
D2.4.6 A Theoretical Integration of
Web Service Discovery and

Composition

Roberti Pierluigi (ITC-IRST)
Marco Pistore (University of Trento)

with contributions from:
Walter Binder (EPFL), Ion Constantinescu (EPFL)

Axel Polleres (UIBK), Holger Lausen (UIBK),

Paolo Traverso (ITC-IRST), Michal Zaremba (NUIG)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.4.6 (WP2.4)

In this document we propose a possible theoretical approach for combining service discovery, functional-level service
composition, and process-level service composition. We analyse the challanges in composition of these functionalities
(integration of Web service discovery and composition) and propose a theoretical way to solve them.
Keyword list: semantic Web service discovery, functional level composition of Web service, process level composition of
web service, integration of web service discovery and composition

Copyright c© 2005 The contributors

Document Identifier KWEB/2005/D2.4.6A/v1.0
Project KWEB EU-IST-2004-507482
Version v1.0
Date August 10, 2005
State draft
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Śevigńe
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Ṕerez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universiẗat Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

École Polytechnique F́ed́erale de Lausanne
Freie Universiẗat Berlin
National University of Ireland Galway
Universiẗat of Innsbruck
University of Manchester
University of Trento

4

Changes

Version Date Author Changes

0.1 06.06.05 Pierluigi Roberti Document Creation
0.15 08.06.05 Pierluigi Roberti Section 1.2 added
0.20 10.06.05 Pierluigi Roberti Chapter 6 and first content Section 1.1

added
0.25 12.06.05 Pierluigi Roberti Section 4.1 added
0.30 13.06.05 Pierluigi Roberti Chapter 3 and Section 2.1 added
0.35 15.06.05 Walter Binder Section 4.1 and Section 5.2 added
0.45 22.06.05 Pierluigi Roberti Section 4.4 and Section 4.5 added
0.50 02.08.05 Marco Pistore Changed the structure, revised sections 3

and 4
1.00 10.08.05 Marco Pistore Revision after reviews’ feedback

Executive Summary

This document addresses the problem of providing an end-to-end approach to automati-
cally discover, select, contract and compose available semantic web services in order to
fulfill a given user request specified as a composition goal.

This requires the integration of different functionalities, namely web service discov-
ery, and two levels of service composition: (i) functional level composition and (ii) pro-
cess level composition. Each of these functionalities has been already investigated and
applied in isolation to semantic web services (see Deliverable 2.4.2), but their integrated
usage is still an open problem.

The problem of automatic discovery of services can be seen asthe problem of locating
a service that can fulfill some requester objectives. Functional-level composition has to
extend the discovery problem, in case a single service that can fulfill the requester goal
cannot be found, by selecting a combination of existing services that can fulfill it, based
on their functional descriptions (i.e. capabilities).

The process-level composition covers a later phase of the overall composition task
and permits to build an actually executable web service, also called orchestration. In this
phase we assume that the set of Web services necessary for defining the composition has
already been found, and that we have to work out the details ofhow to interact with them.
The goal is to obtain the executable code that implements thecomposition.

This document is a first step towards the integration of discovery and composition,
which focuses on setting the requirements for such an integration. More precisely, it
provides an example describing a scenario where discovery and composition need to be
integrated in order to match a customer’s request. It also defines a reference architecture
for integrating discovery and composition. The definition of the theoretical framework
underlying the integrated discovery and composition approach, as well as the investiga-
tion of the techniques necessary to support this approach, is the objective of an extended
version of this deliverable, due by month 24 of the project.

Contents

1 Introduction 1
1.1 Overview of this document . 3

2 Background 4
2.1 Service Discovery . 4
2.2 Functional level composition .. . 5
2.3 Process level composition .. 6

3 Example scenario: Virtual Travel Agencies 8
3.1 The Virtual Travel Agency Scenario 8
3.2 Discovery/Composition Goal .10
3.3 Web Services . 12
3.4 Composite Service . 17

4 Integration Discovery and Composition: An Architecture 19
4.1 Basic Architecture . 19
4.2 Extending the Architecture: Reputation 21

5 Conclusions 23

iii

Chapter 1

Introduction

This document addresses the problem of providing an integrated approach to automati-
cally discover, select, contract and compose available semantic web services into a new,
executable web service that matches a given user request specified as a composition goal.
The generation of the composed, executable process requires the integration and harmo-
nization of different existing functionalities availablefor semantic web services, such as
discovery, functional level composition and process levelcomposition. Our goal is to
propose a theoretical solution that is built on top of these components, and that exploits
them in a combined, iterative approach, to build a composed,executable web service that
is able to match the user’s request.

The automated composition of web services is one of the most promising ideas and
- at the same time - one of the main challenges for the taking off of service oriented
applications: services that are composed automatically can perform new functionalities
by interacting with services that are published on the web, thus significantly reducing the
time and effort needed to develop new web based and service oriented applications.

It has been widely recognized that one of the key elements forthe automated com-
position of web services is semantics: unambiguous descriptions of web services capa-
bilities and web service processes (e.g., in languages suchas OWL-S [Coa03] or WSMO
[WSM05]), which provide the ability to reason about web services, and to automate web
services tasks, like web service discovery and composition, see, e.g., [MSZ01].

Most of the work on the composition of semantic web services has focused so far on
the problem of composition at thefunctional level, i.e., composition by matching precon-
ditions and effects of services described as atomic components, which, given some inputs,
return some outputs [PSK02, CFB04]. One of the key open problems for semantic web
services is to combine discovery and composition in order toautomatically generate com-
posed web services that can be directly executed to invoke component services to achieve
some composite goal. This is a key step in reducing effort, time and errors due to manual
composition at the programming level.

