

Copyright © 2006 The contributors

D 2.4.8.1 v1: Technical and ontological
infrastructure for Triple Space Computing

Coordinator: Francisco Martín-Recuerda (UIBK)

Lyndon J.B. Nixon (FU Berlin), Elena Paslaru Bontas (FU Berlin) and James

Scicluna (UIBK)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.4.8.1 v1 (WP2.4)
Semantic Web Services have inherited the Web Service communication model, which is based on
synchronous message exchange and is not at all Web-like, as the Web is based on the model of
persistent publish and read. Tuplespace-based communication offers the potential to remodel
Semantic Web Service communication in a way that is more Web-like, bringing with it
advantages of concurrency, asynchrony and co-ordination.

Document Identifier: KWEB/2005/D2.4.8.1/v1
Class Deliverable: KWEB EU-IST-2004-507482
Version: V1
Date: February 14, 2006
State: Final
Distribution: Public

KWEB/2005/D2.4.8.1/v1 2/14/2006 2

Knowledge Web Consortium

This document is part of a research project funded by the IST Program of the Commission of the

European Communities as project number IST-2004-507482.

University of Innsbruck (UIBK) – Coordinator
Institute of Computer Science,
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polythechnique Fédérale de Lausanne
(EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne.
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse, 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST - 655 avenue de l'Europe - Montbonnot
Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-
CERTH)
1st km Thermi – Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom.
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Universität Karlsruhe

KWEB/2005/D2.4.8.1/v1 2/14/2006 3

Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of
Computer Science, University of Manchester,
Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

KWEB/2005/D2.4.8.1/v1 2/14/2006 4

Work package participants

The following partners have taken an active part in the work leading to the elaboration of
this document, even if they might not have directly contributed writing parts of this
document:

University of Innsbruck (UIBK)
Freie Universität Berlin (FU Berlin)

KWEB/2005/D2.4.8.1/v1 2/14/2006 5

Changes

Version Date Author Changes

0.1 15-10-2005 Francisco Martin-Recuerda Structure and initial content

0.2 18-11-2005 Lyndon Nixon Added 3.3 and some comments

0.3 28-11-2005 Lyndon Nixon Added 3.1 and more detail to Semantic Web
Spaces (in ch 3, 4 and 5)

0.4 29-11-2005 Francisco Martin-Recuerda Added section 3.2 and 3.4

0.5 06-12-2005 Lyndon Nixon Expanding on Semantic Web Spaces in chapter 4

0.6 10-12-2005 Francisco Martin-Recuerda Revision of section 3.4 and 4. New Structure.

0.7 21-12-2005 Elena Paslaru Bontas Revision of the complete deliverable, including
references; expanding minimal architecture

0.8 02-01-2006 Elena Paslaru Bontas Changed chapter 1.

0.9 03-01-2006 Elena Paslaru Bontas Revised section 2.3.2

0.91 12-01-2006 Francisco Martin-Recuerda Revised sections 1, 2.2, 2.4, 3, 4

0.93 20-01-2006 Francisco Martin-Recuerda Revised all sections

0.94 30-01-2006 Lyndon Nixon Proof read deliverable

0.95 06-02-2006 Lyndon Nixon Slight revision following QA

0.97 09-02-2006 Francisco Martin-Recuerda
Lyndon Nixon

Slight revisions following QA

1.0 14-02-2006 Francisco Martin-Recuerda Final version

KWEB/2005/D2.4.8.1/v1 2/14/2006 6

Executive Summary

Semantic Web Services have inherited the Web Service communication model, which is
based on synchronous message exchange and is not at all Web-like, as the Web is based
on the model of persistent publish and read. Space-based communication offers the
potential to remodel Semantic Web Service communication in a way that is more Web-
like, bringing with it advantages of concurrency, asynchrony and co-ordination.

In this deliverable, we consider four currently emerging proposals for space-based
communication in the Semantic Web. Based on our analysis, we determine a prototypical
model for persistent space-based computing in a Semantic Web Service environment.

KWEB/2005/D2.4.8.1/v1 2/14/2006 7

Contents

1 Motivation for tuplespace-based computing.. 8
2 Overview of current proposals .. 11

2.1 sTuples .. 11
2.2 Triple Space Computing.. 13
2.3 Semantic Web Spaces.. 18

2.3.1 Semantic data and organizational model.. 22
2.3.2 Coordination model ... 24
2.3.3 Collaborative and consensus-making model .. 25
2.3.4 Security and trust model .. 27
2.3.5 Architecture model .. 28

2.4 Conceptual Spaces (CSpaces).. 30
2.4.1 Semantic data model.. 32
2.4.2 Organizational model... 36
2.4.3 Coordination model: “publish, read and subscribe”................................. 38
2.4.4 Semantic interoperability and consensus-making model 41
2.4.5 Security and trust model .. 42
2.4.6 Knowledge access model... 45
2.4.7 Architecture model (blue-storm).. 46

2.5 Summary ... 49
3 Towards a Unified Conceptual Framework... 51

3.1 Semantic and data model ... 51
3.2 Organizational model .. 51
3.3 Coordination model ... 52
3.4 Collaborative and consensus-making model.. 52
3.5 Security and trust model .. 53
3.6 Architecture model .. 53
3.7 Summary ... 53

4 Applying semantic tuplespaces paradigm to Semantic Web Services............ 56

4.1 Interfaces in WSMO.. 57
4.1.1 Choreography .. 58
4.1.2 Orchestration ... 60

4.2 Semantic Web Services grounding for CSpaces .. 60
4.2.1 Grounding to CSpaces Operations ... 62
4.2.2 Grounding Ontology.. 63
4.2.3 VTA Example.. 65

5 Related work.. 68
6 Conclusions and Future Work ... 72
Acknowledgements .. 72
Annex I ... 73
Bibliography .. 79

1. Motivation D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 8

1 Motivation for tuplespace-based computing
Web Services based on the message-exchange paradigm are not fully compliant with core
paradigms of the Web itself. Instead of publishing the information based on a global and
persistent URI, Web services establish stateful conversations based on the hidden content
of messages. Besides being in contradiction with the basic design principles of the Web
and the REST architecture [Fielding, 2000], the negative effect of such distributed
applications that communicate via message exchange is that they require a strong
coupling in terms of reference and time. This means that traditional Web Services require
that the sender and receiver of data:

(1) maintain a connection at the very same time
(2) know each other, and
(3) share a common data representation.

The communication has to be directed to a particular service, and it is synchronous as
long as neither party implements asynchronous communication (and jointly agrees on the
specific way this mechanism is implemented).

We illustrate the aforementioned issues in terms of an eTourism use case [Stollberg et al.,
2004], in which an employee of DERI Innsbruck, called James, wants to book a train and
a hotel for the Knowledge Web plenary meeting at Trento. The start-up company VTA
provides tourism and travel services based on Semantic Web technology (figure 1).

Figure 1: Virtual Travel Agency scenario

In the virtual travel agency example introduced above various end-user ticket purchasing
services need to communicate with the booking service of the Austrian railway company
in a strongly time- and reference-coupled manner. This implies in particular that
[Krummenacher et al., 2005]:

James

Train
Booking

Hotel
Booking

uses &
aggregates

Service
Provider

Service
Provider

provides

Contract

Contract

VTA

1. Motivation D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 9

(1) the booking service is expected to maintain connections to an arbitrarily high
number of end-user services at the very same time, a situation which imposes
high scalability constraints.

(2) the services involved in the scenario need to know each other and share a
common representation of the exchanged data. Due to the fact that the content of
the information is hidden in the body of the SOAP messages and is not addressed
as an explicit URI-identified Web resource, the interacting Web Services can not
take advantage of the Web-specific security mechanisms as long as they do not
understand the XML schemas used to represent the data. Achieving an agreement
on the representation format and its meaning is assumed to take place prior to the
inter-process communication, implying in this case that the end-user services are
presumably expected to use and understand the semantics of the data formats
applied by the railway agency service.

The Linda coordination language [Gelernter, 1985] foresees a communication mechanism
based on a logically shared memory called “tuple space”. We expect that semantically
enabled tuplespaces can offer an infrastructure that scales conceptually on an Internet
level. Just as Web servers publish Web pages for humans to read, tuplespace servers
would provide tuplespaces for the publication of machine-interpretable data. Providers
and consumers could publish and consume tuples over a globally accessible
infrastructure, i.e., the Internet. Various tuplespace servers could be located at different
machines all over the globe and hence every partner in a communication process can
target its preferred space, as is the case with Web and FTP servers. This highlights many
advantages for providers and consumers. The providers of data can publish it at any point
in time (time autonomy), independent of its internal storage (location autonomy),
independently of the knowledge about potential readers (reference autonomy), and
independent of its internal data schema (schema autonomy) [Krummenacher et al., 2005]:

• Space autonomy: Producers and consumers can run in completely different
computational environments as long as both can make access to the same event
service, i.e., space-wise the processes are completely de-coupled

• Reference autonomy: the processes that interact through an event service do not
need to know each other (anonymous). The notifications published by publishers
are accessed by consumers indirectly. In general, notifications do not include
references to concrete consumers, and similarly consumers do usually not include
specific references to producers.

• Time autonomy: the processes that interact through an event service do not need
to be up at the same time (asynchronous). In particular, producers might generate
some notifications while related consumers are not connected with the event
service, and the other way around, consumers might get notifications while the
original producers are not online.

• Semantic autonomy: semantic persistent spaces provide a consensual
conceptualization and representation of the data published in each space. This
approach facilitates the integration of data and processes.

1. Motivation D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 10

In terms of the virtual travel agency use case previously introduced, a tuplespace
infrastructure would imply the following scenario: the travel agency services would
publish the travel information independently of any time and knowledge about the
potential purchasing services and their internal data storage. In the same manner, the end-
user services would subscribe to the information the travelers are interested in. The end-
user services would be notified if new traveling data matching their requests is available.
Although the inclusion of persistency, anonymity and asynchrony in the communication
between Semantic Web Services are clear advantages, the VTA example raises
interesting issues for renewed research efforts in tuplespace computing, e.g. since
customers (James), traders (VTA) and service providers (hotel and train companies)
publish information into the same tuplespace, how do we limit accessing James’ tuples to
only the VTA service?

In this document we introduce recent approaches in the field of semantic tuplespace-
computing, which are expected to provide a feasible alternative to current Web Services
technologies and the aforementioned problems. We give an overview of four semantic
tuplespace platforms in Chapter 2, describing the most elaborated ones, namely CSpaces
and Semantic Web Spaces, in more detail. The results of this survey are compiled in
Chapter 3 into a unified conceptual framework for tuplespace computing on the Semantic
Web, which subsumes the most important functional dimensions commonly identified in
the analyzed proposals, as well as preliminary architectural decisions towards their
implementation. The application of the tuplespace framework in the area of Web Services
is elaborated in Chapter 4, while conclusions and future work are summarized in Chapter
5.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 11

2 Overview of current proposals

2.1 sTuples
sTuples [Khushraj et al., 2004] has been developed as part of the Pervasive Computing
work at the Nokia Research Center. Given the particular characteristics of pervasive
environments, i.e. the heterogeneity and dynamics of multiple clients in the environment,
the Semantic Web was seen as a solution to semantic interoperability issues, while
tuplespaces were seen as a satisfactory middleware able to provide data persistence, as
well as temporal and spatial de-coupling and synchronization. sTuples was built as an
extension of Sun’s JavaSpaces, which provides a centralized server and already extends
the classical tuplespace model with field and tuple typing (based on Java’s object-
oriented model), Java objects as tuple contents, object-based polymorphic matching,
transactional security and a publish-subscribe mechanism. It is also integrated with the
Vigil framework for realising “Smart Home” scenarios in which mobile clients access
home devices such as lights and consumer electronics over low-bandwidth wireless
networks. Vigil provides distributed trust, access control and authentication services in
the pervasive computing environment.

sTuples consists of three key extensions to the JavaSpaces platform:

• Semantic tuples extend the JavaSpace object-based tuple
• Tuple template matching is enhanced by using a semantic match on top of

object-based matching
• Specialized agents reside on the space and perform user-centric services such as

tuple recommendation, task execution and notification.

A semantic tuple is a JavaSpace object tuple which contains a field of type DAML+OIL
Individual. This field contains either a set of statements about an instance of a service, or
some data or an URL from which such a set of statements can be retrieved. Semantic
tuples can be either data tuples or service tuples, depending on whether they contain
semantic information provided by a service/agent or are advertising an available service
(such as controlling a light or the volume of a television set). Both categories can be
further refined in an ontology of semantic tuple types.

A semantic tuple manager is in charge of managing all interactions in the space
concerning semantic tuples (i.e. insertion, reading and removal). When a semantic tuple
is added to the space, the DAML+OIL statements it contains are extracted and asserted in
the space’s own knowledge base. The system checks that the statements are valid and that
the knowledge base remains consistent. Likewise, when a semantic tuple is removed from
the space, the statements that it contains are retracted from the knowledge base.

A semantic tuple matcher carries out the matching of templates to semantic tuples.
Reasoning capabilities are provided by RACER, a Description Logics reasoner. A
semantic tuple template, unlike the usual Linda approach of actual and wildcard values, is

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 12

a semantic tuple whose DAML+OIL individual-typed field draws upon a dedicated
‘TupleTemplate’ ontology. A set of statements using this ontology can be interpreted by
the matcher as a semantic query upon the statements in the space’s local knowledge base.
However, due to the increased complexity of different DL based queries, the matcher
performs its matching through a series of steps of increasing complexity.

1. the statements are validated against the TupleTemplate ontology so that invalid
queries are immediately rejected

2. the candidate semantic tuples are selected by matching their tuple type (e.g.
LightService as a subclass of ServiceTuple) against the value of the
hasTupleCategory property in the query

3. RACER reasons over the set of candidate tuples so that inferable facts can be
available (e.g. all classes that an individual belongs to through subsumption)

4. the tuple template contains different TupleFields which express desired or
undesired field types and values. An exact match occurs when a semantic tuple is
found which contains all desired tuple fields (in terms of the expressed type and
possibly value) and does not contain any undesired tuple fields.

5. If there were no matches, and subsumption matching was requested in the tuple
template, then the subsumption of field types is also taken into consideration in
searching for a match.

6. If there were no matches, and plugged-in matching was requested in the tuple
template, then plugged-in tuples will be matched.

7. Otherwise there were no matches and no tuple is returned.

Matching tuples will be weighted based on the degree to which they match the template
(e.g. if all desired fields are matched, the extent to which undesired fields are not
present). The matched tuple with the highest weight is selected to be returned to the
client.

Finally, specialized agents reside in the space and offer added functionality to the user
by abstracting typical user functionality needs and hence simplifying client interactions.
In general, clients continue to interact with the Service Managers in the Vigil framework
which mediate between the clients and the available services in the network. New
services now register themselves in the system by passing a Service Tuple instance to the
manager containing a service id, the DAML+OIL instance describing the service, a free
text description, a service icon, a limit of the number of threads the service can support, a
lease (specifying the duration the service remains active) and a location dependency
indicator. Likewise, data from clients or services are passed as Data Tuple instances to
the manager and contain a unique id for the tuple producer, a DAML+OIL instance
containing the data to be shared and a list of subscribers to that object. In Vigil, the
Service Managers are arranged in a tree-like hierarchy and each has its own space and
specialized agents.

The tuple recommender agent allows a client to register its interests with a Service
Manager using a pre-defined preferences ontology. The agent can monitor the space for

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 13

any services or data that match the interests of the client. If no matches are found at the
time of the request, a notification request is registered with the space for a specified time
period for any matching tuples that may be added to the space.

The task execution agent acts as a proxy for the user. The client registers tasks with the
manager using a dedicated task ontology. Matching service tuples are retrieved and
subscribed to, and commands are sent to the service as specified in the task ontology
instance (e.g. switching a light on or off). The service response can also be captured (if
specified in the task ontology instance) to be returned to the client or passed to another
service (in the case of composite tasks).

A publish-subscribe agent dynamically delivers data to users that have subscribed to it. A
data tuple is written to the space that is meant to be shared by multiple clients. A client
requests data tuples of a particular type by using the tuple template ontology. The agent
will find a matching data tuple and add the requester to the tuple field containing the list
of subscribed users.

In summary sTuples extends JavaSpaces to share DAML+OIL instances in tuple fields
for the purposes of supporting the semantic interoperability of heterogeneous and
dynamic clients in a pervasive computing environment. Matching is extended by using
the RACER reasoner to semantically match on DAML+OIL statements. Queries are
formed using a dedicated ontology which allows specifying the desired tuple type as well
as desired and undesired tuple fields and their values. Finally, a set of agents exist in the
space to perform specialized tasks like recommending tuples according to a client’s
interests, executing common tasks through atomic or composite service calls and
enabling clients to subscribe to specific types of data being shared through the space.

sTuple’s future work originally included adding automatic learning capabilities to the
space (e.g. identifying common tasks that can be abstracted by the task execution agent)
and migrating from DAML+OIL to OWL. However, at the time of writing of this
deliverable there is no evidence that any further activity in these directions is taking place
in sTuples. Hence sTuples remains an interesting and informative ‘first attempt’ at a
Semantic Web-enabled tuplespace but our analysis will continue by focusing on more
recent activities in this area upon which our work can also have an influence.

2.2 Triple Space Computing
Triple Space Computing (TSC) [Fensel, 2004] has been recently introduced as a possible
solution to the current situation in the field of Web Services. Starting from the
observation that Web Services do not follow the Web paradigm of ‘persistently publish
and read’, [Fensel, 2004] proposes to follow exactly this paradigm for the
communication of data between software systems across the Internet by means of
tuplespaces. Triple Space Computing extends tuplespace computing [Gelernter, 1985], a
simple and flexible coordination mechanism, using RDF as the formalism for describing
the content of tuples in a space. Instead of a flat and simple data model in which tuples
with the same number of fields and field order but different semantics cannot be

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 14

distinguished, [Fensel, 2004] proposes the use of RDF ([Klyne and Carroll, 2004]) to
overcome this problem and create a natural link from the space-based computing
paradigm into the Semantic Web.

[Bussler, 2005] and [Martin-Recuerda and Sapkota, 2005] extend the work of [Fensel,
2004] in different directions. [Bussler, 2005] focuses on defining a minimal architecture
for the Triple Space Computing. The essential elements of this architecture are briefly
defined as follows [Bussler, 2005]:

 Storage Object. The objects that Web Services write and read are RDF triples as
defined in [Hayes, 2004]. As a difference with [Hayes, 2004], triples are uniquely
identified through URIs [Berners-Lee et al., 2005]. This means that each triple in
any triple space is uniquely marked and can be distinguished from all the other
triples by its unique URI. In this way triples become quads [MacGregor and Ko,
2004].

 Triple Space Clients. A triple space client writes and reads triples in parallel or
sequentially. Clients are therefore not distinguishable from the viewpoint of a
triple space. Every client can read and write triples according to their security
rights.

 Triple Space. A triple space is a virtual concept implemented by triple space
servers. A triple space has to be part of one implementation, but one
implementation can host many triple spaces. The relationship is one-to-many
between a triple space server and (virtual) triple spaces. Each triple space within a
triple space server has to be distinguished so that triples are forwarded to the
particular triple space that the writer indicated when invoking the write operation.
A triple space is identified through a unique URI. Thus, triples are written and
read with this URI as triple storage location.

 Triple Space Transfer Protocol (TSTP). The triple space transfer protocol is
used between TSC clients and triple space servers to initiate the operations of
writing and reading triples. A simple implementation approach is to map the
TSTP protocol to the HTTP protocol. In this case there is no native
implementation of it; however, this approach has the benefit of using a proven and
Internet-scalable technology.

 Minimal Triple Space API (table 1). Bussler proposes a minimal Triple Space
API for Triple Space clients and servers. Clients can write and read single or
multiple triples in a concrete Triple Space. Servers can execute basic
administrative operations like create a new Triple Space, delete the content of a
Triple Space and delete the Triple Space itself.

 Triple Space Server. A triple space server may host arbitrarily many triple
spaces. TSC clients are not aware of triple space servers, but only of virtual triple
spaces. A Triple Space Server has the following four components:

→ Storage component. The storage component stores the triples in form of
relational databases, file systems, RDF databases, persistent queues, etc.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 15

→ HTTP communication component. This component receives HTTP calls that
implement the TSTP protocol. Each invocation -- a write or a read -- is
forwarded to the TSTP operation component.

→ TSTP operation component. This component is responsible for writing and
reading triples.

→ TSC server operations. The triple space server implements the write and read
operations for triples as well as the error handling mechanisms. Furthermore,
it implements the server operations for creating, deleting and emptying triple
spaces.

Table 1. Minimal API for Triple Space Computing according to [Bussler, 2005]
API call and description
API Client
Void write (Set triples|triple)

Write one or more triples in a concrete Triple Space identified by a URI.
Set triples|Triple|Error read (Set URIs| URI)

Return the first “quad” (set of “quads” or error) that has the same URI (or set of URIs) stored in a concrete
Triple Space identified by a URI. The quads matched are not deleted from the Triple Space, and the read
operation is not blocking.

API Server
Boolean create_triple_space (URI)

Create a triple space with URI as an id
Boolean delete_triple_space (URI)

Delete the triple space identified by URI
Boolean empty_triple_space (URI)

Delete the content of the triple space identified by URI

[Bussler, 2005] agrees that the minimal architecture proposed is too simple even to be
useful. Thus, he proposes in his technical report further extensions of the initial “minimal
Triple Space Computing architecture” proposal. The following list presents briefly those
extensions:

 Rich semantics for read operations. Instead to retrieve triples using their URI,
Bussler proposes to extend the functionality of read operations to support a query
language particularly tailored for RDF triples. Another extension for read
operations, already contemplated by the classical Linda “out” operation, is to
delete the triple after the read operation conclude successfully.

 Rich semantics for write operations. Write tuples specifically addressed for
concrete readers. This feature is against the basic principle of tuplespace
computing that decouples from references, but Bussler justifies this for
eCommerce purposes or for simulating queues in distributed applications.
Semantic Web Spaces addresses the same problem using contexts, and CSpaces
proposes to split the virtual persistent space into shared and individual CSpaces
with restricted access rights.

 Destruction operations. Bussler proposes that triples will be destroyed by the
server when a concrete number of reading operations are performed on a triple, or
when a time deadline is reached.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 16

 Constraints definition. Bussler suggests that it would be interesting to have the
possibility to define constraints that ensure consistency of the information stored
in a Triple Space.

 Transaction support. According to Bussler, transactions are necessary if several
set-oriented operations should be protected from lost updates. In this case,
allowing clients to delineate the transaction boundaries using dedicated
transaction operations are recommended. A triple space server should be able to
restore one of its Triple Spaces to a state in which the set of written operations
under an aborted transaction had never been executed. Bussler suggests to
evaluate Web Service transaction protocols like the one discussed in [Cabrera et
al., 2004a; Cabrera et al., 2004b; and Cabrera et al., 2004c].

