
D2.4.6 – A Theoretical Integration
of Web Service Discovery and

Composition

Marco Pistore (University of Trento)
Paolo Traverso (ITC-IRST)

with contributions from:
Walter Binder (EPFL), Ion Constantinescu (EPFL),

Holger Lausen (UIBK), Axel Polleres (UIBK),
Pierluigi Roberti (ITC-IRST), Michal Zaremba (NUIG)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.4.6 (WP2.4)

In this document we propose an approach for combining service discovery, functional-level service composition, and
process-level service composition. In particular, we propose a theoretical setting and a software architecture to solve this
problem.
Keyword list: semantic Web service discovery, functional level composition of Web service, process level composition of
Web service, integration of Web service discovery and composition

Copyright c© 2006 The contributors

Document Identifier KWEB/2005/D2.4.6A/v1.0
Project KWEB EU-IST-2004-507482
Version v1.0
Date February 8, 2006
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Śevigńe
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Ṕerez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universiẗat Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

École Polytechnique F́ed́erale de Lausanne
Freie Universiẗat Berlin
National University of Ireland Galway
Universiẗat of Innsbruck
University of Manchester
University of Trento

4

Changes

Version Date Author Changes

0.90 24.12.05 Marco Pistore First complete version of the deliverable
1.00 06.02.06 Marco Pistore Revised version

Executive Summary

This document addresses the problem of providing an end-to-end approach to automat-
ically discover and compose available semantic web services in order to fulfill a given
user request specified as a composition goal. This requires the integration of different
functionalities, namely web service discovery, and two levels of service composition: (i)
functional level composition and (ii) process level composition. Each of these functional-
ities has been already investigated and applied in isolation to semantic web services (see
Deliverable 2.4.2), but their integrated usage is still an open problem.

The problem of automatic discovery of services can be seen as the problem of locating
a service that can fulfill some requester objectives. Functional-level composition extends
the discovery problem, in case it is not possible to find a single service that can fulfill the
composition goal. In functional-level composition, a set of existing services is selected
which, combined in a suitable way, can jointly fulfill the composition goal. The process-
level composition covers a later phase of the overall composition task and permits to build
an executable web service that implements the composition. In this phase we assume that
the set of Web services necessary for defining the composition has already been found,
and that we have to work out the details of how to interact with them.

This document proposes a theoretical setting and a software architecture to solve the
problem of integrating discovery and composition. More precisely, it provides an exam-
ple describing a scenario where discovery and composition need to be integrated in order
to match a customer’s request. It investigates existing languages and the underlying theo-
retical models necessary for defining the key elements of the problems (existing services,
composition goal, and executable composite service). Finally, it proposes a software ar-
chitecture for integrating discovery and composition.

Contents

1 Introduction 1
1.1 Overview of this document .2

2 Background 4
2.1 Service Discovery .4
2.2 Functional level composition .5
2.3 Process level composition .6

3 Languages for Integrating Discovery and Composition 8
3.1 The Virtual Travel Agency Scenario .8
3.2 Modeling the Web Services .11

3.2.1 The WSMO approach .11
3.2.2 The BPEL4WS approach .23

3.3 Modeling the Composition Goal .27
3.4 Modeling the Composite Service .30

4 Theoretical Models 32
4.1 Models for the Domain Ontology .32
4.2 Models for the Web Services .32
4.3 Models for the Composition Goal .35
4.4 Models for the Composite Service .37

5 An Architecture for Integrating Discovery and Composition 38
5.1 Overview of the Architecture .38
5.2 Definition of the Interfaces .40
5.3 Core Functionalities .43

6 Conclusions 46
6.1 Extending the Architecture: Reputation46

iii

Chapter 1

Introduction

This document addresses the problem of providing an integrated approach to automati-
cally discover, select, and compose available semantic web services into a new, executable
web service that matches a given user request specified as a composition goal. The gen-
eration of the composed, executable process requires the integration and harmonization
of different existing functionalities available for semantic web services, such as discov-
ery, functional level composition and process level composition. Our goal is to propose a
theoretical solution and a software architecture that are built on top of these components,
and that exploits them in a combined, iterative approach in order to build a composed,
executable service.

The automated composition of web services is one of the most promising ideas and
— at the same time — one of the main challenges for the taking off of service oriented
applications: services that are composed automatically can perform new functionalities
by interacting with services that are published on the web, thus significantly reducing the
time and effort needed to develop new web based and service oriented applications. It
has been widely recognized that one of the key elements for the automated composition
of web services is semantics: unambiguous descriptions of web service capabilities and
web service processes (e.g., in languages such as OWL-S [Coa03] or WSMO [WSM05]),
which provide the ability to reason about web services, and to automate web services
tasks, like web service discovery and composition, see, e.g., [MSZ01].

Most of the work on the composition of semantic web services has focused so far on
the problem of composition at thefunctional level, i.e., composition by matching pre-
conditions and effects of services described as atomic components, which, given some
inputs, return some outputs [PSK02, CFB04]. Functional level composition is usually
combined with service discovery techniques, that are exploited to find suitable service
instances to be composed [CFB04]. One of the key open problems for semantic web
services is to extend functional level composition in order to automatically generate com-
posed web services that can be directly executed to invoke component services to achieve
some composite goal. This is a key step in reducing effort, time and errors due to manual

1

1. INTRODUCTION

composition at the programming level.

The problem of such anend-to-end integration of discovery and compositionis far
from trivial. We need to take into account the fact that, in real cases, component services
are not atomic, and it cannot in general be executed in a single request-response step. In
general, each component service may be specified as an interaction protocol, where dif-
ferent “atomic” invocations and responses are combined into complex execution patterns.
While the details on the exact protocol required to interact with an existing service are not
important in discovery upfront, they become essential when we aim at generating com-
posed web services that are executable. For this reason, the composition of executable
services needs to deal with descriptions of web services in terms of complex processes,
that consist of arbitrary combinations of atomic interactions, in the style, e.g., of OWL-
S process models [Coa03] or based on an abstract machine model such as in WSMO
interfaces [WSM05].

The approach for an end-to-end integration of discovery and composition proposed
in this paper works in two steps. In the first step, that is, atdiscoverytime and during
the functional levelcomposition, it is necessary to identify a set of web services that, in-
teracting with each other, may be able to match the composition request. The focus is
on required inputs and provided outputs of the services in order to generate the outputs
needed by the user. For instance, it is at this level we discover that a “hotel booking” ser-
vice and a “flight booking” service are necessary to satisfy a vacation request from a user.
In the second step, given the set of selected web services, and given the composition goal,
the process-levelcomposition is responsible of generating automatically an executable
composed web service. For instance, given the process models of two available web ser-
vices for “hotel booking” and for “flight booking”, we aim at generating an executable
composed service, say “virtual travel agency”. By interacting with the “hotel booking”
and “flight booking” services, the composed service books hotel rooms and flight seats
according to a specified goal.

This document discusses a reference theoretical setting for solving the problem of
integrating discovery and composition, as discussed above. Moreover, it describes a soft-
ware architecture that re-uses existing approaches for discovery, functional-level compo-
sition, and process-level composition. The next step will be the development of a proto-
type tool based on the approach described in this deliverable.

1.1 Overview of this document

The structure of this deliverable is as follows. In Chapter 2, we briefly recall the basic
concepts of web service discovery, functional level composition, and process level com-
position. Chapter 3 introduces the languages used for describing the different elements
that participate to a discovery and composition task. More precisely, we will discuss two
languages for defining the component services (WSMO and BPEL4WS), a language for

2 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

defining composition requirements, and a language for defining the composite service
(BPEL4WS). In this chapter, a use case will be used to illustrate the different languages
as well as the composition task. In Chapter 4, we discuss the theoretical setting that we
exploit for implementing the integrated discovery and composition task. In particular,
we define suitable structures for modeling the elements of the composition introduced in
Chapter 3. Chapter 5 proposes an architecture for integrating discovery and composition
of Semantic Web Services. It describes the main software components on this architecture
and the interfaces among them. The goal is to define an architecture that re-uses as much
as possible existing approaches and algorithms, in order to allow for a quick implemen-
tation of a prototype tool. Finally, Chapter 6 summarizes our results and plans for future
work, and describes how the proposed architecture can be extended to take into account
aspects related to reputation in the composition task.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 3

Chapter 2

Background

In this section we briefly recall the notions of service discovery, functional level com-
position, and process level composition. More details can be found in Deliverable 2.4.2
[Lar04a].

2.1 Service Discovery

Web Service Discovery is the process of finding and selecting a suitable web service that
can be invoked to match a user’s request. Discovery is a complex process that, in the
general case, consists of different steps.

Goal Discovery. Starting from a user desire (expressed using natural language or any
other means), goal discovery will locate the pre-defined goal that fits the requester’s desire
from the set of pre-defined goals, resulting on a selected pre-defined goal. Such pre-
defined goal is an abstraction of the requester’s desire into a generic and reusable goal.

Goal Refinement. The selected pre-defined goal is refined, based on the given requester
desire, in order to actually reflect such desire. This step will result in a formalized re-
quester goal.

Service Discovery. Available services that can, according to their abstract capabilities,
potentially fulfill the requester goal are discovered. As the abstract capability is not guar-
anteed to be correct, we cannot assure at this level that the service will actually fulfill the
requester goal.

Service Contracting. The services discovered based on their abstract capabilities have
an associated contracting capability. This contracting capability will be used in service

4

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

contracting to determine if the selected service can actually fulfill the requester goal,
establishing a contract agreement. If this is the case, the result will be a contracted service.

In the scope of this deliverable, we will focus onService Discovery. In this step, we
can assume that existing web services are defined by the following elements:

• its inputsI, i.e., the values they receive when invoked;

• its outputsO, i.e., the values they return to the invoker in case of successful invoca-
tion;

• the pre-conditionsP , i.e., the assumptions that need to hold (on the inputs and on
the status of the world) in order to guarantee a successful execution of the service;

• the effectsE, i.e., the changes that occur in case of successful execution.

Also a discovery goal can be defined by a similar tuple of elements: in this case, inputs
and pre-conditions express the values and the conditions that are known to the invoker,
while the outputs and effects are the expected results of the service invocation.

In this context, if elementsS = (I, O, P,E) define a service and elementsg =
(Ig, Og, Pg, Eg) define a discovery goal, we say thatS matchesg (according to the plug-in
matching: see [Lar04a] for more details) if the following conditions hold:

• I v Ig andP v Pg

(i.e., the inputs requested by the services can be obtained from those known by the
invoker, and similarly for the pre-conditions);

• O w Og andE w Og

(i.e., the outputs requested by the invoker can be obtained from those returned by
the service, and similarly for the effects).

2.2 Functional level composition

If there is no single service that is able to fulfil a given goal (no complete match), it may
still be possible to select a set of partially matching services that can be composed in the
form of a workflow in order to fulfil the goal. We call the process of goal decomposition
and service selectionfunctional-level service composition.