The problem ofintegrating discovery and composition is far from trivial. We need to

1

1. INTRODUCTION

take into account the fact that, in real cases, component services are not atomic, and it can-
not in general be executed in a single request-response step. In general, each component
service may be specified as an interaction protocol, where different “atomic” invocations
and responses are combined into complex execution patterns. While the details on the
exact protocol required to interact with an existing service are not important in discovery
upfront, they become essential when we aim at generating composed web services that
are executable. For this reason, process-level composition needs to deal with descriptions
of web services in terms of complex, composite processes, that consist of arbitrary com-
binations of atomic interactions, in the style, e.g., of OWL-S process models [Coa03] or
based on an abstract machine model such as in WSMO interfaces [WSM05].

As a consequence, at discovery time and during the “functional level” composition it
is necessary to identify a set of web services that, interacting with each other, may be able
to match the composition request. The focus is on required inputs and provided outputs
of the services in order to generate the outputs needed by theuser. For instance, it is at
this level we “discover” that a “hotel booking” service and a“flight booking” service are
necessary to satisfy a vacation request from a user.

Given the set of selected web services, and given the composition goal, the “process-
level” composition phase is responsible of generating automatically an executable com-
posed web service. For instance, given the process models oftwo available web services
for “hotel booking” and for “flight booking”, we aim at generating an executable com-
posed service, say “virtual travel agency”. By interactingwith the “hotel booking” and
“flight booking” services, the composed service books hotelrooms and flights seats ac-
cording to a specified goal.

We can identify some critical issues related to both the different parts and the complete
integrated approach. For the service discovery it is important to enable a mechanization
of this service: the reason is to allow automatically locating and contracting available ser-
vices to perform a given business activity. For an integrated approach we need a flexible
integration of the discovery service in order to have a dynamic selection of web service
available to cover the different (discovery) goal. If service discovery is not able to find a
service that matches the user requirements, it may be still possible to compose (integrate)
several services to provide the required functionality. Inour open environment, we invoke
service discovery recursively. The programmer of a composed service has to know which
basic services are available, and because of the openness ofthe environment, the set of
available services changes continuously.

For automated service composition, the service composition engine must have an up-
to-date view of the available services. As the number of published services may be ex-
tremely large (assuming the wide-spread acceptance and adoption of semantic web ser-
vices), the service composition engine may not be able to maintain a copy of all published
service descriptions. Hence, the service composition engine has to dynamically interact
with service directories to get back services when needed.

Once a functional service composition has been computed, weare interested in the

2 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

concrete interactions between the different services. Typically, a service consists not only
of a single function, so it may be necessary to invoke severaltimes in a specific order
the functions (methods) of a particular Web service. The work in the area of automatic
discovery and composition is being applied to Web services in order to keep the interven-
tion of the human user to the minimum. Semantic mark-up can beexploited to automate
the tasks of discovering services, executing them, composing them and enabling seamless
interoperation between them, thus enabling intelligent Web services.

1.1 Overview of this document

This document is a first step towards the integration of discovery and composition.

In particular, it provides an example describing a scenariowhere discovery and com-
position need to be integrated in order to match a customer’srequest. It also defines a
reference architecture for integrating discovery and composition.

In Chapter 2 we briefly recall the basic concepts of web servicediscovery, functional
level composition, and process level composition.

In Chapter 3 we introduce a use case that will be used to define the requirements and
direct the definition of the integrated discovery and composition approach.

In Chapter 4 we discuss an architecture for integrating discovery and composition of
Semantic Web Services.

Finally, our results and plans for future work are summarized in Chapter 5. Future
work will include the definition of the theoretical framework underlying an integrated
discovery and composition and the implementation of an integrated web service discovery
and composition algorithm.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 3

Chapter 2

Background

In this section we briefly recall the notions of service discovery, functional level com-
position, and process level composition. More details can be found in Deliverable 2.4.2
[Lar04a].

2.1 Service Discovery

Web Service Discovery is the process of finding and selectinga suitable web service that
can be invoked to match a user’s request. Discovery is a complex process that, in the
general case, consists of different steps.

Goal Discovery. Starting from a user desire (expressed using natural language or any
other means), goal discovery will locate the pre-defined goal that fits the requester’s desire
from the set of pre-defined goals, resulting on a selected pre-defined goal. Such pre-
defined goal is an abstraction of the requester’s desire intoa generic and reusable goal.

Goal Refinement. The selected pre-defined goal is refined, based on the given requester
desire, in order to actually reflect such desire. This step will result in a formalized re-
quester goal.

Service Discovery. Available services that can, according to their abstract capabilities,
potentially fulfill the requester goal are discovered. As the abstract capability is not guar-
anteed to be correct, we cannot assure at this level that the service will actually fulfill the
requester goal.

Service Contracting. The services discovered based on their abstract capabilities have
an associated contracting capability. This contracting capability will be used in service

4

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

contracting to determine if the selected service can actually fulfill the requester goal,
establishing a contract agreement. If this is the case, the result will be a contracted service.

In the scope of this deliverable, we will focus onService Discovery.

2.2 Functional level composition

If there is no single service that is able to fulfil a given goal(no complete match), it may
still be possible to select a set of partially matching services that can be composed in the
form of a workflow in order to fulfil the goal. We call the process of goal decomposition
and service selectionfunctional-level service composition.

Functional-level service composition addresses the problem of selecting a set of ser-
vices that, combined in a suitable way, are able to match a given goal. Each existing
service is defined in terms of an atomic interaction, i.e., interms of its input and output
parameters, and possibly also in terms of its preconditionsand effects. Functional-level
service composition exploits the information that is provided e.g. in an OWL-S service
profile or in a WSMO service capability model.

