
 
 

 

    
   

 
 
 

 

D 2.4.4   
Guidelines for the integration of agent-based 
services and web-based services 
 
 
 
 

Ian Blacoe (UniLiv) 
David Portabella (EPFL) 

 
with additional contributions from:    

Shamimabi Paurobally (UniLiv), Thierry Moyaux (UniLiv), Ben Lithgow Smith (UniLiv),  
Valentina Tamma (UniLiv), and Michael Wooldridge (UniLiv). 

 
 
 
Abstract. 
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB 
Deliverable D2.4.4 (WP2.4) 
This deliverable offers guidelines on approaches to inter-operation and integration between agent 
services and web services, by examination of these research efforts and discussion of both the 
main points of correspondence and the main differences between the two paradigms, and where 
they may beneficially inform each other. 
 

 
Document Identifier: KWEB/2004/D2.4.4/v1.1 
Class Deliverable: KWEB EU-IST-2004-507482 
Version: v1.1 
Date: August 11, 2005 
State: Final 
Distribution: Public 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           ii 

 
Knowledge Web Consortium 
 
This document is part of a research project funded by the IST Programme of the Commission of 

the European Communities as project number IST-2004-507482. 

 

 
University of Innsbruck (UIBK) – Coordinator 
Institute of Computer Science, 
Technikerstrasse 13 
A-6020 Innsbruck 
Austria 
Contact person: Dieter Fensel 
E-mail address: dieter.fensel@uibk.ac.at 

 
École Polythechnique Fédérale de Lausanne 
(EPFL) 
Computer Science Department  
Swiss Federal Institute of Technology 
IN (Ecublens), CH-1015 Lausanne. 
Switzerland 
Contact person: Boi Faltings 
E-mail address: boi.faltings@epfl.ch 

 
France Telecom (FT) 
4 Rue du Clos Courtel  
35512 Cesson Sévigné 
France. PO Box 91226 
Contact person : Alain Leger 
E-mail address: alain.leger@rd.francetelecom.com 

 
Freie Universität Berlin (FU Berlin) 
Takustrasse, 9 
14195 Berlin  
Germany 
Contact person: Robert Tolksdorf 
E-mail address: tolk@inf.fu-berlin.de 

 
Free University of Bozen-Bolzano (FUB) 
Piazza Domenicani 3  
39100 Bolzano  
Italy 
Contact person: Enrico Franconi 
E-mail address: franconi@inf.unibz.it 

 
Institut National de Recherche en Informatique 
et en Automatique (INRIA) 
ZIRST - 655 avenue de l'Europe - Montbonnot 
Saint Martin 
38334 Saint-Ismier 
France 
Contact person: Jérôme Euzenat 
E-mail address: Jerome.Euzenat@inrialpes.fr 

 
Centre for Research and Technology Hellas / 
Informatics and Telematics Institute (ITI-
CERTH)  
1st km Thermi – Panorama road 
57001 Thermi-Thessaloniki 
Greece. Po Box 361 
Contact person: Michael G. Strintzis  
E-mail address: strintzi@iti.gr 

 
Learning Lab Lower Saxony (L3S) 
Expo Plaza 1 
30539 Hannover  
Germany 
Contact person: Wolfgang Nejdl 
E-mail address: nejdl@learninglab.de 

 
National University of Ireland Galway (NUIG) 
National University of Ireland 
Science and Technology Building 
University Road 
Galway 
Ireland 
Contact person: Christoph Bussler 
E-mail address: chris.bussler@deri.ie 

 
The Open University (OU) 
Knowledge Media Institute 
The Open University  
Milton Keynes, MK7 6AA  
United Kingdom. 
Contact person: Enrico Motta 
E-mail address: e.motta@open.ac.uk 

 
 
 
 

 
 
 
 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           iii 

 
Universidad Politécnica de Madrid (UPM) 
Campus de Montegancedo sn  
28660 Boadilla del Monte  
Spain 
Contact person: Asunción Gómez Pérez 
E-mail address: asun@fi.upm.es 

 
University of Karlsruhe (UKARL) 
Institut für Angewandte Informatik und Formale 
Beschreibungsverfahren – AIFB 
Universität Karlsruhe  
D-76128 Karlsruhe  
Germany 
Contact person: Rudi Studer 
E-mail address: studer@aifb.uni-karlsruhe.de 

