knowledgeweb

realizing the semantic web

D2.4.6 A Theoretical Integration of
Web Service Discovery and
Composition

Roberti Pierluigi (ITC-IRST)
Marco Pistore (University of Trento)

with contributions from:
Walter Binder (EPFL), lon Constantinescu (EPFL)
Axel Polleres (UIBK), Holger Lausen (UIBK),

Paolo Traverso (ITC-IRST), Michal Zaremba (NUIG)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.4.6 (WP2.4)

In this document we propose a possible theoretical appraacboimbining service discovery, functional-level service
composition, and process-level service composition. Weyaaahe challanges in composition of these functionalities
(integration of Web service discovery and composition) argppse a theoretical way to solve them.

Keyword list: semantic Web service discovery, functionaeleomposition of Web service, process level composition of
web service, integration of web service discovery and coiitipos

Document Identifier | KWEB/2005/D2.4.6A/v1.0
Project KWEB EU-IST-2004-507482
\ersion v1.0

Date August 10, 2005

State draft

Distribution public

Copyright(© 2005 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the I®§@mme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel
35512 Cessoné&vigré
France. PO Box 91226
Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polytechnique Rderale de Lausanne (EPFL)

Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitat Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I'Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person:&ldme Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejdl
E-mail address: nejdi@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta

E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asunin Gomez Ferez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Sheffield (USFD)

Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fur Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitat Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the wedding to the elaboration of this
document, even if they might not have directly contributeevtiting parts of this document:

Ecole Polytechnique#terale de Lausanne
Freie Universiat Berlin

National University of Ireland Galway
Universiat of Innsbruck

University of Manchester

University of Trento

Changes

| Version| Date | Author | Changes |

0.1 06.06.05| Pierluigi Roberti | Document Creation

0.15 08.06.05| Pierluigi Roberti | Section 1.2 added

0.20 10.06.05| Pierluigi Roberti | Chapter 6 and first content Section 1.
added

0.25 12.06.05| Pierluigi Roberti | Section 4.1 added

0.30 13.06.05| Pierluigi Roberti | Chapter 3 and Section 2.1 added

0.35 15.06.05| Walter Binder Section 4.1 and Section 5.2 added

0.45 22.06.05| Pierluigi Roberti | Section 4.4 and Section 4.5 added

0.50 02.08.05| Marco Pistore Changed the structure, revised section
and 4

1.00 10.08.05| Marco Pistore Revision after reviews’ feedback

Executive Summary

This document addresses the problem of providing an erahtbapproach to automati-
cally discover, select, contract and compose availableasémweb services in order to
fulfill a given user request specified as a composition goal.

This requires the integration of different functionalggjenamely web service discov-
ery, and two levels of service composition: (i) functionatél composition and (ii) pro-
cess level composition. Each of these functionalities leenkalready investigated and
applied in isolation to semantic web services (see Delblerd.4.2), but their integrated
usage is still an open problem.

The problem of automatic discovery of services can be setiregsgoblem of locating
a service that can fulfill some requester objectives. Foneltlevel composition has to
extend the discovery problem, in case a single service #rafulfill the requester goal
cannot be found, by selecting a combination of existingisessthat can fulfill it, based
on their functional descriptions (i.e. capabilities).

The process-level composition covers a later phase of teeathwcomposition task
and permits to build an actually executable web service, éddled orchestration. In this
phase we assume that the set of Web services necessary fongéifie composition has
already been found, and that we have to work out the detaliswfto interact with them.
The goal is to obtain the executable code that implementsahgosition.

This document is a first step towards the integration of disgpand composition,
which focuses on setting the requirements for such an iategr. More precisely, it
provides an example describing a scenario where discovetycamposition need to be
integrated in order to match a customer’s request. It al$ioeea reference architecture
for integrating discovery and composition. The definitidrttee theoretical framework
underlying the integrated discovery and composition apginp as well as the investiga-
tion of the techniques necessary to support this approactheiobjective of an extended
version of this deliverable, due by month 24 of the project.

Contents

1 Introduction
1.1 Overviewofthisdocument,

2 Background
2.1 ServiceDiSCOVEIY o v i
2.2 Functional level composition
2.3 Processlevelcomposition. o L 0

3 Example scenario: Virtual Travel Agencies
3.1 The Virtual Travel Agency Scenario
3.2 Discovery/CompositionGoal
3.3 WebServices
3.4 Composite Service e

4 Integration Discovery and Composition: An Architecture
4.1 Basic Architecture
4.2 Extending the Architecture: Reputation

5 Conclusions

Chapter 1

Introduction

This document addresses the problem of providing an intedrapproach to automati-
cally discover, select, contract and compose availableasmweb services into a new,
executable web service that matches a given user requestisp@s a composition goal.
The generation of the composed, executable process redghagentegration and harmo-
nization of different existing functionalities availadie semantic web services, such as
discovery, functional level composition and process legghposition. Our goal is to
propose a theoretical solution that is built on top of thesmponents, and that exploits
them in a combined, iterative approach, to build a compomegt;utable web service that
is able to match the user’s request.

The automated composition of web services is one of the nrostiping ideas and
- at the same time - one of the main challenges for the takihgfo$ervice oriented
applications: services that are composed automaticaitypesform new functionalities
by interacting with services that are published on the wiels significantly reducing the
time and effort needed to develop new web based and senia@ed applications.

It has been widely recognized that one of the key elementthibautomated com-
position of web services is semantics: unambiguous ddgmmgpof web services capa-
bilities and web service processes (e.g., in languagesasIGWL-S [Coa03] or WSMO
[WSMO5]), which provide the ability to reason about web seeg, and to automate web
services tasks, like web service discovery and composisee, e.g., [MSZ01].