Functional-level service composition addresses the problem of selecting a set of ser-
vices that, combined in a suitable way, are able to match a given goal. Each existing
service is defined in terms of an atomic interaction, i.e., in terms of its input and output
parameters, and possibly also in terms of its preconditions and effects. Functional-level
service composition exploits the information that is provided e.g. in an OWL-S service
profile or in a WSMO service capability model.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 5

2. BACKGROUND

The goal defines the overall functionality that the composed service has to implement,
again in terms of its inputs, outputs, preconditions, and effects.

The approach to functional-level service composition proposed in Deliverable 2.4.2
[Lar04a] is based on forward chaining. Informally, the idea of forward chaining is to
iteratively select a possible serviceS and apply it to a set of input parameters provided
by a goalG (i.e., all inputs required byS have to be available). If applyingS does not
solve the problem (i.e., still not all the outputs required by the goalG are available) then a
new goalG′ can be computed fromG and from the outputs generated byS and the whole
process is iterated.

In order for a serviceS to be applicable to the inputs available from a goalG, all of
the inputs required by the serviceS need to correspond to some compatible parameter in
the inputs provided by the goalG. This means that the “role” of the goal parameter has to
be the same as, or more specific than, that of the service parameter, and also the range of
values that the goal parameter can take has to be more specific than that accepted by the
serviceS.

Upon successful functional-level service composition, the selected services are ar-
ranged in a workflow that respects the data-dependencies between the services (i.e., con-
straints on the order in which the services may be executed).

2.3 Process level composition

Given a set of existing Web servicesW1, . . . ,Wn, the problem of building a process level
composition consists of finding a program that interacts with these Web services in a
suitable way, in order to achieve a given composition requirement (or composition goal).
We call process-level service compositionthe process of generating this program. Let
us consider for instance the case of the Virtual Travel Agency, and let us assume that
a set of Tourism service providers has been identified for solving a customer request.
These services can consists, for instance, of a Flight Booking service (or a Train Journey
Booking service) and a Hotel Booking service that are adequate for the specific request
of the customer, e.g., the specific destination (the selection of such Web services can be
the result of a functional level composition). The goal of process-level composition is to
obtain the executable code that invokes these Web services, in order to obtain an offer for
the customer’s request.

In the definition of the executable code implementing the composition, we need to
take into account the fact that, in real cases, booking a hotel is not an atomic step, but
requires instead a sequence of operations, including authentication, submission of a spe-
cific request, negotiation of an offer, acceptance (or refusal) of the offer, and booking
the room. That is, Web servicesW1, . . . ,Wn are usually composite, i.e., the interaction
with them does not consist of a single request-response step, but they require to follow
a complex protocol in order to achieve the required result. Moreover, the steps defining

6 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

the complex interaction are not necessarily defining a sequence. Indeed, these steps may
have conditional, or non-nominal outcomes (e.g., authentication can fail; there may be no
offer available from an existing service...) that affect the following steps (no request can
be submitted if the authentication fails; if there is no offer available, an order cannot be
submitted...). It may also be the case that the same operation can be repeated iteratively,
e.g., in order to refine a request or to negotiate the conditions of the offer.

The details on the exact sequence of operations required to interact with an existing
service are not essential in discovery. Taking these details into account becomes unavoid-
able when the executable code implementing the composition has to be generated. For
this reason, in process level composition the existing Web services need to be described in
terms of complex, composite processes. These processes consist of arbitrary (conditional
and iterative) combinations of atomic interactions, and these atomic interactions may have
conditional outcomes. (Process level service composition exploits the information that is
provided e.g. in an OWL-S service profile or in a WSMO service capability model). As
a consequence, also the generated executable code has to be a complex program, since
it has to take into account all possible contingencies occurring in the interaction with the
Web services.

Automated composition starts from a set of web services, and from a composition
requirement, and generates an executable web service which implements the composed
service. The synthesis of a composite web service is not limited to atomic component
Web services. The output of this component is to define an interaction protocol with the
selected services, so that an executable implementation of the composition is obtained.
From this point of view the Web service is defined as an activity flow or as an interaction
protocol.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 7

Chapter 3

Languages for Integrating Discovery
and Composition

In this chapter, we introduce some reference languages used for describing the different
elements that participate to a discovery and composition task. To this purpose, we will
use an example that will also allow us to define the requirements and direct the definition
of the integrated discovery and composition approach. The use case is in the context of
e-Tourism services, and consists of the composition of existing transport and accommo-
dation services in order to provide a Virtual Travel Agency service to the end user. We
refer to Deliverable 2.4.1 [Lar04b] for further information on this use case.

In order to model semantic aspects of the participating services in the Virtual Travel
agency, we will present domain ontologies in WSML. Furthermore, we will relate these
semantic descriptions of the domain ontologies to behavioral descriptions of the services.
We will show two possible approaches for this: On the one hand, using “classical” Web
service technologies, where we express the behavior using BPEL4WS, on the other hand
we will show how to describe these behavioral aspects natively in an abstract state ma-
chine based model based on WSMO. For the latter, we exploit a syntax based on that
of the WSML [WSM05] language. Notice however that several constructs and concepts
used in this chapter are not yet part of WSML’s official syntax. Different solutions may
get adopted from the WSMO group when these concepts will be considered for inclu-
sion in WSML. Moreover, in the examples we sometimes slightly deviate from WSML
syntactic constraints and requirements, if this is useful for readability purposes.

3.1 The Virtual Travel Agency Scenario

The Virtual Travel Agency (VTA) is an e-Tourism service provider which offers travel
booking services to the end user by using and interacting with other, more basic e-Tourism
service providers. The functionality of the VTA is that of a traditional travel agency: get-

8

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

ting a request from a customer, dealing with different e-Tourism providers to put together
an appropriate offer covering the customer request, arranging all the booking (and pay-
ment) with the different providers, and transparently offering the final trip arrangement to
the customer. In the context of this deliverable, we assume that the available e-Tourism
providers should be located dynamically by the VTA, with no need for prior agreements,
and that the business process of the VTA should be composed dynamically based on the
request received and the available providers. In the following, we describe the use case in
more detail.

Goal/Context. The customer wants to make a trip to a given location (e.g., Paris) for
a given period of time (e.g., staying there from August 10 to August 15). The customer
sends his request to the VTA, which has to build a package including a travel to/from
Paris and an accommodation for all the nights spent in Paris. Clearly, the hotel has to be
booked according to the flight (i.e., if the flight arrives on August 9, then the hotel has to
be booked from August 9).

The VTA should take care of locating the necessary tourism service providers (e.g.,
suitable flight providers for the trip, hotels in Paris...) and contact them. Finally, a suit-
able offer will be returned to the customer and upon acknowledgement either both the
accommodation and the travel shall be booked or none, which requires a weak form of
transactionality for the composed service.

Participating actors.

• Customer: the end-user that sends a trip booking request to the VTA.

• Tourism service providers: commercial companies that provide specific tourism
services.

• VTA: the intermediary between the Customer and the tourism service providers.
It provides tourism packages to customers by aggregating the separate services of
different tourism service providers.

Scenario/Steps.

1. The user constructs a trip request, including all her requirements and preferences.

2. The user submits the request to the VTA.

3. The VTA receives the request and interprets it.

4. The VTA selects a set of tourism service providers in order to satisfy the received
trip request.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 9

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

5. The VTA generates the executable code necessary to interact with the selected
tourism service providers.

6. The VTA executes the generated code, interacting with the selected tourism service
providers in order to collect all the information from the tourism service providers,
aggregate them and prepare a trip offer.

7. If the interaction with the tourism service providers is successful, the VTA delivers
the aggregated offers to the customer. Otherwise, other combinations of tourism
service providers are selected (step 4).

8. The customer receives an offer for her trip (or a failure message reporting that no
offer is possible).

In this deliverable we focus on steps 4 and 5 of the scenario described above. That is,
given a goal encoding the request of the user, we show how it is possible to select a set
of suitable tourism services and compose them in order to generate an executable code
composing these services according to the goal.

We assume that the terminology used in the travel domain is based on an ontology,
which defines the basic domain concepts (trips, accommodations, clients...) This ontology
is described in the following, using WSML syntax. For details on ontology modelling in
WSML, we refer the reader to [LKMR+05]. The ontology defines the concepts of Client,
Location, Trip, and Accommodation, along with their attributes. For instance, a Trip is
defined by an unique identifier (this can be the flight, or the train number), by a date, and
by start and destination locations. The concepts of a trip being available is formalized
as concept TripAvailable, which is defined as a sub-concept of Trip. Similarly for the
concepts of a trip being booked, but in this case the client who booked the trip becomes
an attribute of TripBooked. Similar concepts are introduces also for the accommodations.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”

namespace {trv ”http://www.example.org/Travel”}

[...]

ontology trv#simpleTravelOntology

/∗ Client doing the travel ∗/
concept trv#Client

trv#name ofType string
trv#gender ofType string

/∗ Destination of the travel ∗/
concept trv#Location

trv#name ofType string

/∗ Trips ∗/
concept trv#Trip

trv#id ofType (1 1) string
trv#date ofType date
trv#start ofType trv#Location
trv#destination ofType trv#Location

10 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

/∗ Accommodation ∗/
concept trv#Accommodation

trv#id ofType (1 1) string
trv#date ofType date
trv#location ofType trv#Location

/∗ Trips /accommodations being available ∗/
concept trv#TripAvailable subConceptOf trv#Trip

concept trv#AccommodationAvailable subConceptOf trv#Accommodation

/∗ Trips /accommodations being booked ∗/
concept trv#TripBooked subConceptOf trv#Trip

trv#pax ofType (1 ∗) trv#Client

concept trv#AccommodationBooked subConceptOf trv#Accommodation
trv#pax ofType (1 ∗) trv#Client

/∗ The first date is the user requested date, the second one is
the trip date, the relation tells us if the two dates are
compatible (the trip date should contain the user requested date,
but some additional days can be added before and /or after the
requested dates, e.g ., due to constraints in the flights) ∗/

relation trv#Compatible(ofType date, ofType date)

Listing 1: Basic Travel Ontology

3.2 Modeling the Web Services

In the following subsections we describe in detail the behavioral aspects of the different
web services implementing some e-service providers, in order to enable composition of
such services. More precisely, we assume that there are three such web services available:
a simple Flight Booking Service, a Train Booking Service and a Hotel Booking Service
which we will describe in two possible ways. First, we will describe how such services
could be modeled in an ontology-based machine model which describes the stateful in-
terface of a Web Service, in terms of an ontology enabled abstract state machine. Next,
we describe the same model using one of the commonly used standards in Web Service
technologies, namely BPEL4WS.

In the subsequent chapter 4 we will show that both these models allow for reductions
to finite state machines on top of which efficient process level composition methods can
be applied.

3.2.1 The WSMO approach

The behavioral description of a Web Service in WSMO is divided in a functional level de-
scription, i.e. the high-levelcapabilityand an interface description modelling thechoreog-
raphy interfaceof the respective service, i.e. how to interact with the service in a stateful

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 11

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

way in order to achieve the desired functionality.