The goal defines the overall functionality that the composedservice has to implement,
again in terms of its inputs, outputs, preconditions, and effects.

The approach to functional-level service composition proposed in Deliverable 2.4.2
[Lar04a] is based on forward chaining. Informally, the ideaof forward chaining is to
iteratively select a possible serviceS and apply it to a set of input parameters provided
by a goalG (i.e., all inputs required byS have to be available). If applyingS does not
solve the problem (i.e., still not all the outputs required by the goalG are available) then a
new goalG′ can be computed fromG and from the outputs generated byS and the whole
process is iterated.

In order for a serviceS to be applicable to the inputs available from a goalG, all of
the inputs required by the serviceS need to correspond to some compatible parameter in
the inputs provided by the goalG. This means that the “role” of the goal parameter has to
be the same as, or more specific than, that of the service parameter, and also the range of
values that the goal parameter can take has to be more specificthan that accepted by the
serviceS.

Upon successful functional-level service composition, the selected services are ar-
ranged in a workflow that respects the data-dependencies between the services (i.e., con-
straints on the order in which the services may be executed).

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 5

2. BACKGROUND

2.3 Process level composition

Given a set of existing Web servicesW1, . . . ,Wn,, and a list of constrains between them,
the problem of building a process level composition consistof finding a program that
interacts with these Web services in a suitable way, in orderto achieve a given composition
requirement (goal of composition) and to follow the constraints. We call the process of
combine the different service selectedprocess-level service composition. Let us consider
for instance the case of the Virtual Travel Agency, and let usassume that a set of Tourism
service providers has been identified for solving a customerrequest. These services can
consists, for instance, of a Flight Booking service (or a Train Journey Booking service)
and a Hotel Booking service that are adequate for the specificrequest of the customer, e.g.,
the specific destination (the selection of such Web servicescan be the result of a functional
level composition). The goal of process-level compositionis to obtain the executable code
that invokes these Web services, in order to obtain an offer for the customer’s request.

In the definition of the executable code implementing the composition, we need to
take into account the fact that, in real cases, booking an hotel is not an atomic step,
but requires instead a sequence of operations, including authentication, submission of a
specific request, negotiation of an offer, acceptance (or refusal) of the offer, and booking
the room. That is, Web servicesW1, . . . ,Wn are usually composite, i.e., the interaction
with them does not consist of a single request-response step, but they require to follow
a complex protocol in order to achieve the required result. Moreover, the steps defining
the complex interaction are not necessarily defining a sequence. Indeed, these steps may
have conditional, or non-nominal outcomes (e.g., authentication can fail; there may be no
offer available from an existing service...) that affect the following steps (no request can
be submitted if the authentication fails; if there is no offer available, an order cannot be
submitted...). It may also be the case that the same operation can be repeated iteratively,
e.g., in order to refine a request or to negotiate the conditions of the offer.

The details on the exact sequence of operations required to interact with an existing
service are not essential in discovery. Taking these details into account becomes unavoid-
able when the executable code implementing the compositionhas to be generated. For
this reason, in process level composition the existing Web services need to be described in
terms of complex, composite processes, that consist of arbitrary (conditional and iterative)
combinations of atomic interactions, and there atomic interactions may have conditional
outcomes (Process level service composition exploits the information that is provided
e.g. in an OWL-S service profile or in a WSMO service capability model). As a con-
sequence, also the generated executable code has to be a complex program, since it has
to take into account all possible contingencies occurring in the interaction with the Web
services.

Automated composition starts from a set of web services, andfrom a composition
requirement, and generates an executable web service whichimplements the composed
service. The synthesis of a composite web service is not limited to atomic component

6 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

Web services. The output of this component is to define an interaction protocol with the
selected services, so that an executable implementation ofthe composition is obtained.
For this point of view the Web service is defined as an activityflow or as an interaction
protocol.

In Deliverable 2.4.2 [Lar04a] we distinguished three stepsto achieve process level
composition:

1. Processing the Component Web Services: This step consists of acquiring the
process-level descriptions of the existing component Web services, and analyzing
them for what concerns the interaction protocols that they implement.

2. Synthesis of the Composition: During this step, the process implementing the
composition of the Web services is automatically generatedstaring from the out-
come of step 1 and from the composition requirement.

3. Deployment and Execution of the Composed Service: In this step, the process
generated in step 2 is translated into executable code and deployed on a web service
application engine.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 7

Chapter 3

Example scenario: Virtual Travel
Agencies

In this section, we present an example that will be used to define the requirements and
direct the definition of the integrated discovery and composition approach. The use case is
in the context of e-Tourism services, and consists in the composition of existing transport
and accommodation services in order to provide a Virtual Travel Agency service to the
end user. We refer to Deliverable 2.4.1 [Lar04b] for furtherinformation on this use case.

To describe the example we exploit a syntax based on that of the WSML [WSM05]
language. Notice however that several constructs and concepts used in this chapter are not
part of WSML. Different solutions may get adopted from the WSMOgroup when these
concepts will be considered for inclusion in WSML. Moreover,in the examples we freely
overrules WSML syntactic constraints and requirements, if this was useful for readability
purposes.

3.1 The Virtual Travel Agency Scenario

The Virtual Travel Agency (VTA) is an e-Tourism service provider which offers a travel
booking services to the end user by using and interacting with other, more basic e-Tourism
service providers. The functionality of the VTA is that of a traditional travel agency: get-
ting a request from a customer, dealing with different e-Tourism providers to put together
an appropriate offer covering the customer request, arranging all the booking (and pay-
ment) with the different providers, and transparently offering the final trip to the customer.