 Ontology definition. In order to increase the capability of a Triple Space to
express semantics, Bussler suggests to include the ability for triple space servers
to store ontologies.

 Access Security. Bussler proposes that writers can specify access control to
restrict the access to concrete triples to a selected group of potential readers. On
the other hand, triple space servers should restrict writing capabilities to specific
writers.

 Transmission Security. Instead of encrypting the information stored in a Triple
Space, Bussler recommends the use of a secure communication channel like in
HTTPS [Rescorla and Schiffman , 1999].

 Non-Repudiation. In eCommerce domains, a mechanism must be put in place
that allows both, the sender and receiver, to proof that the message sent and
received is the original one. Triple Space can provide the means to hold a copy of
the message. In a case of dispute between sender and receiver, the third party’s
copy will be the determining factor.

 History and Archive. Bussler recommends that triple space implementation
should provide a history functionality that ensures that every ‘movement’ of
triples, be it writing them, reading them, deleting them or updating them is
recorded in the history.

 Location Directory. Bussler suggests the inclusion of a search engine that stores
all Triple Spaces and a short summary of the contents of each Triple Space. This
infrastructure will help clients to identify potentially interesting triple spaces.

 Versioning. The capacity of store versions of a Triple Space is closely related
with the transaction support for reading and writing operations. A version
mechanism ensures that all prior data can be available later on.

On the other hand, [Martin-Recuerda and Sapkota, 2005] extends [Fensel, 2004] and
[Bussler, 2005] with a richer coordination mechanism based on the combination of
tuplespace computing and the publish-subscribe paradigm that decouples the processes
involved in a communication in a new orthogonal dimension: flow decoupling.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 17

Participants are not blocked while producing/receiving notifications. Consumers can
receive a notification while performing some concurrent activity (i.e. through a
'callback'). Producers can produce notifications continuous with their execution flow. In
other words, the main flows of producers and consumers are not affected by the
generation or reception of notifications.

Furthermore and following [Bussler, 2005], TSpaces [Wyckoff, 1998] and JavaSpaces1
proposals, [Martin-Recuerda and Sapkota, 2005] includes also transaction support as a
part of the coordination model. In particular, [Martin-Recuerda and Sapkota, 2005]
stresses the use of a distributed transaction model in which transactions involve
potentially distributed resources (i.e. spaces in TSC) and are usually based on a two-
phase commit protocol. A transaction manager (TM) is responsible for coordinating a
transaction by coordinating one or multiple resource managers (RM). A RM is a
component which allows transactional access to some resource. Applications (AP)
communicate with both the transaction manager and resource managers. Finally, [Martin-
Recuerda and Sapkota, 2005] studies the suitability of Triple Space Computing as a
coordination model for Semantic Web Services and object components. The report
describes in detail how Triple Space Computing can benefit WSMX [Zaremba and
Moran, 2005], an execution environment for the dynamic discovery, selection, mediation
and invocation of Semantic Web Services described using WSMO (Web Services
Modelling Ontology, [Roman et. al., 2005]). Table 2 gives an overview of the API
proposed by [Martin-Recuerda and Sapkota, 2005] for Triple Space Computing and
based on [Martin-Recuerda, 2005].

Table 2. API for Triple Space Computing according to [Martin-Recuerda and Sapkota,
2005]

API call and description
Void write (set triples, URI ts)

Write one or more triples in a concrete Triple Space identified by a URI.
Triple take (Template t, URI ts)

Return the first triple (or nothing) that match with the template (that can be expressed using a formal query
language2) and delete the matched triple from a concrete Triple Space ts

Triple waitToTake (Template t, URI ts)
Like take but the process is blocked until the a triple is retrieved

Triple read (Template t, URI ts)
Like take but the triple is not removed

Triple waitToRead (Template t, URI ts)
Like read but the process is blocked until the a triple is retrieved

Set scan (Template t, URI ts)
Like read but returns all triples that match with template t

Long countN (Template t, URI ts)
Return the number of triples that match template t

URI subscribe (URI agent, Template|Query t, Callback c, URI ts)
A consumer (agent) expresses its interested on triples that match with template t in a concrete Triple Space.
Any time that there is an update in the Triple Space, the subscriber receives a notification that there are tuples
available that match the template. The notification is executed by calling a method/routine specified by the

1 http://java.sun.com/developer/products/jini/index.jsp
2 Currently we are studing the possibility to use SPARQL and RDFQL.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 18

API call and description
subscriber. The operation returns an URI that identifies the subscription.

Set unsubscribe (URI agent, Template|Query t, Callback c, URI ts)
A consumer (agent) deletes its subscription, and no more related notifications are received. The operation
returns a set of URIs of subscriptions deleted

URI advertise (URI agent, Template|Query t, URI ts)
A producer shows its intention to provide tuples that match t. Advertisement provides information to the
system that can be used in advance to improve the distribution criteria of data and participants. The operation
returns an URI that identifies the advertisement created.

Set unadvertise (URI agent, Template|Query t, URI ts)
A producer shows its intention to do not provide more tuples that match t. The related advertisements are
deleted, and the operation returns a set of URIs deleted.

URI getTransaction (URI ts)
Ask the TSC infrastructure to create a new transaction and returns its id as a URI.

Boolean beginTransaction (URI txn, URI ts)
Identify the beginning of a set of instructions executed under a concrete transaction (identified by a URI).
Several processes can execute instructions under the same transaction, and only those processes can see the
changes produced in the space before the transaction is committed.

Boolean commitTransaction (URI txn, URI ts)
Make permanent a set of changes defined inside of a transaction txn.

Boolean rollbackTransaction (URI txn, URI ts)
Undo a set of changes defined inside of a transaction txn.

The current status of the work presented by [Fensel, 2004; Bussler, 2005; and Martin-
Recuerda and Sapkota, 2005] is still in a very early state, and important elements like the
organizational model and the security and trust model are not well addressed.

2.3 Semantic Web Spaces
Semantic Web Spaces [Tolksdorf et al., 2004; Tolksdorf et al., 2005a; and Tolksdorf et
al., 2005b] has been proposed by the Freie Universität Berlin. It was originally envisaged
as an extension of their XMLSpaces work, an implementation of a tuplespace platform
which extended the Linda co-ordination model so that tuple fields could also contain
XML documents and match templates based on XPath expressions or other XML Query
forms. In the proposed next stage, a RDFSpaces platform would extend the Linda co-
ordination model to support the exchange of RDF triples as tuples, with matching based
on RDFS reasoning capabilities. As this platform was seen as the first step in modelling
tuplespace-based communication for the Semantic Web stack (and hence there would be
OWLSpaces, RuleSpaces, ProofSpaces and so on) the work has been named Semantic
Web Spaces.

A conceptual model has been drawn up [Paslaru-Bontas et al., 2005a; and Tolksdorf et
al., 2006] in which the necessary extensions to the traditional Linda co-ordination model
were considered to support a tuplespace exchanging Semantic Web information. These
extensions can be split into four categories:

 new types of tuples
 new co-ordination primitives
 new matchings

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 19

 new tuplespace structure

A further report [Paslaru-Bontas et al., 2005b] considers the use of Semantic Web Spaces
as a middleware for distributed, concurrent Semantic Web applications, choosing an
ontology repository scenario to illustrate its operation.

Co-ordination model

Tuple space

Admin. Services (e.g.
security & trust)

Tuple space metadata

Ontological reasoner,
matchmaker

RDF model of data,
ontologies

Sesame Instance
Store

In-memory
(e.g. Protégé)

Repository Interface

Knowledge
Data Stores

HTTP SOAP SMTP

Client Interface

Semantic Web
Clients

Figure 2: High level architecture of Semantic Web Spaces

Figure 2 shows a high level architecture of the Semantic Web Spaces. Like all Linda-
based systems, the central components are the Linda co-ordination model and the
tuplespace as a shared data space for tuples. In the Semantic Web Spaces we extend the
core architecture with a reasoning component for interpreting ontologies according to
their formal semantics (and drawing inferences, checking satisfiability etc) as this is out
of the scope of the Linda paradigm. Accordingly, the tuplespace is extended to support
building a semantic view upon the tuples (i.e. construction of a RDF graph model from
RDF data stored in the tuplespace) and association of RDF statements with the ontologies
they reference.

Additionally, it extends the component handling the co-ordination of processes with
modules to fulfill different administrative services as are determined as requisite in a
Semantic Web middleware. We consider here e.g. issues of security and trust.

This is complemented with a set of metadata for the tuplespace itself, according to an
ontology we define for describing a tuplespace and the tuples that it contains. This
ontology provides concepts for expressing security and trust policies, hence allowing for
an ontology-based approach to organizing, initializing and configuring these extension

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 20

modules. Further on, the ontology explicitly describes the structure of the space (e.g.
whether sub-spaces are allowed) and the supported matching templates. Finally, as the
system is foreseen as a middleware platform, it should be independent of the underlying
implementations of the different computer systems that the system must interact with.
This necessitates interfaces to isolate the system kernel from the heterogeneity of both the
clients which communicate with the system and the backend storage solutions which
realize the physical storage of the information represented in the logical memory of the
tuplespace.

We briefly outline the extensions that are proposed by the conceptual model in order to
make the co-ordination model and tuple space Semantic Web compliant.

 New types of tuples – a RDFTuple is defined which contains four fields which
take URIs as values: subject, predicate, object and ID (the object field can also
take a literal value, i.e. a XML Schema datatype). Each field is also typed by an
URI (the ID field is a RDF ID). These URIs represent instances and their classes,
respectively, in a RDF model. Hence every RDFTuple represents a single RDF
statement together with a unique ID for that tuple. Special consideration is taken
for representing blank nodes, containers/collections and reification.

 New co-ordination primitives – a criticism of Linda has been that the semantics

of the co-ordination primitives (in, out, rd) were never formally defined by
the creators of Linda. When working with Semantic Web data it is important that
the set of co-ordination primitives are clearly defined. In Semantic Web Spaces,
two levels of interaction are defined: the data level, where tuples contain data
without any formal meaning, and the information level, where RDFTuples are
recognized as being special data structures that express formally defined
knowledge about concepts. RDFTuples are handled also at two levels: in terms of
the abstract syntax and in terms of the formal semantics. These three levels of co-
ordination provide an increasing level of expressivity at an increasing cost in
computability. Table 3 lists the co-ordination primitives of Semantic Web Spaces.

Table3: Co-ordination primitives of Semantic Web Spaces
API call and description
Data Level
out(tuple) returns Boolean Classical Linda out
rd(template) returns tuple Classical Linda rd
in(template) returns tuple Classical Linda in
Information Level (RDF Syntax)
outr(s,p,o) returns Boolean Only true if tuple is RDFTuple
rdr(s,p,o,id) return RDFTuple Only matches on RDFTuples
inr(s,p,o,id) return RDFTuple Only matches on RDFTuples
Information Level (RDF Semantics)
claim(s,p,o,id) returns Boolean
claim(subspace) returns Boolean

An out which only returns true if the RDFTuple(s)
conform to all available (RDFS/OWL) ontologies

endorse(s,p,o,id) return Subspace A rd with semantic matching using available

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 21

RDF/OWL reasoning
extract(s,p,o,id) returns Context Multiple read version of endorse - finds all matching

RDFTuples and places them into a context
retract(s,p,o,id) return Subspace An in which does not remove a matched RDFTuple

(which would be akin to negation) but replaces its
<s,p,o> values with null values

Two terms from the table can be explained: subspaces are first class objects which
encapsulate one or more RDFTuples and are used to express multiple statements in one
operation (in terms of claim) or return RDF sub-graphs which may contain blank nodes
(similar to Concise Bounded Descriptions); contexts are introduced in the description of
the tuplespace structure.

 New matchings – while the data level considers all tuple content at a purely
syntactic level (and hence can perform the usual datatype matchings such as string
or URI equivalence) the information level introduces Semantic Web specific
matchings using RDF/OWL-specific reasoners. In combination with available
ontologies, RDFTuples introduced to the space can be checked for ontological
conformance and template matches can be made not only against the actual
RDFTuples in the space but also those which can be inferred, e.g. subClassOf
and subPropertyOf statements allow matches to take place on the basis of
subsumptive reasoning, i.e. any variable typed with Class A in a template can
be matched to a constant typed in Class B in the respective field of a tuple if A
subsumes B.

 New tuplespace structure – while the original Linda considered a single

tuplespace, extensions have introduced multiple, nested and hierarchical spaces.
The distributed and replicated Semantic Web Spaces are virtually partitioned
using contexts, drawing on the concept of scopes [Merrick and Wood, 2000].

Clients may be allocated certain contexts, controlling their view upon the space to

those tuples existing within their context. Contexts provide a simple form of access
control, allowing clients to have private spaces as well as shared spaces with specific
other clients. From the system perspective, they can be used to perform clustering (of
RDFTuples which are related in some way) and hence to improve matching
efficiency.

In addition, Semantic Web Spaces defines an ontology for describing the space
itself. Thus it creates a meta-space of RDFTuples which explicitly represents the
actual structure of the active Semantic Web Spaces. An instance of the Semantic Web
Spaces ontology forms a queryable (and possibly editable) description of the space,
including its permitted structure, supported tuple types and matching templates, and
effective access and trust policies. The meta-model of the Semantic Web Spaces will
contain all instances of tuples currently stored in the space (and hence provides for
each the unique URI by which they can be referenced) and can store meta-

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 22

information relating to each tuple such as its author, insertion time, number of reads
or current context. A part of the tuplespace ontology is shown in Figure 3.

TupleSpace

Tuple

Field Type

hasSubSpace

hasSubTuple

hasTuple

appliesToAgent

hasType

rdf:resource XMLDocument Primitive
Datatype

Access
Policy

Agent

Template

hasPredefinedTemplate

…

hasContext

definesPolicy
Trust
Policy

is-a is-a
is-a

Context

hasField

hasContext

Figure 3: Ontology for Semantic Web Spaces

As the extensions to the core Linda model that are proposed to enable the co-ordination
of Semantic Web knowledge reach to the fundamentals of the classical tuplespace
paradigm, it was found that it would not be possible to build a Semantic Web Spaces as
an extension of XMLSpaces and hence an implementation from scratch will be done.

2.3.1 Semantic data and organizational model
The semantic model of Semantic Web Spaces is to represent RDF information in
dedicated tuples typed as RDFTuple and to consider that an agent has two views upon a
tuplespace consisting of RDFTuples:

 A data view, i.e. viewing the RDFTuples as data-containing tuples according to
the classical Linda model.

 An information view, i.e. viewing the RDFTuples as knowledge-containing tuples
which form a RDF graph consisting of all of the statements expressed within the
tuples.

This dichotomous view upon the tuplespace has guided the design decisions in Semantic
Web Spaces, both conceptually and in terms of an implementation.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 23

The organization model of Semantic Web Spaces is contexts. Contexts are an application
of the idea of 'scopes' introduced in [Merrick and Wood, 2000]. Their usefulness is
argued in improving scalability of open distributed Linda systems and enriching
interaction patterns without expanding the number of co-ordination primitives. Rather
than using multiple or nested tuplespaces, scopes logically partition the single tuplespace
into arbitrarily overlapping physical subspaces. A scope can be considered to be a
particular view upon a tuplespace in which a certain subset of the tuples in the global
tuplespace can be seen.

Scopes are implemented in that they have names, and are created by passing that name to
the tuplespace using a newscope primitive. The co-ordination primitives are extended
to specify the scopes in which they are operating. An inserted tuple is associated to the
scope attached to the insertion primitive. Tuple matching only sees the tuples in the
scopes attached to the matching primitive. Merrick and Wood demonstrate how scopes
can support the multiple read operation and atomic transactions. It can also be understood
that scopes can reduce the complexity of large systems by restricting operations to a
specific subset of the space.

In Semantic Web Spaces, we reinterpret the notion of scope for a tuplespace that
represents Semantic Web information, i.e. statements that carry a truth value. Contexts
represent an agent's view upon the Semantic Web Space at a certain time point, i.e. the
knowledge seen as valid to that agent at that time. Both agents and tuples are associated
with a set of contexts which may change over time, either through agent actions or
system actions. The association of contexts to both agents and tuples can be represented
in the tuplespace ontology and hence a specific agent's or tuple's scope can be queried
over that ontology.

Contexts use URIs for identification and can be considered instances of the Context class
of the tuplespace ontology. In other words, we allow them to be considered Semantic
Web instances that can have information attached to them and be shared in RDF
documents. Agents are free to create contexts, though the general Web guidelines for
URIs should be considered (i.e. place the URI in a namespace owned by the agent). The
system can also create contexts within its allocated namespace for specific purposes such
as in the case of multiple read operations.

Tuples inserted into a space exist in the contexts to which the agent, at the time of the
operation, is associated. Likewise, retrieval operations match only against tuples in the
current contexts of the agent. Agents can remove and add contexts associated to them by
retracting and claiming statements using the tuplespace ontology.

We also allow a context individual to be the join of contexts. This can be modeled
ontologically by instantiating an anonymous class which is the
owl:intersectionOf anonymous classes which contain the individual contexts. The
effect is to say that a tuple exists in a joined context if it exists in all of the intersecting
contexts.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 24

Contexts allow agents to operate in subspaces of the global space which contain the
tuples relevant to them. Hence it can also be considered how agent activities, or perhaps
abstracted to system agents, could gather related tuples into specific contexts so that
agents could choose to act within that context to perform specific tasks. One other use of
contexts would be a form of privacy and access control. An agent could use a context to
place tuples private to it, or share a particular context with a group of other agents
protecting the shared tuples from any other interactions. Contexts permitted or not
permitted to an agent or considered public or private in a part of the tuplespace can be
expressed in the access policy stored in the tuplespace model. Hence it would be defined
if an agent joining the space (following authentication) would have access to the global
'public' space (i.e. excluding those parts of the space which have been specified as
private) or a certain context. Hence agents could search the Semantic Web Space for
certain tuples and choose to operate within their contexts, or if metadata relating to
contexts were available, query on that metadata for find relevant contexts (effectively a
discovery mechanism). By partitioning the space, we improve scalability of the system
and enrich interaction patterns without having to add complexity to the co-ordination
primitives.

2.3.2 Coordination model
Semantic Web Spaces is based on and compatibly extends the Linda language and its
tuplespace-based co-ordination model.

Figure 4: Coordination model in Semantic Web Spaces

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 25

The coordination language Linda has its origins in parallel computing and was developed
as a means to inject the capability of concurrent programming into sequential
programming languages. It consists of coordination operations (the coordination
primitives) and a shared data space (the tuplespace) which contains data (the tuples). The
tuplespace is a shared data space which acts as an associative memory for a group of
agents. A tuple is an ordered list of typed fields. The coordination primitives permit
agents to emit a tuple into the tuplespace (operation out) or associatively retrieve tuples
from the tuplespace either removing those tuples from the space (operation in) or not
(operation rd). Retrieval is governed by matching rules. Tuples are matched against a
template, which is a tuple which contains both literals and typed variables. The basic
matching rule requires that the template and the tuple are of the same length, that the field
types are the same and that the value of literal fields are identical. Given the tuple
(”N70241”,EUR, 22.14) - three fields containing a string, a pre-defined type (here,
currency codes) and a float - it will match the template (”N70241”,?currency,?amount)
and bind to the variables currency and amount the values EUR and 22.14 respectively.

The retrieval operations are blocking, i.e. they return results only when a matching tuple
is found. In this way Linda combines synchronization and communication in an
extremely simple model with a high level of abstraction.

Based on the conceptual distinction between the data and information view upon the
RDFTuples of the tuplespace, the Linda co-ordination primitives are extended to
distinguish agent interactions in the information view from those in the data view. This is
itself built upon the classical Linda model and the XMLSpaces model (for the interaction
with tuples containing XML data). However, at information level the original
coordination mechanism is extended to contexts, as retracting and claiming operations
apply only for the tuples associated to them. We illustrate this in the Figure 4 above.

2.3.3 Collaborative and consensus-making model
Semantic Web Spaces is modeled on the principles of the Semantic Web and hence does
not specifically aim to impress any agreements onto agents interacting in the space as
regards to content or semantics. In fact, it expects there to be a heterogeneity of content
and semantics shared in the space (i.e. in the use of different ontologies and ontological
models to represent knowledge about things) just as Semantic Web data will be
exchanged between agents using different vocabularies, even to refer to the same things,
and different models, even to express the same things. Rather, the idea of mediation is
used to solve the problem of heterogeneity.

The usual Semantic Web communication is the point-to-point exchange of data between
agents and knowledge sources, generally based on the Web communication model
(HTTP GET/POST). While this (commonly called RESTful) style of communication
does incorporate persistent publication of data (at an URL) this typically is not the case
with Semantic Web information as agents interact on the basis of retrieving and updating
individual statements or sub-graphs rather than entire files (which may indeed be

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 26

published at a known URL). Because of this, Semantic Web interaction is often based on
querying over knowledge stored in an efficient storage platform such as a relational
database (e.g. Sesame). Because of the point-to-point aspect of the communication the
heterogeneity of content or semantics between the agent and the system it is
communicating with must be resolved in advance, which requires both prior knowledge
of the type of content/semantics required by the system and a means to map the agent’s
own content and semantic models to those required for communication with the other
system. As a result, though the use of machine-understandable information is intended to
support the automation of agent activities in the Web, dynamism of agent communication
is only possible where system descriptions and means for mappings between content and
semantic models are available.

Semantic Web Spaces is envisaged as being a type of middleware for the Semantic Web
as it provides an interaction layer between agents and back-end storage, abstracting the
access API to the Linda co-ordination primitives and permitting interaction at the
individual triple level. Rather than point-to-point communication, the agents publish
knowledge to and make queries over the space, de-coupling themselves in space, time
and process from other agent systems which query their knowledge or provide knowledge
to answer their queries.

Mediation becomes a task of the semantic matching algorithm applied within the space to
retrieval operations. Semantic matching applies to the RDF graph formed by the
RDFTuples of the (sub-)space, and is extended from syntactic matching in that it does not
only consider the RDFTuples themselves (their fields, and their field types) but also the
ontological knowledge stored within the space which defines classes and properties, and
relations between them such as sub-classes and sub-properties (at the RDFS level) or
transitivity or inverse properties (at the OWL level). As a result other statements are
inferable from the RDFTuples which can potentially match a query that exist in the
space.

Hence content mediation can take place through the provision of content mapping
information and a semantic matching algorithm which seeks and applies this information
when matching templates to RDFTuples. Mappings can be expressed in OWL
(equivalence statements) but the Semantic Web Spaces shall be extendable to using rules
(e.g. SWRL) or other semantic matching tools (e.g. those which use concept labels in
combination with WordNet) to determine how a template according to some content
model may relate to tuples using a different content model. Semantic mediation requires
likewise the provision of semantic mapping information and a semantic matching
algorithm which seeks and applies this information when matching templates. In this case
the tuple/template using an alternative semantic model will need to be identified to the
space (e.g. by extending the classes of tuple types to define a new type such as
FLogicTuple…) and a component made available in the implementation that can handle
the appropriate mapping (e.g. FLogic <-> RDF).

