
D2.4.7 Web Service Invocation and
Interoperation

Tomas Vitvar, Paavo Kotinurmi
(National University of Ireland, Galway)

with contributions from:

Armin Haller, Mick Kerrigan, Jana Viskova, Matthew Moran and Maciej

Zaremba (National University of Ireland, Galway)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB Deliverable D2.4.7 (WP2.4)
Version 2

The goal of this deliverable is to show how Semantic Web Service technology around WSMO,
WSML and WSMX can be used to facilitate interoperation and invocation of services within
inter-enterprise integration settings. We address this interoperation at technical, data and process
levels. In particular, we show how RosettaNet e-business framework and SWS technologies can
be used together and how SWS can facilitate integration of back-end information systems.

Keyword list: Web Services, Invocation, Interoperation, Interoperability, WSMX, B2B
integration, RosettaNet

Copyright c© 2006 The contributors

Document Identifier KWEB/2004/D2.4.7/v2
Project KWEB EU-IST-2004-507482
Version v2.0
Date June 30, 2006
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Tomas Vitvar
E-mail address: tomas.vitvar@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

École Polytechnique Fédérale de Lausanne
France Telecom
Freie Universität Berlin
National University of Ireland Galway
University of Innsbruck
University of Liverpool
University of Manchester
University of Trento

4

Changes

Version Date Author Changes
1.2 14.06.06 Paavo Kotinurmi First full version based on version 1.0
1.7 19.06.06 Paavo Kotinurmi Changes after reviewers comments from

conferences
1.8 30.06.06 Paavo Kotinurmi Version before internal review
1.9 15.07.06 Tomas Vitvar Changes throughout the document
2.0 20.07.06 Paavo Kotinurmi Reviewers comments implemented, final

version

Executive Summary

Interoperation and invocation of web services can be distinguished at the levels of (1)
technical interoperation, (2) data (semantic) interoperation, and (3) process interopera-
tion. Technical level interoperation is the ability of systems to handle different communi-
cation protocols and invoke services using different languages. Data level interoperation
must be ensured when different meanings (semantics) of messages are used for commu-
nication. Process level interoperation must be ensured when different communication
patterns (choreographies) are used during communication.

With respect to all interoperation levels and within the context of ongoing work on
interoperation and invocation in other research projects, we are focused in this deliverable
on particular problem of interoperation of services in inter-enterprise integration settings
taking into account B2B standards used by different business partners. In order to achieve
interoperation of business partners by means of SWS, we show all necessary steps which
need to be fulfilled within the integration set-up phase as well as describe in detail how
SWS middleware facilitates integration of decoupled services during run-time.

This deliverable is directly based on two loosely dependent scientific publications. In
the first publication described in the chapter 2, we are focused on definition of guidelines
for integration set-up phase and integration run-time phase to be fulfilled between business
partners that wish to interoperate. This work has been published in Lecture Notes in
Computer Science at Springer Verlag and presented at the 2nd IEEE Workshop on Data
Engineering Issues in E-Commerce 2006 (DEEC2006) in San Francisco, USA. In the
second publication described in chapter 3, we are focused on run-time invocation and
conversation aspects of semantic services and integration of standard RosettaNet B2B
protocol with proprietary enterprise back-end systems. This work has been presented
and demonstrated at the SWS challenge workshop in Budva, Montenegro while at the
same time has been submitted to the 4th International Conference on Service Oriented
Computing (ICSOC2006) which will be held in December 2006 in Chicago, USA. At the
time of writing this deliverable, the result of this submission is not known.

Contents

1 Introduction 1
1.1 Goal of the Deliverable . 1
1.2 Overview of the Deliverable . 1
1.3 Terminology . 2
1.4 Semantic Web Services . 4

1.4.1 WSMO, WSML, and WSMX 5
1.4.2 SWS Execution Environment (WSMX) 6

2 Set-up and Runtime in the Semantic B2B Integration 8
2.1 Use Case Description . 8
2.2 B2B Integration with SWS Technologies 10

2.2.1 Prerequisites for SWS infrastructure for Organisation A 10
2.2.2 Integration Set-up Phase . 14
2.2.3 Integration Run-time Phase . 16

3 Conversation of Decoupled Services in the Semantic B2B Integration 18
3.1 Use Case Description . 18
3.2 Integration Phases . 20
3.3 WSMX Runtime Interactions . 20

4 Expected Benefits and Related Work 27
4.1 Benefits of SWS in B2B Integration . 27
4.2 Related Work . 28

5 Conclusions and Future Work 29

iii

Chapter 1

Introduction

1.1 Goal of the Deliverable

The goal of this deliverable is to define guidelines for interoperation and invocation of
services in the inter-enterprise integration settings and to show how conversation between
requesters and providers with heterogeneous interfaces can be achieved by enabling SWS
middleware during the run-time by means of the Semantic Web Services (SWS) concepts
and technologies, namely WSMO, WSML and WSMX. With this respect we address all
interoperation levels (technical, data, and process) and show how this interoperation can
be achieved with the use of SWS technology between different business partners using
existing e-business frameworks and in particular RosettaNet. Although research into SWS
is well established with an active community, there remains very few actual scenarios that
showcase the benefits of this technology. The overall aim of this work is to discuss such a
scenario and present how SWS can help to establish and maintain the integration between
independent systems.

This is the second version of the deliverable which contributes to the work done within
the WP2.4 Semantic Web Services including requirements for semantic description of
web services, conceptual and formal framework for the Semantic Web Services, guide-
lines for the integration of agent-based services and web-based services, theoretical inte-
gration of Web Service discovery and composition, and reputation mechanism. In general,
the work in this deliverable contributes and complement the work done for the SWS spec-
ifications around Web Service Modelling Ontology (WSMO) [RLK04] and Web Service
Modelling Language (WSML) [dBLPF06], and in particular for the Web Service Mod-
elling eXecution environment (WSMX) [ZMH05].

1.2 Overview of the Deliverable

Further in this chapter we present the terms used throughout the deliverable and describe
Semantic Web Services concepts and technologies according to the WSMO and WSMX

1

1. INTRODUCTION

specifications. We also explain what we understand by interoperation and invocation of
web services.

The core of this deliverable is directly based on two loosely dependent scientific pub-
lications. In the first publication described in the chapter 2, we are focused on definition
of guidelines for integration set-up phase and integration run-time phase to be fulfilled
between business partners that wish to interoperate. This work has been published in
Lecture Notes in Computer Science at Springer Verlag and presented at the 2nd IEEE
Workshop on Data Engineering Issues in E-Commerce 2006 (DEEC2006) in San Fran-
cisco, USA [KVH+06]. In the second publication described in chapter 3, we are focused
on run-time invocation and conversation aspects of semantic services and integration of
standard RosettaNet B2B protocol with proprietary enterprise back-end systems. This
work has been presented and demonstrated at the SWS challenge workshop in Budva,
Montenegro while at the same time has been submitted to the 4th International Confer-
ence on Service Oriented Computing (ICSOC2006) which will be held in December 2006
in Chicago, USA. At the time of writing this deliverable, the result of this submission is
not known. In chapter 4, we describe expected benefits from this approach and discuss
related work. Finally in the chapter 5, we conclude the deliverable and discuss our future
work.

1.3 Terminology

In this section, we present major terms used throughout the deliverable.

• CRM - Customer Relationship Management system. An information system used
in enterprises to handle customer information.

• e-business framework - a standard currently used for B2B communication such as
RosettaNet or EDI, that define how B2B integration takes place.

• EDI - Electronic Data Interchange. Standard for B2B integration, i.e. an e-business
framework. First EDI standards are from 1970’s but they are still widely used in
B2B integration.

• ERP - Enterprise Resource Planning. An information system used in enterprises
for storing financial, logistics, material etc. information.

• Idoc - SAP intermediate documents. A format for connecting SAP ERP system to
other systems.

• Inter-company integration - B2B integration across companies, typically happens
using standards.

• Intra-company integration - Enterprise internal application integration, deal with
heterogeneous back-end systems.

2 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

• OMS - Order Management System. An information system used in enterprises to
handle order-related information.

• Organization - refers to the buyer in the scenario of this deliverable.

• Partner - Refers to the potential suppliers (sellers) in the scenario of this deliver-
able.

• PIP - Partner Interface Process. RosettaNet standard for B2B message exchange.
Contain both process and message guidelines.

• PO - Purchase Order. A process used in the scenario to get the information for
purchase the needed devices.

• RFQ - Request For Quote. A process used in the scenario prior to PO to get the
price and shipment information.

• RNIF - RosettaNet Implementation Framework. RosettaNet standard for secure
transport of RosettaNet PIPs. Guides how messages are packed, secured and ac-
knowledged, when exchanged over the Internet from peer-to-peer.

• SWS - Semantic Web Service. Semantically enabled web services are represented
so that computers can understand them.

• UDDI - Universal Description Discovery and Integration. Repository where WSDL
documents are often stored.

• WSDL - Web Services Description Language. Way to describe the web service
information.

• WSML - Web Service Modelling Language. WSML is a language that formalizes
the WSMO.

• WSMO - Web Service Modelling Ontology. WSMO adheres to the principles of
loose coupling of services and strong mediation among them. WSMO defines an
underlying model for WSMX.