In the context of this deliverable, we assume that the available e-Tourism providers
should be located dynamically by the VTA, with no need for prior agreements, and that
the business process of the VTA should be composed dynamically based on the request
received and the available providers.

8

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

In the following, we describe the use case in more detail.

Goal/Context. The customer wants to make a trip in a given location (e.g., Paris) for
a given period of time (e.g., staying there from August 10 to August 15). The customer
sends his request to the VTA, which has to build a package including a travel to/from
Paris and an accommodation for all the nights spent in Paris.Clearly, the hotel has to be
booked according to the flight (i.e., if the flight arrives on August 9, then the hotel has to
be booked from August 9).

The VTA should take care of locating the necessary tourism service providers (e.g.,
suitable flight providers for the trip, hotels in Paris...) and contact them. Finally, a suitable
offer will be returned to the customer.

Participating actors.

• Customer: the end-user that requests a trip booking to the VTA.

• Tourism service providers: commercial companies that provide specific tourism
services.

• VTA: the intermediary between the Customer and the tourism service providers.
It provides tourism packages to customers by aggregating the separate services of
different tourism service providers.

Scenario/Steps.

1. The user constructs a trip request, including all his requirements and preferences.

2. The user submits the request to the VTA.

3. The VTA receives the request and interprets it.

4. The VTA selects a set of tourism service providers in orderto satisfy the received
trip request.

5. The VTA generates the executable code necessary to interact with the selected
tourism service providers.

6. The VTA executes a generated code, interacting with the selected tourism service
providers in order to collect all the information from the tourism service providers,
aggregate them and prepare a trip offer.

7. If the interaction with the tourism service providers is successful, the VTA delivers
the aggregated offers to the customer. Otherwise, other combinations of tourism
service providers are selected (step 4).

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 9

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

8. The customer receives an offer for his trip (or a failure message reporting that no
offer is possible).

In this deliverable we focus on steps 4 and 5 of the scenario described above. That is,
given a goal encoding the request of the user, we show how it ispossible to select a set of
suitable tourism service providers and compose them in order to generate an executable
code composing these services according to the goal.

3.2 Discovery/Composition Goal

In this section we describe one of the inputs of the integrated discovery and composition
procedure, namely the goal specifying and formalizing the request of the Customer. This
goal is defined by the VTA, according to the request of the customer. We do not discuss
here in detail how this goal is obtained. A possibility is that the VTA has a set of goals
(or goal patterns) that are associated to the different triprequests that the customer can
submit.

The goal is based on an ontology, which defines the basic concepts in the travel domain
(trips, accommodations, clients...) This ontology is described in the following, exploiting
the WSML syntax.

namespace trv ”http://www.example.org/Travel”

[...]

ontology trv#simpleTravelOntology

/∗ Client doing the travel ∗/
concept trv#Client

trv#name ofType string
trv#gender ofType string

/∗ Destination of the travel ∗/
concept trv#Location

trv#name ofType string

/∗ Trips ∗/
concept trv#Trip

trv#id ofType (1 1) string
trv#date ofType date
trv#start ofType trv#Location
trv#destination ofType trv#Location

/∗ Accommodation ∗/
concept trv#Accommodation

trv#id ofType (1 1) string
trv#date ofType date
trv#location ofType Location

/∗ Trips /accommodations being available ∗/
concept trv#TripAvailable subConceptOf trv#Trip

concept trv#AccommodationAvailable subConceptOf trv#Accommodation

10 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

/∗ Trips /accommodations being booked ∗/
concept trv#TripBooked subConceptOf trv#Trip

trv#pax ofType (1 ∗) trv#Client

concept trv#AccommodationBooked subConceptOf trv#Accommodation
trv#pax ofType (1 ∗) trv#Client

/∗ The first date is the user requested date, the second one is
the trip date, the relation tells us if the two dates are
compatible (the trip date should contain the user requested date,
but some additional days can be added before and /or after the
requested dates, e.g ., due to constraints in the flights) ∗/

relation Compatible(ofType date, ofType date)

Listing 1: Basic Travel Ontology

The goal formalizing the request of the customer is defined ontop of this ontology, as
follows.

compositionGoal BookTrip

sharedVariables {?date, ?start, ?dest, ?client}

precondition definedBy
?date memberOf date and
?start memberOf trv#Location and
?dest memberOf trv#Location and
?client memberOf trv#Client

assumption definedBy
exists {?t, ?a, ?d} {

?d memberOf date and trv#Compatible(?date,?d) and
?t [trv#start hasValue ?start,

trv#destination hasValue ?dest,
trv#date hasValue ?d] memberOf trv#TripAvailable and

?a [trv#location hasValue ?dest,
trv#date hasValue ?d] memberOf trv#AccommodationAvailable

effect definedBy
exists {?t, ?a, ?d} {

?d memberOf date and trv#Compatible(?date,?d) and
?t [trv#start hasValue ?start,

trv#destination hasValue ?dest,
trv#date hasValue ?d,
trv#client hasValue ?client] memberOf trv#TripBooked and

?a [trv#location hasValue ?dest,
trv#date hasValue ?d,
trv#client hasValue ?client] memberOf trv#AccommodationBooked

recovery definedBy
(neg exists ?t [trv#client hasValue ?client] memberOf trv#TripBooked) and
(neg exists ?a [trv#client hasValue ?client] memberOf trv#AccommodationBooked)

Listing 2: Composition Goal

In brief, thesharedVariablescorrespond to the inputs of the customer and thepre-
condition defines conditions on these variables (e.g., their types). The assumptionde-
fines the condition under which the composition is supposed to complete successfully,
returning an offer to the customer — in our example, if there are suitable trip and ac-
commodation available. Theeffect statement defines the what is supposed to happen if

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 11

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

the execution of the composition is successful — in our case,suitable trip and accom-
modation have to be booked. Finally, therecovery statement defines what is supposed
to happen if the execution of the composition isnot successful — no trips or accommo-
dations have to be booked. According to this recovery statement, if a trip has already
been booked, but a failure occurs when booking the accommodation (e.g., since there are
no rooms available), then the trip has to be cancelled — otherwise the first clause of the
recovery statement would be violated.