Most of the work on the composition of semantic web serviasfbcused so far on
the problem of composition at tiHenctional level, i.e., composition by matching precon-
ditions and effects of services described as atomic comqpsnehich, given some inputs,
return some outputs [PSK02, CFB04]. One of the key open prabler semantic web
services is to combine discovery and composition in ordautomatically generate com-
posed web services that can be directly executed to invakgooent services to achieve
some composite goal. This is a key step in reducing effonk tand errors due to manual
composition at the programming level.

The problem ofntegrating discovery and composition is far from trivial. We need to

1

1. INTRODUCTION

take into account the fact that, in real cases, componevitssrare not atomic, and it can-
not in general be executed in a single request-responselatgpneral, each component
service may be specified as an interaction protocol, whéfereint “atomic” invocations
and responses are combined into complex execution patt¥vimie the details on the
exact protocol required to interact with an existing seswace not important in discovery
upfront, they become essential when we aim at generatingposed web services that
are executable. For this reason, process-level composigeds to deal with descriptions
of web services in terms of complex, composite processasctnsist of arbitrary com-
binations of atomic interactions, in the style, e.g., of OWIprocess models [Coa03] or
based on an abstract machine model such as in WSMO interfatas105].

As a consequence, at discovery time and during the “funati@vel” composition it
is necessary to identify a set of web services that, intergetith each other, may be able
to match the composition request. The focus is on requirpdtgnand provided outputs
of the services in order to generate the outputs needed hysére For instance, it is at
this level we “discover” that a “hotel booking” service antflaght booking” service are
necessary to satisfy a vacation request from a user.

Given the set of selected web services, and given the cotigpogoal, the “process-
level” composition phase is responsible of generatingraataally an executable com-
posed web service. For instance, given the process modeioavailable web services
for “hotel booking” and for “flight booking”, we aim at gendnag an executable com-
posed service, say “virtual travel agency”. By interactmigh the “hotel booking” and
“flight booking” services, the composed service books haiems and flights seats ac-
cording to a specified goal.

We can identify some critical issues related to both theadiiiit parts and the complete
integrated approach. For the service discovery it is ingrdrto enable a mechanization
of this service: the reason is to allow automatically laggtand contracting available ser-
vices to perform a given business activity. For an integratgproach we need a flexible
integration of the discovery service in order to have a dyieaselection of web service
available to cover the different (discovery) goal. If seesdiscovery is not able to find a
service that matches the user requirements, it may be stiliple to compose (integrate)
several services to provide the required functionalityolin open environment, we invoke
service discovery recursively. The programmer of a comgagevice has to know which
basic services are available, and because of the openn#ss efvironment, the set of
available services changes continuously.

For automated service composition, the service composgig@ine must have an up-
to-date view of the available services. As the number of ighbl services may be ex-
tremely large (assuming the wide-spread acceptance amtiad@f semantic web ser-
vices), the service composition engine may not be able totaiaia copy of all published
service descriptions. Hence, the service compositionnenigas to dynamically interact
with service directories to get back services when needed.

Once a functional service composition has been computedirevinterested in the

2 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

concrete interactions between the different servicesiCffy, a service consists not only
of a single function, so it may be necessary to invoke sevareds in a specific order
the functions (methods) of a particular Web service. Thekworthe area of automatic
discovery and composition is being applied to Web servicesder to keep the interven-
tion of the human user to the minimum. Semantic mark-up caexpéited to automate
the tasks of discovering services, executing them, comgdkem and enabling seamless
interoperation between them, thus enabling intelligenb\&&rvices.

1.1 Overview of this document

This document is a first step towards the integration of disgpand composition.

In particular, it provides an example describing a scenahere discovery and com-
position need to be integrated in order to match a customegeest. It also defines a
reference architecture for integrating discovery and cositon.

In Chapter 2 we briefly recall the basic concepts of web semdiseovery, functional
level composition, and process level composition.

In Chapter 3 we introduce a use case that will be used to defeneetiuirements and
direct the definition of the integrated discovery and contpmsapproach.

In Chapter 4 we discuss an architecture for integrating ésigoand composition of
Semantic Web Services.

Finally, our results and plans for future work are summatize Chapter 5. Future
work will include the definition of the theoretical framevkounderlying an integrated
discovery and composition and the implementation of argnated web service discovery
and composition algorithm.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 3

Chapter 2

Background

In this section we briefly recall the notions of service digny, functional level com-
position, and process level composition. More details aaifolind in Deliverable 2.4.2
[LarO4a].

2.1 Service Discovery

Web Service Discovery is the process of finding and selectisgitable web service that
can be invoked to match a user’s request. Discovery is a aopiocess that, in the
general case, consists of different steps.

Goal Discovery Starting from a user desire (expressed using natural lagggoaany
other means), goal discovery will locate the pre-defined tha fits the requester’s desire
from the set of pre-defined goals, resulting on a selecteddefimed goal. Such pre-
defined goal is an abstraction of the requester’s desireaiigieneric and reusable goal.

Goal Refinement The selected pre-defined goal is refined, based on the gigeleseer
desire, in order to actually reflect such desire. This stdpresult in a formalized re-
gquester goal.

Service Discovery Available services that can, according to their abstrapabdities,
potentially fulfill the requester goal are discovered. As #ipstract capability is not guar-
anteed to be correct, we cannot assure at this level thaetkiees will actually fulfill the
requester goal.

Service Contracting The services discovered based on their abstract capabiliive
an associated contracting capability. This contractinmabdity will be used in service

4

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

contracting to determine if the selected service can dgtdialfill the requester goal,
establishing a contract agreement. If this is the casegdhdtrwill be a contracted service.

In the scope of this deliverable, we will focus 8ervice Discovery.

2.2 Functional level composition

If there is no single service that is able to fulfil a given g complete match), it may
still be possible to select a set of partially matching sssithat can be composed in the
form of a workflow in order to fulfil the goal. We call the prosesf goal decomposition
and service selectidiunctional-level service composition.

