition, its message protocols, interfaces, sequencing, and associated logic, is
considered to be a choreography.

contract Result of a negotiation process (if successful)

conversation A Web service conversation involves maintaining some state during an in-
teraction that involves multiple messages and/or participants.

discovery The act of locating a machine-processable description of a Web service-related
resource that may have been previously unknown and that meets certain functional
criteria. It involves matching a set of functional and other criteria with a set of re-
source descriptions. The goal is to find an appropriate Web service-related resource.

discovery serviceA discovery service is a service that enables agents to retrieve Web
services-related resource description.

dynamic state constraint Condition involving predicates on any combination of these
states: initial, final, intermediate.

dynamic action constraint Condition on the order and/or occurrences of actions (e.g.,
action A before action B, if A and B execute then C executes, if A executes then B
before C).

effect of an action The actual change to the initial state that the action does. Note that
the effect can be specified as a formula that involves the final state, but, unlike the
postcondition, such a formula is always true in any final state of the action.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 85

A. GLOSSARY

functional description A description of a service in terms of (a) what is required by the
service in order that it can execute successfully, and (b) what is generated by the
successful execution of the service. This includes data elements (i.e. data that is
consumed by the service, or produced by it) and knowledge states (i.e. states that
should be asserted prior to invocation, or that are generated by the service during
execution).

general constraint A formula involving any of the above types of predicates.

negotiation processExecution of a negotiation protocol.

non-functional description A description of a service in terms of its descriptive meta-
data, such as a reference to a classification type, or characteristics that are not di-
rectly related to the functional description of the service.

orchestration An orchestration defines the sequence and conditions in which one Web
service invokes other Web services in order to realize some useful function. I.e., an
orchestration is the pattern of interactions that a Web service agent must follow in
order to achieve its goal.

precondition of action A constraint that expresses a condition on the initial state of ac-
tion execution.

postcondition of action A constraint that expresses a condition on the final state of ac-
tion execution (what must be true in the state immediately after the action is over).
Note that a postcondition is a constraint. The action definition might not imply that
the postcondition is true in every possible final state of the action.

query A description of the desired products of a service. This may require the synthesis
of a capability request that is then matched to an advertised service description, and
subsequently invoked, possibly by an intermediary.

request A service description or capability request that is submitted to some individual
or intermediary (e.g. a discovery service), with the intention of finding or locating
a matcing capability request or A service description already advertised.

service description A service description is a set of documents that describe the interface
to and semantics of a service.

service interface A service interface is the abstract boundary that a service exposes. It
defines the types of messages and the message exchange patterns that are involved
in interacting with the service, together with any conditions implied by those mes-
sages.

A logical grouping of operations. An interface represents an abstract service type,
independent of transmission protocol and data format.

86 29.June, 2004 KWEB/2004/WP2.4ID1/v1

State of the art of current Semantic Web Services initiatives IST Project IST-2004-507482

service intermediary A service intermediary is a Web service whose main role is to
transform messages in a value-added way. (From a messaging point of view, an in-
termediary processes messages en route from one agent to another.) Specifically, we
say that a service intermediary is a service whose outgoing messages are equivalent
to its incoming messages in some application-defined sense. See SOAP intermedi-
ary.

service provider Provider agent or provider entity.

service requestA description of a desired service. This may be in terms of functional
and/or non-functional properties, that define the salient properties of a required ser-
vice, and desired characteristics that assist in the filtering and ranking of matching
service descriptions.

service requesterRequester agent or requester entity.

service role An abstract set of tasks which is identified to be relevant by a person or
organization offering a service. Service roles are also associated with particular
aspects of messages exchanged with a service.

service semanticsThe semantics of a service is the behavior expected when interacting
with the service. The semantics expresses a contract (not necessarily a legal con-
tract) between the provider entity and the requester entity. It expresses the effect of
invoking the service. A service semantics may be formally described in a machine
readable form, identified but not formally defined, or informally defined via an out
of band agreement between the provider and the requester entity.

service-oriented architecture A set of components which can be invoked, and whose
interface descriptions can be published and discovered.

SOAP The formal set of conventions governing the format and processing rules of a
SOAP message. These conventions include the interactions among SOAP nodes
generating and accepting SOAP messages for the purpose of exchanging informa-
tion along a SOAP message path .

SOAP application A software entity that produces, consumes or otherwise acts upon
SOAP messages in a manner conforming to the SOAP processing model.

SOAP binding The formal set of rules for carrying a SOAP message within or on top of
another protocol (underlying protocol) for the purpose of exchange. Examples of
SOAP bindings include carrying a SOAP message within an HTTP entity-body, or
over a TCP stream.

SOAP body A collection of zero or more element information items targeted at an ulti-
mate SOAP receiver in the SOAP message path.

SOAP envelopeThe outermost element information item of a SOAP message.

KWEB/2004/WP2.4ID1/v1 29.June, 2004 87

A. GLOSSARY

SOAP feature An extension of the SOAP messaging framework typically associated
with the exchange of messages between communicating SOAP nodes. Examples
of features include ”reliability”, ”security”, ”correlation”, ”routing”, and the con-
cept of message exchange patterns.

SOAP header A collection of zero or more SOAP header blocks each of which might be
targeted at any SOAP receiver within the SOAP message path.

SOAP header block An element information item used to delimit data that logically
constitutes a single computational unit within the SOAP header. The type of a
SOAP header block is identified by the fully qualified name of the header block
element information item.

SOAP intermediary A SOAP intermediary is both a SOAP receiver and a SOAP sender
and is targetable from within a SOAP message. It processes the SOAP header
blocks targeted at it and acts to forward a SOAP message towards an ultimate SOAP
receiver.

SOAP messageThe basic unit of communication between SOAP nodes.

SOAP message exchange pattern (MEP)A template for the exchange of SOAP mes-
sages between SOAP nodes enabled by one or more underlying SOAP protocol
bindings. A SOAP MEP is an example of a SOAP feature.

SOAP message pathThe set of SOAP nodes through which a single SOAP message
passes. This includes the initial SOAP sender, zero or more SOAP intermediaries,
and an ultimate SOAP receiver.

SOAP node The embodiment of the processing logic necessary to transmit, receive, pro-
cess and/or relay a SOAP message, according to the set of conventions defined
by this recommendation. A SOAP node is responsible for enforcing the rules that
govern the exchange of SOAP messages. It accesses the services provided by the
underlying protocols through one or more SOAP bindings.

SOAP receiver A SOAP node that accepts a SOAP message.

SOAP role A SOAP node’s expected function in processing a message. A SOAP node
can act in multiple roles.

SOAP sender A SOAP node that transmits a SOAP message.

transaction Transaction is a feature of the architecture that supports the coordination of
results or operations on state in a multi-step interaction. The fundamental charac-
teristic of a transaction is the ability to join multiple actions into the same unit of
work, such that the actions either succeed or fail as a unit .

88 29.June, 2004 KWEB/2004/WP2.4ID1/v1