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 27

In conclusion, it is the aim of Semantic Web Spaces to support heterogeneity in agent
communication by mediating between content and semantics within the space.

2.3.4 Security and trust model
Security is an important aspect of open distributed systems and trust is an important
aspect in the sharing of Semantic Web information. Both shall be supported in Semantic
Web Spaces. We consider both through an extension to its architecture (i.e. a dedicated
component of the tuplespace platform monitoring interactions in the space) and through
the co-ordination model itself.

An additional component is tasked with controlling security issues that do not relate to
the co-ordination model itself, for example, authentication of agents and encryption of
tuples. This includes the question of encrypting inside the tuples (the individual fields) or
outside the tuples (the tuples themselves). We could use the reference architecture of
[Bryce and Cremonini, 2001]. Here the component is called a 'reference monitor'.

Agents authenticate themselves by presenting a set of credentials to the reference
monitor. If the credentials are accepted, an authentication token is presented to the agent.
The communication between the agent and the space is associated to this token so that the
space can authorize the agent interactions over the space. Rather than abstract security of
the tuples to the communication protocol, agents could also receive a key from the system
with which they encrypt their tuples. The security layer of the Semantic Web Space
decrypts these tuples upon arrival, using the key associated with the agent which is
identified through its authentication token.

One issue in security within the co-ordination model is who will have the rights to create
and control access to contexts (and hence, tuples). In other words, there will need to be a
top level access policy which controls who can create or change all other access policies
(applied to agents or the space itself). This top level policy is controlled by the system
administrator. Access policies should express at the very least:

 for agents, a list of contexts and spaces with their access rights for the agent (in,
read, out operations)

 for a space, a list of agents with their access rights in each context (in, read, out
operations)

Access might also be regulated not only by primitive but also by tuple content (e.g.
accept only out's of tuples matching a certain template).

Space access policies override agent access policies. In other words, access to some
contexts may be restricted by the system administrator or the ability to restrict access to a
context may be granted by the administrator to the context creator (this could be default).
A context creator can then restrict access to a set of agents, regardless of what other
agents say in their policies (note that this avoids the need for an 'invite' type primitive,

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 28

and retains the Semantic Web approach of letting anyone say anything about anything,
while ensuring that what is claimed is not always the case!). Unrestricted contexts may be
added by agents themselves into their access policies.

Access policies could be modeled upon Access Control Lists (ACL) e.g. for a conference
reviewing task there may be two contexts containing Papers and Reviews. The agent of
the program chair would have the access policy [(Papers,in),(Reviews,in)]
and the reviewer's agent has the access policy
[(Papers,read),(Reviews,out)], meaning simply that the program chair can
destructively read papers and reviews from the space, while a reviewer can only non-
destructively read papers and insert reviews into the space.

2.3.5 Architecture model
Originally Semantic Web Spaces was to be an extension of our XMLSpaces platform;
however an initial prototype with RDF tuples and semantic matching demonstrated that
the kernel of XMLSpaces was too tied to the XML data model; in order to add RDF
support we would have to build upon the core of the platform from scratch. We foresee
the use of a 'generic' Linda kernel, handling the classical Linda operations and datatype-
based tuple matching, upon which the XMLSpaces and Semantic Web Spaces kernel
would be built as extensions for tuples identified as being XML tuples (and hence
handled as such in a XMLSpace) or RDF tuples (and hence handled as such in a
Semantic Web Space). We would build upon a classical Linda system rather than a more
complex implementation such as JavaSpaces or TSpaces in order to provide support for
the classical Linda model within our platform and preserving the recognized benefits of
the Linda approach: a small and simple set of co-ordination primitives to realize a
powerful co-ordination model.

Semantic Web Spaces would be implemented as a dedicated extension to our classical
Linda kernel. The kernel would be able to recognize RDF Tuples inserted into the space
as well as RDFTuple-based retrieval operations (by the use of the dedicated primitives
inr/rdr/outr or claim/endorse/extract/retract) and would pass these
operations on to the Semantic Web Spaces kernel. Classical Linda operations (in,
out, rd) would be handled by the core kernel, and hence the system would be
backwards compatible to existing Linda interactions. The Semantic Web Spaces kernel
would be extended on one side with a reasoning component and a semantic model of the
knowledge in the space which is made available to the reasoner. On the other hand, a
tuplespace model represents semantically the structure and characteristics of the Semantic
Web Space and a Security and Trust component uses this model in policing agent access
and activity on the space.

The implementation approach of Semantic Web Spaces can parallel much of the
approach taken by XMLSpaces, such as the partial replication of contents, physical
distribution of the space, and the addition of dedicated matching algorithms through the
representation of the space as a XML document model (DOM) and the support for XML-

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 29

based querying. However, while XMLSpaces has the XML documents as field values,
RDF Tuples represent RDF statements as the combination of their field values <subject,
predicate, object>. Hence we support the representation of the space as a RDF graph and
RDF-based querying.

RDF Tuples are physically stored as RDF statements in back-end storage solutions with
appropriate scalability and performance. We do not check for inconsistency in the
knowledge bases as this does not reflect the reality that inconsistency will occur on the
Semantic Web. Rather, agents will have to expect and handle inconsistency in whatever
way they decide.

RDF Tuple Templates are modeled as RDF queries (e.g. using SPARQL) which are
executed across the RDF graph formed from all potentially matching RDF statements in
storage (based on the context in which the interaction is taking place) using a reasoner
component (different reasoners may be used to support different levels of matching e.g.
RDFS, OWL-Lite, OWL-DL). Linda permits us to take the first matching tuple found.
Given the need to use ontological information in semantic matching, ontological
statements should be replicated across the space (or at least in that part of the space where
statements using that ontology are found) so that they can be quickly retrieved and fed to
the reasoner. Then as potential matches are found they can be immediately evaluated by
the reasoner (e.g. to check for all valid classes through subsumption) and the first match
returned.

The platform will also store a model of its own structure and characteristics as
represented through a dedicated ontology. It is in this model that RDF Tuples receive
URIs as IDs and both agents and tuples can be associated with contexts, for example.
Hence the kernel will also check this model regularly during interactions to check
interaction consistency, e.g. a tuple inserted into the space by an agent will be associated
to the contexts in which the agent is active. Components in the space can be added which
check contents of the tuplespace model and introduce additional mediation on agent
interactions. A prototypical example which will be implemented in the Semantic Web
Spaces will be that of Security and Trust (e.g. a component can access the server API and
perform operations like (in,permit) or (out,refuse) according to the access rights
found in the space). According to available access and trust policies expressed in the
model agent interactions may be permitted, refused, preferred or given low priority.
Likewise, as the system can organize the logical and physical storage of tuples in ways to
improve performance and quality, another possibility would be to use trust policies to
give more priority to more trusted tuples in the space (i.e. ensure a greater possibility of
more trusted tuples being retrieved from the space than less trusted tuples). This could be
later extended to notions of tuple self-organization [Tolksdorf and Menezes, 2003] and
the ‘fading away’ of less trusted/used tuples in the space. At present, no concrete
decisions have been made concerning the representation of the trust and access policies.
Self-organization in tuplespaces will be tackled in the approaching TripCom3 project.

3 http://www.tripcom.org

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 30

Semantic Web Spaces will follow a component-based architecture. On top of the classical
Linda kernel and the dedicated Semantic Web Spaces kernel (which adds support for the
dedicated co-ordination primitives and the storage of RDFTuples, their representation as
RDF graphs and the representation of the tuplespace model) we see the reasoner as a core
component (so that we could 'plug in' different levels of reasoner as required) and other
components as optional added functionalities that use the tuplespace model and access to
the kernel API to allow extra mediation between agents and the tuplespace (e.g. for the
implementation of security and trust).

2.4 Conceptual Spaces (CSpaces)
Conceptual Spaces (CSpaces) [Martin-Recuerda, 2005] was born as an independent
initiative to extend Triple Space Computing [Fensel, 2004] with more sophisticated
features and to study their applicability in different scenarios apart from Web Services
(e.g. distributed knowledge management systems [Bonifacio et al., 2002a]). The original
scope of CSpaces has evolved towards a new proposal for a conceptual and architectural
model that can appropriately characterize most of the requirements and functionality that
the Semantic Web demands. Although the Semantic Web research community have
achieved significant results since 2001, several relevant questions are still open: how to
keep coherence and consistency between the Web and the semantic annotations and how
to annotate web pages that are not persistent (dichotomy problem); how to store and
reason with the huge amount of semantic annotations expected to be published
(scalability problem); how to organize and share semantic annotations and how to
persuade current web users to create machine processable semantics (publishing
problem); how to overcome conflicting terminology and conceptualizations defined by
different ontologies (heterogeneity problem); how to ensure meaningful answers when
the information stored is not consistent (inconsistency problem); how to guarantee that
only a restricted amount of users can visualize and edit concrete semantic annotations
(security problem); and how to guarantee validity and trustworthiness of the semantic
annotations (trust problem).

With the so-called Web 2.04, the Web is becoming more dynamic and many of the web
pages accessible are generated dynamically instead of being static. Thus, an approach to
diminish the dichotomy problem is strongly required. Decreasing the amount of non-
semantic data representation in the Semantic Web, and therefore, making machine
processable semantics the prevalent representation formalism is the proposal that
CSpaces promotes in order to minimize the dichotomy problem.

Just as the Web has been characterized by an abstract model called REST
(Representational State Transfer) [Fielding, 2000] that is defined as a set of constraints
(client-server architecture, stateless, cache, uniform interface, layered system, and code-
on demand), CSpaces characterizes the Semantic Web around seven building blocks:
semantic data and schema model (knowledge container), organizational model,

4 http://www.oreillynet.com/lpt/a/6228

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 31

coordination model, semantic interoperability and consensus-making model, security and
trust model, knowledge visualization model and architecture model:

 Semantic data and schema model. Defines a knowledge container, called a
CSpace, in which data elements and their relations are described using a formal
representation language5 that includes a set of modeling primitives enriched with
rules in order to build a logical theory. These knowledge containers also store
relations, called annotations, between data objects and related external objects like
documents and web pages. Also the relations with other knowledge containers are
also included in order to facilitate interoperation among them. CSpaces can have
associated access rights and maintain metadata information about themselves that
include unique identifier, creator, list of members, etc.

 Organizational model. There are two types of CSpaces, Individual and Shared.
Personal knowledge is stored by each agent in Individual CSpaces, and Shared
CSpaces maintain knowledge that several users want to share using a common
formal representation and a common conceptualization. The information stored in
a Shared CSpace can appear in three different flavors: materialized view, virtual
view [Ullman, 1997] and hybrid materialized-virtual view ([Alasoud et al., 2005]
and [Hull and Zhou, 1996]). In addition, Shared and Individual CSpaces can be
factorized and recombined in a collaborative manner in order to create new
Shared CSpaces, and related CSpaces are connected by mapping and
transformation rules that not only show explicitly common elements stored in
different CSpaces, but also allow the execution of reasoning processes in a
distributed fashion.

 Coordination model. CSpaces is a middleware infrastructure for applications and
a cooperation infrastructure for humans. The coordination model is defined on top
of mediated, semantic and persistent communication channels (Shared CSpaces)
that represent at the same time knowledge containers. Thus the concepts of
knowledge repository and communication channel become one, and messages can
be described in a more compact manner, because message content can refer to
ontological terms stored in the CSpace used for communication. The coordination
model combines two metaphors: “persistent publish and read” (tuplespace
computing) and “publish and subscribe”.

 Semantic interoperability and consensus-making model. The role of Shared
CSpaces is to promote that users of the Semantic Web reach consensus in the
specification of a knowledge base and a set of mapping and transformation rules
that explicitly indicate relations with other CSpaces. CSpaces aims to recover the
original role of ontologies as shared and not only formal specifications of
conceptualizations. The process to build these shared conceptualizations follows
some principles of Human Centered Computer approaches6, and the necessity of

5 These formal specifications are not ontologies per se if they are not shared, following Gruber’s definition of an

ontology as a “shared conceptualization” [Gruber, 1993]
6 Human Centered Computer can be defined as the development, evaluation, and dissemination of technology that is

intended to amplify and extend the human capacities. "To be human-centered, a [computer] system should be based

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 32

users and applications to interact with each other will drive the creation of new
Shared CSpaces.

 Security and trust model. The protection of private and restricted information
stored and the inclusion of trusted mechanisms to guarantee the validity or
trustworthiness of the information accessed are critical requirements for a
successful development of a distributed information infrastructure.

 Knowledge access model. CSpaces promotes the minimization of the amount of
syntactic data representation (current Web). Thus, an infrastructure that facilitates
users to deal with machine processable semantics is required. An intensive use of
knowledge access solutions based on the graphical representation of knowledge
bases and mapping rules, controlled natural language7, and natural language
generation techniques are the mechanisms proposed.

 Architecture model (blue-storm). CSpaces proposes a distributed and
decentralized hybrid architecture based on P2P and client-server infrastructure in
which a group of agents (human or not) store, read and share information. A
client-server P2P configuration drives a two-tiered system. The upper-tier is
composed by well-connected and powerful servers, and the lower-tier, in contrast,
consists in clients with limited computational resources which are temporarily
available. To facilitate the distinction between CSpace knowledge containers, the
CSpace conceptual model and CSpace architecture, Martin-Recuerda called the
architecture model “blue-storm”8.

Given the absence of an appropriate reference that includes an up-to-date description of
the current version of CSpaces, the author has considered appropriate to include in this
document a more detailed description of this proposal.

2.4.1 Semantic data model
A Conceptual Space (CSpace) is a knowledge container defined as a set of tuples. In
CSpaces each tuple has a well-defined structured that is represented by six fields:

<guid, fm, type, sguid, vguid, mguid>
Ideally, fm is a first order logical formula. However, restrictions imposed by applications
and/or members of the CSpace can restrict fm to less expressive formalism (like
description logics) or even can be just RDF triples or Topic Maps (enough for instances
to describe annotations to resources). The field type identifies in which subspace belongs
fm. Currently, there are six different subspaces defined: domain theory (dth), metadata
(md), instance (ic), trust and security (ts), mapping and transformation rules (mtr), and

on an analysis of the human tasks that the system is aiding, monitored for performance in terms of human benefits,
built to take account of human skills, and adaptable easily to changing human needs" (Flanagan, et al., 1997, p. 12).

7 Subset of a natural language (for instance English) with a domain specific vocabulary and a restricted grammar in the
form of a small set of construction and interpretation rules.

8 Some logicians uses the term blue for information that is semantically described (blue information), and one of the
aims of the CSpaces architecture is to facilitate the spread of machine processable semantics in the Internet (storm).

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 33

annotations (at). Each logical formula, fm, has associated another four identifiers9. The
first one is a global unique id for the logical formula (guid, which can simplify
reification, and make the code more compact). The second identifier is the global unique
identifier of the CSpace where they were created (sguid, which attaches provenance to a
logical formula), the third one is a version global unique identifier (vguid) that identifies
each version of a logical formula10, and the forth identifier (mguid) is the identifier of the
member of the CSpace that stores the tuple. Given that each member of a CSpace has a
reputation score, mguid can help to measure the degree of trustworthiness of each of the
logical statements that are stored in a CSpace.

As it was mentioned before, a CSpace is subdivided in six different subspaces:

 Domain theory stores a logical theory which gives an explicit, partial account of a
conceptualization [Guarino and Giaretta, 1995]. The set of logical formulas of this
subspace exhibit some degree of semantic autonomy. Semantic autonomy represents a
particular perspective of the world of an individual or group of agents (humans or
not). This semantic autonomy is represented using a semantic specification that
describes, organizes and classifies information according with an individual or shared
interpretation [Bonifacio et al., 2002b]. The sub-space domain theory is associated
with a reasoning sub-space that provides an efficient representation (in terms of
reasoning performances) of the stored logical theory.

Ideally, five modeling constructs can be used to build a domain theory: concept,
relation, function, axiom, and rule:

→ A concept describes a set of objects or instances which share similar
characteristics that are defined using attributes. Attributes constrain concept
definition and are associated with a value type that can be any of the following
atomic data types11: boolean, number (integer, float and natural), date, number
ranges, text string, and set of text strings. Also an attribute value type can be
another class, and can be specified as being reflexive, transitive, symmetric, or
being the inverse of another attribute.12

→ Relations represent a type of association between concepts of the domain
theory that is: R⊂C1xC2x…xCn [Gomez-Perez, 2004]. Relations can have an

9 Some ideas of the Pong data model [Rhea et. al, 2003] , the implementation prototype of OceanStore, are behind the

design of the tuple model of CSpace.
10 Since tuples can be replicated in other CSpaces, it is important to track provenance and version to verify that we are

working with the latest version of the tuple. Thus, if the tuple is deleted in the source CSpace, we have to keep a
tuple with an empty fm field.

11 Based on XML Schema datatypes: http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
12 When an attribute is specified as being transitive, this means that if three individuals a, b and c are
related via a transitive attribute att in such a way: a att b att c then c is also a value for the attribute att at a:
a att c. When an attribute is specified as being symmetric, this means that if an individual a has a
symmetric attribute att with value b, then b also has attribute att with value a. When an attribute is
specified as being the inverse of another attribute, this means that if an individual a has an attribute att1
with value b and att1 is the inverse of a certain attribute att2, then it is inferred that b has an attribute att2
with value a. [DIP 1.7 2005]

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 34

arbitrary arity, and like concepts can also have attributes [Schreiber et al.,
2002].

→ Functions are special case of relations in which the n-th element (return
element) of the relation is unique for the n-1 preceding elements (arguments):
F(C1xC2x…xCn-1)-> Cn. The definition of the function includes in its body the
expression that calculates the return value (Cn) in terms of the arguments (C1,
C2, …, Cn-1) of the function [Gomez-Perez, 2004].

→ Axioms serve to model sentences that are always true. Frequently, they are
used to model knowledge that cannot be formally defined by the other
components. Axioms allow extending the domain theory with intentional
information (i.e. the possibility to derive new information) [Gomez-Perez,
2004].

→ Like axioms, rules allow to extend the domain theory with intentional
information. Rules also can be considered as sophisticated version of relations
[Schreiber et al., 2002]. A rule has the form: consequent ← antecedent, where
both are a conjunction of atoms, R(t1, …, tn) composed by variables and/or
constants. The meaning of a rule can be informally described as: “whenever
(and however) the conditions specified in the antecedent hold, then the
conditions specified in the consequent must also hold” [Grosof, et al., 2003].

 Metadata provides information about the CSpace itself. Currently, the metadata is
partially characterized by Dublin Core metadata specification, but in the close future,
Ontology Metadata Vocabulary (OMV, [Hartmann et al., 2005]) will be also
considered. A CSpace is characterized by a global unique identifier (sguid), creator
(identified by a global unique identifier, mguid), version, type (individual or shared),
content description, etc. The sguid or each CSpace and the content description (a set
of ontological concepts and logical formulas that provide a brief description of the
content of the CSpace) are stored in a Shared CSpace that plays the role of a global
catalog. The content description is described by an upper level ontology of topics
associated with the global catalog, and content description can be used as a filter that
can reduce the scope of a query (read operation) in case that it is not possible to
specify initially the target CSpace.

 Instances are used to represent elements or individuals of concepts and the values of
their attributes in a domain theory. Instances can refer to documents and files stored
in the Web (the link between CSpaces concepts and real world objects is made
through annotations).

 Annotations define links between concepts and instances (topics) specified in each
domain theory with information resources (occurrences). RDF13 and Topic Maps14 are
two promising representation means to describe annotations. The Resource
Description Framework (RDF) is a W3C recommendation to define a language for
describing resources in terms of named properties and their values. All resources are

13 http://www.w3.org/TR/rdf-mt/
14 http://www.ontopia.net/topicmaps/materials/tao.html

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 35

identified using URIs and are described in terms of triples (subject, predicate and
object).

On the other hand, Topic Maps are a new ISO standard for describing knowledge
structures and associating them with information resources using topics, associations,
and occurrences (TAO). [Park and Cheyer, 2005] has already suggest the potential of
Topics Maps as a formalism that can connect an ontology layer with a resource
(document) layer. Although RDF and Topics Maps look very similar, [Garshold,
2003] shows that there are important differences that technically make it difficult to
merge Topic Maps and RDF into a single technology. The current state of the CSpace
proposal leaves open the formalism used to describe annotations and only suggests to
take into account both RDF and Topic Maps proposals.

 Security and trust information in open and distributed environments like CSpaces
are intimately engaged. The security and trust model proposed for CSpaces combines
features of three different and complementary models [Suryanarayana and Richard
Taylor, 2004]: credential and policy-based trust management, reputation-based
trust management, and social-network-based trust management. Thus, the subspace
will store a list of members (authorized users and applications, each of them with a
global unique identifier, mguid), roles that each member can play, access rights for
each role, credentials, policies, binary trust relationships (opinion about other agent’s
trustworthiness), a local reputation of each member according to the opinions of the
rest of the members of a CSpace. Furthermore, the global Shared CSpace that will
play the role of global catalog will store also a global reputation score for each agent
registered in the system.

 Mapping and transformation rules identify common ontological terms, relations
and instances between related individual and shared CSpaces and facilitate
interoperation among them. The mapping proposal will take into account past and
current efforts in information integration and ontology interoperation. One of the first
considerations that should be taken into account is the integration approach selected.
There are two major approaches for integration of information [Alasoud et al., 2005]:
(1) the data warehouse (DW) or materialized approach and (2) virtual approach
(mediator based). In DW approach, huge amount of historic data is stored in the DW.
In the virtual approach, on the other hand, the data is not materialized, but rather is
globally manipulated using a virtual integrated view15. In this approach, the actual
data resides in the sources, and queries against the integrated ‘virtual’ view will be
decomposed into sub-queries and posed to the sources. DW is preferable when fast
query response is required and when the data is not updated very often. On the other
hand, restrictions of the data source owners to allow access to the information make a
virtual approach the adequate solution in this scenario. A third approach which is a
hybrid between fully materialized and fully virtual approaches inherits the advantages
of both. [Alasoud et al., 2005]. Because a CSpace is also a persistent communication

15 With some extensions, Google follows a DW approach. Periodically, the wrappers of Google retrieve all the

information of the Web which is stored and indexed on Google servers.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 36

channel, in many occasions CSpaces will be constructed as a materialized or hybrid
view.