We now introduce the concepts defining the messages which the separate services use
to interact with. They are defined by means of ontologies described in WSML. We report
the ontology for the Flight service — the ontologies for Train and Hotel are very similar.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”

namespace {trv ”http://www.example.org/Travel”,
fl ”http :// www.example.org/BookFlight”}

[...]

ontology fl#simpleFlightOntology
importsOntology trv#simpleTravelOntology

concept fl#Flight subConceptOf trv#Trip
fl#flightNumber ofType (1 1) string

axiom definedBy
?x[fl#flightNumber hasValue ?fn] memberOf fl#Flight implies ?x[trv#id hasValue ?fn] memberOf trv#Trip.

concept fl#FlightAvailable subConceptOf {trv#TripAvailable, fl#Flight}
fl#seatNumber ofType string

concept fl#FlightBooked subConceptOf {trv#TripBooked, fl#Flight}
fl#seatNumber ofType string

// The following concepts define the messages received/sent by the Flight service

concept fl#FlightRequest subConceptOf trv#Trip
fl#client ofType trv#Client

concept fl#FlightNotAvailable subConceptOf trv#Trip

concept fl#FlightOffer subConceptOf {trv#Flight,fl#FlightRequest}

concept fl#FlightConfirm subConceptOf fl#FlightOffer

concept fl#FlightCancel subConceptOf fl#FlightOffer

Listing 2: Ontology for Flight

The ontology for Flight is composed of two parts. In the first part, the basic concepts
introduced for generic trips in Listing 1 are refined to the specific case of flights. The
unique identifier of the trip is also defined as the flight number. In the second part, addi-
tional concepts are introduced that will be used later on as messages in the interactions of
the Flight service with its invoker.

WSMO capability descriptions

In WSMO, the capability of a Web Service is described by some non-functional proper-
ties and by means of conditions that need to hold before the service can be executed and
by the result that is achieved by service execution. Leaving out non-functional aspects,
which are out of the scope of this deliverable, WSMO divides these conditions and results
into four categories:preconditionsfor defining conditions on the information space (that

12 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

is the information used for computation) that have to hold before execution, i.e. on the
input required by the service;assumptionsas conditions on the world (denoting aspects
not related to computation) that have to hold before execution;postconditionsdefine con-
ditions on the information space after execution, i.e. the output of the service, andeffects
as conditions on the world that hold after service execution. These constitutive elements
of capability descriptions are expressed as axioms over ontologies. A set ofshared vari-
ablescan be declared which are implicitly all-quantified and whose scope is the whole
Web service capability. Informally, the logical interpretation of a Web service capability
is that for any values taken by the shared variables, the precondition and the assumption
imply the postcondition and the effect.

As an example we model here the capability of the Flight Booking Service – again
Train and Hotel can be modeled analogously.

namespace {trv ”http://www.example.org/Travel”,
fl ”http :// www.example.org/BookFlight”}

webService fl#BookFlight

capability fl#BookFlightCap
sharedVariables {?req, ?date, ?start, ?dest, ?client}
precondition definedBy

?req[
trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client]

memberOf fl#FlightRequest.

assumption definedBy
exists {?flight} (?flight [trv#start hasValue ?start,

trv#destination hasValue ?dest,
trv#date hasValue ?date] memberOf fl#FlightAvailable).

postcondition definedBy
fl#offer (?req)[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
trv#flightNumber hasValue fl#fn(?req),
fl#client hasValue ?client] memberOf fl#FlightOffer.

effect definedBy
fl#booking(?req)[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue fl#fn(?req),
trv#pax hasValue ?client] memberOf fl#FlightBooked.

Listing 3: Flight Booking Service: Capability Level

Notice the different roles of precondition, assumption, postcondition and effect. The
precondition is used to express constraints on the inputs the requester should be able to
provide to the service. The assumption expresses constraints for a successful execution of
the service that the requester cannot control (the fact that a flight is actually available). The
postcondition expresses new information made available to the requester after a successful
service execution (an offer with relevant information for the requester such as the flight

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 13

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

number). The effect, finally, expresses the real world effects of the execution of the web
services such as the fact that there exists an actual booking for the requested flight.

The functional dependency between the input (request) and the parameters of the out-
put/effects are modeled by function symbols in this example, e.g. the function symbol
booking/1 is dependent on the identifier of the original request?req). The above capa-
bility says that for any request with given date, start and end location, and client a flight
offer will be given as output and a booking will be made, under the assumption that a
respective flight is available.

We remark that, unfortunately the terms used to denote the four elements used for
defining web service capabilities in WSMO are different from the “standard” ones dis-
cussed in Section 2.1. Preconditions, in particular denote different elements. WSMO
preconditions correspond to inputs, WSMO assumptions to preconditions, WSMO post-
conditions to outputs, and WSMO effects to effects.

WSMO choreography interface descriptions

At the capability level, no fine grained description of complex interaction patterns with
the service is possible. The capability only gives a coarse-grained description of the ad-
vertised functionality of the service, leaving out the interaction steps which have to be
taken in order to achieve this functionality or the possibility of failure, i.e. the capabil-
ity level description only covers “successful” interaction sequences in terms of what the
service wants to advertise.

However, in order to figure out how to actually execute a possibly complex service,
one needs a more fine grained description. This description of the stateful interaction
process with the service can be expressed for instance in a workflow-like language such
as BPEL4WS. WSMO takes a different approach, where such interactions are described
in terms of abstract state machines [BS03].

In the following we briefly recap the Choreography description model of WSMO.
For further details of the model used here, we refer to the current draft of the WSMO
working group [FSPR05]. The syntax used in this draft (and also in this deliverable)
might still be subject to slight changes, but is stable enough to illustrate the used model.
We will indicate whenever we deviate from the proposed syntax in [FSPR05] and explain
respective extensions which we deem necessary in detail.

Basic Abstract State Machines Abstract State Machines (ASMs for short), formerly
known as Evolving Algebras [BS03], provide a means to describe systems in a precise
manner using a semantically well founded mathematical notation. The core principles
are the definition of ground models and the design of systems by refinements. Ground
models define the requirements and operations of the system expressed in mathematical
form. Refinements allows the expression of the classical divide and conquer methodology

14 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

for system design in a precise notation which can be used for abstraction, validation and
verification of the system at a given stage in the development process.

Abstract State Machines are divided into two main categories, namely, Basic ASMs
and Multi-Agent ASMs. The former express the behavior of a system within the envi-
ronment. Multi-Agent ASMs allow to express the behavior of the system in terms of
multiple entities that are collaborating to achieve a functionality. For the description of a
single party behavior, we are merely interested in basic ASMs.

A basic ASM is defined in terms of a state signature plus a finite set of transition rules
which are executed in parallel. It may involve non-deterministic behavior. Finite state
machines can be viewed as a special case of such basic ASMs.

The state signature for classic ASMs usually simply consists of a set of static and
dynamic functions, which can be locally updated by the so called update rules. Dynamic
functions are classified in four other categories, namely,controlled, monitored(or in),
interaction(or shared) andout. Controlled functions are directly updatable by the rules
of the machineM only. Thus, they can neither be read nor updated by the environment.
Monitored functions can only be updated by the environment and read by machineM
and hence constitute the externally controlled part of the state. Shared functions can be
read and updated by both the environment and the rules of the machineM . Out functions
can be updated but not read byM , but can be read by the environment. Furthermore,
ASMs define the so-called derived functions. These are functions neither updatable by the
machine or the environment but which are defined in terms of other static and dynamic
(and derived) functions.

The most basic rules are Updates which take the form of assignments (also called
function updates) as follows:

f(t1, . . . , tn) := v

wheref is an n-ary function (specified by the signature) and the termst1, . . . , tn denote
the location where the dynamicf is to be updated to the new valuev, determining the
function value off(t1, ..., tn) in the next state. The location-value pairs((t1, . . . , tn), v)
are called basic updates and represent a basic unit of state change in the ASM.

More complex transition rules are defined recursively, as follows. (Note that for the
sake of clarity, we slightly deviate here from the original syntax used in [BS03].) First,
transition rules can be guarded by a Condition as follows:

if Condition then Rules endIf

Here, theCondition is an arbitrary closed first order formula (or any other logic under-
lying the signature, i.e. the concept of ASMs is decoupled from the underlying logical
formalism. Such a guarded transition rule has the semantics that theRules in its scope
are executed in parallel, whenever theCondition holds in the current state.

Next, basic ASMs allow some form of universally quantified parallelism by transition
rules of the form

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 15

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

forAll V ariable with Condition do Rules endForall

Here, theV ariable is a variable occurring freely inCondition, with the meaning that the
Rules[V ariable/V alue] are executed in parallel for all possible bindings of theV ariable
to a concreteV alue such that theCondition[V ariable/V alue] holds in the current state.
Here,Condition[V ariable/V alue] (andRules[V ariable/V alue], resp.) stand for the
condition (or rule, resp.) where each occurrence of Variable is replaced by Value.

Similarly, basic ASMs allow for non-deterministic choice by transition rules of the
form

choose V ariable with Condition do Rules endChoose

Here, as opposed to theforAll rule, one possible binding of theV ariable such that the
Condition holds is picked non-deterministically by the machine and theRules are exe-
cuted in parallel only for this particular binding.

A single ASM execution step is summarized as follows:

1. Unfold the rules, according to the current state and conditions holding in that state,
to a set of basic updates.

2. Execute simultaneously all the updates.

3. If the updates are consistent (i.e. no two different updates update the same loca-
tion with different values, which means that there must not be a pair of updates
(loc, v), (loc, v′)withv 6= v′), then the result of execution yields the next state.

4. All locations which are not affected by updates, keep their values.

These steps are repeated until no condition of any rule evaluates to true, i.e. the unfolding
yields an empty update set. In case of inconsistent updates, the machine run is invalid.

Readability and structure of general ASMs can be improved by introducing so called
control states as syntactic sugar. Such control states allow to view ASMs as a straightfor-
ward extension of finite state machines and thus have desirable properties like high-level
graphical representation and modularization of the machine. A Control State ASM is
an ASM with one particular controlled functionctlState (which has as its range a finite
number of integers or a finite enumeration of state-descriptors) and each transition rule
having the form:

if ctlState = i then

if cond1 then

rule1

ctlState := j1

endIf

...

16 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

if condn then

rulen

ctlState := jn

endIf

endIf

wherei, j1, . . . , jn are control state descriptors andrule1, . . . , rulen are rule sets.

Basically, control state ASMs are FSMs enriched by synchronous parallelism and
data manipulation (and thus possibly infinite again). Note that control state ASMs are no
expressive restriction of general ASMs but make it easier to define control flow.

WSMO Choreography Model The Choreography part of a service interface describes
the behavior of the service from a client point of view; this definition is in accordance to
the following definition given by W3C Glossary1: Web Services Choreography concerns
the interactions of services with their users. Any user of a Web service, automated or
otherwise, is a client of that service. These users may, in turn, may be other Web Services,
applications or human beings.

To this end, based on the basic ASM model, a choreography interface in WSML is
described as an ASM which operates on the concepts and relations of a WSML ontology
to describe the state signature. In analogy to function classification in ASMs, concepts and
relations in WSML choreography interfaces are classified asin, out, controlled, shared,
static.