We would like to remark that, while be defined the compositiongoal using a WSML-
like syntax, the structure and contents of the goal departs substantially from goals consid-
ered in WSMO, which define much less constrained requirementson the services to be
discovered (e.g., they do not require the specification of preconditions and assumptions,
and do not contain recovery statements). The form of goals adopted here is necessary
to represent all requirements necessary for an end-to-end discovery, functional-level and
process-level composition of web services.

3.3 Web Services

In this subsection we describe in detail the different web services implementing the
tourism service providers. More precisely, we assume that there are three such web ser-
vices available: a simple Flight Booking Service, a Train Booking Service and a Hotel
Booking Service.

We now introduce the concepts and messages which the separate services use to in-
teract. They are defined by means of ontologies described in the WSML language. We
report the ontology for the Flight service — the ontologies for Train and Hotel are very
similar.

namespace trv ”http://www.example.org/Travel”
fl ”http :// www.example.org/BookFlight”

[...]

ontology fl#simpleFlightOntology
importsOntology trv#simpleTravelOntology

concept fl#Flight subConceptOf trv#Trip
fl#flightNumber ofType (1 1) string

axiom definedBy
?x[fl#flightNumber hasValue ?fn] memberOf fl#Flight implies ?x[trv#id hasValue ?fn] memberOf trv#Trip

concept fl#FlightAvailable subConceptOf {trv#TripAvailable, fl#Flight}
fl#seatNumber ofType string

concept fl#FlightBooked subConceptOf {trv#TripBooked, fl#Flight}
fl#seatNumber ofType string

// The following concepts define the messages received/sent by the Flight service

concept fl#FlightRequest subConceptOf trv#Trip
fl#client ofType trv#Client

12 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

concept fl#FlightNotAvailable subConceptOf trv#Trip

concept fl#FlightOffer subConceptOf {trv#Flight,fl#FlightRequest}

concept fl#FlightConfirm subConceptOf fl#FlightOffer

concept fl#FlightCancel subConceptOf fl#FlightOffer

Listing 3: Ontology for Flight

We now report the capability-level WSML definition of the Flight Booking Service.

webService fl#BookFlight
capability

sharedVariables {?date, ?start, ?dest, ?client}
precondition definedBy

exists {?req}
(?req[

trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client]

memberOf fl#FlightRequest).

assumption definedBy
exists {?flight} (?flight [trv#start hasValue ?start,

trv#destination hasValue ?dest,
trv#date hasValue ?date] memberOf fl#FlightAvailable).

postcondition definedBy
#offer [trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
trv#flightNumber hasValue #fn,
fl#client hasValue ?client] memberOf fl#FlightOffer.

effect definedBy
#booking[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue #fn,
trv#pax hasValue ?client] memberOf fl#FlightBooked.

Listing 4: Flight Booking Service: Capability Level

Notice the different roles of precondition, assumption, postcondition and effect. The
precondition is used to express constrains on the inputs therequester should be able to
provide to the service. The assumption expresses constraints for a successful execution of
the service that the requester cannot control (the fact thata flight is actually available). The
postcondition expresses new information made available tothe requester after a successful
service execution (an offer with relevant information for the requester such as the flight
number). The effect, finally, expresses the results of the execution to the web services
such as the fact that the flight has actually been booked.

We now proceed with describing the choreography interface of the Flight Booking
Service. For describing this interface, we use the syntax ofWSMO Choreography [SPR+05]
with a slight extension, based on control state ASMs [BS03],a particular form of ASMs

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 13

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

which does not restrict the model by any means but adds names control states by means
of a simple designated controlled functionctl state.

A control state ASM is an ASM with one particular designated controlled function
ctl state (which has a range a finite number of Integers{1,...,n} or a finite enumeration of
state-descriptors) and each transition rule having the form:

if ctl state = i then
if cond1 then

rule1

ctl state := j1
endIf
...

if condn then
rulen

ctl state := jn
endIf

endIf

Basically, control state ASMs are FSMs enriched by synchronous parallelism and
data manipulation (and thus possibly infinite again). Note that control state ASMs are no
expressive restriction of general ASMs but make it easier todefine control flow.