For modeling the virtual integrated view different approaches has been studied as a
model for the integrated schema [Ullman, 1997], such as, Global as View (GAV),
Local as View (LAV), and several combinations of both: Global-Local as View
(GLAV), Both as View (BAV, [McBrien and Poulovassilis, 2003]) and BGLAV ([Xu
and Embley, 2004]). In the GAV approach, for each relation R in the mediated
schema, we write a query over the source relations specifying how to obtain R's
tuples from the sources. The query processing in GAV is easy, because we need only
unfold the definitions of the mediated schema relations, but this approach does not
help much when the sources change or grow very often. In contrast, the LAV
approach defines the mapping in the other way around; each relation in the data
sources is defined in terms of a query over the integrated schema. This makes query
processing more difficult, since now the system does not know explicitly how to
reformulate the concepts in the integrated view expressed in the user query in terms
of the data sources. On the other hand, changes or incremental growth in the sources
will not lead to reconstruction of the integrated schema, and need only to modify the
mappings. The GLAV (BAV or BGLAV) approach is the combination of the GAV
and LAV approaches, and it consists in associating views over the global schema to
views over the sources to get advantage of the benefits of GAV and LAV.
Apart of GAV, LAV and GLAV (BAV or BGLAV) proposals, other formal
interoperation approaches for ontologies have been proposed [Serafini et al., 2005]:
Distributed First Order Logic (DFOL, [Serafini et al., 2005]), C-OWL [Borgida and
Serafini, 2003], Ontology Integration Framework (OIS, [Calvanese et al., 2002b]),
DL for Information Integration (DLII, [Calvanese et al., 2002a]), and ε –connections
[Grau et al., 2004].

A concrete proposal for mapping and transformation rules for CSpaces is not yet
defined, and it is postponed as a future work.

2.4.2 Organizational model
Nowadays, there is a debate in the Semantic Web community about how ontologies, rules
and alignment specifications should coexist. Mapping and merging ontologies have been
the common proposals to deal with heterogeneity in the Semantic Web. [de Bruijn and
Polleres, 2004] argues that it is difficult to create ontologies from a consensus process
[Visser and Cui, 1998; and Uschold, 2000], and applications that rely on specific
ontologies can become inoperative after a merging process. On the other hand, scalability
is the main limitation of the mapping approach, because it requires O(n2) ontology
mappings, where n is the number of ontologies [de Bruijn et al., 2004]. Ontology islands
[de Bruijn and Polleres, 2004; and de Bruijn et al, 2004] combine several advantages of
mapping ontologies (local ontologies are not deleted and keep compatibility with related
applications) and merging ontologies (more scalable since we do not have to maintain
one to one mappings between each ontology). On the other hand, [Cook and Brown,
1999; and Kotis and Vouros, 2003] suggest that a consensual process for the generation

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 37

of merged ontologies not only is a means to exchange knowledge, but also a means to
generate new knowledge. Those experiences have influenced the organizational model
proposed by CSpaces.

Two types of CSpaces have been proposed: Individual and Shared CSpaces. The former
is a knowledge container defined by an individual that reflects his/her own perception of
a concrete domain. The machine processable semantics stored in an Individual CSpaces
can be private (only the owner of the space can access it), restricted (a limited number of
individual can access it) or public (the information can be accessed without restriction).
The combination of restricted and public data can be used to create Shared Conceptual
Spaces. Shared CSpaces are conceptual spaces shared by several participants that have
reached an agreement on how to represent semantically common terms and logical
statements. This requirement is fundamental to facilitate interoperability between user
and applications in the Semantic Web.

The CSpaces that act as sources of a new Shared CSpace are not deleted to avoid the
necessity to update related systems/applications. Mapping and transformation rules
between sources (individual and shared CSpaces) and new Shared CSpaces will be
created and maintained to identify equivalent terms and to avoid the necessity to copy all
instances to Shared CSpaces.

CSpaces can contribute to organizing and sharing knowledge in the Semantic Web using
a bottom-up (from personal knowledge specifications to shared knowledge specifications)
approach and also can encourage the use of ontologies as “shared” and not only formal
specifications of conceptualizations [Borst, 1997]. Instead of centralized systems that
force users to agree to a set of rules, schemas and data, CSpaces offers a distributed
infrastructure where users can publish their own knowledge based on their own
conceptualization. Common point of views, interests and interoperability requirements of
users will drive to the creation of Shared CSpaces.

This approach is inspired in an earlier proposal called Distributed Knowledge
Management [Bonifacio et al., 2002a; and Bonifacio et al., 2003] where its authors
confirmed during the realization of several tests in real scenarios that users were more
favorable to this kind of approach because it takes into account the different perspectives
and understandings that users have about the world and more concretely about the
information, processes and interactions of their organizations or working groups. The
combination of Individual CSpaces can generate a new space shared by all these users.
Shared CSpaces is built on top of a semantic data representation agreement of a group of
users. Moreover, Shared CSpaces can be combined to generate bigger Shared CSpaces, or
in other words, bigger knowledge repositories.

CSpaces can be viewed as leaves and shared spaces can be graphically considered as the
branches and the trunk of a fictitious tree following a very similar organization proposed
in CO4 (Collaborative construction of consensual knowledge bases) [Euzenat, 1995].
CO4 is an infrastructure enabling the collaborative construction of a Knowledge Base
through the web. One of the main contributions of this approach is a proposal for
organizing Knowledge Bases in a DAG (Directed Acyclic Graph) configuration. The
leaves of the graph are called user Knowledge Bases, and the intermediate nodes, group

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 38

Knowledge Bases. Each group Knowledge Base represents the knowledge consensual
among its sons (called subscriber Knowledge Bases) [Euzenat, 1995]. This organizational
model is very appropriate for distributed and related knowledge containers, because
cyclic references are avoided (critical for distributed queries). However, it is difficult to
restrict the creation of new Shared CSpaces which do not follow this DAG organization
model. The presence of a global catalog in which the metadata of each CSpace is
published together with its dependencies with other CSpaces can help to identify cyclic
dependencies, but the issue is currently open.

2.4.3 Coordination model: “publish, read and subscribe”
Two main goals have to be achieved by the Coordination Model of CSpaces: provide a
simple and powerful coordination mechanism for applications; and offer a flexible and
effective communication channel for human users that can compete with well-known
communication infrastructures like email systems.

Thanks to the Web, humans can persistently publish and read information at any time
stored on servers spread around the World. The “persistent publish and read” metaphor
have been also applied successfully as a simple coordination model for parallel
computing called tuplespace computing [Gelernter, 1985], and more recently to Semantic
Web Services [Fensel, 2004].

Tuplespace computing [Gelernter, 1985] is a coordination mechanism in which
synchronization and communication between participants take place through the insertion
and removal of tuples to/from a common shared space. Shared, persistent, associative,
transactional secure and synchronous/asynchronous communication is the main property
of tuplespaces. However, tuplespace computing has two relevant drawbacks: it does not
provide flow decoupling from the client side; and the tuples published in the space do not
rely on any schema or well defined semantic representation [Fensel, 2004]. The
interaction model provides time and space decoupling but not flow decoupling [Eugster
et al., 2001]. A user who is interested in an update version of a concrete web page has to
check periodically until the update is available (flow coupling from the client side). To
improve this situation, applications/users (subscribers) can store subscriptions with a
description of the data that they would like to get, and when the data is available,
subscribers will receive a notification with the information requested.

On the Web, the “client flow coupling” is a consequence of the REST (Representational
State Transfer) [Fielding, 2000] architecture style, and in particular, because resources
are stateless. To overcome this limitation, the “persistent publish and read” metaphor has
been extended by Martin-Recuerda ([Martin-Recuerda, 2005]) into “persistent publish,
read and subscribe”. The popularization of “weblogs16” (blogs or bloggings) in
conjunction with the development of RSS (Rich Site Summary or Really Simple

16 A website which stores miscellaneous notes updated regularly and published in chronological order.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 39

Syndication, http://www.rss-specifications.com/) brings a new form of interaction for
web-users based on content subscription17.

Tuplespaces have the same limitation from the reader-side. In classical Linda, an
application which wants to read a concrete tuple has to run a process that blocks until the
data is available18. JavaSpaces19 and TSpaces20, concrete Java implementations of the
tuplespace approach provide a simple notification mechanism to mitigate the problem.
[Martin-Recuerda, 2005] claims that publish-subscribe technology [Eugster et al., 2001]
can complement the classical tuplespace approach with a notification and subscription
mechanism that allows a proper asynchronous interaction from the consumers/reader
side. Together with the inclusion of a distributed transaction model, the CSpaces
coordination model provides the basic means that software applications and components
require for communication [Martin-Recuerda, 2005].

On the other hand, in tuplespaces it is not possible to know beforehand which is the
format of the data that producers will use to publish information in the space, and
therefore, there is no way to know which data format the consumers expect. An implicit
agreement is expected, but in the Semantic Web where millions of users and applications
will interact, these implicit agreements are not feasible. In addition, the lack of semantics
in data represented by Web means and in most tuplespace and publish-subscribe
implementations limits the ability of search engines to provide accurate answers. Since
CSpaces will provide rich schema specifications for the data stored, the coordination
model based on the integration of the two technologies (tuplespace and publish-
subscribe) have to be extended to support machine processable semantics21. For instance,
in Triple Space Computing [Fensel, 2004] the data published and accessed is represented
by RDF triples. [Li and Jiang, 2004] proposes an equivalent approach for event-based
systems using DAML+OIL to express more accurately subscriptions and to improve
event filtering mechanisms. However, the use of languages likes RDFS, OWL
(DAML+OIL) and FOL (First Order Logic) is only part of the solution. The same terms
can be described using OWL, but they can belong to different conceptualizations, and
thus, they can have different meanings. To overcome this situation, two possible
approaches can be taken: the use of mediators between applications and the
communication channel, and the use of mediated persistent communication channels (the
purpose of Shared CSpaces).

CSpaces integrates tuplespace and publish-subscribe operations, transaction support and
semantic data specification in a new coordination model. The coordination model API for
CSpaces is very similar to Triple Space (according to the proposal of [Martin-Recuerda
and Sapkota, 2005] described on Table 2). However, CSpaces does not deal directly with
triples but with tuples (please refer to section 2.4.1), and the API also has to take into

17 RSS is still based on polling, but it is invisible to the end-user. Users subscribe, but their RSS client is just polling the

webserver every x minutes.
18 There have been extensions with non-blocking read operations. In this case the application must periodically read

from the space until the data is found.
19 http://java.sun.com/developer/products/jini/index.jsp
20 http://www.research.ibm.com/journal/sj/373/wyckoff.html
21 CSpace coordination model = “persistent publish, read and subscribe” + “semantics”

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 40

account that agents can write information in terms of the logical theories stored in their
own individual CSpaces and not of the destination CSpaces. Thus, the coordination
model has to be aware about this situation to request query rewriting and data
transformation services.

Table 4. API for CSpaces coordination model
API call and description
Void write (set tuples, URI cs_destination, URI cs_origin)

Write one or more tuples in a concrete CSpace (cs_destination) identified by a URI. If the tuples are defined
in terms of a domain theory stored in a different CSpace then it is specify in the third parameter (cs_origin)

Tuple take (Template|Query t, URI cs_destination, URI cs_origin)
Return the first tuple (or nothing) that match with the template or a query expressed in using a formal query
language) and delete the matched tuple from a concrete CSpace cs_destination. If the template of query t is
defined in terms of a different domain theory than the one stored in cs_destination, then it is specified in the
parameter cs_origin

Tuple waitToTake (Template|Query t, URI cs_destination, URI cs_origin)
Like take but the process is blocked until the a tuple is retrieved

Tuple read (Template|Query t, URI cs_destination, URI cs_origin)
Like take but the tuple is not removed

Tuple waitToRead (Template|Query t, URI cs_destination, URI cs_origin)
Like read but the process is blocked until a tuple is retrieved

Set scan (Template|Query t, URI cs_destination, URI cs_origin)
Like read but returns all tuples that match with template or query t

Long countN (Template|Query t, URI cs_destination, URI cs_origin)
Return the number of tuples that match template or query t

URI subscribe (URI agent, Template|Query t, Callback c, URI cs_destination,
 URI cs_origin)

An agent (consumer) expresses its interested on tuples that match with template or query t in a concrete
CSpace (cs_origin). Like take, if the template of query t is defined in terms of a different domain theory than
the one stored in cs_destination, then it is specified in the parameter cs_origin. Any time that there is an
update in the CSpace, the subscriber receives a notification that there are tuples available that match the
template. The notification is executed by calling a method/routine specified by the subscriber. The operation
returns an URI that identifies the subscription.

Set unsubscribe (URI agent, Template|Query t, Callback c, URI cs_destination,
 URI cs_origin)

An agent (consumer) deletes its subscription, and no more related notifications are received. The operation
returns a set of URIs of subscriptions deleted

URI advertise (URI agent, Template|Query t, URI cs_destination, URI cs_origin)
An agent (producer) shows its intention to provide tuples that match t. Advertisement provides information to
the system that can be used in advance to improve the distribution criteria of data and participants. The
operation returns an URI that identifies the advertisement created.

Set unadvertise (URI agent, Template|Query t, URI cs_destination, URI cs_origin)
An agent (producer) shows its intention to do not provide more tuples that match t. The related advertisements
are deleted, and the operation returns a set of URIs deleted.

URI getTransaction (URI cs)
Ask the CSpace infrastructure to create a new transaction and returns its id as a URI.

Boolean beginTransaction (URI txn, URI cs)
Identify the beginning of a set of instructions executed under a concrete transaction (identified by a URI).
Several processes can execute instructions under the same transaction, and only those processes can see the
changes produced in the space before the transaction is committed.

Boolean commitTransaction (URI txn, URI cs)
Make permanent a set of changes defined inside of a transaction txn.

Boolean rollbackTransaction (URI txn, URI cs)
Undo a set of changes defined inside of a transaction txn.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 41

In a Semantic Web mostly composed by machine processable semantics, the “persistent
publish, read and subscribe” metaphor could be the common interaction model for
applications and human users [Martin-Recuerda, 2005].

2.4.4 Semantic interoperability and consensus-making model
[Davenport and Prusak, 1998] mentioned that sharing knowledge requires a common
language: “People can’t share knowledge if they don’t speak a common language.” The
Semantic Web relies on ontologies for building this common language; however
according to [Paslaru-Bontas, 2005], existing ontologies are at most formal specifications
of conceptualizations, but they are rarely built to be shared and reused. CSpaces aims to
bring ontologies again to their original purpose [Borst, 1997; and Gruber, 1993]). To
achieve this goal, the following proposals are considered in the scope of CSpaces:

 Shared CSpaces are the places in which “shared” ontologies, rules and in some
cases instances22 are published.

 The generation of new Shared CSpaces will be driven by the interoperability
necessities of users of the Semantic Web and will be constrained by the structure
defined by the organizational model.

 Enforcing communication will be mainly done through Shared CSpaces using the
set of operations that the coordination model provides (see previous section) and
the ontological terms on which members of each Shared CSpaces have agreed.

 Shared CSpaces will become mediated repositories of schemas, rules and instances
that will facilitate knowledge discovery and knowledge sharing.

 The construction of “shared” ontologies, rules and instances should follow a
cooperative human-centered approach [Hoffman et al, 2002] in which knowledge
workers are actively involved in ontology management tasks throughout the
ontology engineering life cycle.

Although the study reported by [Visser and Cui, 1998; and Uschold, 2000] shows that it
is difficult to create ontologies from a consensus process, most of the interoperability
capabilities that the Semantic Web, Semantic Web Services and CSpaces promise, relies
on the creation and use of ontologies as “shared” specification of conceptualizations.
Also, [Cook and Brown, 1999; and Kotis and Vouros, 2003] suggest that a consensual
process for the generation of merged ontologies not only is a means to exchange
knowledge, but also a mean to generate new knowledge. In particular, [Kotis and Vouros,
2003] suggest that the creation of ontologies should follow a collaborative approach in
which contributors should participate in structured conversations about
conceptualizations. HCOME provides tool support for incorporating
suggestions/positions to specifications that enable constructive criticism and avoids
potential deadlocks.

22 Instances sometimes can be part of private or sensitive information that companies or users would not like to make

available. In those cases, instances would not be stored in Shared CSpaces but in individual CSpaces.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 42

Argumentation is based on the construction of arguments and counter-arguments
(defeaters) and the selection of the most acceptable of these arguments [Amgoud and
Kaci, 2005]. One of the main advantages of computer supported argumentation is to
structure persistent design discussions that can be checked later on.

The argumentation platform included in CSpaces is designed based on the following
principles:

 Arguments are semantically specified based on an ontological argument model.
Reasoning capabilities can be used to verify coherence and consistency of the
argumentation, trace decisions and facilitate the generation of a single discourse
graph.

 A discussion moderator (acting as a trusted-third-party) can participate in a
discussion and guarantee an appropriate and fruitful end.

 A voting process is used to reach the goal of capturing the consensus on the
generic arguments.

 A graphical visualization tool helps users to better understand each single
discourse graph.

Editing operations in each Shared CSpace will be constrained with the dependencies that
the affected terms have associated with them. CSpaces have associated metadata about
themselves. The data of a CSpace can have dependencies (users and applications for each
data element) explicitly stored. These dependencies can be generated by monitoring
services that continuously analyze operations in each CSpace. Deletion and modification
of data elements without dependencies will not require the initiation of an argumentation
process. However, in the case that a member disagrees about a change, the versioning
service will allow undoing writing operations executed on a Shared CSpace.

2.4.5 Security and trust model
The definition of a security model for CSpaces is challenging due to its open and
decentralized nature. Unlike client-server systems in which certain nodes can be easily
identified as a trustworthy server under certain premises, the nodes of the CSpace
infrastructure may provide no such guarantee. Belong to a CSpace network does not
mean that nodes are trustworthy to route queries, store machine processable semantics, or
serve authentication credentials. [Gutierrez et al., 2004] identifies the following security
issues that CSpaces should address:

 Authentication.
Any application/user in an interaction may be required to provide authentication
credentials by the other party. Identity-based authorization [Needham and
Schroeder, 1978; Lampson et al., 1992; Kohl and Neuman, 1993] and capability-
based systems [Gong, 1989; Bull et al., 1992; and Hayton, 1996] have been the
typical means to achieve authentication requirements. In comparison with the
identity-based approach, capability-style authorization is more suited for
distributed systems, as it encourages distributed security management and is hence
inherently more scalable.

 Authorization.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 43

Applications should include mechanisms that allow them to control the access to
the services being offered. Authorization in CSpaces should also guarantee
anonymity of the agents to interact in the system. [Aberer et al., 2005] proposes a
distributed public key infrastructure (PKI) in P2P infrastructures.

 Confidentiality.
Keeping the information exchanged among nodes secret is another of the main
properties that should be guaranteed in order to consider the channel secure.
Confidentiality is achieved thanks to ciphering techniques.

 Integrity.
This property guarantees that the information received by a party remains the same
as the information that was sent from the client. Solutions to the integrity problem
usually involve adding some type of redundancy to messages in the form of a
“signature.". Techniques such as CRCs (cyclic redundancy checks), hashing,
MACs (message authentication codes), or digital signatures (using symmetric or
asymmetric encryption) are well-understood solutions to the integrity problem.

 Non-repudiation.
It is necessary to be able to prove that a client used a resource from one provider
(requester non-repudiation) and that the provider processed the client request
(provider non-repudiation). This security issue is covered by means of digital
signatures.

 Availability.
The need to take care of the availability aspects for preventing Denial of Service
attacks or to arrange redundancy systems is also required. A Denial-of-service
(DoS) attack attempts to make a node and its resources unavailable by overloading
it. DoS attacks can be preventing by taking advantage of loosely constrained
protocol features.

 End-to-end security: The CSpace infrastructure (also called blue-storm) will rely
on a broad combination of light (mobile phones, PDAs, etc) and heavy devices
(desktop computers, servers, etc). All of these systems rely on the ability for data
processing intermediaries to receive and route data [IBM and Microsoft, 2002].

 The openness and distributed model that CSpaces promotes consequently results in
communication and collaboration with strangers. In truly open environments, the notion
of trust is intimately engaged with security. Several authors claim that trust and security
are two sides of the same coin.

 Definition 1 (Trust) [Grandison and Sloman, 2000] the firm belief in the competence
of an entity to act dependably, securely, and reliably within a specified context.

 Definition 2 (Trust Relationship) [AbdulRahman, 2005] A trust relationship exists
when an entity has an opinion about another entity’s trustworthiness. Thus, trust
relationships do not exist between strangers or an entity that has no knowledge about
another’s existence and as consequence, trust relationship is not transitive.

 Trust management can be classified into three categories: credential and policy-based
trust management, reputation-based trust management, and social network based trust

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 44

management. According with [Suryanarayana and Richard Taylor, 2004], the three
approaches can be complementary23.

The primary goal of credential and policy-based trust management systems is to
enable access control. In such systems, [Blaze et al., 1996; Kagal et al., 2001; Yu, et al.,
2001; Li et al., 2002; and Yao, 2003], peers use credential verification to establish a trust
relationship with other peers.

 Reputation-based trust management systems on the other hand focus on trust
computation models capable to estimate the degree of trust that can be invested in a
certain party based on the history of its past behavior. The main issues of such systems
are how to model and compute trust, and how to manage reputation data. Several
proposals have been described in the literature including SPORAS and HISTOS
[Zacharia and Maes, 2000; Zacharia and Maes, 1999], XREP [Damiani et al., 2002],
NICE [Lee et al., 2003], DCRC/CORC [Gupta et al., 2003], Beta [Josang and Ismail,
2002], EigenTrust [Kamvar et al., 2003], etc.

 The third kind of trust management systems, in addition, utilizes social relationships
between peers when computing trust and reputation values. Regret [Sabater and Sierra,
2001] that identifies groups using the social network, and NodeRanking [Pujol et al.,
2002] that identifies experts using the social network are examples of social network
based trust management systems.

 One input that is often used in a trust decision making process is the reputation of the
partner. Reputation is a powerful distributed mechanism of social control that has the
potential to purge society of ‘bad’ agents and promote ‘good’ ones.

 Definition 3 (Reputation) Reputation can be regarded as a unitary appreciation of the
personal attributes of the truster: competence, benevolence, integrity and predictability.

 Definition 4 (Trustworthiness) [AbdulRahman, 2005] An agent’s trustworthiness is his
reputation for being worthy of a certain level of trust in a given situation.
 The trust model proposed for CSpaces relies in the following principles:

 The CSpaces model will incorporate features from three different and
complementary models: credential and policy-based trust management,
reputation-based trust management, and social-network-based trust
management.

 Agents (active entities human or not) that access or own a CSpace are
associated with a unique ID.

 In CSpaces a trust relationship exists between two agents when one agent has
an opinion about the other agent’s trustworthiness. A trust relationship is
binary (only between two agents), unidirectional and dynamic (may change
over the time.

23 [Bonatti et al., 2005] support that policy-based and trust management can be complementary and can enhance the
properties of the existing trust management tools.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 45

 An opinion indicates a subjective agent’s belief about another’s
trustworthiness, and it is measured based on a defined set of trust levels.
Opinions are collected by a reputation mechanism associated with each
CSpace and stored as a part of their metadata description. The opinion of an
agent about another agent can differ between two different CSpaces in which
both agents are members.