 
University of Liverpool (UniLiv) 
Chadwick Building, Peach Street,  
Liverpool, L69 7ZF  
United Kingdom 
Contact person: Michael Wooldridge 
E-mail address: M.J.Wooldridge@csc.liv.ac.uk 

 
University of Manchester (UoM) 
Room 2.32. Kilburn Building, Department of 
Computer Science, University of Manchester, 
Oxford Road 
Manchester, M13 9PL  
United Kingdom 
Contact person: Carole Goble 
E-mail address: carole@cs.man.ac.uk 

 
University of Sheffield (USFD) 
Regent Court, 211 Portobello street 
S14DP Sheffield  
United Kingdom 
Contact person: Hamish Cunningham 
E-mail address: hamish@dcs.shef.ac.uk 

 
University of Trento (UniTn)  
Via Sommarive 14  
38050 Trento  
Italy 
Contact person: Fausto Giunchiglia 
E-mail address: fausto@dit.unitn.it 

 
Vrije Universiteit Amsterdam (VUA)  
De Boelelaan 1081a  
1081HV. Amsterdam  
The Netherlands 
Contact person: Frank van Harmelen 
E-mail address: Frank.van.Harmelen@cs.vu.nl 

 
Vrije Universiteit Brussel (VUB) 
Pleinlaan 2, Building G10  
1050 Brussels  
Belgium 
Contact person: Robert Meersman 
E-mail address: robert.meersman@vub.ac.be 

 
 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           iv 

Work package participants 
 
The following partners have taken an active part in the work leading to the elaboration of 
this document, even if they might not have directly contributed writing parts of this 
document: 
 
University of Liverpool 
École Polythechnique Fédérale de Lausanne (EPFL) 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           v 

Changes 
 
 
Version Date Author Changes 

0.1 01-03-2005 Ian Blacoe Initial draft 

0.2 01-05-2005 Ian Blacoe Restructured 

0.3 30-05-2005 David Portabella First part of Section 3 added 

0.4 10-06-2005 Ian Blacoe Section 4 extended 

0.5 29-06-05 Ian Blacoe Revisions and corrections 

0.6 07-07-05 Ian Blacoe Added redrafted sections 4.3 and 4.6 

0.7 14-07-05 Ian Blacoe Added section 1-Introduction 
Revised sections 4.1, 4.2, 4.4 

0.8 20-07-05 Ian Blacoe Added section 4.8 -Dialogues 
Amendments from reviewers 

0.9 02-08-05 David Portabella Completed section 3 added 

1.0 03-08-05 Ian Blacoe Amendments and revisions to sections 1, 4.1, 4.2, 
4.4, 4.6 and 4.7.  

1.1 11-08-05 Ian Blacoe Addressed reviewer’s comments – amended 
section 1, created section 4, amended section 5, 

and created section 6. 

 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           vi 

Executive Summary 
 
Recent developments in the web services research field, specifically regarding the 
coordination (choreography/orchestration) of services, are encountering many of the 
issues that have been addressed within the artificial intelligence and multiagent systems 
research communities, and may well benefit from this existing research.  Furthermore, 
there have already been a number of research efforts aimed at enabling the inter-operation 
and/or the integration of agents (agent services) and web services.   
This deliverable offers guidelines on approaches to such inter-operation and integration, 
by examination of these research efforts and discussion of both the main points of 
correspondence and the main differences between the two paradigms, and where they 
may beneficially inform each other. 
  



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           vii 

Contents 
 
 
1. Introduction ................................................................................................................... 1 
2. Agent Based Services .................................................................................................. 3 

2.1 Agent Capabilities..................................................................................................... 3 
2.2 Interaction Protocols ................................................................................................. 5 
2.3 Coordination Mechanisms ........................................................................................ 8 
2.4 Matchmaking ............................................................................................................ 9 
2.5 FIPA Ontology Recommendations ......................................................................... 12 

3. Web Based Services................................................................................................... 14 

3.1 Service Description................................................................................................. 15 
3.2 Service Discovery ................................................................................................... 15 
3.3 Service Choreography and Orchestration ............................................................... 17 
3.4 Service Representation Formalisms........................................................................ 19 

3.4.1 SOAP ............................................................................................................... 19 
3.4.2 WSDL .............................................................................................................. 19 
3.4.3 UDDI................................................................................................................ 20 
3.4.4 OWL-S............................................................................................................. 21 
3.4.5 WSMO ............................................................................................................. 22 