Functional-level service composition addresses the prolaf selecting a set of ser-
vices that, combined in a suitable way, are able to match enggoal. Each existing
service is defined in terms of an atomic interaction, i.etemms of its input and output
parameters, and possibly also in terms of its preconditamtseffects. Functional-level
service composition exploits the information that is pd®d e.g. in an OWL-S service
profile or in a WSMO service capability model.

The goal defines the overall functionality that the compasadlice has to implement,
again in terms of its inputs, outputs, preconditions, arfeots.

The approach to functional-level service composition psga in Deliverable 2.4.2
[LarO4a] is based on forward chaining. Informally, the id&aforward chaining is to
iteratively select a possible serviceand apply it to a set of input parameters provided
by a goalG (i.e., all inputs required by have to be available). If applyin§ does not
solve the problem (i.e., still not all the outputs requirgdite goalG: are available) then a
new goalG’ can be computed fror¥ and from the outputs generated Byand the whole
process is iterated.

In order for a services to be applicable to the inputs available from a géalall of
the inputs required by the serviéeneed to correspond to some compatible parameter in
the inputs provided by the goél. This means that the “role” of the goal parameter has to
be the same as, or more specific than, that of the service pgggrand also the range of
values that the goal parameter can take has to be more spbaifichat accepted by the
serviceS.

Upon successful functional-level service compositiore $ielected services are ar-
ranged in a workflow that respects the data-dependenciegbetthe services (i.e., con-
straints on the order in which the services may be executed).

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 5

2. BACKGROUND

2.3 Process level composition

Given a set of existing Web servic8s,, ..., WW,,, and a list of constrains between them,
the problem of building a process level composition consfstinding a program that
interacts with these Web services in a suitable way, in dalachieve a given composition
requirement (goal of composition) and to follow the consiia We call the process of
combine the different service selectacess-level service composition. Let us consider
for instance the case of the Virtual Travel Agency, and ledssume that a set of Tourism
service providers has been identified for solving a custamguest. These services can
consists, for instance, of a Flight Booking service (or aimfdourney Booking service)
and a Hotel Booking service that are adequate for the speetficest of the customer, e.g.,
the specific destination (the selection of such Web sendae$e the result of a functional
level composition). The goal of process-level compositstio obtain the executable code
that invokes these Web services, in order to obtain an affiethie customer’s request.

In the definition of the executable code implementing the position, we need to
take into account the fact that, in real cases, booking asl i®tnot an atomic step,
but requires instead a sequence of operations, includitigeatication, submission of a
specific request, negotiation of an offer, acceptance (asat) of the offer, and booking
the room. That is, Web servicégy, ..., W, are usually composite, i.e., the interaction
with them does not consist of a single request-response lstephey require to follow
a complex protocol in order to achieve the required resulbrédver, the steps defining
the complex interaction are not necessarily defining a sespiendeed, these steps may
have conditional, or non-nominal outcomes (e.g., authatitin can fail; there may be no
offer available from an existing service...) that affea tbllowing steps (no request can
be submitted if the authentication fails; if there is no ofiwailable, an order cannot be
submitted...). It may also be the case that the same oper@dio be repeated iteratively,
e.g., in order to refine a request or to negotiate the comditad the offer.

The details on the exact sequence of operations requireddract with an existing
service are not essential in discovery. Taking these datdb account becomes unavoid-
able when the executable code implementing the compogitsno be generated. For
this reason, in process level composition the existing Véebices need to be described in
terms of complex, composite processes, that consist dfanp(conditional and iterative)
combinations of atomic interactions, and there atomicatgons may have conditional
outcomes (Process level service composition exploits nf@mation that is provided
e.g. in an OWL-S service profile or in a WSMO service capabilitydel). As a con-
sequence, also the generated executable code has to be @x@mggram, since it has
to take into account all possible contingencies occurnmthe interaction with the Web
services.

Automated composition starts from a set of web services,feord a composition
requirement, and generates an executable web service whptements the composed
service. The synthesis of a composite web service is notdario atomic component

6 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

Web services. The output of this component is to define amaatien protocol with the

selected services, so that an executable implementatitimeafomposition is obtained.
For this point of view the Web service is defined as an actiflidyw or as an interaction
protocol.

In Deliverable 2.4.2 [LarO4a] we distinguished three stepachieve process level
composition:

1. Processing the Component Web ServicesThis step consists of acquiring the
process-level descriptions of the existing component Végbices, and analyzing
them for what concerns the interaction protocols that thgyiement.

2. Synthesis of the Composition During this step, the process implementing the
composition of the Web services is automatically generatadng from the out-
come of step 1 and from the composition requirement.

3. Deployment and Execution of the Composed Servicdn this step, the process
generated in step 2 is translated into executable code gotoly@el on a web service
application engine.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 7

Chapter 3

Example scenario: Virtual Travel
Agencies

In this section, we present an example that will be used toméédfie requirements and
direct the definition of the integrated discovery and contpmsapproach. The use case is
in the context of e-Tourism services, and consists in thepasition of existing transport
and accommodation services in order to provide a Virtual@radgency service to the
end user. We refer to Deliverable 2.4.1 [LarO4b] for furtirdormation on this use case.

To describe the example we exploit a syntax based on thaedMEML [WSMO05]
language. Notice however that several constructs and ptsased in this chapter are not
part of WSML. Different solutions may get adopted from the WSI©Oup when these
concepts will be considered for inclusion in WSML. Moreoverthe examples we freely
overrules WSML syntactic constraints and requirementsisfiwas useful for readability
purposes.

3.1 The Virtual Travel Agency Scenario

The Virtual Travel Agency (VTA) is an e-Tourism service pider which offers a travel

booking services to the end user by using and interactingaetiter, more basic e-Tourism
service providers. The functionality of the VTA is that ofraditional travel agency: get-
ting a request from a customer, dealing with different efigu providers to put together
an appropriate offer covering the customer request, amgnall the booking (and pay-
ment) with the different providers, and transparently oifg the final trip to the customer.