interface fl#BookFlightInterface
choreography

stateSignature
importsOntology fl#simpleFlightOntology

in
fl#FlightRequest withGrounding ”http ://... ” ,
fl#FlightConfirm withGrounding ”http ://... ” ,
fl#FlightCancel withGrounding ”http ://... ”

out
fl#FlightNotAvailable withGrounding ”http ://... ” ,
fl#FlightOffer withGrounding ”http ://... ”

shared
fl#Flight ,
fl#FlightAvailable ,

fl#FlightBooked

ctl state {fl#start ,fl#offerMade,fl#noAvail ,fl#confirmed,fl#cancelled}

transitionRules
if (ctl state = fl#start) then

forall {?req,?date,?start,?dest,?client} with
?req[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightRequest

do
if choose {?fn} with

exists {?s,?f} (?f [trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn] memberOf fl#FlightAvailable)

do

14 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

add (#offer[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn,
fl#client hasValue ?client] memberOf fl#FlightOffer)

ctl state := fl#offerMade
endDo

else
add (#notAvailable[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest] memberOf fl#FlightNotAvailable)

ctl state := fl#noAvail
endIf

endDo
endIf

if (ctl state = fl#offerMade) then
forall ?client with (#offer [fl#client hasValue ?client] memberOf {fl#FlightConfirm,fl#FlightOffer})

do
add (#offer[trv#pax hasValue ?client] memberOf trv#FlightBooked)

endDo
ctl state := fl#confirmed

endIf

if (ctl state = fl#offerMade) then
if #offer memberOf {fl#FlightCancel,fl#FlightOffer}

ctl state := fl#cancelled
endIf

Listing 5: Flight Booking Service: Intrerface Level

We omit the description of the capability and of the interface level for the Train Book-
ing Service, which we assume be similar to those of the Flight. We report instead the
description of the Hotel Booking Service

webService htl#BookHotel
capability

sharedVariables {?date, ?loc, ?client}
precondition definedBy

exists {?req}
(?req[

trv#date hasValue ?date,
trv#location hasValue ?loc,
htl#client hasValue ?client]

memberOf htl#HotelRequest).

assumption definedBy
exists {?hotel} (?hotel[trv#date hasValue ?date,

trv#location hasValue ?loc] memberOf htl#HotelAvailable).

postcondition definedBy
#offer [trv#date hasValue ?date,

trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelOffer.

effect definedBy
#booking[trv#date hasValue ?date,

trv#location hasValue ?loc,
htl#hotelName hasValue #hn,
trv#pax hasValue ?client] memberOf trv#HotelBooked.

interface htl#BookHotelInterface
choreography

stateSignature

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 15

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

importsOntology htl#simpleHotelOntology

in
htl#HotelRequest withGrounding ”http ://... ” ,
htl#HotelConfirm withGrounding ”http ://... ” ,
htl#HotelCancel withGrounding ”http ://... ”

out
htl#HotelNotAvailable withGrounding ”http ://... ” ,
htl#HotelOffer withGrounding ”http ://... ”

shared
htl#Hotel ,
htl#HotelAvailable ,
htl#HotelBooked

ctl state {htl#start ,htl#offerMade,htl#noAvail ,htl#confirmed,htl#cancelled}

transitionRules
if (ctl state = htl#start) then

forall {?req,?date,?loc,?client} with
?req[trv#date hasValue ?date,

trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelRequest

do
if choose {?name} with

exists {?h} (?h[trv#date hasValue ?date,
trv#hotelName hasValue ?name,
trv#location hasValue ?loc] memberOf trv#HotelAvailable)

do
add (#offer[trv#date hasValue ?date,

trv#hotelName hasValue ?name,
trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelOffer)

ctl state := htl#offerMade
endDo

else
add (#notAvailable[trv#date hasValue ?date,

trv#location hasValue ?loc] memberOf htl#HotelNotAvailable)
ctl state := htl#noAvail

endIf
endDo

endIf

if (ctl state = htl#offerMade) then
forall ?client with (#offer [htl#client hasValue ?client] memberOf {htl#HotelConfirm,htl#HotelOffer})

do
add (#offer[trv#pax hasValue ?client] memberOf trv#HotelBooked)

endDo
ctl state := htl#confirmed

endIf

if (ctl state = htl#offerMade) then
if #offer memberOf {htl#HotelCancel,htl#HotelOffer}

ctl state := htl#cancelled
endIf

Listing 6: Hotel Booking Service

16 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

3.4 Composite Service

Starting from the goal and the descriptions of the existing services defined previously,
the integrated discovery and composition algorithm is supposed to select a set of tourism
service providers (e.g., the Flight Booking Service and theHotel Booking Service) and
to combine them into executable code that the VTA can executein order to interact with
these services and find an offer for the customer’s request.

We will now specify a hand-woven composition in terms of an executable specifi-
cation of an orchestration interface of the composed service. Since the description of
orchestration interfaces in WSML is still under development, we use pseudo-syntax here
to illustrate the example.

The composed service should request a flight; if no flight is available then the service
fails. Otherwise, an hotel is requested; if no hotel is available, then the flight is cancelled
and the service fails. Otherwise, both flight and hotel are confirmed and the service ends
with success.

namespace trv ”http://www.example.org/Travel”
fl ”http :// www.example.org/BookFlight”
htl ”http :// www.example.org/BookHotel”
vta ”http :// www.example.org/VTA”

webService vta#VTA

interface vta#VTAInterface
orchestration

stateSignature
importsOntology {htl#simpleHotelOntology,fl#simpleFlightOntology}

inputVariables
?start ofType trv#Location
?dest ofType trv#Location
?date ofType date
?client ofType trv#Client

outputVariables
?flight ofType fl#Flight
?hotel ofType htl#Hotel

ctl state{vta#start ,vta#flightRequested,vta#hotelRequested,vta#noFlight,vta#noHotel,vta#booked}

transitionRules

// Request a flight
if (ctl state = vta#start) then

add (#fReq[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightRequest)

ctl state = vta#flightRequested
endIf

// Flight offer received: request and hotel
if (ctl state = vta#flightRequested and

exists {?fo,?fn} (?fo[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber havValue ?fn,