The state for the given signature of a WSMO choreography is defined by all legal
WSMO identifiers, concepts, relations and axioms. The elements that can change and
that are used to express different states of a choreography, are instances of concepts and
relations which are used in a similar way to locations in ASMs. These changes are ex-
pressed in terms of creation of new instances or changes of attribute values.

In order to link to traditional Web Service interface descriptions such as WSDL,
WSMO allows to bind concepts of classesin, out, andsharedto be bound to the inputs
and outputs of operations in a WSDL description of the respective service.

As opposed to basic ASMs, the most basic form of rules are not assignments, but
we deal with basic operations on instance data in ontologies, such as adding, removing
and updating instances to the signature ontology. To this end, we define atomic update
functions to add, delete, and update instances, which allow us do add and remove in-
stances to/from concepts and relations and add and remove attribute values for particular
instances. In WSMO Choreography, these basic updates are defined as a set of fact mod-
ifiers which are of three different types.

1. add(fact)

2. delete(fact)
1http://www.w3.org/TR/ws-gloss/

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 17

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

3. update(fact(old => new)), or simply

4. update(fact)

A fact can be either a membership fact (x memberOf y, or r(t1,. . . ,tn) for an n-ary
relationr), respectively), an attribute fact (x[a hasValue y] for concepts or a combina-
tion of concept membership and attribute value facts in the form of a WSML molecule
abbreviating conjunctions of membership and attribute facts,see [LKMR+05] for details.
More complex transition rules are defined recursively, analogous to classical ASMs by if-
then, forAll-do and choose-do rules. Note that the current definition in the latest version
of [FSPR05] allows onlyadd anddelete but we add the update primitive for convenience
of modelling.

An update rule of form 3 can take one of the following forms:

• update(r(t1,. . . ,ti−1,tiold
=> tinew , ti+1,. . . ,tn)) which is a shortcut for the set of

rules
delete(r(t1,. . . ,ti−1,tiold

, ti+1,. . . ,tn))
add(r(t1,. . . ,ti−1,tinew , ti+1,. . . ,tn))

• update(x memberOf yold => ynew) which is a shortcut for the set of rules
delete(x memberOf yold)
add(x memberOf ynew)

• update(x[a hasValue yold => ynew]) which is a shortcut for the set of rules
delete(x[a hasValue yold])
add(x[a hasValue ynew])

An update rule of form 4 can take one of the following forms:

• update(r(t1,. . . ,tn)) which is a shortcut for the rules
forall {?x1, ... ,?xn} with ?x1 6= t1 or . . . or ?xn 6= tn do delete(r(?x1,. . . ,?xn))
endForall
add(r(t1,. . . ,tn))

• update(x memberOf y) which is a shortcut for the rules
forall ?y1 with ?y1 6= y do delete(x memberOf ?y1) endForall
add(x memberOf y)

• update(x[a hasValue y]) which is a shortcut for the rules
forall ?y1 with ?y1 6= y do delete(x[a hasValue ?y1]) endForall
add(x[a hasValue y])

Compared with basic ASMs, in WSMO choreography the following restrictions apply
to Conditions and Variables

18 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

• A (WSML Full) Condition is a restricted form of WSML logical expressions where
all free variables which are not bound be enclosing choose or forAll constructs are
interpreted as being existentially quantified

• A WSML Core Condition is a WSML Full logical expression which consists only of
molecules built up from memberOf and hasValue atoms and the logical connectives
and and or where all unbound variables are existentially quantified (i.e. a condition
is a conjunctive query)

For further convenience of modeling, we introduce the following shortcut to model
common unconditional nondeterminism which is often used in finite state machines and
particularly useful for interface descriptions:

rule1|rule2| . . . |rulen

is short for

choose ?x with ?x = 1 or ?x = 2 or ?x = n do
if ?x= 1 then rule1 endIf
if ?x= 2 then rule1 endIf

...
if ?x= n then rule1 endIf

endChoose

The semantics of WSMO ASMs is defined analogously to basic ASMs.

ThestateS for the given signature of a WSMO choreography is defined by all legal
WSMO identifiers, concepts, relations and axioms. The elements that can change and that
are used to express different states of a choreography, are instances of concepts and rela-
tions which are used in a similar way to locations in ASMs. These changes are expressed
in terms of creation of new instances or changes of attribute values.

A run of a Choreography interface is defined analogously to the runs of basic ASMs
in [BS03], i.e. runs are defined as sequences of possible single execution steps:

Possible execution steps are defined by

S ′ = S \ {fact|delete(fact) ∈ U} ∪ {fact|add(fact) ∈ U}

whereS is the current state,U is a consistent update set, andS ′ is the resulting state of
applyingU in S.

We recall that the choreography interface is defined by a set of transition rulesR: Let
O denote the imported signature ontology(ies) andS denote the current state. We define
update sets for(R,S) inductively:

• U(add(fact), S) = add(fact)

• U(delete(fact), S) = delete(fact)

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 19

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

• U(R, S) =
S

r∈R U(r, S)

• U(if Cond then R, S) =
n

U(R, S) if O ∪ S |= Cond
∅ otherwise

• U(forall ?V ar with Cond do R endForall, S) =
{URθ,S |θ such thatθ = {?V ar/id} whereid is an identifier such thatO ∪ S |= Condθ}

• U(choose ?V ar with Cond do R endChoose, S) =

8<:
U(Rθ, S) whereθ = {?V ar/id} with id being a
non-deterministically chosen identifier such thatO ∪ S |= Cond

∅ if O ∪ Scup{exists?V ar(Cond)} is unsatisfiable.

An update setU is consistent if it does not contain any two elementsadd(fact) and
delete(fact) and the resulting state

S ′ = S \ {fact|delete(fact) ∈ U} ∪ {fact|add(fact) ∈ U}

is consistent with the signature ontology, i.e.S ′ ∪O is satisfiable.

We now proceed with describing the choreography interface of the Flight Booking
Service. For describing this interface, we use the syntax defined above with another slight
extension to [FSPR05] towards control state ASMs, using the new keywordctl state to
enumerate the possible control state descriptors.

interface fl#BookFlightInterface
choreography

stateSignature
importsOntology fl#simpleFlightOntology

in
fl#FlightRequest withGrounding ”http ://... ” ,
fl#FlightConfirm withGrounding ”http ://... ” ,
fl#FlightCancel withGrounding ”http ://... ”

out
fl#FlightNotAvailable withGrounding ”http ://... ” ,
fl#FlightOffer withGrounding ”http ://... ”

shared
fl#Flight ,
fl#FlightAvailable ,

fl#FlightBooked

ctl state {fl#start ,fl#offerMade,fl#noAvail ,fl#confirmed,fl#cancelled}

transitionRules
if (ctl state = fl#start) then

forall {?req,?date,?start,?dest,?client} with
?req[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightRequest

do
if exists {?f} (?f [trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest] memberOf

fl#FlightAvailable) then
choose {?fn} with

exists {?f} (?f [trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn] memberOf

fl#FlightAvailable)

20 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

do
add (fl#offer (?req)[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn,
fl#client hasValue ?client] memberOf

fl#FlightOffer)
ctl state := fl#offerMade

endChoose
else

add (fl#notAvailable(?req)[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest] memberOf

fl#FlightNotAvailable)
ctl state := fl#noAvail

endIf
endForall

endIf

if (ctl state = fl#offerMade) then
forall {?offer , ?client} with (?offer [fl#client hasValue ?client]

memberOf {fl#FlightConfirm,fl#FlightOffer}) do
add (?offer[trv#pax hasValue ?client] memberOf trv#FlightBooked)
ctl state := fl#confirmed

endForall
endIf

if (ctl state = fl#offerMade) then
forall {?offer} with (?offer memberOf {fl#FlightCancel,fl#FlightOffer}) do

ctl state := fl#cancelled
endForall

endIf

Listing 4: Flight Booking Service: Interface Level

The branching on condition

if exists {?f} (?f[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest] memberOf
fl#FlightAvailable) then

[. . .]
else

[. . .]
endIf

in control statefl#start in the listing above is fully non-deterministic for the service con-
sumer, since it depends on a shared concept of available flights which is only actually
known to the service provider. Thus, we could equally reformulate this part of the chore-
ography interface description using the non-deterministic choice operator defined above:

if (ctl state = fl#start) then
forall {?req,?date,?start,?dest,?client} with

?req[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightRequest

do
add (fl#offer (?req)[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 21

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

fl#flightNumber hasValue fl#fn(?req),
fl#client hasValue ?client] memberOf fl#FlightOffer)

ctl state := fl#offerMade
|
add (fl#notAvailable(?req)[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest]

memberOf fl#FlightNotAvailable)
ctl state := fl#noAvail

enfIf

Listing 5: Hotel Booking Service - unconditionally non-deterministic version

This shorter description contains less semantic information. Moreover, it does not allow
to exploit theassumptionstated in the capability in listing 3, i.e., that we can expect that
flights are normally available. Further elaboration of the connection between capability
and interface description is on our agenda.

We omit the description of the capability and of the interface level for the Train Book-
ing Service, which we assume to be similar to those of the Flight. We report instead the
description of the Hotel Booking Service

namespace {trv ”http://www.example.org/Travel”,
htl ”http :// www.example.org/BookHotel”}

webService htl#BookHotel

capability htl#BookHotelCap
sharedVariables {?req,?date, ?loc, ?client}
precondition definedBy

?req[trv#date hasValue ?date,
trv#location hasValue ?loc,
htl#client hasValue ?client]

memberOf htl#HotelRequest.

assumption definedBy
exists {?hotel} (?hotel[trv#date hasValue ?date,

trv#location hasValue ?loc]
memberOf htl#HotelAvailable).

postcondition definedBy
htl#offer (?req)[trv#date hasValue ?date,

trv#location hasValue ?loc,
htl#client hasValue ?client]

memberOf htl#HotelOffer.

effect definedBy
htl#booking(?req)[trv#date hasValue ?date,

trv#location hasValue ?loc,
htl#hotelName hasValue htl#hn(?req),
trv#pax hasValue ?client]

memberOf trv#HotelBooked.