4. Comparing agent services and web services ......................................................... 23 
5. Guidelines.................................................................................................................... 26 

5.1 Description.............................................................................................................. 26 
5.2 Discovery ................................................................................................................ 33 
5.3 Invocation ............................................................................................................... 37 
5.4 Cooperation and Coordination................................................................................ 39 
5.5 Agreement............................................................................................................... 52 
5.6 Decision making ..................................................................................................... 58 
5.7 Integrating agent platforms and Semantic Web toolkits......................................... 65 
5.8 Dialogues ................................................................................................................ 66 

6. Conclusions ................................................................................................................ 73 
Bibliography .................................................................................................................... 77 



 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005            1 

1. Introduction 
 
 
Autonomous agents and multiagent systems are designed to enable the construction of 
distributed systems based upon the principles of autonomy, rationality, pro-activity, re-
activity, and social ability [Wooldridge95].  Multiagent systems consist of software 
entities that have independent knowledge and capabilities, and the ability to communicate 
with and request action from other agents, which they combine to achieve their goals. 
Communication between agents is intended to permit semantically rich, open, and 
dynamically constructed conversations – allowing them to communicate at a knowledge 
level.  Long-standing research in the Artificial Intelligence field has produced and 
contributed to well-founded standards and technologies supporting these features, most 
notably the suite of FIPA standards that address agent and multiagent system 
architectures, and inter-agent communication languages and protocols [FIPA]. 
 
Web services have evolved from distributed object invocation systems, such as CORBA, 
and enable software systems to remotely invoke functionalities of independent service 
implementations using a range of complementary standard languages and protocols.  
These standards include web service description (WSDL), invocation (SOAP), 
advertisement and discovery (UDDI), composition (WSCDL) and process management 
(BPEL4WS).  A significant strength of web services lies in the fact that they have 
evolved in an industrial domain, and address the needs of software developers in the 
construction of distributed and de-coupled systems. 
More recently, a number of different research and standardisation efforts have addressed 
the issue of enriching the semantic descriptions of web services and the semantics of their 
communication – most notably OWL-S and WSMO. This has been driven by the 
recognition that automatic and dynamic composition of web services requires more 
information about the capabilities, actions, inputs and outputs, etc. than can be expressed 
with existing standards. 
 
 
However, these differences do not mean that the two paradigms are incompatible, 
particularly as the sophistication of web services increases.  This deliverable offers 
guidelines on approaches to such inter-operation and integration, by examination of these 
research efforts and discussion of both the main points of correspondence and the main 
differences between the two paradigms, and where they may beneficially inform each 
other. 
 
The remainder of this document is organized as follows.  In section 2, we examine 
relevant details of agent-based services, such as interaction protocols, service description 
formalisms, etc.  However, basic concepts of agents and multiagent systems are covered 
in a previous KnowledgeWeb deliverable – D2.4.3.  In section 3, we briefly overview 
web-based services, covering the basic architectural processes of description, discovery 
and invocation.  We then go on to overview the main representation formalisms used in 



1. Introduction                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           2 

the web service architectures, including those formalisms supporting the evolution of web 
services into semantic web services.  Section 4 then overviews the main points of 
similarity and diversity between agent-based services and web-based services.  This 
includes both comparison of underlying conceptualization issues and those points arising 
from the use of different formalisms and protocols in the two domains.  Section 5 
represents the main contribution of this deliverable, in which we present a number of 
issues, approaches and techniques relevant to the task of enabling integration between 
agent-based services and web services.  Finally, section 6 presents a brief set of 
conclusions that aim to summarise the primary differences that remain between agent-
based and web services, and to offer some guidelines on the interoperation and 
integration of these two service paradigms. 
 
 
 
 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005            3 

2. Agent Based Services 
 
The following sub-sections and sections 4, 5 and 6 of this deliverable assume a basic 
familiarity with the underlying concepts of agents and agent systems.  However, the 
characteristics and properties of autonomous agents and multiagent systems have been 
described in a previous Knowledge Web deliverable (D2.4.3), therefore we do not repeat 
them here and would refer interested readers to this deliverable.  
 