• WSMX - Web Service Modelling eXecution environment. WSMX is the reference
implementation of WSMO and it uses WSML as internal language. It is an execu-
tion environment for business application integration where enhanced web services
are integrated for various business applications.

KWEB/2004/D2.4.7/v2 June 30, 2006 3

1. INTRODUCTION

1.4 Semantic Web Services

Web Services are small units of functionality, which are made available by service providers
for use in larger applications. The intention when developing Web Services was to reduce
the overhead needed to integrate functionality from multiple providers. Communication
with Web Services is usually achieved using the SOAP protocol [GHM+03]. SOAP is an
XML-based protocol for communication between distributed environments. Descriptions
of the interfaces of the Web Services are described using the Web Service Description
Language (WSDL) [CCMW01]. WSDL documents are generally stored in a Universal
Description Discovery and Integration (UDDI) 1 repository where services can be discov-
ered by end-users.

A major issue with Web services is that their interfaces are only explained in a syntac-
tic fashion using WSDL documents. While it is possible for computers to process these
documents it is not possible for computers to ’understand’ them. Inevitably a human is re-
quired to find WSDL documents in a UDDI repository, study these documents and under-
stand them in order to integrate the Web services into a system. While Web services have
indeed reduced the overhead needed to integrate functionality from multiple providers,
extensive human interaction is still required in the process. Semantically-enabled web
services are forming the research area known as Semantic Web Services (SWS). Semantic
Web Services complement standards around WSDL, SOAP and UDDI with aim to enable
total or partial automation of tasks such as discovery, selection, composition, mediation,
invocation and monitoring of services. The research lies in definition and development of
concepts, ontologies, languages and technologies for SWS. A number of initiatives exist
looking at how to create and manage semantic description for Web Services including
OWL-S [M+04], Meteor-S [POSV04], WSDL-S [WSD05] and WSMO [RLK04].

One of the major added values of the SWS according to the WSMO concepts lies in
the (semi) automated interoperation and invocation of services. By interoperation and
invocation of services we understand the ability of different services to communicate at
different levels, namely technical, data and process levels.

1. Technical level – interoperation must be ensured when different protocols are used
for communication as well as different languages. Interoperation at this level is
achieved by adaptation of protocols and languages used, that is by their syntactical
translations as well as grounding to underlying communication protocols (invoca-
tion of WS).

2. Data level – interoperation must be ensured when different meanings (semantics)
of messages are used for communication. It is achieved by data mediation with use
of ontology integration techniques, such as ontology mapping/aligning.

3. Process level –interoperation must be ensured when different communication pat-
terns (choreographies) are used during communication. It is achieved by process

1http://www.uddi.org/

4 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

mediators providing functionality for a runtime analysis of two given patterns, and
compensates for the possible mismatches which may appear.

1.4.1 WSMO, WSML, and WSMX

Web Services Modeling Ontology (WSMO) has its conceptual basis in the Web Service
Modeling Framework (WSMF) [FB02], which adheres to the principles of loose coupling
of services and strong mediation among them. WSMO defines an underlying model for
the WSMX SWS execution environment [ZMH05] as well as draws up requirements for
a WSML ontology language [dBLPF06] used for formal description of WSMO elements.
Thus, WSMO, WSML and WSMX form a complete framework to deal with all aspects
of the Semantic Web Services.

WSMO top-level conceptual model is composed of Ontologies, Goals, Web Services
and Mediators.

Ontologies provide formal explicit specification of shared conceptualization that is
formal semantics of information used by other components (goals, web services, and
mediators). WSMO specifies the following constituents as part of the description of an
ontology: concepts, relations, functions, axioms, and instances of concepts and relations,
as well as non-functional properties, imported ontologies, and used mediators. The latter
allows the interconnection of different ontologies by using mediators that solve terminol-
ogy mismatches.

Goals provide description of objectives of a service requester (user) that he or she
wants to achieve. WSMO goals are described in terms of desired information as well
as “state of the world” which must result from execution of a given service. In WSMO,
a goal is characterized by a set of non-functional properties, imported ontologies, used
mediators, a requested capability and a requested interface (these definitions are the same
as for web services).

Web Services provide a functionality for a certain purpose, which must be seman-
tically described. Such description includes non-functional properties, imported ontolo-
gies, used mediators, capability and interfaces. Capability of a web service is modeled
by preconditions and assumptions for the correct execution of the web service as well
as postconditions and effects resulting from this execution. The interface for every web
service is modeled as choreography describing communication pattern (interactions) with
this web service and orchestration describing partial functionality required from other
web services.

Mediators describe elements that aim to overcome structural, semantic or conceptual
mismatches that appear between the different components that build up a WSMO descrip-
tion. WSMO specification currently covers four types of mediators: (1) OOMediators
import the target ontology into the source ontology by resolving all the representation
mismatches between the source and the target, (2) GGMediators connect goals that are

KWEB/2004/D2.4.7/v2 June 30, 2006 5

1. INTRODUCTION

in a relation of refinement and resolve mismatches between those, (3) WGMediators link
Web services to goals and resolve mismatches, and (4) WWMediators connect several
Web services for collaboration.

1.4.2 SWS Execution Environment (WSMX)

Based on WSMO concepts, the Web Services Execution Environment (WSMX) is the
execution environment for discovery, composition, engagement, selection, mediation and
invocation of Semantic Web Services.

The WSMX Manager and the Execution Engine facilitate a SWS execution pro-
cess (execution semantics) by triggering discovery, composition, engagement, selection,
mediation and invocation components upon receiving users’ request (goal) and within the
whole interaction process between service requester and service providers. The WSMX
execution semantics is the core of the WSMX intelligence providing value-added services
to traditional communication. Different execution semantics can be used according to the
domain-specific requirements, e.g. mediation components are only required for heteroge-
neous environments, a selection component is used when (semi) automated decisions to
select the best services are required based on requesters’ preferences, or specific execu-
tion semantics exists for registering ontology or service in WSMX repositories. Typically,
execution semantics is triggered based on the WSMX system entry point invoked by ex-
ternal application (adapter, front-end application, etc.).

The Resource Manager is responsible for the management of repositories to store
definitions of web services, goals, ontologies and mediators.

Discovery and Composition of web services is one of the key processes of the SWS
technology. A number of services could be returned from this step, services which sat-
isfy the goal composed to a predefined process (once-for-all composition) as well as dy-
namically created process (on-the-fly composition). Such composition of services could
also include “duplicate” services with the same capabilities however with different char-
acteristics (non-functional properties). For duplicate ones, selection of services will be
performed.

Engagement is composed of two phases, namely contracting and negotiation. Usu-
ally, discovery and composition operate on more general (abstract) goals. They result with
a set of web services that can potentially fulfill a requester goal. However, for a complete
guarantee that discovered web services will be able to provide requested concrete service,
communication between a requester and a provider is necessary. This phase is called con-
tracting. In addition, negotiation with each perspective web service to reach agreement
on terms of services can also be performed.

Selection of the best or optimal service is performed when a number of duplicate
services is returned from the discovery and composition process. To find an optimal ser-
vice, different techniques can be applied, ranging from simple selection criteria (“always

6 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

the first”) to more sophisticated techniques, such as multi-criteria selection of variants
also involving interactions with a service requester. Different variants of services could
be described by different values of parameters (non-functional properties specific to web
services), such as financial properties, reliability, security, etc.

Data and Process Mediation facilitate interactions between two entities when differ-
ent ontologies or different choreographies are used by these entities. Data Mediation is
ensured by mappings between concepts from one ontology to another one. It is based on
paradigms of ontology engineering, i.e. ontology mapping/aligning. Process mediation
provides the necessary functionality for a runtime analysis of two given choreography
instances and compensate possible mismatches that may appear, for instance, grouping
several messages into a single one, changing their order or even removing some of the
messages.

Invoker and Receiver implement an entry point of the WSMX responsible for receiv-
ing of incoming requests and invoking web services respectively. Invoker and receiver
also handle grounding of WSMO services to underlying WSDL and SOAP protocol.

Adapters lie outside of WSMX and facilitate the interoperability between a requester
and a provider at the technical level. WSMX is designed to internally handle WSML
messages encapsulated in WSDL and sent or received using SOAP protocol. Therefore,
adapters must ensure that interactions between a service requester and provider can be
performed using different communication protocols (e.g. FTP) as well as in different
languages (such as XML).

KWEB/2004/D2.4.7/v2 June 30, 2006 7

Chapter 2

Set-up and Runtime in the Semantic
B2B Integration

In this chapter we present all aspects of the B2B integration built on the SWS technologies
defining two integration phases, namely integration set-up phase and integration runtime
phase. We illustrate these phases on the typical B2B scenario where one organization
faces the problem of multiple B2B protocols used by its counterparts. With use of SWS
technologies we present how integration of heterogeneous organizations using different
B2B protocols can be managed in more flexible way in regards to changes that might
occur over a software systems lifetime.

2.1 Use Case Description

We consider an organisation A that manufactures electronic devices. For a particular
device, organisation A needs specific components that can be delivered by approved sup-
pliers, referred here as partners B and C. In the current situation, the B2B integration
only covers purchasing activities as shown in figure 2.1 and there is no competition for
purchasing per delivery basis. In this proposed scenario, organisation A first submits Re-
quests For Quotes (RFQ) to all its suppliers for the components. After the responses,
it selects the best quote and initiates the Purchase Order (PO) process with the selected
partner.