In the context of this deliverable, we assume that the avala-Tourism providers
should be located dynamically by the VTA, with no need foopagreements, and that
the business process of the VTA should be composed dyndynigded on the request
received and the available providers.

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

In the following, we describe the use case in more detail.

Goal/Context. The customer wants to make a trip in a given location (e.gisPtor

a given period of time (e.g., staying there from August 10 tayst 15). The customer
sends his request to the VTA, which has to build a packageding a travel to/from
Paris and an accommodation for all the nights spent in P@tesarly, the hotel has to be
booked according to the flight (i.e., if the flight arrives onguist 9, then the hotel has to
be booked from August 9).

The VTA should take care of locating the necessary tourismice providers (e.g.,
suitable flight providers for the trip, hotels in Paris. ndecontact them. Finally, a suitable
offer will be returned to the customer.

Participating actors.

e Customer: the end-user that requests a trip booking to the VTA

e Tourism service providers: commercial companies that idegpecific tourism
services.

e VTA: the intermediary between the Customer and the tourismice providers.
It provides tourism packages to customers by aggregatigeiparate services of
different tourism service providers.

Scenario/Steps.

1. The user constructs a trip request, including all his meqoents and preferences.
2. The user submits the request to the VTA.

3. The VTA receives the request and interprets it.

4

. The VTA selects a set of tourism service providers in otdesatisfy the received
trip request.

5. The VTA generates the executable code necessary to dhterth the selected
tourism service providers.

6. The VTA executes a generated code, interacting with theetsal tourism service
providers in order to collect all the information from theaitesm service providers,
aggregate them and prepare a trip offer.

7. If the interaction with the tourism service providersugsessful, the VTA delivers
the aggregated offers to the customer. Otherwise, othebo@tions of tourism
service providers are selected (step 4).

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 9

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

8. The customer receives an offer for his trip (or a failuressage reporting that no
offer is possible).

In this deliverable we focus on steps 4 and 5 of the scenadorided above. That is,
given a goal encoding the request of the user, we show hovwpdssible to select a set of
suitable tourism service providers and compose them inrdadgenerate an executable
code composing these services according to the goal.

3.2 Discovery/Composition Goal

In this section we describe one of the inputs of the integrdiscovery and composition
procedure, namely the goal specifying and formalizing tropuiest of the Customer. This
goal is defined by the VTA, according to the request of thearast. We do not discuss
here in detail how this goal is obtained. A possibility isttttee VTA has a set of goals
(or goal patterns) that are associated to the differentréquests that the customer can
submit.

The goal is based on an ontology, which defines the basic pticethe travel domain
(trips, accommodations, clients...) This ontology is diéed in the following, exploiting
the WSML syntax.

namespace trv _http://www.example.org/Travel”

(-]

ontology trv#simpleTravelOntology

/% Client doing the travel =/

concept trv#Client
trv#name ofType _string
trv#gender of Type _string

/x Destination of the travel */
concept trv#Location
trv#fname ofType _string

Ix Trips =/

concept trv#Trip
trv#id ofType (1 1) _string
trvi#tdate ofType _date
trv#tstart ofType trv#Location
trv#destination ofType trv#Location

/x Accommodation */

concept trv#Accommodation
trv#id ofType (1 1) _string
trvi#tdate ofType _date
trv#location ofType Location

/% Trips/accommodations being available «/
concept trv#TripAvailable subConceptOf trv#Trip

concept trv#AccommodationAvailable subConceptOf trv#Accommodation

10 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

/% Trips/accommodations being booked x/
concept trv#TripBooked subConceptOf trv#Trip
trv#pax ofType (1 =) trv#Client

concept trv##AccommodationBooked subConceptOf trv#Accommodation
trv#pax ofType (1 x) trv#Client

/x The first date is the user requested date, the second one is
the trip date, the relation tells us if the two dates are
compatible (the trip date should contain the user requested date,
but some additional days can be added before and/or after the
requested dates, e.g., due to constraints in the flights) =/

relation Compatible(ofType _date, ofType _date)

Listing 1: Basic Travel Ontology

The goal formalizing the request of the customer is definetbprof this ontology, as
follows.

compositionGoal BookTrip
sharedVariables {?date, ?start, ?dest, ?client}

precondition definedBy
?date memberOf _date and
?start memberOf trv#Location and
?dest memberOf trv#Location and
?client memberOf trv#Client

assumption definedBy
exists {?t, ?a, ?2d} {
?d memberOf _date and trv#Compatible(?date,?d) and
?t [trv#start hasValue ?start,
trv#destination hasValue ?dest,
trv#tdate hasValue ?d] memberOf trv#TripAvailable and
?a [trv#tlocation hasValue ?dest,
trv#date hasValue ?d] memberOf trv#AccommodationAvailable
effect definedBy
exists {?t, ?a, ?d} {
?d memberOf _date and trv#Compatible(?date,?d) and
?t [trv#start hasValue ?start,
trv#destination hasValue ?dest,
trv#tdate hasValue ?d,
trv#client hasValue ?client] memberOf trv#TripBooked and
?a [trv#tlocation hasValue ?dest,
trv#date hasValue ?d,
trv#client hasValue ?client] memberOf trv#AccommodationBooked

recovery definedBy
(neg exists ?t [trv#client hasValue ?client] memberOf trv#TripBooked) and
(neg exists ?a [trv#client hasValue ?client] memberOf trv#AccommodationBooked)

Listing 2: Composition Goal

In brief, thesharedVariablescorrespond to the inputs of the customer andphe
condition defines conditions on these variables (e.g., their typebe absumptionde-
fines the condition under which the composition is supposecbimplete successfully,
returning an offer to the customer — in our example, if there suitable trip and ac-
commodation available. Theffect statement defines the what is supposed to happen if

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 11

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

the execution of the composition is successful — in our cas#able trip and accom-
modation have to be booked. Finally, trecovery statement defines what is supposed
to happen if the execution of the compositioma successful — no trips or accommo-
dations have to be booked. According to this recovery statgmif a trip has already
been booked, but a failure occurs when booking the accomtiood@.g., since there are
no rooms available), then the trip has to be cancelled — wfiserthe first clause of the
recovery statement would be violated.