2.1 Agent Capabilities 
 
The capabilities of autonomous agents can be described in terms of the services that they 
offer.  Under the FIPA [FIPA] reference architecture, agents register themselves with a 
Directory Facilitator (DF) agent, which acts as a ‘yellow pages’ for an agent platform.  
The DF is an optional component of an agent platform, and any one platform may 
support any number of DFs.  Furthermore, DFs can be federated together to provide a 
combined yellow pages. 
 
In order to make a service available to other agents the provider agent must register the 
service with an appropriate DF agent.  Registering a service does not commit the agent to 
any future action – it may subsequently refuse to perform an advertised service for any 
reason.  These registrations consist of an id and transport address, along with an optional 
description of the services offered by the agent.  The DF does not place any restrictions 
on the content of any additional parameters of the description.  The DF also enables 
modification and de-registration of agent descriptions, after verification of access 
permissions.  The services offered by the DF – register, de-register, modify and search – 
must be requested by agents, using the fipa-request interaction protocol.  A DF may 
also, optionally, provide a subscribe service – enabling agents to register an interest in 
one or more agent descriptions, and then be informed of any change in the DF entries for 
such descriptions.  DF agents providing this service must implement the fipa-
subscribe interaction protocol. 
 
The DF allows agents to search for the registration of an agent offering a particular 
service – by attempting to match the description of the service sought with those 
registered.  The DF cannot make any guarantees about the validity of any reply to a 
service request, as it does not restrict the information that can be registered. Searching of 
a federated DF is by default a depth-first search across the available DFs, starting with 
any DFs local to the requesting agent’s platform.  Federation of DFs is achieved by DFs 
registering their services with each other – using the reserved service type fipa-df.  
Searches across federated DFs can be constrained using the max-depth parameter – i.e. 
a DF will only forward searches to other DFs registered with it if the value of max-depth 
is greater than one, and when forwarding the search the DF then decrements max-depth 
by one.  Results for searches can be limited using the max-results parameter of the 
search. 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           4 

 
The search function provided by the DF enables searches to be performed for fipa-
agent-description objects.  A search is performed by specifying a template fipa-
agent-description which is then matched against stored descriptions.  Searches for 
services can be performed by specifying within the template fipa-agent-
description a template fipa-service-description for the service sought, as a 
value of the services parameter. 
 
 
Directory Facilitator agent descriptions are defined in the fipa-agent-management 
ontology, and are of the following form: 
 
frame – df-agent-description 
ontology – fipa-agent-management 
Parameter Description Presence Type Reserved values 
Name The identifier of the agent. Optional agent-

identifier 
 

Services A list of services supported 
by the agent. 

Optional Set of 
service-
description 

 

Protocols A list of interaction 
protocols supported by the 
agent. 

Optional Set of 
String 

 

Ontologies A list of ontologies known 
by the agent. 

Optional Set of 
String 

fipa-agent-
management 
 

Languages A list of content languages 
known by the agent. 

Optional Set of 
String 

fipa-sl 
fipa-sl0 
fipa-sl1 
fipa-sl2 
 

lease-time The duration or time at 
which the lease for this 
registration will expire. 

Optional date-time  

Scope Defines the visibility of 
this df-agent-description.  
The default global value 
places no restrictions on 
the visibility, whereas the 
local value means the 
description is not available 
to a search from a 
federated DF. 

Optional Set of 
String 

global 
local 

 
 
 
Directory Facilitator service descriptions are also defined in the fipa-agent-
management ontology, and are of the following form: 
 
 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           5 

frame – df-service-description 
ontology – fipa-agent-management 
Parameter Description Presence Type Reserved values 
Name The name of the service Optional String  
Type The type of the service Optional String fipa-df 

fipa-ams 
Protocols A list of interaction 

protocols supported by the 
service. 

Optional Set of 
String 

 

Ontologies A list of ontologies 
supported by the service. 

Optional Set of 
String 

fipa-agent-
management 
 

Languages A list of content languages 
supported by the service. 

Optional Set of 
String 

 

Ownership The agent owning the 
service. 