We will show from the picture 2.1, how SWS technologies can be used from the
organisation A point of view concentrating in the integration setup phase and overall the
inter-company integration heterogeneity.

Considering the integrations, the following heterogeneities exist with partners accord-
ing to general B2B integration levels [MBB+03, NK04]:

Transport level interoperation is needed to understand different languages used to

8

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

ERP

RNIF over HTTP RosettaNet
B2B

gateway

RosettaNet
B2B

gateway

EDI server EDI server
VAN

Operator

Organisation A Inter-company
(public)

processes
Partner B

Partner C
EDI X12

Partner B
systems

Partner C
systems

Figure 2.1: Overall scenario

describe the messages exchanged and how the message exchange happens. In the inter-
company integration there are following heterogeneities. RosettaNet partners use Imple-
mentation Framework (RNIF) 2.0 over HTTP(S) for secure communication and the mes-
sage contents are in XML. RNIF guides how the messages are sent and acknowledged
and how digital signatures are used. With EDI partners the communication is achieved
via a Value Added Network (VAN) operator, which takes care of the communication be-
tween the partners. EDI X12 format messages are put to a file system folder, where the
VAN operator collects the messages and ensures the secure delivery of the messages to
the partners.

Data level interoperation is the ability to understand exchanged messages (sometimes
referred as business documents or payload). In the inter-company integration, RosettaNet
defines Partner Interface Processes (PIPs) that define standard inter-company process
choreographies and the related schemas for the XML messages exchanged. Partner B uses
the PIP 3A1 Request for Quote and 3A4 Request Purchase order messages 1 according to
the message guidelines provided by RosettaNet. Both PIPs contain request and response
messages. Partner C uses EDI X12 messages and expects the 840 Request for Quotation
for quotes and 850 Purchase Order for orders 2. The quotes are responded with 879 Price
Information message and the purchase orders by 855 Purchase Order Acknowledgment
message. These PIP and EDI X12 messages use different terms and identifiers in referring
to the same concepts. In addition, for example the product identifiers used differ among
the companies.

Business Process level interoperation is the ability of companies to exchange mes-
sages in the right sequence and timing. In the inter-company integration Partner B com-
plies with PIP 3A1 and 3A4 standard choreographies. That means the partner’s response
arrives within 24 hours of sending the requests. For every PIP message sent, there is a re-
ceipt acknowledgment for delivery. Partner C with EDI X12 has not such fixed response
times between different messages as it is not dictated by EDI X12. In this case the partner

1http://www.rosettanet.org/pipdirectory
2http://www.disa.org/x12workbook/ts/

KWEB/2004/D2.4.7/v2 June 30, 2006 9

2. SET-UP AND RUNTIME IN THE SEMANTIC B2B INTEGRATION

C has agreed to answer the quotes and purchase orders in the same 24 hours. Hence, the
choreography differs since the receipt acknowledgment message is not always used with
EDI.

2.2 B2B Integration with SWS Technologies

This section introduces a WSMX enabled architecture to address the requirements of
the scenario from buyers point of view. We show how SWS technologies can help to
mediate the technical, data and process level heterogeneities in inter-company integration.
We outline some prerequisites for a SWS enabled solution, describe the integration set-
up phase using the WSMX and then describe the run-time behaviour. For brevity, we
concentrate on presenting the scenario with Partner B, who utilises RosettaNet e-business
framework as depicted in figure 2.2.

ack

ack

RFQ
Resp.

RosettaNet
B2B

gateway

EDI server

Partner B

Partner C

Partner B
systems

Partner C
systems

Engagement

Pa
rt

ne
r B

 S
er

vi
ce

 E
ng

ag
em

en
t C

ho
re

og
ra

ph
y Transform

WSML2XML

Sign and send the
message

Receive WSML
message

Make RNIF
envelope for
message

RosettaNet
schema validation

WSML RFQ

RFQ sent
Wait for max. 2
hours for ackno-
ledgment
(resend original
RFQ if no ack)

RFQ (GTIN:
12345678901234,
10 pieces,
delivered by
31.1.2006)

Receive
acknowledgment

WSML
ack

RFQ Message
received ok

Wait for max. 24
hours for the
RFQ response
message.

RFQ Response (I
can deliver, price
18 GBP)Receive response

Transform PIP
3A1 response
XML2WSML
Send WSML
message to

RFQ
response

RFQ Response
Message ok

WSMX RosettaNet Adapter Partner B
RosettaNet

server

ERP
RNIF over HTTP

WSMX

RosettaNet
adapter

EDI X12
adapter

VAN
Operator

Organisation A Inter-company
(public)

processes

ERP
Adapter

EDI X12

Send RFQ in
WSML

Transform
WSML2XM

Receive W
message

RFQ

RFQ
sent

Receive
acknowled

Receive re

Transform
XML2WSM
send to W

RosettaNet

Send
acknowled

Send the
message (

WSMX
WSML
message

WSMX

Figure 2.2: Use Case Scenario

2.2.1 Prerequisites for SWS infrastructure for Organisation A

In this section we analyse the prerequisites organisation A has to address when it sets up
the WSMX environment for the B2B integration described above.

Message Ontologies Based on its requirements, organisation A has to create or ideally
reuse domain ontologies. In our example these ontologies are used for a formal descrip-
tion of the RFQ and PO process messages. Creating these domain ontologies requires
an expert who first understands specific e-business scenarios and second has knowledge
about ontology languages to be able to capture information in messages semantically.
However, since we are still far from an industry wide recognised formal ontology, organ-
isation A in our example needs to define the ontology itself. We assume that organisation
A is not in a position to dictate its proprietary ontology to its partners. It is further re-
alistic to assume that it bases its ontology on an existing e-business framework, in our
case RosettaNet. This for two reasons, first that organisation A minimises the effort of

10 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

lifting the RosettaNet PIP XML messages most of its partners still use to the ontological
level and second to further minimise the mapping requirements to its internal ERP sys-
tem, which still operates on syntactic messages. Figure 2.3 outlines how the ontology is
applied by organisation A and where the lifting/lowering of messages is performed.

Partner CPartner B

Organisation A

RosettaNet
Message Adapter

FrameworkXML
Natural

Language
Schema

EDI X12

ASCII

Ontology

Lifting Lowering

ERPERP ERP

DTD

Figure 2.3: Lifting/Lowering to/from Domain Ontology

The ontology in our scenario ultimately represents simply a different serialisation of
the information in the RosettaNet framework with the advantages that it explicitly states
logical relationships between elements which can not be expressed in the RosettaNet PIP
XML Schemas and DTDs. In RosettaNet this information is included in a natural lan-
guage document explaining the respective PIP. One of these advantages of the higher
expressivity in the WSML ontology language is depicted in the following example.

The DTD versions of PIP 3A1 and PIP 3A4 support two different kind of product
identifiers; the Global Trade Identification Number (GTIN), which is recommended by
RosettaNet, and company-specific identifiers. The extract in listing 1 shows the definition
of product identifiers in the PIP 3A1 (and 3A4 DTD version). The PIP3A1 DTD is very
long so only the relevant lines (291-304) are shown.� �

291 <!ELEMENT ProductIdentification
292 (GlobalProductIdentifier?,
293 PartnerProductIdentification∗)>
294

295 <!ELEMENT GlobalProductIdentifier
296 (#PCDATA)>
297

298 <!ELEMENT PartnerProductIdentification
299 (GlobalPartnerClassificationCode,
300 ProprietaryProductIdentifier,
301 revisionIdentifier?)>
302

303 <!ELEMENT ProprietaryProductIdentifier
304 (#PCDATA)>

KWEB/2004/D2.4.7/v2 June 30, 2006 11

2. SET-UP AND RUNTIME IN THE SEMANTIC B2B INTEGRATION

� �
Listing 1: PIP 3A1 DTD extract

RosettaNet message guidelines for PIP 3A1 add a natural language constraint for Pro-
ductIdentification that the DTD’s expressive power does not capture: Constraint: One in-
stance of either ”GlobalProductIdentifier” or ”PartnerProductIdentification” is manda-
tory. Without this constraint, a valid ProductIdentification could be without any identifiers
as both identifications are optional.