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 17

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

fl#client hasValue ?client] memberOf fl#FlightOffer)) then
?flight = ?fo
add (#fReq[trv#date hasValue ?date,

trv#location hasValue ?dest,
htl#client hasValue ?client] memberOf htl#HotelRequest)

ctl state = vta#hotelRequested

// No flight available : terminate with failure
if (ctl state = vta#flightRequested and

exists {?fna} ?fna[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightNotAvailable)) then

ctl state = vta#noFlight
endIf

// Hotel offer received: confirm both flight and hotel and terminare sucessfully
if (ctl state = vta#hotelRequested and

exists {?ho,?hn} (?ho[trv#date hasValue ?date,
trv#location hasValue ?dest,
htl#hotelName hasValue ?hn,
htl#client hasValue ?client] memberOf htl#HotelOffer)) then

?hotel = ?ho
if exists {?fn} (?flight [fl#flightNumber havValue ?fn]) then

add (#fAck[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn,
htl#client hasValue ?client] memberOf fl#FlightConfirm)

add (#hAck[trv#date hasValue ?date,
trv#location hasValue ?dest,
htl#hotelName hasValue ?hn,
htl#client hasValue ?client] memberOf htl#HotelRequest)

endIf
ctl state = vta#booked

endIf

// No hotel available : cancel the flight and terminare with failure
if (ctl state = vta#hotelRequested and

exists {?hna} (?hna[trv#date hasValue ?date,
trv#location hasValue ?dest,
htl#client hasValue ?client] memberOf htl#HotelNotAvailable)) then

if exists {?fn} (?flight [fl#flightNumber havValue ?fn]) then
add (#fNack[trv#date hasValue ?date,

trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn,
htl#client hasValue ?client] memberOf fl#FlightConfirm)

endIf
ctl state = vta#noHotel

endIf

Listing 7: VTA Composite Service

18 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

Chapter 4

Integration Discovery and Composition:
An Architecture

In this section we discuss an architecture for integrating discovery and composition of
Semantic Web Services. The description is very high-level since its formal definition and
refinement (along with the investigation of the underlying theory and the implementation
of the algorithm) will be the focus of the work in the forthcoming months.

4.1 Basic Architecture

The architecture is depicted in Figure 4.1. It consists of three modules, corresponding to
service discovery (SD), functional level composition (FLC)and process level composition
(PLC). According to this architecture, the approach works intwo phases. During the
first phase, SD and FLC are interleaved in order to find a set of web services that, once
composed, are able to satisfy the customer’s goal. The second phase is entered once this
set of web services has been found: PLC is called to generate the actual executable code
implementing the composition.

We will now give a more detailed description of the three blocks in the architecture.

“Service Discovery” Component .
Objective: Find a web service that matches a query.
Task: Mediate the accesses to the directory by caching existing results and matching new
queries to already discovered services.
Input: Discovery query.
Uses: Web service capability descriptions in the directory.
Output: Web service that matches the query (or failure if no web service is found).

19

4. INTEGRATION DISCOVERY AND COMPOSITION: AN ARCHITECTURE

Functional
Level

Composition

Process
Level

Composition

Service
Discovery

Directory

Composition
Goal

discovery
query

web service

set of
web services

query

web service
interface

web service
capability

Executable
Composite

Service

Figure 4.1: Schema Integration Discovery and Composition.

“Functional Level Composition” Component .
Objective: Find a set of Web service that match the composition goal.
Task: Progressively transform the composition goal into a set ofweb services matching it.
Forward/backward chaining techniques like the one proposed in [CFB04] can be adopted
here.Input: Composition goal.
Output: Set of web service matching the goal.

“Process Level Composition” Component .
Objective: Build an executable composite web service.Task: Given a set of web services
matching a composition goal, generate the executable code that, once executed, interacts
with the component services and achieves the goal. services.
Input: set of web services, composition goal.
Uses: Web service interface descriptions in the directory.
Output: Executable composite web services.

Figure 4.1 focuses of the data flow among the different components. The control flow
is complex due to the necessity of managing failures in achieving the composition and
backtracking of previous choices. As example, consider theSD component: it usually
identifies several Web services able to match a given discovery query, however only one
of them is returned to the FLC. In case the FLC component fails to find a suitable set of
Web services, however, the control can be returned to the SD component and a different
Web service matching the goal can be considered. Similarly,if PLC is not able to generate
the executable process satisfying the goal given a certain set of web services, the control
can return to the FLC component, which can compute an alternative set of Web services

20 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

solving the same FLC problem. An interesting issue is to define the relevant information
to be sent back from PLC to FLC and from FLC to SD in order to direct the backtracking
precess.

Another issue left open by the current architecture, which has to be addressed in the
refinement of the theoretical framework that will be undertaken in the next months, is the
definition of criteria for directing the SD and FLC components in the selection of the set
of Web services, so that high-quality composite services are obtained. The problem here
is that, while the quality of the composition can be evaluated only once the executable
service has been composed by the PLC component, this qualityreflects the choices done
in FLC and SD.

Finally, an interesting extension of the proposed architecture consists in taking into
account non-functional requirements such as QoS, costs, security... in the selection and
composition of the services. In the next subsection we discuss how such an extension can
be defined for a specific class on non-functional requirements, related to service reputa-
tion.

4.2 Extending the Architecture: Reputation

In this section we discuss an extension of the integrated discovery and composition archi-
tecture discussed previously, which takes into account reputation aspects in the selection
of web services to be composed.