Optional String  

Properties . Optional Set of 
property 

 

 
 

2.2 Interaction Protocols 
 
FIPA specifications [FIPA] define a number of interaction protocols that model typical 
patterns of interactions, and specify the expected message exchange between agents 
participating in an interaction.  By pre-specifying such protocols it enables agents to 
engage in meaningful conversations with other agents, simply by following a known 
protocol.  The alternative would be for the agents to be sufficiently aware the meaning of 
the messages and of their goals, beliefs, etc. that such interactions arise spontaneously 
from the agents’ choices – which requires a great deal of capability and complexity from 
the agent.  The interaction protocol to be used in an agent interaction can be specified in 
the ‘protocol’ parameter of an ACL message. 
 
The interaction protocols currently specified by FIPA are: 
 
fipa-request 

• Allows one agent to request another to perform some action.  The receiver processes 
the request and decides whether to refuse it – sending a refuse to the initiator if so.  
If the decision is to accept the receiver may send an optional agree message – if 
notification necessary is true.  Once the request has been agreed the receiver 
must send either: 

- failure: if it has failed to fulfil the request. 
- inform-done: if it has fulfilled the request and only wishes to indicate 
completion. 
- inform-result: if it has fulfilled the request and wishes to inform the initiator 
of the results. 

 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           6 

fipa-query 
• Allows one agent to request to perform some action on another agent.  The initiator 

requests the participant to perform an inform action, using either query-if or 
query-ref.  query-if is used when an agent wants to determine if a proposition 
is true or false, and query-ref is used when querying for some identified objects.  
The participant may either refuse the request, sending refuse, or agree to the 
request (maybe sending the optional agree message).  The participant may then 
either send failure if the action fails, or reply with one of two inform message 
types once the action has succeeded: 

- inform-t/f: is used in response to query-if, stating the true or false. 
- inform-result: is used in response to query-ref, containing a reference to 
the queried objects. 

 
fipa-request-when 

• Allows one agent to request another to perform some action when some precondition 
evaluates to true.  If the participant agrees to the request, it will then wait until the 
precondition becomes true before acting on the request, returning the appropriate 
result to the requester. 

 
fipa-contract-net 

• Allows one agent to take the role of a manager that wishes to have some actions 
performed by one or more agents and further wishes to optimise some function 
characterising the task.  The characteristic may be expressed (in some domain 
specific way) as the price, time to completion, fair task distribution, etc.  For any 
task a number of participants will respond with a proposal message, the remainder 
refusing, and negotiations continue with the proposers. A proposal will specify the 
preconditions a participant places on the task, such as price, time to completion, etc.  
Once a pre-specified deadline has passed the initiator evaluates the proposals, 
sending an accept-proposal to those participants selected, and a refuse-
proposal to the remainder.  As proposals are binding on participants, once one is 
accepted the participant is committed to performing the task.  On completion of the 
task, the participant can send either a simple inform-done, or an inform-result 
to provide more explanation.  Failure to perform the task will result in the participant 
sending a failure to the initiator.  

 
fipa-iterated-contract-net 

• This is an extension of the fipa-contract-net protocol that allows for multi-
round iterative bidding.  Following evaluation of proposals the initiator may issue a 
modified call-for-proposals to (some of) the proposers, in order to elicit 
improved bids.  The iteration continues until either: 

- the initiator refuses all proposals and does not issue a new cfp. 
- all the participants refuse to make proposals. 
- the initiator accepts one or more of the bids. 

 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           7 

fipa-brokering 
• Designed to support brokerage interactions in a multi-agent architecture.  A broker is 

an agent that offers communication facilitation services to other agents using 
knowledge about their preferences and requirements.  Use of such agents can 
significantly simplify agent interaction, and also enable the multi-agent system to be 
adaptable and robust in dynamic situations. 
This initiator sends a message to the broker using the proxy communicative act, 
which contains: an expression denoting the target agents, the communicative act to 
be forwarded, and a set of proxy conditions.  The broker first determines whether to 
accept or refuse, sending the appropriate message to the initiator.  Once the broker 
has agreed to the action it attempts to find agents matching the description in the 
proxy message, returning failure-no-match if none is found.  If such agents are 
found, the broker then engages in separate sub-protocol interactions with each of 
them – driven by the communicative act embedded within the proxy message.  As 
the sub-protocols continue, the broker returns the responses to the initiator as 
reply-message-sub-protocol – either failure or success (as defined by the sub-
protocol). When all the sub-protocols complete and the broker returns the final reply 
messages, the brokering interaction protocol ends.  Any exceptions in the sub-
protocol interactions will result in the broker returning a failure-brokering to 
the initiator. 