Some of the RosettaNet PIPs have also an XML Schema definitions that can present
cardinality constraints for the elements. Listing 2 shows an extract of the PIP 3A4 XML
schema, where namespaces and annotations are dropped for brevity. The XML Schema
has different element names than the ones in DTDs. It also allows arbitrary authorities to
specify the identification schemes, which introduces another mapping challenge.� �

<xs:element name=”ProductIdentification” type=”ProductIdentificationType” />
<xs:complexType name=”ProductIdentificationType”>
<xs:complexContent><xs:sequence>

<xs:element name=”ProductName” type=”xs:string” minOccurs=”0” />
<xs:element name=”Revision” type=”xs:string” minOccurs=”0” />
<xs:choice><xs:element ref=”AlternativeIdentifier” maxOccurs=”unbounded” />
<xs:element ref=”GTIN” /></xs:choice>

</xs:sequence></xs:complexContent>
</xs:complexType>
<xs:element name=”AlternativeIdentifier” type=”AlternativeIdentifierType” />
<xs:complexType name=”AlternativeIdentifierType”>
<xs:sequence><xs:element name=”Authority” type=”xs:string” />
<xs:element name=”Identifier” type=”xs:string” /></xs:sequence>

</xs:complexType>� �
Listing 2: PIP 3A4 XML Schema extract

The product identifier information in the WSML domain ontology is presented in list-
ing 3. In this, the GTIN is handled as any other identification authority/qualifier (qualifica-
tionAgency) and the RosettaNet DTD, XML Schema, and EDI X12 product identification
information can be presented in this ontology including the natural language constraints.
The value of qualification agency can be for example the buyer, seller or manufacturer or
any other identification scheme provider. The axiom in listing 3 makes sure that the value
of qualificationAgency is among those supported for organisation A. Thus, the benefit
from applying a more expressive language such as WSML is that it allows the descrip-
tion of logical relationships between the elements. This information can subsequently be
applied for better validation of the message contents.

244 concept productIdentification
245 nonFunctionalProperties
246 dc#description hasValue ”Collection of business properties describing identifiers . ”
247 endNonFunctionalProperties
248 productIdentifier ofType (1 1) string
249 qualificationAgency ofType (1 1) string
250 revision ofType (0 1) string
251 axiom qualificationAgencyConstraint
252 nonFunctionalProperties
253 dc#description hasValue ”The valid list of agencies who have defined product identifiers. ”
254 endNonFunctionalProperties

12 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

255 definedBy !− ?x[qualificationAgency hasValue ?type]
256 and (?type = ”GTIN” or ?type = ”Manufacturer” or ?type = ”Buyer”
257 or ?type = ”Seller ” or ?type = ”EN” or ?type = ”BP”).

Listing 3: Product ontology extract in WSML

Adapters to the Back-end applications

For the integration of back-end systems, the messages used within the ERP system
have to be mapped to/from the domain ontology. The ERP adapter is required to perform
the lifting/lowering of the internally used messages in the ERP system (e.g. Intermediate
Documents (IDocs) in the case of SAP) to the logical framework, i.e. WSML, required
by WSMX.

Registration

In current e-business frameworks, a prior agreement between business partners deter-
mines with whom the partners do business. For RosettaNet, this includes the specification
on the set of PIPs used by the partner in the communication and the role for the partner in
a certain PIP (e.g. seller or buyer). In addition, the partners need to provide the endpoint
information of the IP address and the port, as well as the public certificate used by the
partner to sign the messages.

In a SWS enabled integration process a registration interface allows a partner to regis-
ter this information to the SWS environment of organisation A. The registration interface
can be accessed by a partner through a web portal or an API of organisation A. By in-
voking this registration interface, a service description based on a set of PIPs and roles is
created and described in WSML. The semantic service description provides all informa-
tion including the endpoint information necessary to invoke the service.

Adapter framework to external partners

The adapter framework is required to provide a communication interface to partners,
who are not able to directly provide WSML compliant messages to WSMX. The adapter
framework receives every non-WSML message and acts for WSMX as the actual service.
Thus, essentially the adapter functionality is registered as a service with the system. Fur-
ther, WSMX only operates on the choreography of the adapter (c.f. left part of figure
2.4), which maps between the choreography of the partner’s (c.f. right part of figure 2.4)
e-business environment and the choreography registered with WSMX. The choreography
definition is part of the WSMO description of a service and specifies the input and output
operations as well as transition rules and constraints on the states in the communication.

Figure 2.4 shows the RosettaNet adapter execution flow in a PIP process of RFQ
request and response messages:

• WSMX first sends the WSML message to the RosettaNet adapter as a WSML RFQ
message.

• The adapter receives the RFQ and translates it to a RosettaNet RFQ XML message.

KWEB/2004/D2.4.7/v2 June 30, 2006 13

2. SET-UP AND RUNTIME IN THE SEMANTIC B2B INTEGRATION

acknow-
ledgment

Engagement

PI
P

C
ho

re
og

ra
ph

y
Transform
WSML2XML

Receive WSML
message

RFQ

RFQ sent
resend original
RFQ if no ack. Receive

acknowledgment

RFQ received
and ok

Receive response

Transform
XML2WSML and
send to WSMX

RFQ
response

WSMX

Send RFQ in
WSML

Send
acknowledgment

Send the
message (RNIF)

acknow-
ledgment

WSML
messages
web services

RFQ
resp.

RFQ

ack

ack

RosettaNet Adapter
Partners

Figure 2.4: RosettaNet Adapter for Organisation A

• The adapter creates a RNIF envelope for this message and signs the message using
certificates and sends it to the endpoint of partner B (certificate as well as endpoint
are implemented in the adapter). As a result, a confirmation that the message has
been received is sent back to WSMX.

• WSMX subsequently expects an acknowledgment message by partner B as an RNIF
2.0 signal message.

• After receiving the acknowledgment, WSMX waits for the RFQ response from part-
ner B.

• The adapter receives the RFQ response and translates it using an XSLT script to
WSML and sends it to WSMX to check that the response does not violate the ax-
ioms of the ontology. This response is processed in WSMX and sent to the back-end
applications. WSMX also forwards an acknowledgment signal indicating that their
RFQ response was received to the adapter which translates it RosettaNet message
acknowledgment.

2.2.2 Integration Set-up Phase

In the integration set-up phase, the B2B integration for a specific partner is built. The
integration set-up phase also includes the registration of the partner’s service description
with the SWS system of organisation A. Hence, in case a new RosettaNet partner wants to

14 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

register a service, he needs to provide his endpoint information and choreography details.
Partners need to provide this information using the Registration Interface described in the
previous section. In addition, the information what components they supply is required
for discovery.

In case that the new partner uses some other standard or a proprietary format for his
messages appropriate adapters and mapping rules might need to be defined.

Creating the adapter to the partners e-business frameworks

The integration of the organisation A and the e-business frameworks of each partner
needs specific RosettaNet and EDI X12 adapters. The role of the adapters is to trans-
late the RosettaNet XML and EDI X12 data formats to WSML and taking care of e.g.
RosettaNet-specific RNIF protocol details. For example, the E-business framework mes-
sage translation based on the mapping rules happens in the WSMX adapter.

• The communication interface with a partner is used to send and receive e-business
framework-specific messages. It acts as a wrapper for RosettaNet communication
with the partner.

Other basic functionality of the RosettaNet adapter involves the functionality re-
lated to enveloping, encrypting and decrypting and validation of RosettaNet mes-
sages. Here, the existing B2B gateway functionality can be used if the organisation
already has a product for RNIF communication. The RosettaNet adapter needs to
have roughly similar functionality to the system presented in [TKS05] with the ad-
ditional step of XML2WSML and WSML2XML translations. Similarly the ERP
and EDI X12 adapters need analogical functionality.

• Creating data mapping rules from RosettaNet messages to domain ontologies

The mapping rules need to be defined for the run-time phase to lift RosettaNet
instance messages to the ontology applied by organisation A and lower it back
to the XML level respectively. In the scenario mapping rules for PIPs 3A1 and
3A4 are required. There are two options to do that, either to lift the messages
from XML Schemas to WSML and then use a data mediation tool such as the
one included in the Web Services Modeling Toolkit 3 to perform the mappings on
the ontological level or to directly lift the messages to the domain ontology and
essentially implement the mediation in the adapter. In this case, organisation A
has chosen the latter option and we perform the using XSLT stylesheets. Listing 4
contains such an example mapping from a PIP DTD to WSML. The mapping lifts
the GTIN number to the uniform identification scheme in the ontology. Similarly
with EDI X12 the information is lifted to our domain ontology. In the lowering
of messages, by knowing that a GTIN identifier and company-specific identifiers
point to the same product, the mapping can provide an identifier needed by the
given partner. The mapping rules need to be registered in the WSMX ontology

3http://sourceforge.net/projects/wsmt

KWEB/2004/D2.4.7/v2 June 30, 2006 15

2. SET-UP AND RUNTIME IN THE SEMANTIC B2B INTEGRATION

repository for run-time mappings. As the product information definitions in all
DTD and XML Schema based PIPs are similar, these mapping templates can be
reused with all the PIPs. With small modification it is easy to create templates for
other e-business frameworks as well.� �

<xsl:for−each select=”ProductIdentification/GlobalPartnerClassificationCode”>
instance localUID memberOf productIdentification

productIdentifier hasValue <xsl:value−of select=”.”/>
qualificationAgency hasValue GTIN

</xsl:for−each>

<xsl:for−each select=”ProductIdentification/PartnerProductIdentification/”>
instance localUID memberOf productIdentification

<xsl:for−each select=”ProprietaryProductIdentifier”>
productIdentifier hasValue <xsl:value−of select=”.”/>

</xsl:for−each>
<xsl:for−each select=”GlobalPartnerClassificationCode”>

qualificationAgency hasValue <xsl:value−of select=”.”/>
</xsl:for−each>

</xsl:for−each>� �
Listing 4: DTD-based PIP instance mapping extract

2.2.3 Integration Run-time Phase

After the set-up phase is completed, WSMX is ready for running the processes. We
describe here the whole execution process and interactions in WSMX according to the
scenario: (1) Converting back-end message to a WSMX goal, (2) Discovery of the possible
suppliers capable of fulfilling this request, (3) Engagement to negotiate and contract with
the discovered suppliers to get the price and condition information, (4) Selection of the
best supplier, (5) Invocation of the PO process with the selected supplier and finally (6)
Returning the answer to the ERP. The sequence diagram for the run-time behaviour is
depicted in figure 2.5. In the figure 2.5, the acknowledgement messages shown in figure
2.4 are abstracted for clarity.