We would like to remark that, while be defined the compositjoal using a WSML-
like syntax, the structure and contents of the goal depaltstantially from goals consid-
ered in WSMO, which define much less constrained requirenmntbe services to be
discovered (e.g., they do not require the specification e€@nditions and assumptions,
and do not contain recovery statements). The form of goatpted here is necessary
to represent all requirements necessary for an end-to-esedwery, functional-level and
process-level composition of web services.

3.3 Web Services

In this subsection we describe in detail the different wetvises implementing the
tourism service providers. More precisely, we assume tieetare three such web ser-
vices available: a simple Flight Booking Service, a TraimBiog Service and a Hotel
Booking Service.

We now introduce the concepts and messages which the sepgaratces use to in-
teract. They are defined by means of ontologies describdaeitSML language. We
report the ontology for the Flight service — the ontologies Train and Hotel are very
similar.

namespace trv _"http://www.example.org/Travel”
fl _"http :// www.example.org/BookFlight”

(-]

ontology fl#simpleFlightOntology
importsOntology trv#simpleTravelOntology

concept fl#Flight subConceptOf trv#Trip
fl#flightNumber ofType (1 1) _string

axiom definedBy
?x[fl#flightNumber hasValue ?fn] memberOf fl#Flight implies ?x[trv#id hasValue ?fn] memberOf trv#Trip

concept fl#FlightAvailable subConceptOf {trv#TripAvailable, fi#Flight}
fl#seatNumber of Type _string

concept fl#FlightBooked subConceptOf {trv#TripBooked, fl#Flight}
fl#tseatNumber of Type _string

/I The following concepts define the messages received/sent by the Flight service

concept fl#FlightRequest subConceptOf trv#Trip
fl#client ofType trv#Client

12 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

concept fl#FlightNotAvailable subConceptOf trv#Trip
concept fl#FlightOffer subConceptOf {trv#Flight,fl#FlightRequest}

concept fl#FlightConfirm subConceptOf fl#FlightOffer

concept fl#FlightCancel subConceptOf fl#FlightOffer

Listing 3: Ontology for Flight

We now report the capability-level WSML definition of the FigBooking Service.

webService fl#BookFlight
capability
sharedVariables {?date, ?start, ?dest, ?client}
precondition definedBy
exists {?req}
(?req[
trv#date hasValue ?date,
trv#tstart hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client]
memberOf fl#FlightRequest).

assumption definedBy
exists {?flight} (?flight [trv#start hasValue ?start,
trv#destination hasValue ?dest,
trv#tdate hasValue ?date] memberOf fl#FlightAvailable).

postcondition definedBy
_#offer [trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
trv#flightNumber hasValue _#fn,
fl#client hasValue ?client] memberOf fl#FlightOffer.

effect definedBy
_#booking[trv#date hasValue ?date,
trv#tstart hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue _#fn,
trv#pax hasValue ?client] memberOf fl#FlightBooked.

Listing 4: Flight Booking Service: Capability Level

Notice the different roles of precondition, assumptionstpondition and effect. The
precondition is used to express constrains on the inputsetipgester should be able to
provide to the service. The assumption expresses constfaira successful execution of
the service that the requester cannot control (the facttfimht is actually available). The
postcondition expresses new information made availalileteequester after a successful
service execution (an offer with relevant information fbetrequester such as the flight
number). The effect, finally, expresses the results of tlex@txon to the web services
such as the fact that the flight has actually been booked.

We now proceed with describing the choreography interféci® Flight Booking
Service. For describing this interface, we use the syntad®MO Choreography [SPRO5]
with a slight extension, based on control state ASMs [BS83Jarticular form of ASMs

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 13

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

which does not restrict the model by any means but adds naomdiotstates by means
of a simple designated controlled functicth state.

A control state ASM is an ASM with one particular designateatcolled function
ctl_state (which has a range a finite number of Integgts...,n} or a finite enumeration of
state-descriptors) and each transition rule having thafor

if ctl _state =i then

if cond; then
rule;
ctl _state :=j;
endIf

if cond,, then
rule,,
ctl _state :=j,
endlIf
endlIf

Basically, control state ASMs are FSMs enriched by synobusnparallelism and
data manipulation (and thus possibly infinite again). Nb& tontrol state ASMs are no
expressive restriction of general ASMs but make it easielettne control flow.

interface fl#BookFlightinterface
choreography
stateSignature
importsOntology fl#simpleFlightOntology

in
fl#FlightRequest withGrounding _"http ://... ",
fl#FlightConfirm withGrounding _"http ://... ",
fl#FlightCancel withGrounding _"http ://... "
out
fl#FlightNotAvailable withGrounding _"http ://... ",
fl#FlightOffer withGrounding _"http ://... "
shared
fl#Flight ,
fl#FlightAvailable ,
fl#FlightBooked

ctl _state {fl#start ,fl#tofferMade, fl#noAvail ,fl#confirmed, fl#cancelled}

transitionRules
if (ctl_state = fl#start) then
forall {?req,?date,?start, ?dest, ?client} with
?req[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightRequest
do
if choose {?fn} with
exists {?s,?f} (?f[trv#idate hasValue ?date,
trv#tstart hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn] memberOf fl#FlightAvailable)

do

14 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

add (_#offer[trv#date hasValue ?date,
trv#tstart hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn,
fl#client hasValue ?client] memberOf fl#FlightOffer)
ctl _state := fl#offerMade
endDo
else
add (_#notAvailable[trv#date hasValue ?date,
trv#tstart hasValue ?start,
trv#destination hasValue ?dest] memberOf fl#FlightNotAvailable)
ctl _state := fl#noAvail
endlIf
endDo
endlf

if (ctl _state = fl#offerMade) then
forall ?client with (_#offer [fl#client hasValue ?client] memberOf {fl#FlightConfirm,fl#FlightOffer})

do
add (_#offer[trv#pax hasValue ?client] memberOf trv#FlightBooked)
endDo
ctl _state := fl#confirmed
endlf

if (ctl _state = fl#offerMade) then
if _#offer memberOf {fl#FlightCancel,fl#FlightOffer}
ctl_state := fl#cancelled
endIf