interface htl#BookHotelInterface

choreography
stateSignature

importsOntology htl#simpleHotelOntology

in
htl#HotelRequest withGrounding ”http ://... ” ,

22 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

htl#HotelConfirm withGrounding ”http ://... ” ,
htl#HotelCancel withGrounding ”http ://... ”

out
htl#HotelNotAvailable withGrounding ”http ://... ” ,
htl#HotelOffer withGrounding ”http ://... ”

shared
htl#Hotel ,
htl#HotelAvailable ,
htl#HotelBooked

ctl state {htl#start ,htl#offerMade,htl#noAvail ,htl#confirmed,htl#cancelled}

transitionRules
if (ctl state = htl#start) then

forall {?req,?date,?loc,?client} with
?req[trv#date hasValue ?date,

trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelRequest

do
add (htl#offer (?req)[trv#date hasValue ?date,

trv#hotelName hasValue ?name,
trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelOffer)

ctl state := htl#offerMade
|
add (htl#notAvailable(?req)[trv#date hasValue ?date,

trv#location hasValue ?loc] memberOf htl#HotelNotAvailable)
ctl state := htl#noAvail

endForall
endIf

if (ctl state = htl#offerMade) then
forall {?client ,?offer} with (?offer [htl#client hasValue ?client] memberOf {htl#HotelConfirm,

htl#HotelOffer})
do

add (?offer[trv#pax hasValue ?client] memberOf trv#HotelBooked)
ctl state := htl#confirmed

endForall
endIf

if (ctl state = htl#offerMade) then
forall {?offer} with ?offer memberOf {htl#HotelCancel,htl#HotelOffer} do

ctl state := htl#cancelled
endForall

endIf

Listing 6: Hotel Booking Service

3.2.2 The BPEL4WS approach

BPEL4WS [ACD+03] provides an operational description of the (stateful) behavior of
web services on top of the service interfaces defined in theirWSDL specifications. A
BPEL4WS description of a service identifies the partners of a service, its internal vari-
ables, and the operations that are triggered upon the invocation of the service by some of
the partners. Operations include assigning variables, invoking other services and receiv-
ing responses, forking parallel threads of execution, and nondeterministically picking one
amongst different courses of actions. Standard imperative constructs such as if-then-else,
case choices, and loops, are also supported.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 23

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

In Listing 7 we report theWSDL specification of the Flight Booking service2 The
file starts with a description of the structure messages relevant for the interactions with
the service. Then, theWSDL specification defines the invocation and reply operations
provided by the service. Operations are collected in port types, that are associated to
different communication channels of the flight booking service with its partners. In our
example, we define two port types, namelyFlight_PT for the incoming requests and
messages andFlight_CallbackPT for the outgoing messages from the flight to the
invoking service. Finally, theWSDL specification defines bi-directional links between
the flight booking service and its partners. In our case, there is only one of such links,
between the flight booking service and the customer invoking it.

Listing 8 reports the BPEL4WS specification that, building on top of theWSDL spec-
ification, describes the protocol that one has to follow to interact with the flight booking
service. The BPEL4WS specification starts declaring the partners involved in the inter-
action and the links and roles among them (theWSDL partnerLinkType declarations are
exploited here): in our case, the only partner is the client invoking the service. Then, a set
of variables is defined. These variables are exploited in the interactions, as containers for
incoming and outgoing messages, as well as for the internal computations of the service.

The main part of the BPEL4WS specification consists in the specification of the se-
quence (or flow) of activities that define the interactions with the service. This descrip-
tion is given from the point of view of the flight booking service. The execution the
service starts with the reception of a request message from a client. The flight booking
service decides internally whether there are available flights (switch statement named
checkAvailability). We remark that the BPEL4WS code specifies that this inter-
nal decision is taken by the flight service, but it does not expose “how” this decision is
taken. Indeed, the latter information is not needed to the client for interacting with the
flight service.

In case no flight is available, then the flight booking service answers to the client with
a flightNotAvailable message and terminates. Otherwise, an offer is defined and
sent to the client. We remark that the definition of the offer, performed in theassign
activity, isopaque , i.e., the details on how the offer is defined are not exposed. Similarly
to the verification of available flights, the details on how an offer is defined are internal to
the implementation of the service, and should not be disclosed to the client.

A BPEL4WS specification describes in a very detailed way the interactions that need
to be carried out with a web service in order to exploit it. However, this is still not suf-
ficient to allow for the purpose of automatically composing such web service with other
services. Indeed, it is necessary to describe also the “semantic” aspects of such interac-
tions. We do this by extending the BPEL4WS specification with “semantic annotations”
(see also [PTBM05a]). It is necessary first of all to associate a “semantic” meaning to the
input and output operations defined in theWSDL file: this is done in the annotatedWSDL

2For the sake of readability, we have simplified theWSDL specification and of the following BPEL4WS
code, omitting some of the most technical parts.

24 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

<definitions name="Flight">

<message name="flightRequestMsg">
<!-- Flight booking request -->
<part name="date" type="xsd:string"/>
<part name="start" type="xsd:string"/>
<part name="destination" type="xsd:string"/>
<part name="client" type="xsd:string"/>

</message>
<message name="flightOfferMsg">

<!-- Offer from the flight booking service -->
<part name="flightNo" type="xsd:integer"/>

</message>
<message name="flightNotAvailableMsg">

<!-- Answer message from the flight booking service if no
flight is available -->

</message>
<message name="flightConfirmMsg">

<!-- Flight booking confirmation from the requester -->
</message>
<message name="flightCancelMsg">

<!-- Flight booking cancellation, if the requester is not
interested in the offer received from the booking service -->

</message>

<portType name="Flight_PT">
<operation name="flightRequest">

<input message="tns:flightRequestMsg"/>
</operation>
<operation name="flightConfirm">

<input message="tns:flightConfirmMsg" />
</operation>
<operation name="flightCancel">

<input message="tns:flightCancelMsg" />
</operation>

</portType>

<portType name="Flight_CallbackPT">
<operation name="flightOffer">

<input message="tns:flightOfferMsg" />
</operation>
<operation name="flightNotAvailable">

<input message="tns:flightNotAvailableMsg" />
</operation>

</portType>

<plnk:partnerLinkType name="FlightRequest_PLT">
<plnk:role name="FlightRequest_Server">

<plnk:portType name="tns:Flight_PT"/>
</plnk:role>
<plnk:role name="FlightRequest_Client">

<plnk:portType name="tns:Flight_CallbackPT"/>
</plnk:role>

</plnk:partnerLinkType>

</definitions>

Listing 7: Definition of theFlight service.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 25

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

<process name="Flight" >
<partnerLinks >

<partnerLink name="client" partnerLinkType="FlightRequest PLT"
myRole="FlightRequest Server" partnerRole="FlightRequest Client"/ >

</partnerLinks >

<variables >
<variable name="req" messageType="flightRequest"/ >
<variable name="offer" messageType="flightOffer"/ >

</variables >

<sequence name="main" >
<receive operation="flightRequest" variable="req" partnerLink="client"/ >
<switch name="checkAvailability" >

<case name="isNotAvailable" >
<invoke operation="flightNotAvailable" partnerLink="client"/ >

</case >
<otherwise name="isAvailable" >

<assign name="prepareOffer" >
<copy ><from opaque="yes"/ >

<to variable="offer" part="fl"/ ></copy >
</assign >
<invoke operation="flightOffer" inputVariable="offer" partnerLink="client"/ >
<pick name="waitAcknowledge" >

<onMessage operation="flightConfirm" partnerLink="client"/ >
<onMessage operation="flightCancel" partnerLink="client"/ >

</pick >
</otherwise >

</switch >
</sequence >

</process >

Listing 8: TheBPEL process of theFlight service.

26 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

specification reported in Listing 9, that is based on the WSDL-S approach [SVMR05].
One can notice that, while both partsstart andclient of a request message have the
same type (they are strings), the semantic annotations define their role in the definition of
a trip (i.e., start of a trip and the client of the trip).

<definitions name="Flight">

<message name="flightRequestMsg">
<!-- Flight booking request -->
<part name="date" type="xsd:string" wssem:modelReference="trv#Trip[date]"/>
<part name="start" type="xsd:string" wssem:modelReference="trv#Trip[start]"/>
<part name="destination" type="xsd:string"

wssem:modelReference="trv#Trip[destination]"/>
<part name="client" type="xsd:string" wssem:modelReference="trv#Client"/>

</message>
<message name="flightOfferMsg">

<!-- Offer from the flight booking service -->
<part name="flightNo" type="xsd:integer" wssem:modelReference="trv#Trip[id]"/>

</message>
<message name="flightNotAvailableMsg">

<!-- Answer message from the flight booking service if no
flight is available -->

</message>
<message name="flightConfirmMsg">

<!-- Flight booking confirmation from the requester -->
</message>
<message name="flightCancelMsg">

<!-- Flight booking cancellation, if the requester is not
interested in the offer received from the booking service -->

</message>

....

</definitions>

Listing 9: The annotatedWSDL definition of theFlight service.

A second usage of semantic annotations is to define the outcome of an interaction with
a web service. In our example it is clear that a flight has been booked only if the flight
is available, the flight service sends an offer, and the client acknowledge the acceptance
of the offer. To express this in the BPEL4WS specification, we need to differentiate the
possible terminal states of the interactions with the flight booking service. In Listing
10 this is obtained through the semantic annotations associated to the “dummy”empty
activity which marks the successful terminal state of the interaction. Notice the usage of
theadd operator, already described in the previous subsection for the WSMO approach.

3.3 Modeling the Composition Goal

In this section we describe one of the inputs of the integrated discovery and composition
procedure, namely specifying the goal and formalizing the request of the Customer. This
goal is defined by the VTA, according to the request of the customer. We do not discuss
here in detail how this goal is obtained. A possibility is that the VTA has a set of goals (or

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 27

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

<process name="Flight" >
<partnerLinks >

<partnerLink name="client" partnerLinkType="FlightRequest PLT"
myRole="FlightRequest Server" partnerRole="FlightRequest Client"/ >

</partnerLinks >

<variables >
<variable name="req" messageType="flightRequest"/ >
<variable name="offer" messageType="flightOffer"/ >

</variables >

<sequence name="main" >
<receive operation="flightRequest" variable="req" partnerLink="client"/ >
<switch name="checkAvailability" >

<case name="isNotAvailable" >
<invoke operation="flightNotAvailable" partnerLink="client"/ >

</case >
<otherwise name="isAvailable" >

<assign name="prepareOffer" >
<copy ><from opaque="yes"/ >

<to variable="offer" part="fl"/ ></copy >
</assign >
<invoke operation="flightOffer" inputVariable="offer" partnerLink="client"/ >
<pick name="waitAcknowledge" >

<onMessage operation="flightConfirm" partnerLink="client" >
<empty wssem:effect="forall ?tr with (?tr memberOf trv#TripBooked

and ?tr[trv#date hasValue ’/req/date’,
trv#start hasValue ’/req/start’,
trv#destination hasValue ’/req/destination’,
trv#id hasValue ’/offer/flightNo’,
trv#client hasValue ’/req/client’]) add(?tr)"/ >

</onMessage >
<onMessage operation="flightCancel" partnerLink="client"/ >

</pick >
</otherwise >

</switch >
</sequence >

</process >

Listing 10: TheBPEL process of theFlight service.