• Converting back-end message to WSMX goal. Organisation A’s ERP system
sends out a request in its proprietary format to the back-end adapter. The request
is to get 10 display units X delivered to the plant in Galway, Ireland within 8 days.
The adapter translates this to WSML and converts it to a goal in WSML and sends
it to WSMX.

• Discovery. The execution process starts by invoking the WSMX discovery com-
ponent. All services in the repository matching the request are found. In our case
the services of partners B and C are discovered as potential suppliers. During the
discovery, data mediation rules could be executed to resolve differences in the on-
tologies used for the goal and the service descriptions. However, in our example we
only deal with one ontology and all the mediation is done in the lifting and lowering
of the XML messages.

16 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

Confirm purchase order

Orders(10,
Display
unit X,
31.1.2006)

PO (GTIN:12345678901234, 10 pcs,
delivered by 31.1.2006, 18 GBP)

Need (10*
Display
unit X, in 8
days, to
GWY)

Engagement

Discovery

Selection

Partner C
Service

Engagement
Choreography

RFQ (EN:4567890123123, 10
pcs, delivered by 31.1.2006)

RFQ Response (I can deliver, price
40 USD)

Invocation

Partner B
Service

Engagement
Choreography

Request for Quote (GTIN:
12345678901234, 10 pieces,
delivered by 31.1.2006)

RFQ Response (I can deliver,
price 18 GBP)

Organisation
A

WSMX

Partner B
RosettaNet

Partner C
EDI X12

Organisation
A

ERP System
E

R
P

 S
ys

te
m

Figure 2.5: WSMX Process interactions

• Engagement. As discovery operates on abstract description of services, the next
step is to find out whether each discovered service can deliver the required product
within the given time and give a price for that. In our example, engagement is per-
formed for partners B and C by sending RFQ documents and the partners answer
those with the RFQ responses. Data and process mapping rules are implemented in
the adapters, which handle differences between the RosettaNet and the X12 mes-
sage exchange patterns (choreographies). Responses coming in RosettaNet PIP
3A1 and EDI X12 879 messages are translated to WSML and sent to WSMX.

• Selection. Based on the information provided from engagement, the best service
is selected. In this scenario, this is done simply according to the cheapest price.
To do this a conversion of different currencies used in quotes is done in WSMX
by invoking an appropriate currency transformation service. In our scenario, the
partner B has a cheaper quote and is selected.

• Invocation. The PO process starts with the partner B using PIP3A4. The concrete
interactions between WSMX and partner B happens analogically to the case of the
engagement choreography, just the messages exchanged are different. This inter-
action is similar to the one handled in more detail on receiver part in the chapter
3.

• Returning answer. After the invocation returns the PO response, the necessary
data mediation for the product identifiers and currencies expected by the organisa-
tion A’s ERP is done. Then the result is sent back to ERP adapter as expected by
the ERP system.

KWEB/2004/D2.4.7/v2 June 30, 2006 17

Chapter 3

Conversation of Decoupled Services in
the Semantic B2B Integration

In this chapter we present the conversation between a requester and a provider in a B2B
integration scenario. Services used in the conversation have heterogeneous interfaces and
the conversation is achieved by SWS middleware platform performing data and process
mediation during runtime. Our solution is based on the WSMX-based implementation
from the supplier point of view in a RosettaNet Purchase Order exchange. This view
is also used to tackle the first two phases of the SWS Challenge 1 considering data and
process mediation. The SWS Challenge initiative is in more detail described in the deliv-
erable D2.4.13 Report on SWS Challenge. In particular we show how SWS technologies
can be applied to a real-world B2B scenario involving (1) semantic representation of XML
schema for RosettaNet as well as a proprietary purchase order using WSML ontology lan-
guage, (2) semantic representation of services provided by partners using WSMO ontol-
ogy, (3) executing a conversation between partner services using the WSMX integration
middleware, and (4) application of data and process mediation between heterogeneous
services where necessary.

The work described in this chapter has been implemented on the WSMX technology
and demonstrated at the SWS Challenge workshop in Budva, Montenegro in June 2006.
The source codes and running environment for this solution is available through the SWS
Challenge web site2.

3.1 Use Case Description

An overview of the architecture for our solution to the SWS Challenge use case is depicted
in figure 3.1. In the use case, a fictitious trading company called Moon uses two back-end

1http://sws-challenge.org/
2http://sws-challenge.org/2006/submission/deri-submisson-mediation v.1/

18

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

systems to manage its order processing, namely, a Customer Relationship Management
system (CRM) and an Order Management system (OMS). The challenge provides access
to both systems through public Web services described using WSDL. Moon has signed
agreements to exchange purchase order messages with a partner company called Blue us-
ing the RosettaNet PIP 3A4. In order to address the integration of Blue and Moon, we use
SWS technology to facilitate conversation between all systems, to mediate between the
PIP 3A4 and the XML schema used by Moon, and to ensure that the message exchange
between both parties is correctly choreographed. Data mediation is required to map the
Blue RosettaNet PIP 3A4 message to the messages of the Moon back-end systems. Pro-
cess mediation is required to map the message exchange defined by the RosettaNet PIP
3A4 process to that defined in the WSDL of the Moon back-end systems. The data and
process mediation operates on semantic descriptions of messages, thus lifting and lower-
ing of messages from the syntactic to the ontological level is also necessary.

WSMX middleware

C
om

m
un

ic
at

io
n

M
an

ag
er

Pa
rs

er

D
is

co
ve

ry

D
at

a
M

ed
ia

to
r

C
ho

re
og

ra
ph

y
En

gi
ne

Pr
oc

es
s

M
ed

ia
to

r

Execution Semantics

Persistence Layer

Services Ontologies Mediators

Adapter

C
R

M
/O

M
S-

W
SM

X
A

da
pt

er

Customer
Relationship

System
(CRM)

Order
Management

System
(OMS)

Blue Company

R
os

et
ta

N
et

-W
SM

X
A

da
pt

er

Send PO

Receive
POC

Adapter Moon Back-end
Systems

Moon Company

RosettaNet
System

Figure 3.1: Architecture Overview

Figure 3.1 shows that theWSMX platform used to integrate the Blue and Moon part-
ners is placed within Moons infrastructure allowing the seamless integration of its back-
end systems. Following is a description of the basic blocks of the architecture.

• Existing Systems. The existing systems are Moon’s back-end applications includ-
ing CRM and OMS systems as well as the RosettaNet. Each system communicates
using different formats. RosettaNet interaction is according to the RosettaNet PIP
3A4 (Purchase Order (PO)), whereas communication with the CRM and OMS sys-
tems is proprietary, specified in their WSDL descriptions (available at SWS Chal-
lenge web site: http://sws-challenge.org).

• Adapters. In order to connect existing systems with WSMX, adapters in gen-
eral are used to mediate between different communication protocols and languages.
Since WSMX internally operates on the semantic level (WSML), adapters facil-
itate lifting and lowering operations to transform between XML and WSML. In

KWEB/2004/D2.4.7/v2 June 30, 2006 19

3. CONVERSATION OF DECOUPLED SERVICES IN THE SEMANTIC B2B INTEGRATION

addition, WSMX adopts a principle of a Goal-based invocation as the basis for ad-
vanced semantic discovery and mediation, thus the RosettaNet-WSMX adapter is
also responsible for identifying the WSMO Goal that corresponds to a PO request
and sending it to WSMX. The same adapter also subsequently sends the lifted form
(WSML) of the PO message.

• WSMX. WSMX is the integration platform which facilitates the integration process
between different systems. The integration process is defined by the execution se-
mantics of WSMX, which defines the interactions of middleware services including
discovery, mediation, invocation, choreography, repository services, etc. A detailed
description of the execution semantics and middleware services are provided later
in this section.

3.2 Integration Phases

There are two phases to the integration of the Blue and Moon partners: (1) integration
setup phase and (2) integration runtime phase. During the setup phase, the integration
ontologies are designed including those used for the RosettaNet PIP3A4 and those used
by the CRM and OMS systems. The design and implementation of adapters, creation of
WSMO ontologies and services, rules for lifting/lowering, mapping rules between used
ontologies and registration of ontologies, services and mapping rules with WSMX are
all carried out. During the runtime phase, the interactions between Blue and Moon are
executed via WSMX.

The integration setup phase is described in a detail in previous chapter. In this chapter
we concentrate on integration runtime phase with respect to the B2B use case, showing
fragments of ontologies, service descriptions, and rules for lifting and lowering.

3.3 WSMX Runtime Interactions

In this section, we describe in detail all interactions between the RosettaNet and Moon
systems facilitated by WSMX through its middleware services. The activity diagram is
depicted in figure 3.2. In the subsequent text we describe various parts of the figure 3.2
referencing numbers from the figure which are included before title of each subsection.

1 – Sending Request.