Listing 5: Flight Booking Service: Intrerface Level

We omit the description of the capability and of the inteefével for the Train Book-
ing Service, which we assume be similar to those of the Flighie report instead the
description of the Hotel Booking Service

webService htl#BookHotel
capability
sharedVariables {?date, ?loc, ?client}
precondition definedBy
exists {?req}
(?req[
trv#tdate hasValue ?date,
trv#location hasValue ?loc,
htl#client hasValue ?client]
memberOf htl#HotelRequest).

assumption definedBy
exists {?hotel} (?hotel[trv#date hasValue ?date,
trv#location hasValue ?loc] memberOf htl#HotelAvailable).

postcondition definedBy
_#offer [trv#date hasValue ?date,
trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelOffer.
effect definedBy
_#booking[trv#date hasValue ?date,
trv#location hasValue ?loc,
htl#hotelName hasValue _#hn,
trv#pax hasValue ?client] memberOf trv#HotelBooked.

interface htl#BookHotelInterface
choreography
stateSignature

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 15

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

importsOntology htl#simpleHotelOntology

in
hti#HotelRequest withGrounding _"http ://... ",
htl#HotelConfirm withGrounding _“http ://... ”,
htl#HotelCancel withGrounding _"http ://... "
out
htl#HotelNotAvailable withGrounding _"http ://... ",
htl#HotelOffer withGrounding _"http ://... "
shared
htl#Hotel ,
htl#HotelAvailable ,
hti#HotelBooked

ctl _state {htl#start , htl#offerMade, htl#noAvail , htl#confirmed,htl#cancelled}

transitionRules
if (ctl_state = htl#start) then
forall {?req,?date,?loc,?client} with
?req[trv#date hasValue ?date,
trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelRequest
do
if choose {?name} with
exists {?h} (?h[trv#date hasValue ?date,
trv#thoteIName hasValue ?name,
trv#location hasValue ?loc] memberOf trv#HotelAvailable)
do
add (_#offer[trv#date hasValue ?date,
trv#thoteIName hasValue ?name,
trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelOffer)
ctl _state := htl#offerMade
endDo
else
add (_#notAvailable[trv#date hasValue ?date,
trv#location hasValue ?loc] memberOf htl#HotelNotAvailable)
ctl _state := htl#noAvail
endlIf
endDo
endlf

if (ctl _state = htl#offerMade) then
forall ?client with (_#offer [htl#client hasValue ?client] memberOf {htl#HotelConfirm,htl#HotelOffer})

do
add (_#offer[trv#pax hasValue ?client] memberOf trv#HotelBooked)
endDo
ctl _state := htl#confirmed
end|If

if (ctl_state = htl#offerMade) then
if _#offer memberOf {htl#HotelCancel,htl#HotelOffer}
ctl _state := htl#cancelled
endlf

Listing 6: Hotel Booking Service

August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

3.4 Composite Service

Starting from the goal and the descriptions of the existiaryises defined previously,
the integrated discovery and composition algorithm is sgpp to select a set of tourism
service providers (e.g., the Flight Booking Service andiimeel Booking Service) and
to combine them into executable code that the VTA can exeouieder to interact with
these services and find an offer for the customer’s request.

We will now specify a hand-woven composition in terms of ae@xable specifi-
cation of an orchestration interface of the composed servigince the description of
orchestration interfaces in WSML is still under developmeve use pseudo-syntax here
to illustrate the example.

The composed service should request a flight; if no flight &lalle then the service
fails. Otherwise, an hotel is requested; if no hotel is aldd, then the flight is cancelled
and the service fails. Otherwise, both flight and hotel ardiomed and the service ends
with success.

namespace trv _"http://www.example.org/Travel”
fl _"http :// www.example.org/BookFlight”
htl _"http :// www.example.org/BookHotel”
vta _"http :// www.example.org/VTA”

webService vta#VTA

interface vta#VTAlnterface
orchestration
stateSignature
importsOntology {htl#simpleHotelOntology,fl#simpleFlightOntology }

inputVariables
?start ofType trv#Location
?dest ofType trv#Location
?date ofType _date
?client ofType trv#Client

outputVariables
?flight ofType fl#Flight
?hotel ofType htl#Hotel

ctl_state{vta#start ,vta#flightRequested,vta#hotelRequested,vta#noFlight,vta#noHotel,vta#booked }
transitionRules

/I Request a flight
if (ctl_state = vta#start) then
add (_#fReq[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightRequest)
ctl _state = vta#flightRequested
endlIf

/I Flight offer received: request and hotel
if (ctl_state = vta#flightRequested and
exists {?fo,?fn} (?fo[trv#tdate hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber havValue ?fn,

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 17

3. EXAMPLE SCENARIO: VIRTUAL TRAVEL AGENCIES

fl#client hasValue ?client] memberOf fl#FlightOffer)) then
?flight = ?fo
add (_#fReq[trv#date hasValue ?date,
trv#location hasValue ?dest,
htl#client hasValue ?client] memberOf hti#HotelRequest)
ctl _state = vta#hotelRequested

/I No flight available: terminate with failure
if (ctl_state = vta#flightRequested and
exists {?fna} ?fnaftrv#tdate hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#client hasValue ?client] memberOf fl#FlightNotAvailable)) then
ctl _state = vta#noFlight
endlf