In an open environment where malicious parties may advertise false service capa-
bilities the use of reputation services is a promising approach to mitigate such attacks.
Misbehaving services receive a bad reputation (reported bydisappointed clients) and will
be avoided by other clients. Reputation mechanisms help to improve the global efficiency
of the overall system because they reduce the incentive to cheat [Bir01]. Studies show
that buyers seriously take into account the reputation of the seller when placing their bids
in online auctions [HW01]. Moreover, it has been proven that in certain cases reputation
mechanisms can be designed in such a way that it is in every party’s interest to report cor-
rect reputation information (incentive compatible reputation services) [JF04]. Besides,
reputation mechanisms can be implemented in a secure way [JF03].

A detailed description of existing reputation mechanisms and of their application to
semantic web services is outside the scope of this document.The interested reader can
find detailed information in Deliverable 2.4.9 [Rep04]. Here we outline a simple approach
to integrate reputation mechanisms into the process of service selection.

We will provide a reputation web service that allows to querythe reputation of other
services and to submit reports. The reputation web serviceswill have an extensible ar-
chitecture, allowing to plugin and deploy different concrete reputation mechanisms for
different example scenarios.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 21

4. INTEGRATION DISCOVERY AND COMPOSITION: AN ARCHITECTURE

Reputation-aware discovery

Directory
service

Reputation
service

Service
request

Service
request

Matching
service

advertisements

Reputation
information

Filtering,
ranking

Reputable
matching
service

advertisements

Filtering
constraints

Figure 4.2: A wrapper for service discovery filters and ranksmatching service advertise-
ments according to their reputation.

Integrating reputation mechanisms into the discovery process allows to filter out ser-
vices that have a bad reputation and to rank matching services according to their reputa-
tion. Hence, we will provide a wrapper to the discovery component that first forwards a
query to the standard discovery component and afterwards obtains the reputation of the
discovered services by accessing the reputation web service. Based on the reputation of
the discovered services, certain services may be removed from the result (if the reputation
is below a given threshold) or the order of the discovered services in the result may be
changed according to reputation (services with higher reputation come first). Figure 4.2
illustrates our approach.

This approach has the advantage that it does not require any changes to the integrated
discovery and composition architecture in Figure 4.1. The reputation mechanisms are well
encapsulated within the reputation web service. The discovery and composition compo-
nents are fully functional without the reputation web service, which can be integrated by
simply installing the aforementioned wrapper for the discovery component.

22 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

Chapter 5

Conclusions

The automatic creation of an executable web service starting to a user desire, is expected
to have a great impact in areas of e-Commerce and Enterprise Application Integration, as
it can enable dynamic and scalable cooperation between different systems and organiza-
tions.

An important step towards dynamic and scalable integrationis understanding how
discovery and composition could be use to build an executable web service. The schema
proposed in the Chapter 4 shows the logical relationship between the components of this
integrated approach, and how it is possible to combine them to find a web service that
match a goal, if necessary to refine the goal and finally to compose the web services in a
unique executable process.

In this document we have focused on an example of integrated discovery and com-
position and on the definition of a reference architecture. Future work will focus on the
definition of the theoretical framework underlying an integrated discovery and composi-
tion. This will require to refine the definitions of the languages and underlying models
used for defining composition goals, web service choreographies, and executable compos-
ite services. These theoretical investigations are planned to be completed within month
24. A second line in our future work is the implementation of an integrated web service
discovery and composition algorithm. The implementation is planned to be completed
within month 30.

23

Bibliography

[Bir01] A. Birk. Learning to Trust. In R. Falcone, M. Singh, and Y.-H. Tan, edi-
tors,Trust in Cyber-societies, volume LNAI 2246, pages 133–144. Springer-
Verlag, Berlin Heidelberg, 2001.

[BS03] Egon B̈orger and Robert Stärk. Abstract State Machines. Springer, 2003.

[CFB04] I. Constantinescu, B. Faltings, and W. Binder. Typed Based Service Compo-
sition. InProc. WWW2004, 2004.

[Coa03] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
In Technical White paper (OWL-S version 1.0), 2003.

[HW01] D.E. Houser and J. Wooders. Reputation in Internet Auctions: Theory and
Evidence from eBay. University of Arizona Working Paper #00-01, 2001.

[JF03] R. Jurca and B. Faltings. An Incentive-Compatible Reputation Mechanism. In
Proceedings of the IEEE Conference on E-Commerce, Newport Beach, CA,
USA, 2003.

[JF04] R. Jurca and B. Faltings. “CONFESS”. An Incentive Compatible Reputation
Mechanism for the Online Hotel Booking Industry. InProceedings of the
IEEE Conference on E-Commerce, San Diego, CA, USA, 2004.

[Lar04a] Ruben Lara. Definition of semantics for web servicediscovery and composi-
tion. In Knowledge Web Deliverable D2.4.2, 2004.

[Lar04b] Ruben Lara. Semantic requirements for web services description. InKnowl-
edge Web Deliverable D2.4.1, 2004.

[MSZ01] S. McIlraith, S. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

[PSK02] M. Paolucci, K. Sycara, and T. Kawamura. DeliveringSemantic Web Ser-
vices. InProc. WWW2003, 2002.

[Rep04] Reputation mechanism. InKnowledge Web Deliverable D2.4.1, 2004.

24

D2.4.6 A Theoretical Integration of Web Service Discovery and CompositionIST Project IST-2004-507482

[SPR+05] James Scicluna, Axel Polleres, Dumitru Roman, Cristina Feier, and
Dieter Fensel. Ontology-based choreography and orchestration of
WSMO services. Deliverable d14v0.2, WSMO, 2005. Available from
http://www.wsmo.org/TR/d14/v0.2/20050702/.

[WSM05] Web service modeling ontology (WSMO) submission, June 2005. W3C mem-
ber submission. Available at http://www.w3.org/Submission/WSMO/.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 25