 An agent can have several reputation scores, each of them associated with a
different CSpaces in which the agent is member. A local reputation score is
calculated from the opinions of the rest of the members of a CSpace. A
member of a CSpace cannot access the opinions of other members about
himself, but can ask about his local reputation score.

 A global reputation score is calculated from local scores and stored in the
Shared CSpaces that also maintain a general information catalog of the rest of
CSpaces. The calculation of the general reputation scored by an agent is
influenced by the number of members of each CSpace that provide local
reputation scores and the amount of dependencies that each CSpace has with
other CSpaces (similar to the PageRank algorithm including transitive
dependencies).

2.4.6 Knowledge access model
Knowledge access comprises all of the techniques and mechanisms that facilitate the
exploration, visualization and editing of semantic formal representations of information
stored in knowledge bases. Knowledge access aims to improve the creation,
comprehension and transfer of knowledge by exploiting graphical and natural language
representation means.

Graphical representation of knowledge was intensively studied in the previous decades
and is still ongoing research (please refer [Eppler and Burkard, 2004] for a survey). The
popularization in the use of ontologies brings into focus the necessity to provide graphical
visualization as an essential feature for ontology editing and browsing tools. Tree and
graph visualization approaches are the more common techniques to graphically represent
ontologies. A concrete solution for displaying large tree structures, called hyperbolic tree
[Lamping et al., 1995], was developed in 1995 in Xerox Parc Laboratories and
commercialized by Inxight24 . This technique is used in tools like KAON25 and KIM26.
Graphical representation facilities should be available in user interfaces for editing and
browsing the content of a CSpace or a set of them.

A complementary approach for knowledge access in which semantic data descriptions are
presented in a user friendly way is natural language generation (NLG). “NLG takes
structured data in a knowledge base as an input and produces Natural Language text,
tailored to the presentational and the target reader” [Reiter and Dale, 2000]. NLG
mechanisms can constantly keep up-to-date text descriptions of data semantics and can

24 http://www.inxight.com
25 http://kaon.semanticweb.org/
26 http://dell.sirma.bg/kim/graph/Graph.jsp

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 46

automatically provide those text descriptions in multiple languages [Bontcheva, 2004].
Current efforts in NLG have two main foci. The first one is to provide tools specific
oriented to semantic web platforms, and the second one is to design NLG systems that
keep the system simple enough to be maintained by non-NLG experts, but without losing
quality of the text output ([Bontcheva and Wilks, 2004; Wilcock, 2003; Wilcock and
Jokinen, 2003; and Bontcheva, 2005]).

To facilitate the understanding of the information showed by the graphical interface,
CSpaces will extend the technology developed in ONTOSUM [Bontcheva, 2005], a
generator for textual tailored summaries from ontologies. ONTOSUM is based on a well
tested technology [Bontcheva and Wilks, 2004], it is domain-independent, it is designed
for non-NLG experts, and it supports entries in different formal ontology languages like
RDF(S), DAML+OIL and OWL.

ONTOSUM is implemented as a pipeline system [Reiter and Dale, 2000] inside of the
GATE infrastructure [Bontcheva et al., 2003]. Althought the integration with GATE
reports a lot of benefits, in CSpaces would be interesting to disaggregate the NLG
components and build an independent tool that can be executed in light-weight devices.
The generator, HYLITE+, is implemented in Prolog and can run in diverse platforms.

Finally, Controlled Natural Languages27(CNL) are subsets of natural languages whose
grammars and dictionaries have been restricted in order to reduce or eliminate both
ambiguity and complexity. In the context of CSpaces, CNL will facilitate non-logician
users to edit the information (mostly domain theory and instances) stored in a CSpace.

2.4.7 Architecture model (blue-storm)
Given that CSpaces aims to re-elaborate the Semantic Web proposal by minimizing
syntactic data representation, many of the design considerations for the Semantic Web
architecture are still valid for CSpaces [Martin-Recuerda, 2005]. Scalability, distribution
and decentralization are three requirements that CSpace and Semantic Web architectures
have in common. However, the CSpace coordination model built on the “persistent
publish, read and subscribe” metaphor requires an architecture model that can deal with
asynchronous communication. A second difference in the two infrastructures is the
organization of metadata around Individual and Shared CSpaces.

Like the Semantic Web, a potential first approach is to build CSpaces upon the existing
Web infrastructure that has been described using an abstract model called REST
(Representational State Transfer) [Fielding, 2000]. The fundamental principle of REST is
that resources are stateless and identified by URIs. HTTP is the protocol used to access to
the resources and provides a minimal set of operations enough to model any applications
domain [Fielding, 2000]. Those operations (GET, DELETE, POST and PUT) parallel
closely Tuple-Space operations (READ, TAKE and WRITE in TSpaces)28. Tuples can be
identified by URIs and/or can be modeled using RDF triples (as [Fensel, 2004] suggests).
Since every representation transfer must be initiated by the client, and every response

27 http://www.ics.mq.edu.au/~rolfs/controlled-natural-languages/
28 There is a brief discussion of HTTP and Linda at http://rest.blueoxen.net/cgi-bin/wiki.pl?LindaAndTheWeb

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 47

must be generated as soon as possible (the statelessness requirement) there is no way for
a server to transmit any information to a client asynchronously in REST. Furthermore,
there is no direct way to model a peer-to-peer relationship [Khare and Taylor, 2004].
Several extensions of REST, like ARRESTED [Khare and Taylor, 2004], have been
proposed to provide a proper support of decentralized and distributed asynchronous
event-based Web systems.

The limitations of REST to model asynchronous interaction motivated that Martin-
Recuerda pays attention to Peer-to Peer systems. They are decentralized, distributed, self-
organized and capable of adapting to changes such as failure [Pietzuch, 2004]. Although
there are several open issues regarding scalability, shared resources management, security
and trust [Bawa et al., 2003], current efforts in the field (for instance, [Rhea et al., 2003;
and Aberer et al., 2003]) are progressively overcoming these problems.

The preliminary proposal for CSpaces architecture, outlined in this section, is strongly
influenced by the work done in OceanStore29, Edutella30 and SWAP31. Three kinds of
nodes are identified in CSpaces architecture: CSpace-servers, CSpace-heavy-clients and
CSpace-light-clients.

 CSpace-servers store primary and secondary replicas of the data published in
individual and shared CSpaces; support versioning services; provide an access
point for CSpace clients to the peer network; maintain and execute reasoning
services for evaluating complex queries; implement subscription mechanisms
related with the contents stored; provide security and trust services; balance
workload and monitor requests from other nodes and subscriptions and
advertisements from publishers and consumers.

 CSpace-heavy-clients provide a storage infrastructure and reasoning support to
let users to work off-line with their own individual and shared spaces. Replication
mechanisms are in charge to keep replicas in clients and servers up-to date. In
addition, these clients also include a presentation service (based on NLG and
Knowledge visualization techniques) to facilitate the visualization and edition of
knowledge contents.

 CSpace-light-clients only include the presentation infrastructure to write query-
edit operations and visualize knowledge contents stored on CSpace-servers.

When clients are online and connected with the rest of the nodes of the system through an
access point (server node) they have the obligation to share computational resources
(CPU time, memory and persistent storage services). Thus CSpace-servers can divert
client’s resources demanding requests, and consequently, alleviate temporarily the
workload of servers. If the client is a heavy-client, requests that can be performed locally
will not be sent to CSpace-servers. Periodically, replicas will be updated to keep heavy-
clients and servers up-to-date.

29 http://oceanstore.cs.berkeley.edu/
30 http://edutella.jxta.org/
31 http://swap.semanticweb.org/public/index.htm

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 48

Commonly those hybrid architectures that combine pure P2P and client/server systems
are called super-peer systems. CSpace-servers are formally peers, but it is not the case
of CSpace-clients that promote a client-server relation with CSpace-servers. Like
OceanStore [Rhea et al., 2003], this configuration drives into two-tiered system. The
upper-tier is composed of well-connected and powerful servers, and the lower-tier, in
contrast, consists in clients with limited computational resources that are temporarily
available.

It is expected that the CSpaces infrastructure will be self-organized as in other peer-to-
peer systems and will include monitoring mechanisms that will analyze the distribution of
the data in the different nodes and the data flows between these nodes. Data stored in
server’s and client’s access points will be re-distributed in appropriate configurations that
minimize the network traffic and maximize the semantic similarity of the data stored in
the closer peers. Subscriptions and advertisements from publishers and consumers will
provide useful information to determine optimal configurations where consumers and
publishers with common interests will be connected to closer servers. In addition, the
definition of Shared CSpaces will be other information source to determine semantic
similarity between nodes.

The communication metaphor will differ from most of the P2P implementations that use
message passing. Just as OceanStore is built on top of an event-based architecture32,
CSpace promotes the coordination model “publish, read and subscribe” for the
communication of its nodes. In addition, the use of topologies that simulate spanning
trees (e.g. HyperCup in Edutella) will reduce unnecessary data flows and will facilitate
the implementation of replication mechanisms.

Together with the peer infrastructure, a set of registered agents (software applications and
human users) will play the roles of producers and consumers of information through a
“publish, read and subscribe” coordination mechanism. Those agents will take advantage
of a group of management services that blue-storm will provide in order to:

 Facilitate the visualization and comprehension of the information stored. A
detailed description is provided in section 2.4.6

 Provide distributed reasoning services that are able to return meaningful answers
in the presence of inconsistency between the content stored in difference and
related CSpaces.

 Provide transaction support for a group of write/read operations executed by
multiple agents. Rollback mechanisms will allow undoing all the operations
executed during a transaction and return to a state in the CSpace in which those
operations were not executed.

 Publish and subscribe services according to the proposal of section 2.4.3.
 Allow members of the system to generate Shared CSpaces through a collaborative

process supported by an argumentation mechanism.
 Provide a versioning infrastructure that includes tracking changes and diff tools.

32 More precisely Pond, the OceanStore prototype, which is built on top of an event-based system

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 49

 Store metadata related with the dependencies between applications-users and each
element of a CSpace. Elements (concepts, rules and instances) with dependencies
will be more difficult to delete/modify.

 Analyze and store the activity of the users and applications that are interacting
through a concrete CSpace using monitor services. The information collected by
those services can be used to
→ Identify dependencies between applications/users and the data stored, and plan

redistribution of the information between peers that can maximize the
performance of the entire system.

→ Restrict the ability of users and applications to perform delete and modify
operations over tuples that have dependencies with other applications/users

2.5 Summary
In this section we summarize with a table (on the following page) the proposals for
tuplespace-based computing in the Semantic Web in terms of some fundamental building
blocks identified for such systems.

2. Overview D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 50

 Semantic Data
Model

Organizational
Model

Co-ordination
Model

Collaborative and
Consensual
Model

Architecture
Model

Security and
Trust Model

STuples
ServiceTuple and

DataTuple contain a
DAML+OIL

Instance

Centralised space
JavaSpace model

extended by
Publish-Subscribe

Not defined JavaSpaces Not defined

Triple Space
Computing RDF Triples Multiple independent

triple spaces

TSpace model
extended to handle
multiple read and
write operations,

Publish-Subscribe

Not defined REST Not defined

Semantic Web
Spaces

RDFTuples with the
structure <s,p,o,id>

Data (RDF Syntax)

and information
(RDF Semantics)

views on the space

Contexts based on
idea of scopes

Classical Linda
model extended
with dedicated
primitives for

RDFTuple
interaction at the

syntactic and
semantic level

Mediation between
content and

semantics using
dedicated matching

algorithms and
components

Self-organized,
distributed
architecture

Ontological
description of the

space

Access and trust
policies referenced

in model of the
space

Reference monitor
(dedicated security

component)

CSpaces

Tuple <guid, fm,
type, sguid, vguid,

mguid>

fm contains a formal
logic language such

as RDF

Specification of
relations between
tuplespaces using

mappings

Individual and Shared
CSpaces

DAG configuration of
interconnected

CSpaces

TSpace model
extended to handle
multiple read and
write operations,

Publish-Subscribe,
transactions

Argumentation
mechanism for the

collaborative creation
of Shared CSpaces
Shared CSpaces are
mediation spaces for

data and process
integration

Super peer (P2P)

Metadata
associated with

each space

Distinction
between “raw”
and “reasoning”

spaces

Security and trust
data is maintained
in each semantic

tuplespace.

Credential and
policy-based trust

management,
reputation-based

trust management,
and social-network-

based trust
management.

3. Towards a Unified Conceptual Framework D 2.4.8.1: Infrastructure for Triple Space
 Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 51

3 Towards a Unified Conceptual Framework
In this section we discuss the previous proposals for tuplespace-based computing in the
Semantic Web (sTuples, Triple Space Computing, Semantic Web Spaces and CSpaces).
In order to guide us in the determination of a unified conceptual framework from these
proposals let us compare them in terms of each of the models introduced here.

3.1 Semantic and data model
The lowest common denominator of the aforementioned approaches to semantics-enabled
tuplespace computing w.r.t. the underlying semantic model is the support of new tuple
types storing data expressed in a particular Semantic Web representation language.
Excerpt for the sTuples proposal, the remaining three tuplespace approaches foresee a
certain level of support for RDF data. Semantic Web Spaces and CSpaces provide first
ideas w.r.t. RDFS, OWL and SWRL support. Usually tuples are extended with an
identification mechanism. CSpaces and Semantic Web Spaces also foresee a means to
(optionally) attach provenance information to individual (or sets of) tuples; however, they
resort to slightly different interpretations of the provenance concept. Further on, CSpaces
introduce versioning information to the classical tuple notion, and the unique id of the
creator of the tuple for trust purposes. On the other hand, versioning is out of the central
focus of Semantic Web Spaces and sTuples.
As a conclusion, CSpaces presents the richer notion of data-model which includes all
requirements specified by sTuples, Triple Space Computing and Semantic Web Spaces.
The latter together with CSpaces define an upper level layer on top of the data layer. In
the case of Semantic Web Spaces this is called information view and visualizes tuples as
RDF graphs. In the case of CSpaces, tuples are logically grouped in knowledge
containers that store a logical theory, the relations (mappings) with other logical theories
(other CSpaces), relations with real world objects (annotations), security and trust
information, and a metadata characterization of the CSpace itself. This metadata should
be ontologically described in Semantic Web Spaces and CSpaces. However, only
Semantic Web Spaces provides currently a specification of such an ontology.

3.2 Organizational model
The organizational model is explicitly taken into consideration in three of the presented
approaches (Triple Space Computing, Semantic Web Spaces and CSpaces). Triple Space
computing [Bussler, 2005] and CSpaces explicitly include the notion of several
independent tuplespaces, although in the case of CSpaces, the CSpaces which have
domain dependencies are interconnected by mapping rules. Semantic Web Spaces, on the
other hand, only mentions one global space that can be partitioned using the notion of
contexts.
A separate issue that can strongly influence the organizational model is how to handle
heterogeneity in the data that is exchanged in a space. sTuples does not include any
proposal for this problem and assumes that all participants who publish in a sTuple space
implicitly agreed on a common vocabulary specification. Triple Space Computing and
Semantic Web Spaces rely on mediation services/components that express the mappings
between heterogeneous sources. In particular, Triple Space is part of WTriple (i.e.

3. Towards a Unified Conceptual Framework D 2.4.8.1: Infrastructure for Triple Space
 Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 52

WSMO/L/X + Triple Space) which is the technical kernel of Semantically Empowered
Service-Oriented Architectures (SESA, [Fensel, 2005]). Mediation services will be
provided by the WTriple semantic execution environment (i.e. WSMX [Zaremba and
Moran, 2005]). However, it is not well defined how mediation services will be used in
Triple Space and Semantic Web Spaces. As an opposite approach, CSpaces integrate
mediation capabilities as a part of its infrastructure. Shared CSpaces become mediated
persistent communication channels interconnected with other CSpaces through mapping
rules. Interoperability requirements will drive the generation of new Shared CSpaces that
ideally will be organized as a DAG model of interconnected spaces.

3.3 Coordination model
The coordination model underlying the four approaches is Linda with some extensions. In
addition, all proposals take into account the advantage of Semantic Web technologies to
improve the matching abilities of retrieval operations. However, only Semantic Web
Spaces distinguish between operations at data level and semantic level. The former group
of operations guarantees backward compatibility with classical Linda applications.
On the other hand, sTuples, CSpaces, and the version of the Triple Space described in
[Martin-Recuerda and B. Sapkota, 2005] extend tuplespace coordination model with
publish-subscribe capabilities. This extension, already considered in commercial
implementations of tuplespace computing like TSpaces and JavaSpaces, overcomes one
of the major limitations of tuplespace computing: the flow-coupling of consumer
applications. In addition, the combination of tuplespace computing and publish-subscribe
improves the latter avoiding the event-storm problem33.
Finally, the unified coordination API will be based on the Semantic Web Spaces API,
Triple Space API [Martin-Recuerda and B. Sapkota, 2005] and CSpaces API, but it is still
under discussion, and it will be included in the next revision of this technical report.

3.4 Collaborative and consensus-making model
The only approach which pays special attention to collaborative aspects is CSpaces. The
remaining tuplespace proposals do not deal with this issue in detail, mainly because they
do not consider collaboration and consensus as a core focus of their initial semantic
tuplespace infrastructure. The authors of sTuples, Triple Space Computing and Semantic
Web Spaces do not yet propose how components will provide and store the required
ontologies and will take care of their maintenance. The same happens with the mediation
services that in sTuples are not even considered and in Triple Space and Semantic Web
Spaces are vaguely described as additional components. One of the key proposals in
CSpaces is their use not only as a persistent and asynchronous communication channel,
but also as a knowledge container. Thus, message content can refer to ontological terms
stored (or referenced) in a concrete CSpace, and messages can expand the knowledge

33 Event storms is one of the most important scalability issues to have been reported in publish-subscribe systems, and

are produced by a large number of concurrent notifications that usually also have attached large data sets [Fielding,
2000].

3. Towards a Unified Conceptual Framework D 2.4.8.1: Infrastructure for Triple Space
 Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 53

base adding new information to a CSpace. Martin-Recuerda also believes that it is
necessary to recover the idea of ontologies as “shared” conceptualizations by the
members of a CSpace. Thus, the integration of consensual-making tools is highly
recommended by the CSpace proposal.
To conclude the discussion of this sub-section, it is fair to mention that CSpaces is not
only targeted at realizing a Semantic Web-enabled coordination middleware (the case of
the other approaches), but also sees coordination technologies as a means to enable
distributed knowledge sharing on the Semantic Web.

3.5 Security and trust model
The necessity of a security and trust component for semantics-enabled tuplespaces is
well-recognized by Triple Space Computing (according to [Bussler, 2005]), CSpaces and
Semantic Web Spaces. The two latter approaches foresee a dedicated component
supporting credentials, policy-based, reputation-based and trust management features.
Furthemore, CSpaces supports social-network trust management capabilities based on
peer relations, and CSpaces also includes in the data model specification the id of the
creator that can be used for filtering tuples written by agents with low reputation, and
security-trust information is stored as a part of each CSpaces. From a security point of
view, CSpaces identifies most of the security issues that a unified proposal should
address: authentication, authorization, confidentiality, integrity, non-reputation,
availability, and end-to-end security.

3.6 Architecture model
The architecture of the envisioned systems mainly relies on distributed and decentralized
models. While sTuples resort to the architecture underlying JavaSpaces, the remaining
approaches foresee an architectural model supporting decentralization, while converging
in terms of requirements like scalability. Triple Space Computing (according to [Bussler,
2005]) follows REST principles, and CSpaces induce decentralization and self-
organization by means of peer-to-peer ideas, while Semantic Web Spaces aims at tackling
these issues using intelligent distribution strategies (e.g. self-organization on swarm
intelligence principles). According to [Martin-Recuerda, 2005], REST is not the
appropriate solution if the tuplespace coordination model is extended with notification
capabilities. Thus, a super-peer approach together with the implementation of intelligent
self-organization mechanisms (for instance, swarm intelligence) will be considered in the
next revision of this document.

3.7 Summary
In this section we summarize the current status of the unified conceptual framework for
semantic-enabled tuplespace computing.

3. Towards a Unified Conceptual Framework D 2.4.8.1: Infrastructure for Triple Space
 Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 54

Conceptual and
Architecture Model

Unified Proposal

Semantic Data Model <guid, fm, type, sguid, vguid, mguid>

 fm can be defined using a RDF triple (i.e. <s, p, o>) or a formal
logic language that provides ontological modeling primitives and
rule support.

 Distinction between syntax and semantics-oriented data
management.

 Security and trust data is maintained in each semantic
tuplespace34.

 Specification of relations between semantic tuplespaces.

 Associated metadata to spaces described using an ontology
Organizational Model Virtual and physical space partition management features.

 Contexts will virtually partition a concrete semantic tuplespace.

 Specifications of conceptualization agreements will drive the
creation of semantic tuplespaces

 Ideally, the organization model should follow a DAG
configuration of interconnected semantic tuplespaces (e.g. tree
structure as in CO4 [Euzenat, 1995])

Co-ordination Model Linda coordination model with extensions:

 Extensions to handle multiple read and write operations

 Extensions to provide notification using publish-subscribe
approaches.

 Extensions for transaction support

Collaborative and
Consensus-Making
Model

Under discussion

Security and Trust
Model

 Credential and policy-based trust management, reputation-based
trust management, and social-network- based trust management.

 Security and trust management should be maintained using a
decentralized configuration. Thus, each semantic tuplespace
should maintain information related to its security and trust data.

Architecture Model Super-peer model for storing semantic tuplespaces.

 Semantic tuplespaces can be stored in one node or in several
nodes.

34 Associating security-trust information to each space is a way to keep the architecture decentralized.

3. Towards a Unified Conceptual Framework D 2.4.8.1: Infrastructure for Triple Space
 Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 55

Conceptual and
Architecture Model

Unified Proposal

 A node can stored one or more semantic tuplespaces

 Ontological description of the conceptual model

 The architecture model should provide the following services:

 Provide distributed reasoning services that are able to return
meaningful answers in the presence of inconsistency

 Provide transaction support for a group of write/read
operations executed by multiple agents.

 Management of subscriptions and notifications.

 Versioning infrastructure that includes tracking changes and
diff tools.

 Analysis and storage of the activity of the users and
applications that are interacting through a concrete semantic
tuplespace.

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 56

4 Applying semantic tuplespaces paradigm to Semantic Web
Services

Web Services have added a new level of functionality to the current Web, making the
first step to achieve seamless integration of distributed components. However, current
proposals of Web Services have two major drawbacks:

 Web Services only address the syntactical aspects of a Web Service and,
therefore, only provide a set of rigid services that cannot adapt to a changing
environment without a high degree of human intervention [Fensel and Bussler,
2002].

 Web Services are based on the message-exchange paradigm, and thus, they are
not fully compliant with core paradigms of the Web itself. Moreover, message
exchange paradigm requires from Web Services a strong coupling in terms of
reference and time [Fensel, 2004].