/I Hotel offer received: confirm both flight and hotel and terminare sucessfully
if (ctl_state = vta#hotelRequested and
exists {?ho,?hn} (?ho[trv#date hasValue ?date,
trv#location hasValue ?dest,
htl#hotelName hasValue ?hn,
htl#client hasValue ?client] memberOf htl#HotelOffer)) then
?hotel = ?ho
if exists {?fn} (?flight [fl#flightNumber havValue ?fn]) then
add (_#fAck[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn,
htl#client hasValue ?client] memberOf fl#FlightConfirm)
add (_#hAck[trv#date hasValue ?date,
trv#location hasValue ?dest,
htl#hotelName hasValue ?hn,
htl#client hasValue ?client] memberOf htl#HotelRequest)
endlIf
ctl _state = vta#booked
endlf

/I No hotel available : cancel the flight and terminare with failure
if (ctl_state = vta#hotelRequested and
exists {?hna} (?hnaftrv#date hasValue ?date,
trv#location hasValue ?dest,
htl#client hasValue ?client] memberOf htl#HotelNotAvailable)) then
if exists {?fn} (?flight [fl#flightNumber havValue ?fn]) then
add (_#fNack[trv#date hasValue ?date,
trv#start hasValue ?start,
trv#destination hasValue ?dest,
fl#flightNumber hasValue ?fn,
htl#client hasValue ?client] memberOf fl#FlightConfirm)
endlIf
ctl _state = vta#noHotel
endIf

Listing 7: VTA Composite Service

August 10, 2005 KWEB/2005/D2.4.6A/v1.0

Chapter 4

Integration Discovery and Composition:
An Architecture

In this section we discuss an architecture for integratiisgal/ery and composition of
Semantic Web Services. The description is very high-lewmalesits formal definition and

refinement (along with the investigation of the underlyihgdry and the implementation
of the algorithm) will be the focus of the work in the forthcorg months.

4.1 Basic Architecture

The architecture is depicted in Figure 4.1. It consists cg¢hmodules, corresponding to
service discovery (SD), functional level composition (FLlaE@y process level composition
(PLC). According to this architecture, the approach work$wo phases. During the

first phase, SD and FLC are interleaved in order to find a setedif ervices that, once

composed, are able to satisfy the customer’s goal. The dqumase is entered once this
set of web services has been found: PLC is called to gendratactual executable code
implementing the composition.

We will now give a more detailed description of the three ko the architecture.

“Service Discovery” Component .

Objective: Find a web service that matches a query.

Task: Mediate the accesses to the directory by caching exiséisglts and matching new
gueries to already discovered services.

Input: Discovery query.

Uses. Web service capability descriptions in the directory.

Output: Web service that matches the query (or failure if no webisers found).

19

4. INTEGRATION DISCOVERY AND COMPOSITION: AN ARCHITECTURE

discovery

Composition Functional [~~~ >

,,,,,,,,,,,,,, Service
Goal

Level web service Discovery . query

Composition |~ ™.

web service.

1 set of capability . s

'web services .
i *..| Directory

Process
Level - web service

interface

Composition

Executable
Composite
Service

Figure 4.1: Schema Integration Discovery and Composition.

“Functional Level Composition” Component

Objective: Find a set of Web service that match the composition goal.

Task: Progressively transform the composition goal into a setel services matching it.
Forward/backward chaining techniques like the one proppas@CFB04] can be adopted
here.Input: Composition goal.

Output: Set of web service matching the goal.

“Process Level Composition” Component .

Objective: Build an executable composite web servitask: Given a set of web services
matching a composition goal, generate the executable tadednce executed, interacts
with the component services and achieves the goal. services

Input: set of web services, composition goal.

Uses. Web service interface descriptions in the directory.

Output: Executable composite web services.

Figure 4.1 focuses of the data flow among the different corapten The control flow
is complex due to the necessity of managing failures in aahgethe composition and
backtracking of previous choices. As example, considerSBecomponent: it usually
identifies several Web services able to match a given disgapgery, however only one
of them is returned to the FLC. In case the FLC component faifsntd a suitable set of
Web services, however, the control can be returned to theddiponent and a different
Web service matching the goal can be considered. Simil&Ry,C is not able to generate
the executable process satisfying the goal given a cergdiofsveb services, the control
can return to the FLC component, which can compute an alieenset of Web services

20 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

solving the same FLC problem. An interesting issue is to égfe relevant information
to be sent back from PLC to FLC and from FLC to SD in order toditee backtracking
precess.

Another issue left open by the current architecture, whiab to be addressed in the
refinement of the theoretical framework that will be undeetaiin the next months, is the
definition of criteria for directing the SD and FLC comporeit the selection of the set
of Web services, so that high-quality composite servicesoatained. The problem here
is that, while the quality of the composition can be evaldaialy once the executable
service has been composed by the PLC component, this qreflitgts the choices done
in FLC and SD.

Finally, an interesting extension of the proposed architecconsists in taking into
account non-functional requirements such as QoS, costsrise.. in the selection and
composition of the services. In the next subsection we dsbow such an extension can
be defined for a specific class on non-functional requiremertated to service reputa-
tion.

4.2 Extending the Architecture: Reputation

In this section we discuss an extension of the integratesbdesy and composition archi-
tecture discussed previously, which takes into accounttegjpn aspects in the selection
of web services to be composed.

In an open environment where malicious parties may adeeftilse service capa-
bilities the use of reputation services is a promising apphoto mitigate such attacks.
Misbehaving services receive a bad reputation (reportedidappointed clients) and will
be avoided by other clients. Reputation mechanisms helppoave the global efficiency
of the overall system because they reduce the incentivedatdBir0O1]. Studies show
that buyers seriously take into account the reputation®stiler when placing their bids
in online auctions [HWO01]. Moreover, it has been proven thatertain cases reputation
mechanisms can be designed in such a way that it is in evetygmterest to report cor-
rect reputation information (incentive compatible reputa services) [JFO4]. Besides,
reputation mechanisms can be implemented in a secure wag]J[JF

A detailed description of existing reputation mechanismg af their application to
semantic web services is outside the scope of this docunidmt.interested reader can
find detailed information in Deliverable 2.4.9 [Rep04]. H&re outline a simple approach
to integrate reputation mechanisms into the process ofcgeselection.