A PIP3A4 purchase order is sent from the RosettaNet system to the entry point of the
RosettaNet-WSMX adapter. On successful reception of the message by the adapter, an
acknowledgment is sent back to the RosettaNet system.

20 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

Parsing WSMLmsg...

pa
rs

in
g

purchaseOrder (XML)

Blue Company
RosettaNet

System

parse (WSMLGoal)

Initiate
Execution
Semantics

Object Goal

discover(Goal) Get Services

Services

Discovered Service

registerChoreography
(Goal, Service)

receiveData
(context, WSMLmsg) ...

addData
(context, msg) mediate(SourceOnt,TargetOnt, msg)

achieveGoal(WSMLGoal)

context

send(msg’)
[searchCustomerRequest]

D
ata

M
ediation

purchaseOrderAck (XML)

searchCustomerRequest
(searchString)

receiveData
(context, WSMLmsg)

searchCustomerResponse
(customerObject)

... Parsing WSMLmsg...

addData
(context, msg)

Parsing WSMLmsg...

send(msg)
[createNewOrder]

createNewOrder
(WSMLmsg, context)createNewOrder (XML)

receiveData
(context, WSMLmsg)

orderID (XML) ... Parsing WSMLmsg...

addData
(contextId, msg)

...

closeOrderAck (XML)

send(msg’)
[purchaseOrderConfirmation]

purchaseOrderConfirmation
(WSMLmsg, context)

purchaseOrderConfirmation
(XML)

end of conversation

Moon
OMS

Moon
CRM

Adapter
RosettaNet-

WSMX

Adapter
CRM/OMS-

WSMX

WSMX
Communication

Manager

WSMX
Execution
Semantics

WSMX
Choreography

Engine

WSMX
Parser

WSMX
Data

Mediatior

WSMX
Discovery

WSMX
Service
Registry

searchCustomerRequest
(WSMLmsg, context)

1 2

WSMX
Process
Mediator

msg’

updateChoreography
(context, msg’)

updateChoreography
(context, msg)

updateChoreography
(context, msg)

send(msg)
[closeOrder]

closeOrder
(WSMLmsg, context)closeOrder (XML)

addData
(contextId, msg) Data Mediation...

updateChoreography
(context, msg’)

end of conversation

orderConfirmation (XML)

receiveData
(context, WSMLmsg)

purchaseOrderConfirmationAck
(XML)

send(msg)
[addLineItem]

addLineItem
(WSMLmsg, context)addLineItem (XML)

addLineItemAck (XML)

3

4

Goal Choreography
State

Service Choreography
State

WSMLmsg Unparsed WSML
message

msg Parsed WSML message
into the memory object

msg’ Parsed WSML message
after data mediation

Legend

5

updateChoreography
(context, msg)

Figure 3.2: Activity Diagram

KWEB/2004/D2.4.7/v2 June 30, 2006 21

3. CONVERSATION OF DECOUPLED SERVICES IN THE SEMANTIC B2B INTEGRATION

In our implementation, sending all acknowledgments from WSMX to the Customers
RosettaNet and Moon systems and vice versa is implemented at the adapter level. In
principle this would better be achieved using a choreography description executed by
the WSMX environment, which could be used for e.g. handling exceptions as described
in section 2.2.1. This is however a forced limitation of our implementation as there is
currently no support for handling exceptions in choreography within conversations. This
will be the subject of the future work of the WSMO and the WSMX working groups.� �
1 /∗ Lifting rules from XML message to WSML ∗/
2 ...
3 instance PurchaseOrderUID memberOf por#purchaseOrder
4 por#globalPurchaseOrderTypeCode hasValue ”<xsl:value−of select=”dict:GlobalPurchaseOrderTypeCode”/>”
5 por#isDropShip hasValue
6 IsDropShipPo<xsl:for−each select=”po:ProductLineItem”>
7 por#productLineItem hasValue ProductLineItem<xsl:value−of select=”position()”/>
8 </xsl:for−each>
9 <xsl:for−each select=”core:requestedEvent”>

10 por#requestedEvent hasValue RequestedEventPo
11 </xsl:for−each>
12 <xsl:for−each select=”core:shipTo”>
13 por#shipTo hasValue ShipToPo
14 </xsl:for−each>
15 <xsl:for−each select=”core:totalAmount”>
16 por#totalAmount hasValue TotalAmountPo
17 </xsl:for−each>
18 ...
19

20 /∗ message in WSML after transformation ∗/
21 ...
22 instance PurchaseOrderUID memberOf por#purchaseOrder
23 por#globalPurchaseOrderTypeCode hasValue ”Packaged product”
24 por#isDropShip hasValue IsDropShipPo
25 por#productLineItem hasValue ProductLineItem1
26 por#productLineItem hasValue ProductLineItem2
27 por#requestedEvent hasValue RequestedEventPo
28 por#shipTo hasValue ShipToPo
29 por#totalAmount hasValue TotalAmountPo
30 ...� �

Listing 1: Lifting in XSLT and resulting WSML message

In the RosettaNet-WSMX adapter, the message captured in XML conforming to PIP3A4
XML Schema is lifted to WSML according to the PIP3A4 ontology and rules for lifting. A
fragment of the lifting-rules in XSLT and the resulting WSML message are shown in list-
ing 1. Finally, a WSMO Goal is created including the definition of the desired capability
and a choreography. The capability of the requester (Customer company) is used during
the discovery process whereas the Goal choreography describes how the requester wishes
to interact with the environment. Since the RosettaNet system is, from the WSMX point
of view, represented by an adapter (the adapter can be understood as a wrapper around
an existing application – in our case Customer’s RosettaNet system), the choreography
here reflects the communication pattern of the adapter (hence it does not include inter-
actions regarding acknowledgments of messages). After the goal is created, it is sent to
WSMX through the AchieveGoal entrypoint. In return, a context is received containing
the identification of the conversation as well as an identification of the role of the sender
(i.e. requester or provider). This information is used in subsequent asynchronous calls

22 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

from the requester.

2 – Discovery and Conversation Setup.

The AchieveGoal entrypoint is implemented by the WSMX Communication Manager –
the WSMX middleware service, which facilitates the inbound and outbound communica-
tion with the WSMX environment. After receipt of the goal, the Communication Man-
ager initiates the execution semantics which manages the whole integration process. The
Communication Manager sends the WSML goal to the instance of the execution seman-
tics, which in turn invokes the WSMX Parser returning the Goal parsed into an internal
system object.

The next step is to invoke the discovery middleware service in order to match the
requested capability of the Goal with the capabilities of services registered in the WSMX
repository. Services matching the requested capability are returned from to the execution
semantics. A very simplified implementation of discovery is used for this use case since
only one service in the repository (CRM/OMS service) can be matched with the goal,
thus we do not deal with selection of services. This simplification is based on the fact
that discovery is not of interest to us at this stage; we only concentrate on mediation and
conversation aspects of the integration process.

Once a service is discovered, the execution semantics registers both the requester’s as
well as the provider’s choreography with the Choreography Engine (these choreographies
are part of the goal and service descriptions respectively). Both choreographies are set
to a state where they wait for incoming messages that could fire a transition rule. This
completes the conversation setup.

3 – Conversation with Requester.

The instance data for the goal is sent from the RosettaNet-WSMX adapter to the WSMX
asynchronously by invoking the receiveData entrypoint. Along with the instance data,
the context is also sent to WSMX in order to identify the sender and the conversation
(the context has been previously obtained as a result of invocation of the achieveGoal
entrypoint).

The data in WSML (WSMLmsg) is passed through the Communication Manager to
the execution semantics which again first parses the data into internal system objects
using the WSMX Parser. In general, multiple independent conversations can be running
inside WSMX, thus information carried by the context is used to identify the specific
conversation to which the message belongs. The execution semantics then passes obtained
data to the WSMX Process Mediator.

The first task of the WSMX Process Mediator is to decide, which data will be added to

KWEB/2004/D2.4.7/v2 June 30, 2006 23

3. CONVERSATION OF DECOUPLED SERVICES IN THE SEMANTIC B2B INTEGRATION

which choreography, i.e. requester’s or provider’s choreography3. This decision is based
on analysis of both choreographies and concepts used by these choreographies and is in
detail described in [MC05a]. In our scenario, Process Mediator first updates the memory
of the requester’s choreography with the information that the Purchase Order request has
been received. The Process Mediator then evaluates how that data should be added to
the memory of the provider’s choreography. In the use case, data mediation must be first
performed to the ontology used by the provider (service ontology). For this purpose, the
source ontology of the requester, target ontology of the provider and the instance data are
passed to the WSMX Data Mediator. Data mediation is performed by execution of map-
ping rules between both ontologies (these mapping rules are stored within WSMX and
have been created and registered during the integration setup phase). More information
on the WSMX Data Mediator can be found in [MC05b]. Once mediation is complete, the
mediated data is added to the provider’s choreography.

4 – Conversation with Provider (opening order, add line items, closing order).