28 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

goal patterns) that are associated to the different trip requests that the customer can submit.
The goal formalizing the request of the customer is defined on top of this ontology, as
follows.

compositionGoal BookTrip

sharedVariables {?date, ?start, ?dest, ?client}

precondition definedBy
?date memberOf date and
?start memberOf trv#Location and
?dest memberOf trv#Location and
?client memberOf trv#Client

assumption definedBy
exists {?t, ?a, ?d} {

?d memberOf date and trv#Compatible(?date,?d) and
?t [trv#start hasValue ?start,

trv#destination hasValue ?dest,
trv#date hasValue ?d] memberOf trv#TripAvailable and

?a [trv#location hasValue ?dest,
trv#date hasValue ?d] memberOf trv#AccommodationAvailable

effect definedBy
exists {?t, ?a, ?d} {

?d memberOf date and trv#Compatible(?date,?d) and
?t [trv#start hasValue ?start,

trv#destination hasValue ?dest,
trv#date hasValue ?d,
trv#client hasValue ?client] memberOf trv#TripBooked and

?a [trv#location hasValue ?dest,
trv#date hasValue ?d,
trv#client hasValue ?client] memberOf trv#AccommodationBooked

recovery definedBy
(neg exists ?t [trv#client hasValue ?client] memberOf trv#TripBooked) and
(neg exists ?a [trv#client hasValue ?client] memberOf trv#AccommodationBooked)

Listing 11: Composition Goal

ThesharedVariablescorrespond to the inputs of the customer and theprecondition
defines conditions on these variables (e.g., their types). Theassumptiondefines the con-
dition under which the composition is supposed to complete successfully, returning an
offer to the customer — in our example, if there are suitable trip and accommodation
available. Theeffect statement defines what is supposed to happen if the execution of
the composition is successful — in our case, suitable trip and accommodation have to
be booked. Finally, therecovery3 statement defines what is supposed to happen if the
execution of the composition isnot successful — no trips or accommodations have to be
booked. According to this recovery statement, if a trip has already been booked, but a fail-
ure occurs when booking the accommodation (e.g., since there are no rooms available),
then the trip has to be cancelled — otherwise the first clause of the recovery statement
would be violated.

We would like to remark that, while the composition goal is defined using a WSML-
like syntax, the structure and contents of the goal departs substantially from goals consid-

3Recovery goals denote another extension of the syntax defined in [FSPR05]. This feature will proof to
be very useful in the context of process-level composition, as described in the next section.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 29

3. LANGUAGES FOR INTEGRATING DISCOVERY AND COMPOSITION

ered in WSMO, which define much less constrained requirements on the services to be
discovered (e.g., they do not require the specification of preconditions and assumptions,
and do not contain recovery statements). The form of goals adopted here is necessary
to represent all requirements necessary for an end-to-end discovery, functional-level and
process-level composition of web services.

3.4 Modeling the Composite Service

Starting from the goal and the descriptions of the existing services defined previously,
the integrated discovery and composition algorithm is supposed to select a set of tourism
service providers (e.g., the Flight Booking Service and the Hotel Booking Service) and
to combine them into executable code that the VTA can execute in order to interact with
these services and find an offer for the customer’s request.

We will now specify a hand-woven composition in terms of an executable specifica-
tion of an orchestration interface of the composed service. The generation of such an
executable orchestration from the given Flight and Hotel Services is the overall target of
process level composition. Although we could also use a semantic specification in terms
of WSMO Orchestration here, we limit ourselves to describe the composed service di-
rectly in terms of executable BPEL4WS, since the syntax for WSMO Orchestration is
still under development.

This BPEL4WS specification declares first of all two links with the two partners of
the interaction, namely the flight booking service and the hotel booking service. It then
defines some variables. One can see that three kinds of variables can be defined: in-
put variables (corresponding to the user’s parameters specified by the composition goal),
output variables (defining the outputs of the composite service), and additional message
variables (used for the interactions with the component services). We remark that the in-
put variables are annotated with references to the precondition variables appearing in the
goal. We require that each BPEL4WS input variable is annotated with a semantic refer-
ence, that defines the origin of the variable. Output variables can be annotated similarly,
if the goal contains postcondition variables. In this case, we require that a BPEL4WS
output variable exists for each variable defined in the goal postcondition, so that the value
of the goal variable is defined at the end of the execution. In our case, we do not have
goal postconditions, so the output variables are not annotated.

30 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

<process name="VTA" >
<partnerLinks >

<partnerLink name="Flight" partnerLinkType="FlightRequest PLT"
myRole="FlightRequest Client" partnerRole="FlightRequest Server"/ >

<partnerLink name="Hotel" partnerLinkType="HotelRequest PLT"
myRole="HotelRequest Client" partnerRole="HotelRequest Server"/ >

</partnerLinks >
<variables >

<!-- INPUT variables -- >
<variable name="start" type="xsd:string" wssem:goalReference="goal#?start"/ >
<variable name="destination" type="xsd:string" wssem:goalReference="goal#?dest"/ >
<variable name="date" type="xsd:string" wssem:goalReference="goal#?date"/ >
<variable name="client" type="xsd:string" wssem:goalReference="goal#?client"/ >

<!-- OUTPUT variables -- >
<variable name="flightNo" type="xsd:integer"/ >
<variable name="hotel" type="xsd:string"/ >

<!-- MESSAGE variables -- >
<variable name="flightReq" messageType="flightRequestMsg"/ >
<variable name="flightOff" messageType="flightOfferMsg"/ >
<variable name="hotelReq" messageType="hotelRequestMsg"/ >
<variable name="hotelOff" messageType="hotelOfferMsg"/ >

</variables >
<sequence >

<assign >
<copy ><from variable="start"/ ><to variable="flightReq" part="start"/ ></copy >
<copy ><from variable="destination"/ ><to variable="flightReq" part="destination"/ ></copy >
<copy ><from variable="date"/ ><to variable="flightReq" part="date"/ ></copy >
<copy ><from variable="client"/ ><to variable="flightReq" part="client"/ ></copy >

</assign >
<invoke operation="flightRequest" variable="flightReq" partnerLink="Flight"/ >
<pick >

<onMessage operation="flightNotAvailable" partnerLink="Flight" >
<!-- Recovery termination -- >

</onMessage >
<onMessage operation="flightOffer" variable="flightOff"partnerLink="Flight" >

<assign >
<copy ><from variable="start"/ ><to variable="hotelReq" part="start"/ ></copy >
<copy ><from variable="destination"/ ><to variable="hotelReq" part="destination"/ ></copy >
<copy ><from variable="date"/ ><to variable="hotelReq" part="date"/ ></copy >
<copy ><from variable="client"/ ><to variable="hotelReq" part="client"/ ></copy >

</assign >
<invoke operation="hotelRequest" variable="hotelReq" partnerLink="Hotel"/ >
<pick >

<onMessage operation="hotelNotAvailable" partnerLink="Hotel" >
<invoke operation="flightCancel" partnerLink="Flight"/ >
<!-- Recovery termination -- >

</onMessage >
<onMessage operation="hotelOffer" variable="hotelOff"partnerLink="Hotel" >

<invoke operation="flightConfirm" partnerLink="Flight"/ >
<invoke operation="hotelConfirm" partnerLink="Hotel"/ >
<assign >

<copy ><from variable="flightOff" part="flightNo"/ ><to variable="flightNo"/ ></copy >
<copy ><from variable="hotelOff" part="hotel"/ ><to variable="hotel"/ ></copy >

</assign >
<!-- Successful termination -- >

</onMessage >
</pick >

</onMessage >
</pick >

</sequence >
</process >

Listing 12: TheBPEL process of the composed VTA service.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 31

Chapter 4

Theoretical Models

In this chapter we provide a theoretical framework for the integrated discovery and com-
position of Web services. More precisely, we will provide a formal characterization of
the different elements corresponding to the inputs and the outputs of a discovery and
composition problem.

4.1 Models for the Domain Ontology

The first element that defines the input for a discovery and composition problem is a
reference domain ontology (see Section 3.1). This ontology defines the basic concepts
that characterize the domain at hand, and is used as a basis both for the definition of the
composition requirement and for the component web services.

Our goal is to keep the domain ontology as simple as possible. For this reason, we use
a very elementary ontological language, which is based on theALN description logic
and on a generalized acyclic TBox [BN03]. In this ontological language, (an excerpt of)
the domain ontology of Listing 1 is modeled as follows: One can see that our formal
model for the domain ontology consists of the definition of a set of concepts, of the super-
concepts they are derived from, and of their attributes. Some of the features in the WSML
domain ontology, such as the fact that there is a one-to-one association between trips and
trip identifiers, cannot be represented in our ontology model, and are hence omitted from
Figure 4.1.

4.2 Models for the Web Services

Web services need to be modeled at two levels of abstraction, namely, at the functional
(or capability) level, and at the process (or interface) level.

32

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

date v >
string v >

trv#Client v ∀name. string u ∀gender. string

trv#Location v ∀name. string

trv#Trip v ∀id. string u ∀date. date u
∀start.trv#Location u ∀destination.trv#Location

trv#TripAvailable v trv#Trip

trv#TripBooked v trv#Trip u ∀pax.trv#Client

Figure 4.1: TheALN model for the domain ontology.

Functional level model

At the functional level, a web serviceW is described by:

• an ontology that extends the domain ontology with the specific concepts of the web
service at hand (see, e.g., the Flight ontology of Listing 2);

• a set of inputs, outputs, preconditions, and effects, as described in Section 2.1.

Formally:

Definition 1 The functional-level description of a web serviceW for domainD is a tuple
(ΩW , IW , OW , PW , EW), where:

• ΩW is an extension of the domain ontologyΩD;

• IW is a set of assertions of the formi : C, stating thatv is an (input) individual that
belongs to conceptC;

• OW is a set of assertions of the formo : C, stating thatv is an (output) individual
that belongs to conceptC;

• PW is a condition onΩW andIW that specifies the preconditions of the web service
invocation;

• EW is a condition onΩW , IW , andOW that specifies the effects of the web service
invocation.

For instance, in the case of the flight service, the functional-level description is defined
as follows:

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 33

4. THEORETICAL MODELS

• the ontology is:

fl#Flight v trv#Trip u ∀flightNumber. string

fl#FlightAvailable v trv#TripAvailable u fl#Flight u ∀seatNumber. string

fl#FlightBooked v trv#TripBooked u fl#Flight u ∀seatNumber. string

...

• The inputs are:?date : date, ?start: trv#Location, ?dest: trv#Location,
?client : trv#Clients.

• The output is:?flight : fl#Flight.

• The precondition corresponds to the assumption that appears in Listing 3.

• The effect corresponds to the effect that appears in Listing 3.

Process level model

At the process level, we model web services asannotated state transition systems, i.e., as
state transition systems that are marked with semantic annotations. State transition sys-
tems model the behavior of the service, while ontological semantic annotations describe
the meaning of data the service deals with.

A state transition system models a dynamic system that can be in one of a set of
possiblestates(some of which are marked asinitial states) and can evolve to new states
as a result of performing someactions. We distinguish actions ininput actions, output
actions, andτ . Input actionsrepresent the reception of messages,output actionsrepresent
messages sent to external services, andτ is a special action, calledinternal action, that
represents internal evolutions that are not visible to external services. In other words,τ
represents the fact that the state of the system can evolve without producing any output,
and without consuming any inputs. Atransition relationdescribes how the state can
evolve on the basis of inputs, outputs, or of the internal actionτ .