We will provide a reputation web service that allows to queny reputation of other
services and to submit reports. The reputation web servitgkfiave an extensible ar-
chitecture, allowing to plugin and deploy different cortereeputation mechanisms for
different example scenarios.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 21

4. INTEGRATION DISCOVERY AND COMPOSITION: AN ARCHITECTURE

o Reputation-aware discovery
Filtering
constraints
ey i EEEEEEEEEE LR » | Filtering, 3
............. rankin
: » g Reputable
» - 1 : matching
.] .
Service ' ; A service
-------------- 1 .
request : ' . ' advertisements
] 1]]
Service Matchmg Reputation
service : .
request . information
advertisements

Directory Reputation

service service

Figure 4.2: A wrapper for service discovery filters and ramietching service advertise-
ments according to their reputation.

Integrating reputation mechanisms into the discovery ggs@llows to filter out ser-
vices that have a bad reputation and to rank matching seraiceording to their reputa-
tion. Hence, we will provide a wrapper to the discovery comgt that first forwards a
query to the standard discovery component and afterwartisnsbthe reputation of the
discovered services by accessing the reputation web serBiased on the reputation of
the discovered services, certain services may be remowgadttfre result (if the reputation
is below a given threshold) or the order of the discoveredises in the result may be
changed according to reputation (services with highertagmn come first). Figure 4.2
illustrates our approach.

This approach has the advantage that it does not requirehemges to the integrated
discovery and composition architecture in Figure 4.1. Hptation mechanisms are well
encapsulated within the reputation web service. The degoand composition compo-
nents are fully functional without the reputation web seeyiwhich can be integrated by
simply installing the aforementioned wrapper for the disay component.

22 August 10, 2005 KWEB/2005/D2.4.6A/v1.0

Chapter 5

Conclusions

The automatic creation of an executable web service sgaidia user desire, is expected
to have a great impact in areas of e-Commerce and EnterprigkcApon Integration, as
it can enable dynamic and scalable cooperation betweesreiiff systems and organiza-
tions.

An important step towards dynamic and scalable integrasonnderstanding how
discovery and composition could be use to build an execeitabb service. The schema
proposed in the Chapter 4 shows the logical relationship &etvihe components of this
integrated approach, and how it is possible to combine treefmtl a web service that
match a goal, if necessary to refine the goal and finally to @s@phe web services in a
unique executable process.

In this document we have focused on an example of integrassdwkery and com-
position and on the definition of a reference architectungtufe work will focus on the
definition of the theoretical framework underlying an im&tgd discovery and composi-
tion. This will require to refine the definitions of the langes and underlying models
used for defining composition goals, web service choredgespand executable compos-
ite services. These theoretical investigations are pldnoade completed within month
24. A second line in our future work is the implementation ofiategrated web service
discovery and composition algorithm. The implementat®mplanned to be completed
within month 30.

23

Bibliography

[BirO1] A. Birk. Learning to Trust. In R. Falcone, M. Singhna Y.-H. Tan, edi-
tors, Trust in Cyber-societies, volume LNAI 2246, pages 133-144. Springer-
Verlag, Berlin Heidelberg, 2001.

[BS03] Egon Brger and Robert &tk. Abstract Sate Machines. Springer, 2003.

[CFBO4] I. Constantinescu, B. Faltings, and W. Binder. Typedgd&l Service Compo-
sition. InProc. WWW\V2004, 2004.

[Coa03] The OWL Services Coalition. OWL-S: Semantic Markup fab/\Bervices.
In Technical White paper (OWL-Sversion 1.0), 2003.

[HWO01] D.E. Houser and J. Wooders. Reputation in Internettibns: Theory and
Evidence from eBay. University of Arizona Working Paper #00) 2001.

[JFO3] R. Jurca and B. Faltings. An Incentive-CompatiblelRafion Mechanism. In
Proceedings of the IEEE Conference on E-Commerce, Newport Beach, CA,
USA, 2003.

[JFO4] R. Jurca and B. Faltings. “CONFESS”. An Incentive Cotilgba Reputation
Mechanism for the Online Hotel Booking Industry. Rroceedings of the
|EEE Conference on E-Commerce, San Diego, CA, USA, 2004.

[LarO4a] Ruben Lara. Definition of semantics for web sendeovery and composi-
tion. In Knowledge Web Deliverable D2.4.2, 2004.

[LarO4b] Ruben Lara. Semantic requirements for web sesvatscription. IrKnowl-
edge Web Deliverable D2.4.1, 2004.

[MSZ01] S. Mcllraith, S. Son, and H. Zeng. Semantic Web SswilEEE Intelligent
Systems, 16(2):46-53, 2001.

[PSK02] M. Paolucci, K. Sycara, and T. Kawamura. DeliverBgmantic Web Ser-
vices. InProc. WWW2003, 2002.

[Rep04] Reputation mechanism. kmowledge Web Deliverable D2.4.1, 2004.

24

D2.4.6 A Theoretical Integration of Web Service Discovery and Compos8ibRroject IST-2004-507482

[SPR"05] James Scicluna, Axel Polleres, Dumitru Roman, Cristirgief: and
Dieter Fensel. Ontology-based choreography and orchiestraof
WSMO services. Deliverable d14v0.2, WSMO, 2005. Availablenfr
http://www.wsmo.org/TR/d14/v0.2/20050702/.

[WSMO05] Web service modeling ontology (WSMO) submission,el2605. W3C mem-
ber submission. Available at http://www.w3.org/SubnmosgiWSMO/.

KWEB/2005/D2.4.6A/v1.0 August 10, 2005 25