Semantic Web Services try to tackle the former issue by using explicit, machine-
understandable semantics, in order to improve the degree of automation in locating,
combining and using of Web Services. The Web Service Modeling Ontology (WSMO)
[Roman et al., 2005] is one of the most promising proposals for describing all relevant
aspects related to general services which are accessible through a web service interface.
WSMO has its conceptual basis in the Web Service Modeling Framework (WSMF)
[Fensel and Bussler, 2002], refining and extending this framework and developing a
formal ontology (WSMO) and set of languages tailored for modeling Web Services
(WSML).

WSMO provides a unifying view of a service; the value the service can provide is
captured by its capability, and the means to interact with the service provider to request
the actual performance of the service, or to negotiate some aspects of its provision, is
captured by the service interfaces. The software entity able to provide the service is
transparent to us, and we are only concerned with its interaction style and with what other
services are used to actually provide the value described in the capability. A service
description consists of one capability, which describes the functional aspects of a service,
non-functional properties, and one or more interfaces [Roman et al., 2005]. An interface
describes the choreography and the orchestration of the service. The choreography
specifies how the service achieves its capability by means of interactions with its client
- i.e. the communication with a client of the service; the orchestration specifies how the
service achieves its capability by making use of other services - i.e. the coordination of
other services. Figure 5 shows the core elements that are part of the description of a
WSMO service.

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 57

Figure 5: WSMO service description overview [Roman et. al., 2005].

The interaction with a service described by WSMO can be done using WSDL
[Christensen et. al., 2001] and SOAP. Instead of doing this, we propose to ground
services on top of semantic tuplespace computing paradigm. Given that the API for the
unified framework identified in previous section has not yet defined, we will provide an
initial proposal for grounding WSMO choreography on top of CSpaces.

4.1 Interfaces in WSMO
An interface describes how the functionality of the service can be achieved (i.e. how the
capability of a service can be fulfilled) by providing a twofold view on the operational
competence of the service [Roman et al., 2005]:

 choreography decomposes a capability in terms of interaction with the service
(from the client perspective).

 orchestration decomposes a capability in terms of functionality required from
other services.

This distinction reflects the difference between communication and cooperation. The
choreography defines how to communicate with the service in order to consume its
functionality. The orchestration defines how the overall functionality is achieved by the
cooperation of more elementary service providers.

The web service interface is meant primarily for behavioral description purposes of web
services and is presented in a way that is suitable for software agents to determine the
behavior of the service and reason about it; it might be also useful for discovery and
selection purposes and in this description the connection to some existing web services

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 58

specifications e.g. WSDL [Christensen et. al., 2001] could also be specified. The
definition of an interface is given below [Roman et al., 2005]:

Class interface

hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasChoreography type choreography
hasOrchestration type orchestration

Listing 4.1: Interface Definition35

4.1.1 Choreography
WSMO Choreography deals with interactions of the Web service from the client's
perspective. We base the description of the behavior of a single service exposed to its
client on the basic ASM model [Gurevich, 1995]. WSMO Choreography interface
descriptions inherit the core principles of such kind of ASMs, which summarized, are: (1)
they are state-based, (2) they represents a state by a signature, and (3) it models state
changes by transition rules that change the values of functions and relations defined by
the signature of the algebra.

In order to define the signature we use a WSMO ontology, i.e. definitions of concepts,
their attributes, relations and axioms over these. Instead of dynamic changes of function
values as represented by dynamic functions in ASMs we allow the dynamic modification
of instances and attribute values in the state ontology.

Taking the ASMs methodology as a starting point, a WSMO choreography is state-based
and consists of three elements which are defined as follows [Scicluna et. al., 2006]:

Class choreography

hasNonFunctionalProperties type nonFunctionalProperties
hasStateSignature type stateSignature
hasTransitionRules type transitionRules

Listing 4.2: Choreography Interface

Non Functional properties
The non-functional properties of a service are aspects of the service that are not directly
related to its functionality; apart of Dublin Core metadata set36, specific elements for web
services like Accuracy (the error rate generated by the service), Financial (the cost-related
and charging-related proper- ties of a service [O'Sullivan et. al., 2002]), Network-related
QoS (QoS mechanisms operating in the transport network which are independent of the
service), Owner (the person or organization to which the service belongs), Performance
(how fast a service request can be completed), Reliability (the ability of a service to

35 WSMO is described using MOF metamodel facility (http://www.omg.org/mof/)
36 http://dublincore.org/

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 59

perform its functions, i.e. to maintain its service quality), Robustness (the ability of the
service to function correctly in the presence of incomplete or invalid inputs), Scalability
(the ability of the service to process more requests in a certain time interval), Security
(the ability of a service to provide authentication, authorization, confidentiality,
traceability/audit-ability, data encryption, and non-repudiation), Transactional (the
transactional properties of the service), Trust (the trust worthiness of the service), or
Version.

State Signature
The signature of the machine is defined by (1) importing an ontology (possibly more than
one) which defines the state signature over which the transition rules are executed, (2) an
optional set of OO-Mediators if the imported state ontologies are heterogenous (3) a set
of statements defining the modes of the concepts and relations and (4) a set of update
functions. The types of modes that a concept or relation can be assigned are as follows:

 in - meaning that the extension of the concept or relation can only be changed by
the environment. A grounding mechanism for this item may be provided that
implements write access for the environment.

 out - meaning that the extension of the concept or relation can only be changed by
the choreography execution. A grounding mechanism for this item must be
provided that implements read access for the environment.

 shared - meaning that the extension of the concept or relation can be changed by
the choreography execution and the environment. A grounding mechanism for
this item may be provided that implements read/write access for the environment
and the service.

 static - meaning that the extension of the concept cannot be changed. This is the
default for all concepts and relations imported by the signature of the
choreography.

 controlled - meaning that the extension of the concept is changed only by a
choreography execution.

The default mode for concepts of the imported ontologies not listed explicitly in the
modes statements is static. The modes are grounding by means of a URI reference to the
document which describes such grounding. However, only in, out and shared modes are
allowed to be grounded.

Class stateSignature
 hasNonFunctionalProperties type nonFunctionalProperties
 importsOntology type ontology
 usesMediator type ooMediator
 hasIn type mode
 hasOut type mode
 hasShared type mode
 hasStatic type mode
 hasControlled type mode

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 60

Class mode sub-Class {concept,relation}
 hasGrounding type grounding

Listing 4.3: Definition of the State Signature

Transition Rules
The most basic form of rules deal with basic operations on instance data, such as adding,
removing and updating instances to the signature ontology. To this end, we define the
atomic update functions to add and delete, as well as a update instances, which allow us
to add and remove instances to/from concepts and relations and add and remove attribute
values for particular instances:

 add(fact)

 delete(fact)

 update(factnew)

 update(factold => factnew)

More complex transition rules are defined recursively, analogous to classical ASMs by if-
then, forall and choose rules:

 if Condition then Rules endIf

 forAll Variables with Condition do Rules endForAll

 choose Variables with Condition do Rules endChoose

4.1.2 Orchestration
Describes how the service makes use of other services in order to achieve its capability.
In many real scenarios a service is provided by using and interacting with services
provided by other applications or businesses. For example, the booking of a trip might
involve the use of another service for validating the credit card and charging it with the
correspondent amount and the user of the booking service may want to know with which
other business organizations he is implicitly going to deal with.
WSMO introduces the orchestration element in the description of a service to reflect such
dependencies. WSMO orchestration allows the use of statically or dynamically selected
services. In the former case, a concrete service will be selected at design time. In the
latter case, the service will only describe the goal that has to be fulfilled in order to
provide its service. This goal will be used to select at run-time an available service
fulfilling it (i.e. the service user could influence this choice). This aspect is still an
ongoing work within the WSMO working group and thus we limit ourselves to consider
choreography interfaces for the sake of grounding to CSpaces.

4.2 Semantic Web Services grounding for CSpaces
The model for describing choreography interfaces in WSMO abstracts away from the
underlying protocol details which are used as a means of communication between a Web

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 61

service and the entity communicating with the service (the latter being automated or
human). This is also thanks to the underlying ASM model which allows describing
systems in an abstract way.

Currently, the primary grounding proposed within the WSMO community is based on
WSDL as described in [Kopecky et al., 2005] but leaves the possibility to define other
types of grounding. We present here a novel approach which describes how Semantic
Web Services (based on WSMO) can be grounded to CSpaces. The CSpaces scenario
provides a richer set of operations than WSMO Choreography descriptions and we thus
present a partial solution which can serve as the basis for such grounding.

As described earlier, WSMO Choreography interfaces ground concepts and relations
directly to WSDL messages in input operations. There are two aspects which should be
considered when grounding semantic web service descriptions, namely, data grounding
and grounding to operations. The former deals with the transformation of the semantic
data to the message format handled by the underlying protocol which in the case of
WSDL, the messaging format would be XML. The other aspect deals with using the
appropriate operations of the underlying protocol to receive/send the data needed. For
WSDL, this would imply a mapping to the underlying WSDL operations of the service.
Similarly for grounding to CSpaces, two basic pieces of information are needed: a way to
map to the operation and a way to bind a particular concept to a specific parameter of the
operation. To this extent, we developed an ontology which is to be used to encode the
information needed to specify the grounding (see Annex I at the end of this document).

Since WSMO Choreography is based on the ASM methodology, we clarify here how we
envision such methodology would “map” to the CSpaces scenario. The space itself is
somehow “detached” from the web services which are reading and writing to it. This is
due to the fact that the different agents may have different signatures (that is,
heterogeneous signatures are allowed). In terms of ASMs, an agent (a web service in our
scenario) views the environment as the tuple space itself and the rest of the agents.
However, there is no direct communication between the agents themselves since this
happens through the CSpace. Tuples in the space are regarded as locations in ASMs,
inheriting the classification properties of locations. In simpler terms, a tuple of type static
cannot be updated by the agent who owns it and neither by the environment. A tuple of
type in can only be updated by the environment and read by the agent. A tuple of type
out can only be updated by the agent and read by the environment. A tuple of type
shared can be updated and read by both the environment and the agent. Finally, a tuple
of type controlled can only be updated by the agent but may also be read by the
environment. Typically for CSpaces, it is more natural to define the tuples as shared.
However, there might be cases where restrictions would apply on the tuples in the space
and we thus leave the modeler of the choreography to define this. Note also that in terms
of WSMO, the tuples described here correspond to the concepts and relations defined by
some WSMO ontology and used by the choreography in some WSMO Web Service
description. The data that it is exchanged by web services through WSMO choreography
interfaces is instance data (for instance, “James memberOf DERIEmployee” where

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 62

DERIEmployee is a concept). A concept (or relation) can have a different type in each
state signature (it can be an input variable for a web service and an output variable for
another service). Thus, security policies are required to restrict the access of each web
service to each instance according to the typed defined in its state signature for the
associated concept-relation. Moreover, each Web Service can use a different ontology to
describe terms in its state signatures. So heterogeneity should be taken into account and
solved using Shared CSpaces or using external mediator services.

Figure 6 - CSpace and ASMs

CSpaces define a set of operations which are used by all the entities that want to make
use of the space. Such operations are thus fixed by the interface of the space itself. The
data format used by CSpaces is currently not defined and we thus provide a grounding to
the operations (where possible). More precisely, we ground to write, take, waitToTake,
read, waitToRead and scan operations. The current status of WSMO choreography does
not provide constructs to support asynchronous calls. So operations such as subscribe and
advertise cannot be modeled.

4.2.1 Grounding to CSpaces Operations
We will now describe how to ground the specified operations illustrating in the process
the information required to define such a grounding. As a reference, we will use the API
defined by CSpaces (please refer to table 4)

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 63

The write operation is defined as follows:
void write (set tuples, URI cs_destination, URI cs_origin)

whereby the parameter “tuples” defines the set of tuples (specified using a domain theory
stored on a CSpace cs_origin) that are to be written to a particular CSpace
“cs_destination”. Given a particular concept (or relation) c, the grounding information
should specify how c will be encoded (or bound) into a tuple (or set of tuples) of the
form: <guid, fm, type, sguid, vguid, mguid>. Furthermore, each concept that belongs to
a state signature is grounded to a concrete operation and a parameter. The same concept
can have a different grounding (operation + parameter) in a different state signature.

The retrieval operations are defined as follows:
Tuple take (Template|Query t, URI cs_destination, URI cs_origin)

Tuple waitToTake (Template|Query t, URI cs_destination,
 URI cs_origin)

Tuple read (Template|Query t, URI cs_destination,
 URI cs_origin)

Tuple waitToRead (Template|Query t, URI cs_destination,
 URI cs_origin)

Set scan (Template|Query t, URI cs_destination, URI cs_origin)

We will start with the read operation which is the simplest operation to ground. Notice
though that these operations define the same parameters and thus are closely related to
each other (the difference being the semantics of the individual operations). In WSMO
choreography, instances of concepts and relations are implicitly read from within the
condition of the transition rules. Such instances are either monitored (in), shared, static
or controlled. However, only monitored (in) and shared instances are grounded. For the
case of a read operation, the particular concept or relation should be mapped to the return
value of the operation (which in this case is a tuple). The template t is in fact the
condition of the transition rule since, as defined in [Scicluna et al., 2006], the condition of
a transition rule can be regarded as queries over the state ontologies. The URIs
“cs_destination” and “cs_origin” are only known at runtime and thus it is up to the
particular agent implementation to define such parameters. The rest of the operations are
grounded in the same way, however, note that current version of WSMO Choreography
cannot distinguish between asynchronous and synchronous communication.

4.2.2 Grounding Ontology

In order to be able to express the necessary grounding information for CSpaces, a
grounding ontology has been defined. Such ontology describes the tuplespace operations
defined above and also the concepts necessary to encode the grounding information. We
assume that there exists an ontology which describes the constructs defined in the CSpace
(such as tuples, operations, etc.). Optionally, the grounding ontology presented here may

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 64

be integrated directly with such an ontology. For the sake of conciseness and clarity, we
will hereby provide snippets from the ontology and refer to Appendix I for the complete
version.

The ontology first defines the upper operation and parameter concepts. Each of these
concepts defines an attribute name. In both cases, these are used by the grounding
information (defined also as a concept) in order to allow the designer of the semantic web
service to specify the operation and the parameter to which a particular concept or
relation binds to. An axiom operationNames defines the names of the operations that can
be used within instances of the concept operation. Each sub-concept of parameter must
implement its own axiom to restrict the use of this attribute.

 concept csOperation
 nonFunctionalProperties
 dc#relation hasValue operationNames
 endNonFunctionalProperties
 name ofType (1) _string

 axiom operationNames
 nonFunctionalProperties
 dc#description hasValue "Defines the names of operations"
 endNonFunctionalProperties
 definedBy
 forall {?operation}
 (?operation[
 name hasValue ?operName
] memberOf csOperation implies
 ?operName = "write" or
 ?operName = "take" or
 ?operName = "waitToTake" or
 ?operName = "read" or
 ?operName = "waitToRead" or
 ?operName = "scan" or
 ?operName = "countN" or
 ?operName = "subscribe" or
 ?operName = "unsubscribe" or
 ?operName = "advertise" or
 ?operName = "unadvertise" or
 ?operName = "getTransaction" or
 ?operName = "beginTransaction" or
 ?operName = "commitTransation" or
 ?opername = "rollbackTransaction"
).

 concept parameter
 nonFunctionalProperties
 dc#description hasValue "Defines the common elements
 of a parameter for an operation"
 endNonFunctionalProperties
 name ofType (1) _string

Listing 4.4: operationName and parameter concepts

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 65

An example of an operation is shown in listing 4.5 below. This particular subscribe
operation defines an agent (paramAgent), a template or a query
(paramTemplateOrQuery), a callback (paramCallback) and CSpace destination and
origin uri (paramCs) as parameters. Note that for the second parameter, it is not yet been
clarified whether this operation will use a template or query object. For this purpose, the
ontology defines an upper concept paramTemplateOrQuery which is the super-concept of
paramTemplate and paramQuery such that the type is inferred at reasoning time.

 concept subscribeOperation subConceptOf csOperation
 agent ofType (1) paramAgent
 templateOrQuery impliesType(1) paramTemplateOrQuery
 callback ofType (1) paramCallback
 csUriDestination ofType (1) paramCs
 csUriOrigin ofType (1) paramCs

Listing 4.5: An example of an operation for triple space

Finally, the groundingInformation concept is defined. A particular Semantic Web Service
designer would create an instance of this concept which defines the necessary
information for all the concepts and relations that are to be grounded.

 concept groundingInformation
 operation ofType (1) csOperation
 bindingParameter ofType (1) parameter

Listing 4.6: groundingInformation concept

4.2.3 VTA Example

We will now consider a simple example of a choreography transition rule of a Virtual
Travel Agency choreography description. To keep the document concise, we will limit
ourselves to describe the choreography and the respective transition rule as shown in
Listing 4.7. The simple choreography accepts a reservationRequest which defines the
start and end locations, and departure and return dates for a trip. If such a trip exists, a
reservationOffer is returned to the client.

choreography VTAChoreography
 stateSignature vtaSignature
 importsOntology {_"http://www.example.org/vta/vtaOntology“}

 in
 tr#reservationRequest withGrounding

_"http://www.example.org/vta/vtaCsGrounding#reservationRequestGrounding"

 out
 tr#reservationOffer withGrounding
_"http://www.example.org/vta/vtaCsGrounding#reservationOfferGrounding"

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 66

 transitionRules vtaTransitionRules
 forall {?request} with
 (?request[
 startLocation hasValue ?startLocation,
 endLocation hasValue ?endLocation,
 departureDate hasValue ?departureDate,
 returnDate hasValue ?returnDate
] memberOf tr#reservationRequest and
 exists {?trip} (?trip[
 source hasValue ?startLocation,
 destination hasValue ?endLocation,
 departure hasValue ?departureDate,
 return hasValue ?returnDate) do
 add(_#[
 trip hasValue ?trip
] memberOf tr#reservationOffer)
 endForall

Listing 4.7: VTA Choreography Example grounded to CSpace

The state signature of the choreography imports state ontology of the VTA (which we
will assume it exists). Furthermore, the in and out concepts are defined which are linked
to an ontology defining the respective grounding information. The reservationRequest is
grounded to read operation and bounded to the tuple parameter which is in fact the return
value of the operation. The reservationOffer is grounded to the write operation and
bounded to the tuple parameter. Listing 4.8 shows the grounding ontology for VTA.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-core"

namespace { _"http://www.example.org/vta/vtaCsGrounding#",
 dc _"http://purl.org/dc/elements/1.1#",
 cs _"http://www.example.org/cs/CSpace#",
 tsg _"http://www.example.org/cs/csGroundingOntology#"
}

ontology _"http://www.example.org/CSpace/vtaCsGrounding"
 nonFunctionalProperties
 dc#creator hasValue {"James Scicluna"}
 dc#contributor hasValue {"Francisco J. Martin-Recuerda", "James
Scicluna"}
 dc#description hasValue {"An example of grounding the
 VTA Choreography to CSpace"}
 endNonFunctionalProperties

 importsOntology{
 _"http://www.example.org/tsc/csGroundingOntology",
 _"http://www.example.org/tsc/CSpace"
 }

 /*
 * Grounding reservationRequest

4. Application to Semantic Web Services D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 67

 */
 instance reservationReadOperation memberOf csg#operation
 name hasValue "read"

 instance reservationParameter memberOf csg#parameter
 name hasValue "t"

 instance reservationRequestGrounding memberOf
csg#groundingInformation
 operationName hasValue reservationReadOperation
 bindingParameter hasValue reservationParameter

 /*
 * Grounding reservationOffer
 */
 instance offerWriteOperation memberOf csg#operation
 name hasValue "write"

 instance offerParameter memberOf csg#parameter
 name hasValue "tuple"

 instance reservationOfferGrounding memberOf
csg#groundingInformation
 operationName hasValue offerWriteOperation
 bindingParameter hasValue offerParameter

Listing 4.8: Grounding Ontology of VTA

5. Related Work D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 68

5 Related work
Semantic tuplespace computing initiatives (mainly sTuples, Triple Space Computing,
Semantic Web Spaces and CSpaces) aim to promote a new generation of middleware
infrastructures that exploit the benefits of machine processable semantics and
complement current semantic web services initiatives. In this section we will provide an
overview of relevant middleware technologies.

Middleware is the “glue” that facilitates and manages the interaction between
applications across heterogeneous computing platforms. A common approach to achieve
this goal is usually offering programming abstractions that hide some of the complexities
of building distributed application [Alonso et. al., 2004].

Remote Procedure Call (RPC) [Birrell and Nelson, 1984] is the most basic form of
middleware. It is based on synchronous method invocation and provides the necessary
infrastructure to transform procedure calls in a uniform and transparent manner [Alonso
et. al., 2004]. To ensure reliability in the context of multiple remote procedure calls,
several extensions for RPC infrastructure were proposed for transaction support.

A transaction [Gray and Reuter, 1993] is a set of operations with the properties ACID
(atomicity, consistency, isolation and durability). One of the most successful
architectures, and the dominant form of middleware in the previous decades, was
Transaction Processing (TP) Monitor [Gray and Reuter, 1993]. Built on top of Database
Management Systems (TP-lite) or as specialized Operating Systems (TP-heavy), TP
Monitors guarantee the successful execution of each RPC, or if there is an error, the
rolled back of these operations where the systems affected are brought them to a previous
consistent state (undone). RPC and TP monitor technologies were adapted to support
object-oriented programming paradigm. As a result of this evolution, Object Brokers and
Object Monitor were created to extend RPC and TP monitor infrastructures, respectively.

On the other hand, the necessity to support asynchronous interaction drives the evolution
of the Middleware infrastructure from RPC into Message-Oriented Middleware (MOM)
infrastructure.

MOM enables message-based interoperability where clients and service providers
communicate by exchanging messages. Besides a complete asynchronous
communication, MOM also balances message flows between participants and simplifies
the development of interoperable applications providing support for managing errors and
system failures. Among these, one of the most important abstractions is that of message
queuing.

In a message queuing model, messages sent by MOM clients are placed into a queue,
typically identified by a name, and possibly bound to a specific intended recipient.
Whenever the recipient is ready to process a new message, it invokes the suitable MOM
function to retrieve the first message in the queue.

Queuing messages provide many benefits. In particular, it gives recipients control of
when to process messages. Recipients do not have to be continuously listening for
messages and process them right away, but can instead retrieve a new message only when
they can or need to process it. An important consequence is that queuing is more robust to

5. Related Work D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 69

failures with respect to RPC or object brokers, as recipients do not need to be up and
running when the message is sent.

Because MOM systems (like RPC-based systems) create point-to-point links between
applications, and are thus rather static and inflexible with the regard to the selection of
the queues to which messages are delivered, Message Brokers address the limitation
providing flexibility in routing, filtering support and reducing heterogeneity through
adapters.