 
fipa-recruiting 

• Designed to support recruiting interactions in multi-agent systems.  Like brokers 
recruiters facilitate communication between agents, however replies from target 
agents are sent directly to the initiator agent (or to some other specified receiver) 
rather than via the broker. 

 
fipa-subscribe 

• Allows an agent to request the receiving agent to perform some action on 
subscription, and subsequently when the referenced object changes.  The participant 
may refuse to perform the subscription, or agree to it – either implicitly or explicitly 
(if specified).  All subsequent successful performances of the action will result in an 
inform-result message to the initiator, containing a referring expression to the 
subscribed objects.  If at any point after the acceptance of the subscription the 
participant fails to perform the action, it sends a failure message to the initiator 
which then ends the interaction.  The initiator may also end the interaction at any 
point by using the cancel meta-protocol. 

 
fipa-propose 

• Allows an agent to propose to receiving agents that the initiator will perform the 
actions described in the propose communicative act.  The receiving agents may 
accept or reject the proposal, using an accept-proposal or refuse-proposal 
as appropriate.  Completion of the protocol with an accept-proposal would 
typically result in the initiator performing the specified actions and then returning a 
status response. 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           8 

fipa-english-auction 
• Designed to enable one agent to act as an auctioneer in order to determine the 

market-price of a good - by initially proposing a price below the supposed market-
price and then gradually raising the price.  The auctioneer initially issues a call-
for-proposals message, multi-cast to all intended participants, and any 
participants wishing to bid for the good will reply with a proposal message.  The 
auctioneer will then determine which proposals to accept and then responds to all 
proposers with an accept-proposal or reject-proposal as appropriate.  The 
auctioneer follows each received proposal by issuing another cfp with an increased 
price, until no bidder is prepared to pay the price in the cfp, at which point the 
auction ends.  If the last accepted price exceeds the auctioneers privately known 
reserve price the good is sold to the highest bidder, otherwise the good is not sold.  
Typically the auctioneer will use the request protocol to perform the sale of the 
good to the highest bidder. 

 
fipa-dutch-auction 

• This protocol operates in a similar way to the fipa-english-auction protocol, 
except that the auctioneer initially calls for proposals at a price above the supposed 
market-value and then gradually reduces the price until a bidder agrees to pay that 
price.  As in the English auction, the auctioneer has a private reserve price below 
which the good will not be sold. 

 
 
These interaction protocols are not intended to be an exhaustive list or to cover every 
desirable interaction type.  Rather they are intended to specify interaction patterns, which 
may be elaborated upon within specific applications.  This implies that following any of 
these protocols does not in itself guarantee interoperability, but that further agreement 
between agents may be required.  Such agreements may be needed for common real-
world issues in agent interaction, such as exception handling, lost messages, messages out 
of sequence, time-outs, etc. 
 
 

2.3 Coordination Mechanisms 
 
A typical approach in multi-agent systems to the coordination of agents is to use middle 
agents.  Such middle agents are intended to facilitate communication between agents 
based on the services, information, etc. that they seek, and respecting any preferences, 
policies, etc. that the prospective participants may have.  In an open service environment, 
agents can be distinguished into three general categories [Sycara02]: service providers, 
service requestors, and middle agents.  Middle agents are those that assist service 
requestor agents in finding and selecting agent services from service providers.  The most 
commonly utilised types of middle agents are brokers and recommenders.  These are 
intended to store advertisements for services that agents wish to make available to the 
MAS, and to match these services to requests for services posed to them by agents.  The 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           9 

principal difference between brokers and recommenders is that the broker retains a role in 
the interaction after the initial contact between consumer and provider is made, whereas 
the recommender does not.  Both advertisements of services and requests for services 
require specification in a manner that enables flexible and accurate matching. 
 
One perspective on the application of agents in the Semantic Web environment, is that 
they exist as representatives of real-world entities – performing tasks and achieving goals 
on their ‘owners’ behalf.  However, such collaborative interface agents [Lashkari94] do 
not provide the concrete services themselves, but rely on independent service providers, 
such as other agents or web services.  In such a scenario, an agent would translate 
abstractly defined user goals into concrete semantic service descriptions that it then seeks 
to match with available services – through semantic-based dynamic discovery and 
matchmaking mechanisms. 
 