Once the requester’s and provider’s choreographies have been updated, the Choreography
Engine processes each to evaluate if any transition rules have been fired. In our scenario,
the requester’s choreography remains in the waiting state as no rule can be evaluated
at this stage. For the provider’s choreography, the Choreography Engine finds the rule
shown in the listing 2 (lines 14-21). Here, the Choreography Engine matches the data
in the memory with the the antecedent of the rule and performs the action of the rule’s
consequent (i.e. update/delete of the memory). The rule says that the message Search-
CustomerRequest with data, searchString, should be sent to the service provider (this data
has been previously added to the choreography memory after the mediation - here, search-
String corresponds to the customerId from the requester’s ontology). The Choreography
Engine then waits for the SearchCustomerResponse message to be sent as a response from
the provider. Sending the message to the service provider is carried out by Choreogra-
phy Engine passing the message to the Communication Manager which, according to the
grounding defined in the choreography, further passes the message to the searchCustomer
entrypoint of the CRM/OMS-WSMX Adapter.

The listing 2 shows the fragment of the provider’s choreography and selected rule
described above. The choreography is described from the service point of view thus the
rule says that the service expects to receive the SearchCustomerRequest message and
send the reply SearchCustomerResponse message. In the StateSignature section (lines 3-
11), concepts for the input, output and controlled vocabulary are defined. Input concepts
corresponds to messages sent to the service, output concepts corresponds to messages

3Note that choreographies of WSMO services are modeled as Abstract State Machines [BS03] and are
processed using standard algorithms during runtime. Each choreography has its own memory containing
instance data of ontological concepts. A choreography rule whose antecedent matches available data in the
memory is selected from the rule base and by execution of the rule’s consequent, the memory is modified
(data in the memory is updated, deleted of removed)

24 June 30, 2006 KWEB/2004/D2.4.7/v2

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

sent out of the service, and controlled concepts are used for controlling the states, and
transition between states during processing of the choreography. Each concept used is
prefixed with the namespace definition (e.g. moon, oasm) corresponding to the imported
ontologies (lines 4, 5). The choreography is part of the service definition which in addition
also contains definition of non-functional properties and capability. For brevity, these
elements are not included in the listing.
1 ...
2 choreography MoonWSChoreography
3 stateSignature ”http :// www.example.org/ontologies/sws−challenge/MoonWS#statesignature”
4 importsOntology { ”http://www.example.org/ontologies/sws−challenge/Moon”,
5 ”http :// www.example.org/ontologies/choreographyOnto” }
6

7 in moon#SearchCustomerRequest withGrounding { ”http://intranet.moon.local/wsmx/services/
CRMOMSAdapter?WSDL#wsdl.interfaceMessageReference(CRMOMSAdapter/CRMsearch/in0)”}

8 ...
9 out moon#SearchCustomerResponse

10 ...
11 controlled oasm#ControlState
12

13 transitionRules ”http :// www.example.org/ontologies/sws−challenge/MoonWS#transitionRules”
14 forall {?controlstate, ?request} with (
15 ?controlstate [oasm#value hasValue oasm#InitialState] memberOf oasm#ControlState

and
16 ?request memberOf moon#SearchCustomerRequest
17) do
18 add(?controlstate[oasm#value hasValue moonc#SearchCustomer])
19 delete(?controlstate [oasm#value hasValue oasm#InitialState])
20 add(# memberOf moon#SearchCustomerResponse)
21 endForall
22 ...

Listing 2: Requester’s Service Choreography

In the adapter, lowering the WSML message to XML is performed using the low-
ering rules for the CRM/OMS ontology and the CRM XML Schema. After that, the
actual service of the CRM system behind the adapter is invoked, passing the parameter
of the searchString. The CRM system searches for the customer and returns back to the
CRM/OMS Adapter a customerObject captured in XML. Analogously to sending data
from the RosettaNet-WSMX adapter, the XML data is lifted to the CRM/OMS ontology,
passed to the WSMX, parsed by the WSMX Parser and after the evaluation of the WSMX
Process Mediator, the data is added to the provider’s choreography memory.

Once the ontology of the provider’s choreography is updated, the next rule is evaluated
resulting in sending a createNewOrder message to the Moon OMS system. This process
is analogous to sending the searchCustomerRequest described in the previous paragraph.
As a result, the orderID sent out from the OMS system is again added to the memory of
the provider’s choreography.

After the order is created (opened) in the OMS system, the individual items to be
ordered need to be added to that order. These items were previously sent in one message as
part of order request from Blue’s RosettaNet system (i.e. a collection of ProductLineItem)
which must be now sent to the OMS system individually. As part of the data mediation
in the step 3, the collection of items from the RosettaNet PO request have been split into

KWEB/2004/D2.4.7/v2 June 30, 2006 25

3. CONVERSATION OF DECOUPLED SERVICES IN THE SEMANTIC B2B INTEGRATION

individual items which format is described by the provider’s ontology. At that stage, the
Process Mediator also added these items into the provider’s choreography. The next rule
to be evaluated now is the rule of sending addLineItem message with data of one lineItem
from the choreography memory. Since there is more then one line item in the memory,
this rule will be evaluated until all line items from the ontology have been sent to the OMS
system.

The next rule to be evaluated in the provider’s choreography is to close the order in the
OMS system. The closeOrder message is sent out from the WSMX to the OMS system.
Since no additional rules from the provider’s choreography can be further evaluated, the
choreography gets to the end of conversation state.

5 – Conversation with Requester (order confirmation, end of conversation).

After the order in OMS system is closed, the OMS system replies with orderConfirmation
(apart from the acknowledgment which is stopped at the CRM/OMS adapter as previously
noted). After lifting and parsing of the message, the Process Mediator first invokes the
mediation of the data to the requester’s ontology and then evaluates that the data needs
to be added to the memory of the requester’s choreography. At this stage, the next rule
of the requester’s choreography can be evaluated saying that purchaseOrderConfirmation
message needs to be sent to the RosettaNet system.

After the message is sent, no additional rules can be evaluated from the requester’s
choreography, thus the choreography gets to the end of conversation state. Since both
requester’s and provider’s choreography are in the state of end of conversation, the Chore-
ography Engine notifies the execution semantics and the conversation is closed.

26 June 30, 2006 KWEB/2004/D2.4.7/v2

Chapter 4

Expected Benefits and Related Work

4.1 Benefits of SWS in B2B Integration

As WSML is a more expressive language than the schema languages used currently, the
lifting of PIPs to ontologies can represent more information and help easier to manage
changes in the messages. As a simple example, we provided the mapping of product
information to ontologies that captured the natural language constraints and made the
”GlobalProductIdentifier” RosettaNet meaning of GTIN number more explicit. The use
of formal ontologies enables using common conversion functions to mediate some differ-
ences with logical dependencies. RosettaNet currently defines more than 300 GlobalPro-
ductUnitOfMeasureCodes as a list without any relations to each other. With help of using
axioms, automatic transformations between e.g. ”25 Kilogram Bulk Bag” and ”50 Pound
Bag” can be done. Currently matching all the details related to PIP messages takes time
and only small differences can cause additional system development and testing work.
SWS techniques can be applied to describe how companies use the PIPs and automate
message compatibility matching, thus making the B2B integration process faster. The
resulting integration is more flexible to slightly varying use of messages. For example,
different measurement units can be supported easily if they are specified. Adding new
partners should be a lot quicker, as a new partner using a domain ontology in describing
his services would only need to register the needed details to WSMX before participat-
ing in the RFQ processes. Furthermore all this does not require changes to the back-end
interfaces. As a result, organisation A would get more quotes to select from.

The benefits for the Moon company lie in automatically driven conversation between
back-end systems and RosettaNet partner when all services are decoupled having hetero-
geneous description of interfaces and capabilities. While data mediation is performed
in semi-automatic way partially done during design-time, process mediation is done au-
tomatically during runtime. This allows the requestors’ and provider’s services to be de-
coupled and automatically integrated during runtime as needed according to the particular
integration scenario.

27

4. EXPECTED BENEFITS AND RELATED WORK

4.2 Related Work
There are a number of papers discussing the use of SWS to enhance current e-business
frameworks. Some concentrate on ontologising e-business frameworks [FB05, AIJ06].
Foxvog and Bussler describe how EDI X12 can be presented using WSML, OWL and
CycL ontology languages [FB05]. The paper focuses on the issues encountered when
building a general purpose B2B ontology, but does not provide an architectural framework
and implementation. Anicic et al. present how two XML Schema-based automotive
B2B standards are lifted using XSLT to OWL-based ontology. They use a two-phase
design and run-time approach similar to the one presented in this deliverable. The paper
is based on different e-business frameworks and focus only on the lifting and lowering to
the ontology level.

Other papers apply SWS technologies to B2B integrations [PCB+05, TPC03, PLS+05,
JIG01]. Some concentrate on the use of SWS technologies to service discovery and selec-
tion. Preist et al. [PCB+05] presented a solution covering all phases of a B2B integration
life-cycle, starting from discovering potential partners. The paper also addresses the lift-
ing and lowering of RosettaNet XML messages to ontologies on a high level, but no
mediation on the ontological level is provided. Trastour et al. [TPC03, TBP03] augment
RosettaNet PIPs with partner-specific DAML+OIL constraints and use agent technologies
to automatically propose modifications if partners use messages differently. However, the
paper also focuses on the discovery and contracting phases. Paolucci et al. [PLS+05]
describe an architecture by using OWL-S to extend SOA over organisational boundaries.
Again, discovery is the main focus of the paper.