Thanks to the possibility of defining application-specific routing logic, message brokers
can support a variety of different message-based interaction models. The most well-
known and widely adopted is the publish/subscribe paradigm. Instead of specifying the
recipients of a message when applications send messages, they simply publish the
messages to the middleware that handles the interaction. If an applications is interested in
receiving messages of a given type must subscribe (register their interest) in a certain
message broker. Siena [Carzaniga, 1998] and Hermes [Pietzuch, 2004] are two relevant
implementations for publish-subscribe communication paradigm.

Alonso and colleagues argue the unsuitability of message brokers as a middleware for
B2B [Alonso et. al., 2004]. The lack of trust between companies and the autonomy that
each company wants to preserve are the main argument against a centralized middleware
infrastructure like message brokers [Alonso et. al., 2004]. Web Services are described as
a promising alternative that overcome the limitations of centralized middleware
applications for B2B scenarios.

“A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in a
manner prescribed by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards.”
[Haas and Brown, 2004]

[Haas and Brown, 2004] identified the core following functional aspects in the
deployment of Web Services:

• Discovery: “The act of locating a machine-processable description of a Web
service related resource that may have been previously unknown and that meets
certain functional criteria. It involves matching a set of functional and other
criteria with a set of resource descriptions. The goal is to find an appropriate
Web service-related resource.”

• Invocation: “The act of a message exchange between a client and a Web service
according to the service’s interface in order to perform a particular task offered
by that service.”

• Interoperation: “defines the sequence and conditions under which multiple
cooperating independent agents exchange messages in order to perform a task to
achieve a goal state (also called co-ordination or choreography).”

5. Related Work D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 70

• Composition: “defines the implementation of the sequence and conditions in
which one Web service invokes other Web services in order to realize some useful
function, i.e. the pattern of interactions that a Web service agent must follow in
order to achieve its goal (also called orchestration).”

Web Services are built over three main building blocks: service oriented architecture,
redesign of middleware protocols and standardization [Alonso et. al., 2004]. Service
Oriented Architecture (SOA) works on the assumption that the access to the functionality
of the applications of a company is made by publishing the interface of them as a service
that can be invoked by clients. The second block, the redesign of middleware protocols to
work in decentralized environment in order to overcome the limitations of centralized
middleware architectures in terms of trust and confidentiality. Finally, the last key block
is a set of standard languages and protocols that eliminates the necessity of many
different middleware infrastructures.

The deployment of several B2B and EAI scenarios to prove the suitability of Web
Services technologies as a solution for business process integration have shown worst
results that was expected. Existing technologies around Web Services like SOAP, WSDL
and UDDI are themselves not sufficient to fully solve the integration problem: The
integration still has to be done mostly manually and only marginal support during the
construction process can be provided by tools, since these web service standards do not
capture and exploit the actual semantics of Web Services.

Following the main principles that the Semantic Web introduced to extend the current
Web, Semantic Web Services proposes to add machine processable semantics to Web
Services in order to reduce manual efforts during the deployment and integration of
distributed applications by improving automation in the location, combination and use of
Web Services.

Two relevant initiatives have to be considered in this context. Chronologically, the first
one is OWL-S, one of the most important outcomes of the DAML program, the major US-
American Semantic Web research effort. The second recent alternative is WSMO (Web
Service Modeling Ontology), the result of the joint effort of 50 academic and industrial
partners heavily supported by the European Commission, the Science Foundation Ireland
and the Austrian Government.

OWL-S37 [OWL Services Coalition, 2003] is an upper level ontology for describing Web
Services, specified using a formal ontology language called OWL. OWL-S contains the
following elements: a Service Profile for service advertisements, a Service Model
(process model) for describing how the services work and a Service Grounding for
describing how the service can be accessed. WSMO [Roman et al., 2005] was proposed
as a refinement and extension of the Web Service Modeling Framework (WSMF) [Fensel
and Bussler, 2002]. WSMF defines a rich conceptual model for the development and the
description of Web Services based in two main requirements: maximal decoupling and
strong mediation. The model is built around four top level notions: Ontologies, Goals,
Web Services and Mediators.

37 http://www.daml.org/services/owl-s/1.1/overview/

5. Related Work D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 71

The limitations that the message exchange paradigm brings to semantic web services has
not only motivated the creation of semantic tuplespace computing approaches, but also
other proposals for the integration of publish and subscribe functionality in Web Services.
WS-Notification [Graham and Niblett, 2004] is part of the Web Service Resource
Framework (WSRF) [Globus et. al., 2004], a new proposal to extend the dominant Open
Grid Service Infrastructure (OGSI) ([Foster et. al., 2002], [Tuecke et. al., 2003]) by
integrating Web Services technologies. The WS-Notification specification refers to a set
of specifications comprising WS-BaseNotification [Graham and Niblett, 2004a], WS-
BrokeredNotification [Graham and Niblett, 2004b] and WS-Topics [Graham and Niblett,
2004c]. WS-BaseNotification standardizes exchanges and interfaces for producers and
consumers of notifications. WS-Brokered Notification facilitates the deployment of
Message Oriented Middleware (MOM) to enable brokered notifications between
producers and consumers of the notifications. WS-Topics deals with the organization of
subscriptions and defines dialects associated with subscription expressions; this is used in
the conjunction with exchanges that take place in WS-BaseNotification and WS-
Brokered Notification. WS-Notification currently also uses two related specifications
from the WSRF specification: WS-ResourceProperties [Graham, 2003] to describe data
associated with resources, and WS-ResourceLifetime [Frey Graham, 2004] to manage
lifetimes associated with subscriptions and publisher registrations (in WS-
BrokeredNotifications).

On the other hand, WS-Eventing [Geller, 2004] can be considered as a subset of the WS-
Notification specification, and more precisely, roughly equivalent to WS-
BaseNotification. Differences arise between both specifications: complexity of the
specifications, message definitions, delivery modes, subscription operations, Topic Space
management and publishing. A detailed analysis of both proposals can be founded in
[Pallickara and Fox, 2004].

To conclude this detailed overview of middleware infrastructures, we would like to
mention a key component of Service Oriented Architecture (SOA) called Enterprise
Service Bus (ESB [Keen et al., 2004]). ESB is a distributed infrastructure and is
contrasted with solutions, such as broker technologies, which are commonly described as
hub-and-spoke. ESB aims to provide in one infrastructure the three major styles of
Enterprise Integration: Service-oriented, Message-driven and Event-driven architectures.
However, ESB is positioned as an infrastructure component, and as such as a component
that does not host or execute business logic. This is in contrast to components such as
service requesters, service providers and the Business Service Choreography whose role
is to handle business logic. Common ESB capabilities are listed below:

 Mediation or transformation of service messages and interactions

 Routing, Addressing, Publish / subscribe, Fire & forget, events and Synchronous
and asynchronous messaging

 Authentication, Authorization, Non-repudiation, Confidentiality and end-to-end
security.

 Transactions (atomic transactions, compensation, WS-Transaction

6. Conclusions and Future Work D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 72

6 Conclusions and Future Work
Several achievements have been presented in this report. The first one is the identification
of the limitations that the message exchange paradigm causes on current (Semantic) Web
services proposals. In particular, this kind of communication requires strong coupling in
terms of reference and time (synchronicity). As a side effect, [Fensel, 2004; and Bussler,
2005] already highlighted the contradiction represented by the message exchange
paradigm in comparison with the core design principles of the Web.
[Fensel, 2004; Tolksdorf et al., 2004; Bussler, 2005; Martin-Recuerda, 2005; and
Krummenacher et al., 2005] suggest that tuplespace computing can be the appropriate
communication means to solve the limitations that the message exchange paradigm
represents. Together with sTuples [Khushraj, et al., 2004], all these approaches present
differences from the conceptualization and architecture point of view that has been
described in detail in this report. To facilitate the analysis and latter comparison, we have
identified seven main aspects for each proposal: semantic data model, organizational
model, coordination model, collaborative and consensus-making model, security-trust
model, knowledge access model and architecture model.
The best features of each proposal have been selected to determine a unified framework
that we will use as a reference for future research and implementation efforts in
Knowledge Web. Because the unified framework intends to cover the main aspects of
each proposal, the result of this work can benefit in the future from each of the
approaches described in this report. There are still some open issues about the definition
of this unified framework that we will resolve by the new version of this report due
month 36.
The final contribution of this report is a description of how choreography and
orchestration can be grounded in CSpaces (and hopefully we will do the same for our
unified framework for semantic enabled tuplespace computing in the next version of this
document). To keep coherence with other parallel efforts in the Knowledge Web
workpackage 2.4 (Semantic Web Services), we choose WSMO as a reference
specification for semantic web services, and in particular, its proposal for choreography
and orchestration. Our work reflects that the current WSMO specifications for
choreography and orchestration are still in an early state38, but we expect that in the next
revision of this report the choreography and orchestration specifications will be in a more
mature status.

Acknowledgements
The author of CSpaces would like to thank Uwe Keller (Leopold-Franzens Universität
Innsbruck, Austria), Stefan Decker, Mathew Moran and Eyal Oren (National University
Ireland Galway), Manfred Hauswirth (Ecole Polytechnique Federal de Lausanne, EPFL),
Michael Genesereth (Stanford University), Charles Petri (Stanford University) and the
members of the Stanford Logic Group for fruitful discussion and feedback. The authors

38 The same can be applied to other related efforts in choreography and orchestration

Annex I D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 73

of Semantic Web Spaces would like to credit Prof Robert Tolksdorf (FU Berlin) for his
guidance in the area of Linda and tuplespaces.

Annex I

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-full"

namespace { _"http://www.example.org/cs/csGroundingOntology#",
 dc _"http://purl.org/dc/elemencs/1.1#",
 cs _"http://www.example.org/cs/cSpace#"}

ontology _"http://www.example.org/cs/csGroundingOntology"
 nonFunctionalProperties
 dc#creator hasValue {"James Scicluna"}
 dc#contributor hasValue {"James Scicluna", "Francisco J.
 Martin-Recuerda"}
 dc#description hasValue {"An ontology for grounding WSMO
 Choreography to CSpaces"}
 endNonFunctionalProperties

 importsOntology {
 _"http://example.org/cs/cSpace"
 }

 /*
 * Upper Concept Operation defines a single attribute "name"
 * defining its name. The axiom
 * "operationNames" restrics the names an operation may have.
 */
 concept csOperation
 nonFunctionalProperties
 dc#relation hasValue operationNames
 endNonFunctionalProperties
 name ofType (1) _string

 axiom operationNames
 nonFunctionalProperties
 dc#description hasValue "Defines the names
 of operations"
 endNonFunctionalProperties
 definedBy
 forall {?operation}
 (?operation[
 name hasValue ?operName
] memberOf csOperation implies
 ?operName = "write" or
 ?operName = "take" or
 ?operName = "waitToTake" or
 ?operName = "read" or
 ?operName = "waitToRead" or
 ?operName = "scan" or
 ?operName = "countN" or
 ?operName = "subscribe" or
 ?operName = "unsubscribe" or
 ?operName = "advertise" or
 ?operName = "unadvertise" or
 ?operName = "getTransaction" or

Annex I D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 74

 ?operName = "beginTransaction" or
 ?operName = "commitTransation" or
 ?opername = "rollbackTransaction"
).

 /*
 * Upper parameter concept defines a single attribute "name"
 * defining the name of the paramter.
 * Each parameter of an operation is a subconcept of this concept

 * and defines its own axiom
 * which describes the name of the parameter.
 */
 concept parameter
 nonFunctionalProperties
 dc#description hasValue "Defines the common elements of
 a parameter for an operation"
 endNonFunctionalProperties
 name ofType (1) _string

 /*
 * Parameters of the Operations
 */

 concept paramTuple subConceptOf parameter
 nonFunctionalProperties
 dc#relation hasValue paramTupleName
 dc#description hasValue "Defines the Tuple parameter.

 Note that this concept allows
 to define more than one tuple"

 endNonFunctionalProperties
 type ofType cs#tuple

 axiom paramTupleName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of the

 Tuple parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}
 (?param[
 name hasValue ?paramName
] memberOf paramTuple implies
 ?paramName = "tuples").

 concept paramCs subConceptOf parameter
 nonFunctionalProperties
 dc#relation hasValue paramCsName
 endNonFunctionalProperties
 type ofType (1) _iri

 axiom paramCsName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of the

 CSpace parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}
 (?param[
 name hasValue ?paramName
] memberOf paramCs implies

Annex I D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 75

 ?paramName = "cs_destination" or
 ?paramName = "cs_origin").

 concept paramAgent subConceptOf parameter
 nonFunctionalProperties
 dc#relation hasValue paramAgentName
 endNonFunctionalProperties
 type ofType (1) _iri

 axiom paramAgentName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of the
 agent parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}
 (?param[
 name hasValue ?paramName
] memberOf paramAgent implies
 ?paramName = "agent").

 concept paramTemplateOrQuery subConceptOf parameter
 nonFunctionalProperties
 dc#description hasValue "A subscription and read operations
 can have either a template or
 a query. This concept is meant to
 be the superconcept of these two."
 endNonFunctionalProperties

 concept paramTemplate subConceptOf paramTemplateOrQuery
 nonFunctionalProperties
 dc#relation hasValue paramTemplateName
 endNonFunctionalProperties
 type ofType (1) cs#template

 axiom paramTemplateName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of the

 template parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}
 (?param[
 name hasValue ?paramName
] memberOf paramTemplate implies
 ?paramName = "t").

 concept paramQuery subConceptOf paramTemplateOrQuery
 nonFunctionalProperties
 dc#relation hasValue paramQueryName
 endNonFunctionalProperties
 type ofType (1) cs#query

 axiom paramQueryName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of the query
 parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}

Annex I D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 76

 (?param[
 name hasValue ?paramName
] memberOf paramQuery implies
 ?paramName = "t").

 concept paramCallback subConceptOf parameter
 nonFunctionalProperties
 dc#relation hasValue paramCallbackName
 endNonFunctionalProperties
 type ofType (1) cs#callback

 axiom paramCallbackName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of the

 Callback parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}
 (?param[
 name hasValue ?paramName
] memberOf paramCallback implies
 ?paramName = "c").

 concept paramTransaction subConceptOf parameter
 nonFunctionalProperties
 dc#relation hasValue paramTransactionName
 endNonFunctionalProperties
 type ofType (1) _iri

 axiom paramTransactionName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of the

 transaction parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}
 (?param[
 name hasValue ?paramName
] memberOf paramTransaction implies
 ?paramName = "txn").

 concept paramSubscription subConceptOf parameter
 nonFunctionalProperties
 dc#relation hasValue paramSubscriptionName
 endNonFunctionalProperties
 type ofType (0 *) _iri

 axiom paramSubscriptionName
 nonFunctionalProperties
 dc#description hasValue "Defines the name of
 the subscription parameter"
 endNonFunctionalProperties
 definedBy
 forall {?param}
 (?param[
 name hasValue ?paramName
] memberOf paramSubscription implies
 ?paramName = "sub").

Annex I D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 77

 /*
 * Operations of the CSpace API
 */
 concept writeOperation subConceptOf csOperation
 paramTuple ofType (1) paramTuple
 cs_destination ofType (1) paramCs
 cs_origin ofType (1) paramCs

 concept retrievalOperation subConceptOf csOperation
 returnTuple ofType (1) paramTuple
 template ofType (1) paramTemplate
 cs_destination ofType (1) paramCs
 cs_origin ofType (1) paramCs

 concept takeOperation subConceptOf retreivalOperation

 concept waitToTakeOperation subConceptOf retrievalOperation

 concept readOperation subConceptOf retrievalOperation

 concept waitToReadOperation subConceptOf retrievalOperation

 concept scanOperation subConceptOf retreivalOperation

 concept subscribeOperation subConceptOf csOperation
 returnParam ofType (1) _iri
 agent ofType (1) paramAgent
 templateOrQuery impliesType(1) paramTemplateOrQuery
 callback ofType (1) paramCallback
 cs_destination ofType (1) paramCs
 cs_origin ofType (1) paramCs

 concept unSubscribeOperation subConceptOf csOperation
 returnParam ofType _iri
 paramSubscriptionUri ofType (1) paramSubscription
 templateOrQuery impliesType (1) paramTemplateOrQuery
 callback ofType (1) paramCallback
 cs_destination ofType (1) paramCs
 cs_origin ofType (1) paramCs

 concept advertisementOperation subConceptOf csOperation
 agent ofType (1) paramAgent
 templateOrQuery ofType (1) paramTemplateOrQuery
 cs_destination ofType (1) paramCs
 cs_origin ofType (1) paramCs

 concept advertiseOperation subConceptOf advertisementOperation

 concept unAdvertiseOperation subConceptOf advertisementOperation

 concept getTransactionOperation subConceptOf csOperation
 returnTransaction ofType (1) paramTransaction
 csUri ofType (1) _iri

 concept transactionOperation subConceptOf csOperation
 transaction ofType (1) paramTransaction
 csUri ofType (1) paramCs

 concept beginTransactionOperation subConceptOf transactionOperation

Annex I D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 78

 concept commitTransactionOperation subConceptOf transactionOperation

 concept rollbackTransactionOperation subConceptOf transactionOperation

 /*
 * A Concept used for defining the necessary grounding information.

 * Note that in both
 * attributes there is no need to use "impliesType" since the

 * semantic web service
 * designer is not required to create a whole instance of an operation

 * and the respective
 * parameters but rather to define only the name
 */
 concept groundingInformation
 operation ofType (1) csOperation
 bindingParameter ofType (1) parameter

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 79

Bibliography
[Aberer et al., 2003] K. Aberer, P. Cudré-Mauroux, A.Datta, Z. Despotovic, M.
Hauswirth, Ma. Punceva, R. Schmidt, P-Grid: A Self-organizing Structured P2P System
SIGMOD Record, 32(2), September 2003.

[Aberer et al., 2005] K. Aberer, A. Datta, M. Hauswirth. A decentralized public key
infrastructure for customer-to-customer e-commerce, to be published in International
Journal of Business Process Integration and Management, 1(1), 2005.

[AbdulRahman, 2005] F. AbdulRahman A Framework for Decentralized Trust
Reasoning (PhD thesis). 2005. http://www.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/thesis-
final.pdf

[Alasoud et al., 2005] A. Alasoud, V. Haarslev, N. Shiri. A Hybrid Approach for
Ontology Integration. Proceedings of the 2005 VLDB Workshop on Ontologies-based
techniques for DataBases and Information Systems (ODBIS-2005), Trondheim, Norway,
Sept. 2, 2005.

[Alonso, et al., 2004] G. Alonso, F. Casati, H. Kuno, and V. Machiraju (2004). Web
Services. Springer, 2004.

[Amgound and Kaci, 2005] L. Amgoud and S. Kaci. An argumentation framework for
merging conflicting knowledge bases: The prioritized case. In 8th European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU'2005, Barcelona, 06 - 08 June 2005. LNCS, p. 527-538.

[Bawa et al., 2003] M. Bawa, B. F. Cooper, A. Crespo, N. Daswani, P. Ganesan, H.
Garcia-Molina, S. Kamvar, S. Marti, M. Schlosser, Q. Sun, P. Vinograd, B. Yang. Peer-
to-Peer Research at Stanford, The Peers Group. In SIGMOD Record, September 2003.

[Berners-Lee et al., 2005] T. Berners-Lee, R. Fielding, L. Masinter: Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, Internet Engineering Task Force (IETF),
January 2005

[Birrell and Nelson, 1984] A.D. Birrell and B.J. Nelson (1984). Implementing remote
procedure calls. ACM Transactions on Computer Science, 2(1):39-59, Feb. 1984.

[Blaze et al., 1996] M. Blaze, J. Feigenbaum and J. Lacy. Decentralized Trust
Management. In Proceedings 1996 IEEE Symposium on Security and Privacy, pages
164-173, May 1996

[Bonatti et al., 2005] Piero A. Bonatti, Claudiu Duma, Daniel Olmedilla, Nahid
Shahmehri. An Integration of Reputation-based and Policy-based Trust Management.
Semantic Web Policy Workshop in conjunction with International Semantic Web
Conference, Nov. 2005, Galway, Ireland

[Bonifacio et al., 2002a] M. Bonifacio, P. Bouquet and R. Cuel. "Knowledge Nodes: the
Building Blocks of a Distributed Approach to Knowledge Management". Journal of
Universal Computer Science, 8(6), 652-661. 2002

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 80

[Bonifacio et al., 2002b] M. Bonifacio, P. Bouquet, G. Mameli and M. Nori. KEx: A
Peer-to-Peer Solution for Distributed Knowledge Management. PAKM 2002: 490-500,
2002.

[Bonifacio et al., 2003] M. Bonifacio, P. Bouquet, G. Mameli and M. Nori Peer-
Mediated Distributed Knowledge Management, 2003.
http://eprints.biblio.unitn.it/archive/00000426/01/032.pdf

[Bontcheva et al., 2003] K. Bontcheva, A. Kiryakov, H. Cunningham, B. Popov, and M.
Dimitrov. Semantic web enabled open source language technology. In EACL workshop
on Language Technology and the Semantic Web: NLP and XML, Budapest, Hungary,
2003.

[Bontcheva, 2004] K. Bontcheva. D5.1.1 Natural Language Generation for Knowledge
Access. SEKT Technical Report. 2004. http://www.sekt-project.com/

[Bontcheva and Wilks, 2004] K. Bontcheva and Y. Wilks. Automatic Report Generation
from Ontologies: the MIAKT approach. In Nineth International Conference on
Applications of Natural Language to Information Systems (NLDB’2004), 2004.

[Bontcheva, 2005] K. Bontcheva. Generating Tailored Textual Summaries from
Ontologies. Second European Semantic Web Conference (ESWC 2005). Crete. 2005

[Borgida and Serafini, 2003] A. Borgida and L. Serafini. Distributed description logics:
Assimilating information from peer sources. Journal of Data Semantics, 1:153–184,
2003.

[Borst, 1997] W. N. Borst. Construction of Engineering Ontologies for Knowledge
Sharing and Reuse. PhD thesis, University of Twente, Enschede, NL, 1997

[Bryce and Cremonini, 2001] C. Bryce and M. Cremonini. Coordination and Security
on the Internet. Coordination of Internet Agents: Models, Technologies, and Applications
2001:274-298

[Bull et al., 1992] J. A. Bull, L. Gong, and K. R. Sollins. Towards security in an open
systems federation," in European Symposium on Research in Computer Security
(ESORICS), pp. 3-20, 1992.