The Semantic Web Fred system [SWF], developed by DERI, demonstrates this interface 
agent architecture in which the agents represent system users, and utilise available web 
services to provide both the underlying computational facilities, and the means for all 
agent to agent interaction.  The architecture is built on top of the various WMSO 
specifications, using the defined web service and service choreography description 
languages to enable dynamic service discovery and composition by the user agents. 
 
 

2.4 Matchmaking 
 
Middle agents enable dynamic discovery of appropriate services by performing a 
matchmaking task, by using service request specifications and a stored set of service 
advertisements to determine which services provide the requested capabilities.  It is 
recognised that such advertisements and requests need to be described in a common 
language, and that mechanisms are needed to determine structural and semantic matches 
of these descriptions – which may also require the reconciliation of semantically 
heterogeneous information in the descriptions. 
 
An early approach to defining a language and matchmaking process that enables dynamic 
discovery of services that fulfil requirements was LARKS [Sycara02].  The agent 
capability description language in this system defined services in terms of: input and 
output variables and their types, constraints upon these input and output parameters, 
context, and optional fields for textual and concept descriptions.  Terms used in the 
service descriptions could refer to definitions in domain ontologies, both to enable a 
semantically rich description of the service that could be globally understood, and to 
enable the matchmaking process to perform automatic inferencing over the utilised 
concepts to improve the quality of the matching.  The matchmaking process itself was 
defined as a set of filters, each of which performed matching on difference elements of 
the descriptions: 
 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           10 

• Context filter – the context field of a description is in the form of a set of keywords 
that describe the semantic domain of the service, and are used in order to reduce the 
size of the advertisement matching space.  This is achieved by considering the 
semantic similarity between the keywords (based on trigger-pair word distance and 
subsumption relations), and selecting only those advertisements that have 
sufficiently similar context descriptions. 

 
• Profile filter – this considers the entire service description, using a variant of the 

term frequency – inverse document frequency (TF-IDF) technique to determine the 
similarity between two service descriptions.  However, this filter does not consider 
the location of terms within the description, or the semantics of the terms 
themselves. 

 
• Similarity filter – the similarity between two service descriptions is determined on 

the basis of the semantic similarity calculated over pairs of input variables, output 
variables, and their constraints.  This semantic similarity is calculated from the 
words and concepts used in the description fields, and the overall similarity consists 
of the average of the sum of the similarities among all pairs of inputs, outputs and 
constraints. 

 
• Signature and constraint filters – these are intended to take account of the logical 

constraints within a service description, by determining semantic plug-in matches 
between descriptions.  This is performed using sub-type inference rules, and concept 
and constraint subsumption testing. 

 
 
In addition to these filters, the matchmaker computes a weighted associative network of 
the utilised concepts (using the WordNet [Miller90] ontology to determine associations), 
in which the concepts are connected by relations and each of these have a weight that 
indicates the (matchmakers) belief in that relation.  These additional relations promote a 
deeper semantic understanding, and enable higher quality matchmaking.  
 
 
More recently, this work on service description matchmaking in a multiagent 
environment has been applied to brokers performing matching of OWL-S web service 
descriptions [Paolucci04].  Paolucci et al.  propose a broker that performs both discovery 
and mediation tasks, between clients (that the authors characterise as agents) and web 
services described using OWL-S.  The broker’s overall interaction protocol is first 
divided into two parts: 
 

• Advertisement – in which the broker collects and stores service descriptions that are 
sent to it by service providers.  This is the same advertisement process that is used in 
infrastructure registries, such as UDDI (though UDDI can only make limited use of 
the information provided by an OWL-S service profile). 

 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           11 

• Mediation – in which the broker first receives a requester’s query and attempts to 
match this request to one or more of the stored advertisements.  The broker then re-
formulates the requester’s query into a service invocation for the selected provider, 
and then invokes the service.  Finally, the broker receives the provider’s response to 
the service invocation, computes the appropriate response, and then sends this 
response to the service requester. 

 
 
These two interaction protocols require the broker to perform a number of reasoning 
tasks: 

• To abstract from a query to determine the capabilities that a provider requires in 
order to answer that query.  The authors propose the use of OWL-QL [Fikes03] to 
overcome the lack of explicit query support in OWL-S, and then use an algorithm 
that abstracts from variables in the query to their immediate ontological class to form 
an appropriate OWL-S service profile. 