Many papers present B2B integration solutions that do not use any SWS technologies,
but still have more similarities to our work. Dogaz et al. [DTP+02] present an implemen-
tation where an ebXML infrastructure is developed by exploiting the UDDI registries and
RosettaNet PIPs. The UDDI registry is used to store ebXML documents and process
descriptions that correspond to WSMX registries described here. They also provide a
solution for secure communication. Sundaram and Shim [SS01] present an infrastruc-
ture for B2B exchanges with RosettaNet. They have a three-tier client-server prototype
that allows customers to send PIP messages using a browser. Sayal et al. [SCDS02]
present a tool, that supports RosettaNet PIPs and allows generating complete processes
from PIPs by taking internal integration needs into account. These approaches are more
static and lack both the mediation capabilities enabled by SWS and secure communica-
tion. Common to all these related works is a lack of the concept for integrating with
existing back-end systems.

A common property of previous work using SWS seems to be that the solutions are
still very conceptual and evaluations of the solutions in terms of performance or usage
is still missing. The implementation related to SWS challenge presented here has been
peer-evaluated against the requirements of the SWS Challenge with the results available
on the challenge website. 1

1http://sws-challenge.org/wiki/index.php/Workshop Budva

28 June 30, 2006 KWEB/2004/D2.4.7/v2

Chapter 5

Conclusions and Future Work
This is the second version of the deliverable describing invocation and interoperation
of web services. We discussed in particular the problem of the interoperation taking
into account different e-business frameworks used by different parties involved in inter-
enterprise integration settings. With this respect, we presented a inter-enterprise integra-
tion scenario, where a buyer organization communicates with multiple partners, which
all behave a bit differently. The partners support different e-business frameworks for this
communication. In the scenario, requests for quotes (RFQ) and purchase order (PO) pro-
cesses are used. We showed how the interoperation aspects are handled from the buyer
organization point of view, where the use of Semantic Web Service (SWS) technologies
enables communication with all its business partners. We demonstrated parts of the ontol-
ogising process of existing messages and how they can be used to mediate the differences
in B2B integrations and how the functionality of a RosettaNet adapter. Furthermore, in
this deliverable we presented a primarily intra-enterprise B2B scenario implemented us-
ing Semantic Web Services on WSMX addressing in particular the challenges of conver-
sations between heterogeneous systems requiring data and process mediation. This was
based on SWS Challenge scenario presenting the suppliers point of view of RosettaNet
PO exchange.

This work addresses the fact that although research into the area of Semantic Web Ser-
vices is well established, there is a scarcity of implemented use cases demonstrating the
potential benefits. Showcasing realistic scenarios and their evaluation is an essential step
for transfer of this emerging technology to the industry. In order to enable this transfer,
it is essential to show how semantic technologies can co-exist within existing enterprise
infrastructures with existing integration standards such as RosettaNet.

Future work is planned to expand our approach to cover more e-business frameworks
and to integrate key enterprise infrastructure systems such as policy management, service
quality assurance, etc. We also plan to layer our solution on top of an existing integration
platform, such as SAP NetWeaver. This work is in the context of our ongoing work tack-
ling the increasingly complex scenario stages defined by the SWS Challenge including
discovery and composition.

29

Bibliography

[AIJ06] Nenad Anicic, Nenad Ivezic, and Albert Jones. An Architecture for Se-
mantic Enterprise Application Integration Standards. In Interoperability of
Enterprise Software and Applications, pages 25–34. Springer, 2006.

[BS03] Emil Brger and Rudi Strk. Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web service description language (wsdl) 1.1. Note, W3C, March
2001.

[dBLPF06] Jos de Bruijn, Holger Lausen, Axel Polleres, and Dieter Fensel. The web
service modeling language: An overview. In Proc. of the European Semantic
Web Conference, 2006.

[DTP+02] Asuman Dogac, Yusuf Tambag, Pinar Pembecioglu, Sait Pektas, Gokce
Laleci, Gokhan Kurt, Serkan Toprak, and Yildiray Kabak. An ebXML in-
frastructure implementation through UDDI registries and RosettaNet PIPs.
In Proc. of the 2002 ACM SIGMOD International Conference on Manage-
ment of Data, pages 512–523, 2002.

[FB02] Dieter Fensel and Christoph Bussler. The web service modeling frame-
work wsmf. Electronic Commerce Research and Applications, 1(2):113–
137, 2002.

[FB05] Doug Foxvog and Chris Bussler. Ontologizing edi: First steps and experi-
ences. In Proceedings of the International Workshop on Data Engineering
Issues in E-Commerce, 2005.

[GHM+03] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and
Henrik Frystyk Nielsen. SOAP version 1.2 part 1: Messaging framework.
Recommendation, W3C, June 2003.

[JIG01] Albert Jones, Nenad Ivezic, and Michael Grüninger. Toward self-integrating
software applications for supply chain management. Inf. Systems Frontiers,
3(4):403–412, 2001.

30

D2.4.7 Web Service Invocation and Interoperation IST Project IST-2004-507482

[KVH+06] Paavo Kotinurmi, Tomas Vitvar, Armin Haller, Ray Boran, and Aidan
Richardson. Semantic web services enabled b2b integration. In Juhnyoung
Lee, Junho Shim, Sang goo Lee, Christoph Bussler, and Simon Shim, ed-
itors, Proc. of the 2nd International Workshop on Data Engineering Issues
in E-Commerce and Services, LNCS 4055, pages 209–223. Springer, June
2006.

[M+04] David Martin et al. Owl-s: Semantic markup for web services. Mem-
ber submission, W3C, 2004. Available from: http://www.w3.org/
Submission/OWL-S/.

[MBB+03] Brahim Medjahed, Boualem Benatallah, Athman Bouguettaya, Anne H. H.
Ngu, and Ahmed K. Elmagarmid. Business-to-business interactions: issues
and enabling technologies. VLDB Journal, 12(1):59–85, 2003.

[MC05a] Adrian Mocan and Emilia Cimpian. D13.7 process mediation in wsmx.
Wsmo working draft draft v0.1, DERI, 2005. Available at: http://www.
wsmo.org/TR/d13/d13.7/v0.1/.

[MC05b] Adrian Mocan and Emilia Cimpian. Wsmx data mediation. Wsmo working
draft draft v0.2, DERI, 2005. Available at: http://www.wsmo.org/
TR/d13/d13.3/v0.2/.

[NK04] Juha-Miikka Nurmilaakso and Paavo Kotinurmi. A review of xml-based
supply-chain integration. Production Planning and Control, 15(6):608–621,
2004.

[PCB+05] Chris Preist, Javier Esplugas Cuadrado, Steve Battle, Stuart Williams, and
Stephan Grimm. Automated Business-to-Business Integration of a Logistics
Supply Chain using Semantic Web Services Technology. In Proc. of 4th Int.
Semantic Web Conference, 2005.

[PLS+05] Massimo Paolucci, Xiong Liu, Naveen Srinivasan, Katia P. Sycara, and
Paul A. Kogut. Discovery of information sources across organizational
boundaries. In Proc. of the Int. Conference on Services Computing, pages
95 – 102. IEEE Computer Society, 2005.

[POSV04] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Semantic Web Services:
Meteor-S Web Service Annotation Framework. In 13th International Con-
ference on World Wide Web, pages 553–562, 2004.

[RLK04] D. Roman, H. Lausen, and U. Keller. Web Service Modeling Ontology
(WSMO). WSMO Working Draft, 2004.

KWEB/2004/D2.4.7/v2 June 30, 2006 31

BIBLIOGRAPHY

[SCDS02] Mehmet Sayal, Fabio Casati, Umeshwar Dayal, and Ming-Chien Shan. In-
tegrating Workflow Management Systems with Business-to-Business Inter-
action Standard. In Proc. of the 18th International Conference on Data
Engineering, pages 287–296. IEEE Computer Society, 2002.

[SS01] Meera Sundaram and Simon S. Y. Shim. Infrastructure for B2B Exchanges
with RosettaNet. In Proc. of the Third International Workshop on Advanced
Issues of E-Commerce and Web-Based Information Systems, pages 110–119,
2001.

[TBP03] David Trastour, Claudio Bartolini, and Chris Preist. Semantic Web support
for the business-to-business e-commerce pre-contractual lifecycle. Com-
puter Networks, 42(5):661–673, 2003.

[TKS05] Juho Tikkala, Paavo Kotinurmi, and Timo Soininen. Implementing a Roset-
taNet Business-to-Business Integration Platform Using J2EE and Web Ser-
vices. In 7th IEEE International Conference on E-Commerce Technology,
pages 553–558. IEEE Computer Society, 2005.

[TPC03] David Trastour, Chris Preist, and Derek Coleman. Using Semantic
Web Technology to Enhance Current Business-to-Business Integration Ap-
proaches. In Proc. of the Int. Enterprise Distributed Object Computing Con-
ference, pages 222–231, 2003.

[WSD05] Web service semantics - wsdl-s w3c member submission, 2005.

[ZMH05] Michal Zaremba, Matthew Moran, and Thomas Haselwanter. Wsmx ar-
chitecture. available from http://www.wsmo.org/tr/d13/d13.4/v0.2/. WSMX
Final Draft, 2005.

32 June 30, 2006 KWEB/2004/D2.4.7/v2