Definition 2 (State transition system)
A state transition systemΣ is a tuple〈S,S0, I,O,R〉 where:

• S is the finite set of states;

• S0 ⊆ S is the set of initial states;

• I is the finite set of input actions;

• O is the finite set of output actions;

• R ⊆ S × (I ∪ O ∪ {τ})× S is the transition relation.

34 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

In an annotated state transition system, we associate to each state a set ofconcept
assertionsandrole assertions. This configures a state as the assertional component of a
knowledge representation system. The assertions are given in description logic, and the
ontology plays the role of the terminological component. Therefore,concept assertions
are formulas of the forma : C (or C(a)) and state that a given individuala belongs to
the interpretation of the conceptC. Role assertionsare formulas of the forma.R = b (or
R(a, b)) and state that a given individualb is a value of the roleR for a.

Definition 3 (Annotated state transition system)
Anannotated state transition systemis a tuple〈Σ, Ω, Λ〉 where:

• Σ is a state transition system,

• Ω is an ontology,

• Λ : S → 2AΩ is the annotation function, whereAΩ is the set of all the concept
assertions and role assertions defined overΩ.

When mapping a web service to an annotated state transition system, componentΣ
traces the evolution of the “status” of the service interface. More precisely, the states of
the state transition system correspond to the activities of the BPEL4WS specification, or
to the value of variablectl state in the case of WSMO. The ontologyΩ is that defined in
the functional level description of the web service. Finally, the annotation function asso-
ciates to each state the facts that hold when the execution of the service reaches that state.
These facts are obtained by the semantic annotations enriching theWSDL and BPEL4WS
specifications, or by the facts that define the state of the WSMO specification according
to the rules discussed in Section 3.2.1.

4.3 Models for the Composition Goal

The model of the composition goal has to take into account that the goal needs to be used
both for the functional level composition and for the process level composition. For this
reason, a goal will define both a set on inputs/outputs/preconditions/effects, necessary for
the functional level composition and a formula in a specific goal language that is suitable
for process level composition. The reference ontology for defining all these elements is
the domain ontology discussed in Section 4.1.

We now give a formal definition of goal conditions on domain ontologyΩ: these will
be useful for defining both preconditions and effects and the process-level goal language.

Definition 4 (Goal condition)
Let a : C be a concept assertion anda.R = b be a role assertion defined w.r.t. ontology
Ω. Then agoal conditionis defined as follows:

p = a : C | a.R = b | p OR p | p & p | NOT p

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 35

4. THEORETICAL MODELS

We are now ready to define the functional-level part of a composition requirement.

Definition 5 (Composition requirement)
Let Ω be a domain ontology. A functional level composition requirement is a tupleF =
(I, O, P,E), where:

• I is a set ofinput assertionsi : C onΩ;

• O is a set ofoutput assertionso : C onΩ;

• P is agoal conditiononΩ, I, O that specifies the precondition of the composition;

• E is agoal conditiononΩ, I, O that specifies the effect of the composition.

In the case of the VTA scenario, all the components discussed previously can easily be
extracted from the composition goal presented in Listing 7. We remark that the recovery
condition appearing in that listing is not exploited here. Indeed, this condition is used
only at the process level, as we will describe below.

The functional-level composition requirement is sufficient for selecting a set of web
services, as done in discovery and functional-level composition. However, when one
moves to process-level composition, goals need to be extended to express complex re-
quirements that are not limited to reachability conditions (like get to a state where both
the flight and the hotel are reserved). Most often, goals need to express recovery con-
ditions and preferences (as in the case of the goal in Listing 7), or temporal conditions
(e.g., do not reserve the hotel until you have reserved the flight). These kinds of goals,
combining preferences and temporal conditions, can be expressed in the EaGLe language
[DLPT02], which can be used to express conditions on the whole behavior of a service,
conditions of different strengths, and preferences among different subgoals.

Definition 6 An EaGLecomposition goalg ∈ G over goal conditionsp ∈ Prop are
defined as follows:

g := p | g And g | g Then g | g Fail g | Repeatg |
DoReachp | TryReachp | DoMaint p | TryMaint p

GoalDoReachp specifies that conditionp has to be eventually reached in a strong way,
for all possible non-deterministic evolutions of the state transition system. Similarly, goal
DoMaint q specifies that propertyq should be maintained true despite non-determinism.
GoalsTryReach p andTryMaint q are weaker versions of these goals, where the plan is
required to do “everything that is possible” to achieve conditionp or maintain condition
q, but failure is accepted if unavoidable. Constructg1 Fail g2 is used to model preferences
among goals and recovery from failure. More precisely, goalg1 is considered first. Only
if the achievement or maintenance of this goal fails, then goalg2 is used as a recovery
or second-choice goal. Consider for instance goalTryReach c Fail DoReach d. The

36 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

sub-goalTryReach c requires to find a plan that tries to reach conditionc. During the
execution of the plan, a state may be reached from which it is not possible to reachc.
When such a state is reached, goalTryReach c fails and the recovery goalDoReachd is
considered. Goalg1 Then g2 requires to achieve goalg1 first, and then to move to goal
g2. GoalRepeat g specifies that sub-goalg should be achieved cyclically, until it fails.
Finally, goalg1 And g2 requires the achievement of both subgoalsg1 andg2.

In the case of the VTA scenario, the process level composition goal consists of a main
goal conditionE and of a recovery conditionR (see again Listing 7). In this case, the
process-level composition goal is the EaGLe formulaTryReach E Fail DoReach R,
which expresses the requirement that the composite service should try (do its best) to
achieve the main goal conditionE, and, if this comes out to be impossible, guarantee to
achieve at least the recovery conditionR.

4.4 Models for the Composite Service

The last element for which we have to provide a model is the output of the integrated
discovery and composition algorithm, namely the composite service. In the approach we
propose, we simply model the composite services as a (non-annotated) state transition
system (Definition 2).

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 37

Chapter 5

An Architecture for Integrating
Discovery and Composition

In this chapter we discuss an architecture for integrating discovery and composition of
Semantic Web Services. We start from an high-level overview of the architecture, then
we focus on the description of the interfaces among the different components and on the
definition of the core functionalities carried out by these components.

5.1 Overview of the Architecture

The architecture is depicted in Figure 5.1. It consists of three modules, corresponding to
service discovery (SD), functional level composition (FLC) and process level composition
(PLC). According to this architecture, the approach works in two phases. During the
first phase, SD and FLC are interleaved in order to find a set of web services that, once
composed, are able to satisfy the customer’s goal. The second phase is entered once this
set of web services has been found: PLC is called to generate the actual executable code
implementing the composition. We will now give a more detailed description of the three
blocks in the architecture.

“Service Discovery” Component.
Objective: Find a web service that matches a query.
Task: Mediate the accesses to the directory by caching existing results and
matching new queries to already discovered services.
Input: Discovery query.
Uses: Web service capability descriptions in the directory.
Output: Web service that matches the query (or failure if no web service is
found).

38

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

Functional
Level

Composition

Process
Level

Composition

Service
Discovery

Composition
Goal

discovery
query

web service

set of
web services

Executable
Composite

Service

web service
capability

web service
interface

Figure 5.1: Schema Integration Discovery and Composition.

“Functional Level Composition” Component.
Objective: Find a set of Web service that match the composition goal.
Task: Progressively transform the composition goal into a set of web services
matching it. Forward/backward chaining techniques like the one proposed in
[CFB04] can be adopted here.
Input: Composition goal.
Output: Set of web service matching the goal (or subgoal).

“Process Level Composition” Component.
Objective: Build an executable composite web service.
Task: Given a set of web services matching a composition goal, generate the
executable code that, once executed, interacts with the component services
and achieves the goal. services.
Input: set of web services, composition goal.
Uses: Web service interface descriptions in the directory.
Output: Executable composite web services.

Figure 5.1 focuses of the data flow among the different components. The control flow
is complex due to the necessity of managing failures in achieving the composition and
backtracking of previous choices. For example, consider the SD component: it usually
identifies several Web services able to match a given discovery query, however only one
of them is returned to the FLC. In case the FLC component fails to find a suitable set of
Web services, however, the control can be returned to the SD component and a different

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 39

5. AN ARCHITECTURE FOR INTEGRATING DISCOVERY AND COMPOSITION

Web service matching the goal can be considered. Similarly, if PLC is not able to generate
the executable process satisfying the goal given a certain set of web services, the control
can return to the FLC component, which can compute an alternative set of Web services
solving the same FLC problem. An interesting issue is to define the relevant information
to be sent back from PLC to FLC and from FLC to SD in order to direct the backtracking
process.

An issue left open by the current architecture, which has to be addressed in the future
work, is the definition of criteria for directing the SD and FLC components in the selection
of the set of Web services, so that high-quality composite services are obtained. The
problem here is that, while the quality of the composition can be evaluated only once the
executable service has been composed by the PLC component, this quality reflects the
choices done in FLC and SD.

Finally, an interesting extension of the proposed architecture consists of taking into
account non-functional requirements such as QoS, costs, security... in the selection and
composition of the services.

5.2 Definition of the Interfaces

In this section we define in a more precise way the interfaces among the different blocks
described in Figure 5.1. We start by defining some basic data types, which we do not
further describe in this document.

URI
Description: an unique identifies (e.g., the URL) for web services and asso-
ciated BPEL4WS processes.

OntologyExpression
Description: a formula defining a condition in theALN language.

EaGLeExpression
Description: a formula defining a condition in the EaGLe language.

We now define one of the key data types, namely that of ontology.

Ontology
Description: an ontology in theALN language.
Methods:

• getConcepts(): Set of Objects– returns the sets of concepts of the on-
tology

40 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

• getConceptDefinition(c: Object): OntologyExpression– returns the def-
inition of a concept

Different other data types are built on top of the Ontology data type. The simplest one is
that of assertion.

Assertion
Description: an assertion of the formi : C
Attributes:

• o: Ontology– the underlying ontology

• i: Object – the individuali

• c: Object– the conceptC for the individual;cbelongs too.getConcepts()

We are ready to define the data types for the discovery and for the composition require-
ments.

DiscoveryGoal
Description: the discovery requirement
Attributes:

• DO: Ontology– the domain ontology

• I : Set of Assertion– the input assertions onDO

• O : Set of Assertion– the output assertions onDO

• P : OntologyExpression– the goal precondition

• E : OntologyExpression– the goal effect

CompositionGoal
Description: the composition requirement
Attributes:

• DO: Ontology– the domain ontology

• I : Set of Assertion– the input assertions onDO

• O : Set of Assertion– the output assertions onDO

• P : OntologyExpression– the goal precondition

• E : OntologyExpression– the goal effect

• G : EaGLeExpression– the process level composition goal

We now define the data type describing a web service at the functional level.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 41

5. AN ARCHITECTURE FOR INTEGRATING DISCOVERY AND COMPOSITION

WebService
Description: the definition of a Web service at the functional level
Attributes:

• id: URI – unique identifier of the Web service

• DO: Ontology– the domain ontology

• SO: Ontology– the service ontology

• I : Set of Assertion– the input assertions

• O : Set of Assertion– the output assertions

• P : OntologyExpression– the service precondition

• E : OntologyExpression– the service effect

The next date structures correspond to state transition systems and annotated state transi-
tion systems, respectively.