[Bussler, 2005] C. Bussler, DERI-TR-2005-04-22 A Minimal Triple Space Computing
Architecture, April 2005. http://www.deri.at/publications/techpapers/

[Cabrera et al., 2004a] L. Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson, C.
Kaler, J. Klein, D. Langworthy, A. Nadalin, D. Orchard, I. Robinson, J. Shewchuk, T.
Storey: Web Services Coordination (WS-Coordination), November 2004.
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf

[Cabrera et al., 2004b] L. Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson, C.
Kaler, J. Klein, D. Langworthy, A. Nadalin, D. Orchard, I. Robinson, J. Shewchuk, T.
Storey, S. Thatte: Web Services Atomic Transaction (WS-AtomicTransaction),
November 2004
ftp://www6.software.ibm.com/software/developer/library/WSAtomicTransaction.pdf

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 81

[Cabrera et al., 2004c] L. Cabrera, G. Copeland, T. Freund, J. Johnson, J. Klein, D.
Langworthy, F. Leymann, D. Orchard, I. Robinson, T. Storey, S. Thatte: Web Services
Business Activity Framework (WS-BusinessActivity), November 2004.
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf

[Calvanese et al., 2002a] D. Calvanese, G. De Giacomo, and M. Lenzerini. Description
logics for information integration. In A. Kakas and F. Sadri, editors, Computational
Logic: Logic Programming and Beyond, volume 2408 of Lecture Notes in Computer
Science, pages 41–60. Springer, 2002.

[Calvanese et al., 2002b] D. Calvanese, G. De Giacomo, and M. Lenzerini. A framework
for ontology integration. In Isabel Cruz, Stefan Decker, Jerome Euzenat, and Deborah
McGuinness, editors, The Emerging Semantic Web, pages 201–214. IOS Press, 2002.

[Carzaniga, 1998] A. Carzaniga "Architectures for an Event Notification Service
Scalable to Wide-area Networks". PhD Thesis. Politecnico di Milano. December, 1998.

[Christensen et al., 2001] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March

2001.

[Cook and Brown, 1999] S. Cook and J. Brown, J. Bridging Epistemologies: The
Generative Dance Between Organizational Knowledge and Organization Knowing,
Organization Science, Vol.10, n°4, 1999, pp. 381-400, 1999.

[Damiani, di Vimercati et al., 2002] E. Damiani, S.D.C. di Vimercati, S. Paraboschi, P.
Samarati, and F. Violante. A Reputation-Based Approach for Choosing Reliable
Resources in Peer-to-Peer Networks. 9th ACM Conference on Computer and
Communications Security, Washington DC. 2002

[de Bruijn and Polleres, 2004] J. de Bruijn and A. Polleres. Towards and ontology
mapping language for the semantic web. Technical Report DERI-2004-06-30, DERI,
June 2004

[de Bruijn et. al, 2004] de Bruijn, J., Martín-Recuerda, F., Manov D. and Ehrig, M.:
State-of-the-art survey on Ontology Merging and Aligning V1. Project Deliverable
d4.2.1, 2004. SEKT project IST-2003-506826 (http://sekt.semanticweb.org/)

[Eppler and Burkard, 2004] M. J. Eppler and R. A. Burkard. Knowledge Visualization.
Towards a New Discipline and its Fields of Application, ICA Working Paper #2/2004,
University of Lugano, Lugano.2004

[Eugster et al., 2001] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. Technical Report. 2001.

[Euzenat, 1995] J. Euzenat, Building consensual knowledge bases: context and
architecture, in N. Mars (ed.), Towards very large knowledge bases, IOS press,
Amsterdam (NL), pp143-155, 1995

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 82

[Fensel and Bussler, 2002] D. Fensel and C. Bussler. The web service modeling
framework WSMF. Electronic Commerce Research and Applications, 1(2):113-137,
2002.

[Fensel, 2004] D. Fensel: Triple-based Computing. Digital Enterprise Research Institute
(DERI) Technical Report DERI-TR-2004-05-31. 2004

[Fensel, 2005] Dieter Fensel. "Semantically Empowered Service-Oriented
Architectures". DERI-TR-2005-07-27. July 2005.
http://www.deri.at/publications/techpapers/documents/DERI-TR-2005-07-27_01.pdf

[Feier and Domingue, 2005] C. Feier and J. Domingue. D3.1v0.2 WSMO Primer
WSMO Working Draft 01 April 2005. http://www.wsmo.org/TR/d3/d3.1/v0.2/

[Fielding, 2000] R. T. Fielding. Architectural styles and the design of network-based
software architectures. PhD Thesis, University of California, Irvine, 2000.

[Frey Graham, 2004] J. Frey and S. Graham (editors). Web Services Resource Lifetime
(WS-ResourceLifetime) Version 1.1. Technical Specification. 2004.
http://www.ibm.com/developerworks/library/ws-resource/ws-resourcelifetime.pdf

[Garshold, 2003] L. M. Garshol. Living with topic maps and RDF. In the proceedings of
XML Europe 2003, 5-8 May 2003, organized by IDEAlliance, London, UK.

[Gelernter, 1985] D. Gelernter. Generative Communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, 1985.

[Geller, 2004] A. Geller (editor). Web Services Eventing (WS-Eventing). Technical
Specification. August 2004. http://www-
106.ibm.com/developerworks/webservices/library/specification/ws-eventing/

[Globus et. al., 2004] Globus Alliance, IBM and HP. The Web Services Resource
Framework (WSRF). http://www.globus.org/wsrf/

[Gong, 1989] L. Gong, “A secure identity-based capability system," in Proceedings of
the IEEE Symposium on Security and Privacy, (Los Angeles, CA), pp. 55-63, IEEE,
IEEE Computer Society Press, May 1989.

[Graham, 2003] S. Graham (editor). Web Services Resource Properties (WS-
ResourceProperties) Version 1.1. Technical Specification. 2003. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.pdf

[Graham and Niblett, 2004] S. Graham and P.Niblett (editors). Web Services
Notification (WS-Notification). Technical Specification. 2004. http://www-
106.ibm.com/developerworks/library/specification/ws-notification/

[Graham and Niblett, 2004a] S. Graham and P.Niblett (editors). Web Services Base
Notification (WS-BaseNotification). Technical Specification. 2004. http://www-
106.ibm.com/developerworks/library/specification/ws-notification/

[Graham and Niblett, 2004b] S. Graham and P.Niblett (editors). Web Services
Brokered Notification (WS-BrokeredNotification). Technical Specification. 2004.
http://www-106.ibm.com/developerworks/library/specification/ws-notification/

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 83

[Graham and Niblett, 2004c] S. Graham and P.Niblett (editors). Web Services Topics
(WS-Topics). Technical Specification. 2004. http://www-
106.ibm.com/developerworks/library/specification/ws-notification/

[Grandison and Sloman, 2000] T. Grandison and M. Sloman, M. (2000). "A Survey of
Trust in Internet Applications." IEEE Communications Surveys 3(4).

[Grau et al., 2004] B. Cuenca Grau, B. Parsia, and E. Sirin. Working with multiple
ontologies on the semantic web. In Proceedings of the Third Internatonal SemanticWeb
Conference (ISWC2004), volume 3298 of Lecture Notes in Computer Science, 2004.

[Gray and Reuter, 1993] J. Gray and A. Reuter (1993). Transaction processing and
concepts and techniques. Morgan Kauffman. 1993

[Grosof, et al., 2003] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description
logic programs: Combining logic programs with description logic. In Proc. of the Twelfth
International World Wide Web Conference (WWW 2003), pages 48-57. ACM, 2003.

[Gruber, 1993] T. R. Gruber. Towards Principles for the Design of Ontologies Used for
Knowledge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers.

[Gupta, Judge et al., 2003] M. Gupta, P. Judge and M. Ammar. A Reputation System
for Peerto-Peer Networks. Thirteenth ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV), Monterey,
California. 2003

[Gurevich, 1995] Y. Gurevich. Evolving algebras 1993: Lipari guide, pages 9-36.
Oxford University Press, Inc., 1995

[Gutiérrez et al., 2004] C. Gutiérrez; E. Fernández-Medina; M. Piattini. April 2004.
International Workshop on Security in Information Systems WOSIS, April 2004, Porto,
Portugal

[Haas and Brown, 2004] H. Haas and A. Brown (2004). Web Services Glossary. 2004.
http://www.w3.org/TR/ws-gloss/

[Halevy, 1999] A.Y. Halevy, Combining artificial intelligence and databases for data
integration, in: M. Wooldridge, M.M. Veloso (Eds.), Artificial Intelligence Today:
Recent Trends and Developments, Lecture Notes in Comput. Sci., Vol. 1600, Springer,
Berlin, 1999, pp. 249--268

[Hartmann et al., 2005] J. Hartmann, Y. Sure, P. Hasse, M. Suárez-Figueroa, R. Studer,
A. Gómez-Pérez, R. Palma Ontology Metadata Vocabulary and Applications. In Robert
Meersman, International Conference on Ontologies, Databases and Applications of
Semantics. In Workshop on Web Semantics (SWWS). October 2005.

[Hayes, 2004] P. Hayes (editor). RDF Semantics. W3C Recommendation 10 February
2004. http://www.w3.org/TR/rdf-mt/

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 84

[Hayton, 1996] R. Hayton. OASIS: An Open Architecture for Secure Interworking
Services. PhD thesis, Univeristy of Cambridge Computer Laboratory, June 1996.
Technical Report No. 399.

[Hull and Zhou, 1996] R. Hull, G. Zhou. A Framework for Supporting Data Integration
Using the Materialized and Virtual Approaches, In Proc. ACM SIGMOD ’96, Montreal,
Canada, 1996.

[IBM and Microsoft, 2002] IBM and Microsoft. Security in a Web Services World: A
Proposed Architecture and Roadmap - technical whitepaper 7 April 2002. See
http://msdn.microsoft.com/ws-security/

[Johanson and Fox, 2004] B. Johanson and A. Fox. Extending Tuplespaces for
Coordination in Interactive Workspaces. Journal of Systems and Software, 69(3):243–
266, 2004.

[Josang and Ismail, 2002] A. Josang and R. Ismail. The Beta Reputation System. 15th
Bled Electronic Commerce Conference, Bled, Slovenia. 2002

[Kagal et al., 2001] L. Kagal, S. Cost, T. Finin, and Y. Peng. A framework for
distributed trust management. Second Workshop on Norms and Institutions in MAS,
Autonomous Agents, Montreal, Canada, May 29th, 2001.

[Kamvar, Schlosser et al., 2003] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The
EigenTrust Algorithm for Reputation Management in P2P Networks. In Proceedings of
the Twelfth International World Wide Web Conference, May, 2003.

[Keen et al., 2004] M. Keen, S. Bishop, A. Hopkins, S. Milinski, C. Nott, R. Robinson, J.
Adams, P. Verschueren, A. Acharya. Patterns: Implementing an SOA using an Enterprise
Service Bus. IBM Redbooks. ISBN-0738490008. 25 July 2004.
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf

[Khare and Taylor, 2004] R. Khare and R. N. Taylor. “Extending the Representational
State Transfer (REST) Architectural Style for Decentralized Systems.” Proceedings of the
International Conference on Software Engineering (ICSE), May, 2004, Edinburgh,
Scotland.

[Khushraj, et al., 2004] D. Khushraj, O. Lassila and T. Finin. sTuples: Semantic Tuple
Spaces”, in Proceedings of the First Annual International Conference on Mobile and
Ubiquitous Systems (MobiQuitous’04)

[Kopecky et al., 2005] J. Kopecky, M. Moran, D. Roman, A. Mocan. D24.2v0.1. WSMO
Grounding. WSMO Working Draft 16 September 2005.
http://www.wsmo.org/TR/d24/d24.2/v0.1/

[Kotis and Vouros, 2003] K. Kotis and G. Vouros. Human Centered Ontology
Management with HCONE. IJCAI'03, Ontologies and Distributed Systems Workshop,
Acapulco, Mexico. CEUR-WS.org/Vol. 71, ISSN 1613-0073, 2003

[Klyne and Carroll, 2004] G. Klyne and J. Carroll, Editors. Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation, 10 February
2004, http://www.w3.org/TR/rdf-concepts/

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 85

[Kohl and Neuman, 1993] J. Kohl and C. Neuman, “RFC 1510: The Kerberos Network
Authentication Service (V5)" RFC 1510, the Internet Engineering Task Force, Sept.
1993.

[Krummenacher et al., 2005] R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, D.
Fensel. WWW Or What Is Wrong with Web Services. In Proceedings of the European
Conference on Web Services (ECOWS 2005), November 2005

[Lamping et al., 1995] J. Lamping, R. Ramana Rao and P. Pirolli (1995). A
Focus+context Technique Based on Hyperbolic Geometry for Visualizing Large
Hierarchies. Conference on Human Factors in Computing Systems archive. In
Proceedings of the SIGCHI conference on Human factors in computing systems. Denver,
Colorado, United States. 401 - 408. 1995. ISBN: 0-201-84705-1

[Lampson et al., 1992] B. Lampson, M. Abadi, M. Burrows, and E. Wobber,
“Authentication in distributed systems: Theory and practice," ACM Transactions on
Computer Systems, vol. 10, pp. 265-310, Nov. 1992.

[Lee et al., 2003] S. Lee, R. Sherwood, B. Bhattacharjee. Cooperative peer groups in
NICE. IEEE Infocom, San Francisco, USA. 2003

[Li et al., 2002] N. Li, J. C. Mitchell and W. H. Winsborough. Design of a role-based
trust management framework. IEEE Symposium on Security and Privacy, Oakland,
California. 2002

[Li and Jiang, 2004] H. Li and G. Jiang. Semantic message oriented middleware for
publish/subscribe networks. Proceedings of the SPIE, Volume 5403, pp. 124-133 (2004).

[MacGregor and Ko, 2003] R. MacGregor and I.Y. Ko. Representing Contextualized
Data using Semantic Web Tools. In Practical and Scalable Semantic Systems (workshop
at 2nd ISWC), 2003.

[Martin-Recuerda, 2005] F. Martín-Recuerda. Towards CSpaces: A new perspective for
the Semantic Web. In Proceedings of the 1st International IFIP/WG12.5 Working
Conference on Industrial Applications of Semantic Web (IASW 2005). Jyvaskyla,
Finland. August, 2005

[Martin-Recuerda and B. Sapkota, 2005] F. Martin-Recuerda and B. Sapkota (editors),
D21.v0.1 WSMX Triple-Space Computing, 2005,
http://www.wsmo.org/TR/d25/d25.1/v0.1/

[McBrien and Poulovassilis, 2003] P. J. McBrien and A. Poulovassilis. Data integration
by bi-directional schema transformation rules. In Proceedings of ICDE (IEEE) 2003.

[Merrick and Wood, 2000] I. Merrick and A. Wood. Coordination with Scopes, SAC
(1) 2000: 210-217

[Needham and Schroeder, 1978] R. M. Needham and M. D. Schroeder, Using
encryption for authentication in large networks of computers," Communications of the
ACM, vol. 21, no. 12, pp. 993-999, 1978.

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 86

[O'Sullivan et al., 2002] J. O'Sullivan, D. Edmond, and A. ter Hofstede. What is a
service?: Towards accurate description of non-functional properties. Distributed and
Parallel-Databases, 12(2-3):117-133, 2002.

[OWL Services Coalition, 2003] OWL Services Coalition (2003). OWL-S: Semantic
Markup for Web Services, http://www.daml.org/services/owl-s/1.0/owl-s.pdf

[Pallickara and Fox, 2004] S. Pallickara and G. Fox (2004). An Analysis of Notification
Related Specifications for Web/Grid applications. Technical Report. October 30 2004

[Park and Cheyer, 2005] J. Park and A. Cheyer. Just For Me: Topic Maps and
Ontologies. International Workshop on Topic Map Research and Applications
(TMRA'05). Leipzig, Germany. Oct 2005.

[Paslaru-Bontas et al., 2005a] E. Paslaru Bontas, L. J. B. Nixon and R. Tolksdorf: A
Conceptual Model for Semantic Web Spaces. FU Berlin Technical Report B-05-14, 2005.

[Paslaru-Bontas et al., 2005b] E. Paslaru Bontas, L. J. B. Nixon and R. Tolksdorf:
Using Semantic Web Spaces to Realize Ontology Repositories. FU Berlin Technical
Report B-05-15, 2005.

[Paslaru-Bontas, 2005] E. Paslaru Bontas. Using Context Information to Improve
Ontology Reuse Doctoral Workshop at the 17th Conference on Advanced Information
Systems Engineering CAiSE'05.

[Pietzuch, 2004] P. R. Pietzuch. "Hermes: A Scalable Event-Based Middleware". Ph.D.
Thesis, Computer Laboratory, Queens' College, University of Cambridge, February 2004.

[Pujol et al., 2002] J. M. Pujol, R. Sanguesa, and J. Delgado. Extracting reputation in
multi agent systems by means of social network topology. First International Joint
Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, pages 467-
-474, 2002.

[Reiter and Dale, 2000] E. Reiter and R. Dale. Building Natural Language Generation
Systems. Cambridge University Press, Cambridge, England, 2000.

[Rescorla and Schiffman , 1999] E. Rescorla, A. Schiffman, The Secure HyperText
Transfer Protocol. RFC 2660, Internet Engineering Task Force (IETF), August 1999

[Rhea et al., 2003] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J.
Kubiatowicz. Pond: the OceanStore Prototype. Appears in Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (FAST '03), March 2003

[Roman et al., 2005] D. Roman, H. Lausen, and U. Keller (eds.): Web Services
Modeling Ontology Standard. WSMO Working Draft v1.2, 2005.
http://www.wsmo.org/TR/d2/v1.2/

[Sabater and Sierra, 2002] J. Sabater and C. Sierra. Reputation and social network
analysis in multi-agent systems. First International Joint Conference on Autonomous
Agents and Multi-Agent Systems, Bologna, Italy. 2002

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 87

[Scicluna et al., 2006] J. Scicluna, A. Polleres, D. Roman (editors) D14v0.2: Ontology-
based Choreography and Orchestration of WSMO Services WSMO Working Draft 13
January 2006. http://www.wsmo.org/TR/d14/v0.2/

[Serafini et al., 2005] L. Serafini, H. Stuckenschmidt and H. Wache A Formal
Investigation of Mapping Languages for Terminological Knowledge Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAI-05

[Stollberg, 2005] M. Stollberg (editor). D17v0.2: WSMO Tutorial. WSMO Working
Draft 15 December 2005. http://www.wsmo.org/TR/d17/v0.2/

[Stollberg and Lara, 2004] M. Stollberg and R. Lara (editors). D3.3 v0.1 WSMO Use
Case "Virtual Travel Agency". WSMO Working Draft 19 November 2004.
http://www.wsmo.org/2004/d3/d3.3/v0.1/

[Suryanarayana and Taylor, 2004] G. Suryanarayana and R. Taylor. A Survey of Trust
Management and Resource Discovery Technologies in Peer-to-Peer Applications. ISR
Technical Report UCI-ISR-04-6, July 2004. http://www.isr.uci.edu/tech_reports/UCI-
ISR-04-6.pdf

[Tolksdorf and Menezes, 2003] R. Tolksdorf and R. Menezes. Using Swarm
Intelligence in Linda systems”, in Proceedings of the 4th International Workshop on
Engineering Societies in the Agents World ESAW03, 2003.[Tolksdorf et al, 2004] R.
Tolksdorf, L. J. B. Nixon, F. Liebsch, D. Minh Nguyen and E. Paslaru Bontas. Semantic
Web Spaces. FU Berlin Technical Report B-04-11, 2004.

[Tolksdorf et al, 2005a] R. Tolksdorf, L. J. B. Nixon and E. Paslaru Bontas, D. Minh
Nguyen and F. Liebsch. Enabling real world Semantic Web applications through a
coordination middleware. 2nd European Semantic Web Conference ESWC2005,
Heraklion, Crete, May 2005

[Tolksdorf et al, 2005b] R. Tolksdorf, E. Paslaru-Bontas and L. J. B. Nixon. Towards a
tuplespace-based middleware for the Semantic Web. IEEE/WIC/ACM International
Conference on Web Intelligence WI2005, Compiegne University of Technology, France,
September 2005

[Tolksdorf et al, 2006] R. Tolksdorf, E. Paslaru-Bontas, L. J. B. Nixon. A Co-ordination
Model for the Semantic Web. ACM Symposium on Applied Computing, Coordination
Models, Languages and Application Track SAC2006 (to be published).

[Tuecke et. al., 2003] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C.
Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, D. Snelling (2003). Open Grid
Services Infrastructure (OGSI) Version 1.0. Global Grid Forum Draft Recommendation,
6/27/2003

[Ullman, 1997] J. D. Ullman: Information Integration Using Logical Views. ICDT 1997:
19-40

[Uschold, 2000] M. Uschold. Creating, integrating, and maintaining local and global
ontologies. In Proceedings of the First Workshop on Ontology Learning (OL-2000) in

Bibliography D 2.4.8.1: Infrastructure for Triple Space Computing

KWEB/2005/D2.4.8.1/v1 2/14/2006 88

conjunction with the 14th European Conference on Artificial Intelligence (ECAI-2000),
Berlin, Germany, August 2000.

[Visser and Cui, 1998] P. R. S. Visser and Z. Cui. On accepting heterogeneous
ontologies in distributed architectures. In Proceedings of the ECAI98 workshop on
applications of ontologies and problem-solving methods, Brighton, UK, 1998.

[Wikipedia, 2004] Wikipedia (2004). Semantic Web Definition.
http://en.wikipedia.org/wiki/Semantic_Web

[Wilcock, 2003] G.Wilcock. Talking OWLs: Towards an Ontology Verbalizer. In
Human LanguageTechnology for the SemanticWeb andWeb Services, ISWC’03, pages
109–112, Sanibel Island, Florida, 2003.

[Wilcock and Jokinen, 2003] G. Wilcock and K. Jokinen. Generating Responses and
Explanations from RDF/XML and DAML+OIL. In Knowledge and Reasoning in
Practical Dialogue Systems, IJCAI-2003, pages 58–63, Acapulco, 2003.

[Wyckoff, 1998] P. Wyckoff. TSpaces. IBM Systems Journal, volume 37, number 3,
August 1998. http://www.research.ibm.com/journal/sj/373/wyckoff.html

[Xu and Embley, 2004] L. Xu, D. W. Embley: Combining the Best of Global-as-View
and Local-as-View for Data Integration. ISTA 2004: 123-136

[Yao, 2003] W. Yao. Fidelis: A Policy-Driven Trust Management Framework. First
International Conference on Trust Management, Crete, Greece, pages 301-307. 2003

[Yu et al., 2001] T. Yu, M. Winslett, M., and K. E. Seamons. Interoperable strategies in
automated trust negotiation. 8th ACM Conference on Computer and Communications
Security, Philadelphia, USA. 2001

[Zacharia and Maes, 2000] G. Zacharia, and P. Maes. "Trust Management Through
Reputation Mechanisms." Applied Artificial Intelligence 14: 881-907. 2000

[Zacharia and Maes, 1999] G. Zacharia and P. Maes. Collaborative Reputation
Mechanisms in Electronic Marketplaces. 32nd Hawaii International Conference on
System Sciences, Hawaii. 1999

[Zaremba and Moran, 2005] M. Zaremba and M. Moran. D13.4v0.3 WSMX
Architecture. WSMX Working Draft 12-10-2005. http://www.wsmo.org/TR/d13/d13.4/