STS
Description: the definition of the state transition system associated to a (com-
ponent or composite) serviceAttributes:

• S: Set of Object– the states of the STS

• ...

Notice that we did not describe a state transition system in detail, we only described ex-
plicitly one of its components, namely the set of states. We remark that, from a conceptual
point of view, it consists of the components described in Definition 2, however efficient
encodings of such structures, such as the ones exploited in [PTBM05b, PMBT05], are
necessary to keep small the size of the objects and to allow for an efficient process level
composition.

ASTS
Description: the definition of the annotated state transition system associated
to a component serviceAttributes:

• id: URI – unique identifier of the Web service interface

• sts : STS– the underlying STS

• o : Ontology– the service ontology

• l : Map of Object to OntologyExpression– the labeling function; the
domain consists of the states insts.S

42 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

5.3 Core Functionalities

We now define the core functionalities for our integrated discovery and composition ar-
chitecture. First of all, we define some functionalities that are necessary to access to the
description of a given service. In particular, the following two functions give access to
the capability level and process level model of a Web service.

getFunctionalDescription(ws: URI): WebService
Description: gets the functional-level (or capability level) description of a
Web service
Parameters:

• ws: URI– the unique identifier of the Web service

Returns:

• WebService– the capabilities of the Web service

getProcessDescription(ws: URI): ASTS
Description: gets the functional-level (or capability level) description of a
Web service
Parameters:

• ws: URI– the unique identifier of the Web service

Returns:

• ASTS– the process level interface of the Web service

We remark that the previous two functions are responsible to generate the models that
we exploit for the representation of Web services from the published description of these
web services. Since the published description of the Web services can be in different
languages (e.g., WSMO choreography or BPEL4WS for the process level description),
these functions have different implementations, depending on the specific language (we
will have, e.g., getProcessDescriptionBPEL and getProcessDescriptionWSMO).

The next function describes the core functionality of the discovery component.

search(g: DiscoveryGoal): Set of URI
Description:gets a set of services matching a given discovery goal
Parameters:

• g: DiscoveryGoal– the discovery goal

Returns:

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 43

5. AN ARCHITECTURE FOR INTEGRATING DISCOVERY AND COMPOSITION

• Set of URI– a set of Web services, each of which matches the discovery
goal; each service is described by its unique identifier

Remark:The set of services need not be exhaustive, i.e., there might be ser-
vices matching the goal that are not returned by the function. The exact de-
tails of which matching services are returned depends on the specific imple-
mentation of the discovery component.

The following definition corresponds to the functional level composition block.

FLC(g: CompositionGoal): Set of URI
Description:finds a set of services that jointly satisfy a composition goal
Parameters:

• g: CompositionGoal– the composition goal

Returns:

• Set of URI– a set of Web services that, if combined in a suitable way,
satisfy the composition goal at the functional level; each service is de-
scribed by its unique identifier

Finally, the function for process level composition.

PLC(stss: Set of ASTS, g: CompositionGoal): STS
Description: generates the process level composition of a set of annotated
state transition systemsParameters:

• stss: Set of ASTS– the set of annotated state transition systems

• g: CompositionGoal– the composition goal

Returns:

• STS– the state transition system implementing the composite service

Remark:the set if URI returned by function FLC has to be converted into a
set of STS before it can be passed to function PLC.

The last function we present here is responsible of deploying the composite service.

deploy(sts: STS)
Description: deploys the state transition system for the composite service
Parameters:

44 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

• sts: STS– the state transition system implementing the composite ser-
vice

Remark:the implementation of this function depends on the target language
for the composite service. For this reason, we may have different implemen-
tations of this function, such as deployBPEL, deployJAVA, etc.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 45

Chapter 6

Conclusions

The automatic creation of an executable web service starting from a user desire, is ex-
pected to have a great impact in areas of e-Commerce and Enterprise Application Inte-
gration, as it can enable dynamic and scalable cooperation between different systems and
organizations.

An important step towards dynamic and scalable integration is understanding how
discovery and composition could be used to build an executable web service. The schema
proposed in Chapter 5 shows the logical relationship between the components of this
integrated approach, and how it is possible to combine them to find a web service that
matches a goal, if necessary to refine the goal and finally to compose the web services in
a unique executable process.

In this document we have focused on describing suitable languages and theoretical
models for such an integration of discovery and composition. Moreover, we have pro-
posed an architecture that supports this integration. Future work will include the imple-
mentation of an integrated web service discovery and composition algorithm, based on the
concepts and on the architecture discussed in this document. A prototype implementation
is planned to be completed within month 30.

6.1 Extending the Architecture: Reputation

In this section we discuss an extension of the integrated discovery and composition archi-
tecture discussed previously, which takes into account reputation aspects in the selection
of web services to be composed.

In an open environment where malicious parties may advertise false service capa-
bilities the use of reputation services is a promising approach to mitigate such attacks.
Misbehaving services receive a bad reputation (reported by disappointed clients) and will
be avoided by other clients. Reputation mechanisms help to improve the global efficiency
of the overall system because they reduce the incentive to cheat [Bir01]. Studies show

46

D2.4.6 – Theoretical Integration of Discovery and Composition IST Project IST-2004-507482

that buyers seriously take into account the reputation of the seller when placing their bids
in online auctions [HW01]. Moreover, it has been proven that in certain cases reputation
mechanisms can be designed in such a way that it is in every party’s interest to report cor-
rect reputation information (incentive compatible reputation services) [JF04]. Besides,
reputation mechanisms can be implemented in a secure way [JF03].

A detailed description of existing reputation mechanisms and of their application to
semantic web services is outside the scope of this document. The interested reader can
find detailed information in Deliverable 2.4.9 [JFB05]. Here we outline a simple approach
to integrate reputation mechanisms into the process of service selection.

We will provide a reputation web service that allows to query the reputation of other
services and to submit reports. The reputation web services will have an extensible ar-
chitecture, allowing to plugin and deploy different concrete reputation mechanisms for
different example scenarios.

Integrating reputation mechanisms into the discovery process allows to filter out ser-
vices that have a bad reputation and to rank matching services according to their reputa-
tion. Hence, we will provide a wrapper to the discovery component that first forwards a
query to the standard discovery component and afterwards obtains the reputation of the
discovered services by accessing the reputation web service. Based on the reputation of
the discovered services, certain services may be removed from the result (if the reputation
is below a given threshold) or the order of the discovered services in the result may be
changed according to reputation (services with higher reputation come first). Figure 6.1
illustrates our approach.

This approach has the advantage that it does not require any changes to the integrated
discovery and composition architecture in Figure 5.1. The reputation mechanisms are well
encapsulated within the reputation web service. The discovery and composition compo-
nents are fully functional without the reputation web service, which can be integrated by
simply installing the aforementioned wrapper for the discovery component.

KWEB/2005/D2.4.6A/v1.0 February 8, 2006 47

6. CONCLUSIONS

Reputation-aware discovery

Directory
service

Reputation
service

Service
request

Service
request

Matching
service

advertisements

Reputation
information

Filtering,
ranking

Reputable
matching
service

advertisements

Filtering
constraints

Figure 6.1: A wrapper for service discovery filters and ranks matching service advertise-
ments according to their reputation.

48 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

Bibliography

[ACD+03] T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana.
Business Process Execution Language for Web Services (version 1.1),
2003.

[Bir01] A. Birk. Learning to Trust. In R. Falcone, M. Singh, and Y.-H. Tan, editors,
Trust in Cyber-societies, volume LNAI 2246, pages 133–144. Springer-
Verlag, Berlin Heidelberg, 2001.

[BN03] F. Baader and W. Nutt. Basic Description Logics. In F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors,The
Description Logic Handbook, pages 43–95. Cambridge University Press,
2003.

[BS03] Egon B̈orger and Robert Stärk. Abstract State Machines. Springer, 2003.

[CFB04] I. Constantinescu, B. Faltings, and W. Binder. Typed Based Service Com-
position. InProc. WWW2004, 2004.

[Coa03] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
In Technical White paper (OWL-S version 1.0), 2003.

[DLPT02] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a Language for
Extended Goals. InProc. AAAI’02, 2002.

[FSPR05] Dieter Fensel, James Scicluna, Axel Polleres, and Dumitru Ro-
man. Ontology-based choreography and orchestration of WSMO
services. Deliverable d14v0.2, WSMO, 2005. Available from
http://www.wsmo.org/TR/d14/v0.2/20051008/.

[HW01] D.E. Houser and J. Wooders. Reputation in Internet Auctions: Theory and
Evidence from eBay. University of Arizona Working Paper #00-01, 2001.

[JF03] R. Jurca and B. Faltings. An Incentive-Compatible Reputation Mechanism.
In Proceedings of the IEEE Conference on E-Commerce, Newport Beach,
CA, USA, 2003.

49

BIBLIOGRAPHY

[JF04] R. Jurca and B. Faltings. “CONFESS”. An Incentive Compatible Reputa-
tion Mechanism for the Online Hotel Booking Industry. InProceedings of
the IEEE Conference on E-Commerce, San Diego, CA, USA, 2004.

[JFB05] Radu Jurca, Boi Faltings, and Walter Binder. Reputation mechanism.
Knowledge Web Deliverable D2.4.9, 2005.

[Lar04a] Ruben Lara. Definition of semantics for web service discovery and compo-
sition. Knowledge Web Deliverable D2.4.2, 2004.

[Lar04b] Ruben Lara. Semantic requirements for web services description. Knowl-
edge Web Deliverable D2.4.1, 2004.

[LKMR +05] Holger Lausen, Uwe Keller, Francisco Martin-Recuerda, Jos de Bruijn, ,
and Michael Stollberg. A conceptual and formal framework for semantic
web services. Knowledge Web Deliverable D2.4.5, 2005.

[MSZ01] S. McIlraith, S. Son, and H. Zeng. Semantic Web Services.IEEE Intelligent
Systems, 16(2):46–53, 2001.

[PMBT05] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Compo-
sition of Web Services by Planning at the Knowledge Level. InProc. IJ-
CAI’05, 2005.

[PSK02] M. Paolucci, K. Sycara, and T. Kawamura. Delivering Semantic Web Ser-
vices. InProc. WWW2003, 2002.

[PTBM05a] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. An approach for the
automated composition of BPEL processes. InProc. Workshop on WWW
Service Composition with Semantic Web Service (WSCOMPS 2005), 2005.

[PTBM05b] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis
of Composite BPEL4WS Web Services. InProc. ICWS’05, 2005.

[SVMR05] A. Sheth, K. Verna, J. Miller, and P. Rajasekaran. Enhacing Web Service
Descriptions using WSDL-S. InEclipseCon, 2005.

[WSM05] Web service modeling ontology (WSMO), June 2005. W3C member sub-
mission. Available at http://www.w3.org/Submission/WSMO/.

50 February 8, 2006 KWEB/2005/D2.4.6A/v1.0