• Compare and match a required capability (or set of capabilities) with a stored set of 
advertised service capabilities.  The broker utilises an existing OWL-S matchmaker 
[Paolucci03] (one of many such proposals), that exploits the ontological information 
to infer which advertisements satisfy a capability request.  

• Transformation of the requester’s query into a service invocation to send to the 
selected provider.  Firstly, the broker must determine if it has all the information 
required by the selected service, and if not, obtain this information from the service 
requester.  This transformation must generate an OWL-S service profile that reflects 
the semantic content of the query, and reflects the provider’s requirements for the 
service request. 

 
As with almost all Semantic Web applications, the broker will also be required to resolve 
(internally or by invoking an appropriate service) any syntactic and semantic 
heterogeneity between the ontologies used by the service requester and provider in the 
service descriptions and in their communication. 
 
The authors note that OWL-S provides some constructs that support service brokering: 
the Profile providing a capability representation, and the Process Model and Grounding 
providing the basis for interaction between the broker and the provider and requester of 
the service.  However, the authors also note an important shortcoming in the specification 
of OWL-S regarding it’s inflexible treatment of service invocation – leading to a Broker’s 
Paradox [Paolucci04].  This paradox occurs because the broker acts as a representative of 
the service provider but cannot be aware of the provider until the requester’s query is 
received and processed.  Therefore, the broker does not have prior access to the 
provider’s Process Model on which its own model (as a representative) must depend.  
However, the Broker must still publish a Process Model so that the requester may interact 
with it.   
Paolucci et al.  propose a solution that enables the broker to dynamically modify its 
Process Model during an interaction, by extending OWL-S with an exec operator.  The 
broker can then publish a provider-neutral Process Model, using which the requester 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           12 

begins the interaction, and then modify this model following selection of an appropriate 
provider – using the provider’s Process Model.  The interaction between the requester 
and broker then continues using this new, provider-specific Process Model.  The added 
exec operator enable the broker to execute the new Process Model, that it has returned as 
the output of another of its processes.  Thus, it overcomes the broker’s paradox by 
separating the task of service discovery from that of invocation and interaction. 
 
 

2.5 FIPA Ontology Recommendations 
 
The FIPA Abstract Agent Architecture and associated recommendations identify three 
areas in which ontologies have been used in the architecture: 
 
FIPA Agent Management ontology 

• Defines a number of frames representing objects and functions within the agent 
management domain.  Definitions of objects include those for agent-identifier, 
df-agent-description, service-description, search-constraints, 
ams-agent-description, ap-description, ap-service and property.  
Definitions of functions include those for register, de-register, modify and 
search. 

 
FIPA Quality of Service ontology 

• This ontology defines a number of frames representing objects and predicates with 
the quality of service domain.  It is intended to be used by agents wishing to 
communicate about issue regarding the quality of service (QoS) of offered or sought 
services.  Definitions of objects include those for qos, rate-value, time-value, 
probability-value, time-type, comm-channel, transport-protocol and 
property.  Definitions of predicates include those for qos-information, time-
constraint and qos-match.  

 
Message content ontologies 

• The FIPA Agent Communication Language defines a message parameter ontology 
that is intended to indicate the ontology that should be used to interpret symbols 
within the content of the message.  A severe restriction on the use of ontologies to 
define message content symbols is that provision is only made for one ontology 
parameter per message, and there is no means to link the ontology(s) declared in the 
parameter to those symbols used in the content.  Further restrictions are made on the 
use of ontologies for message content in implementations of the FIPA abstract 
architecture.  For example, in JADE, ontologies must be represented by a set of Java 
objects, each defining one concept within the ontology.  Not only does this not 
enable use of ontologies in their native form, but there are also underlying semantic 
discrepancies between Description Logics and such objects that prevent accurate 
representation of the ontology in this form.  Another feature of ontology support in 



2. Agent Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           13 

JADE is that ontology primitives are only provided for concepts, predicates and 
agent actions – restricting the ability to express knowledge within a domain. 

 
 
The FIPA Ontology Service Specification outlines a possible extension to the abstract 
architecture, proposing a specialised Ontology Agent that provides ontology services to a 
community of agents on an agent platform.  The proposed services offered by such an 
agent include: 

• discovery of ontologies, 
• maintenance of a set of available ontologies, 
• translation of expressions between ontologies and/or content languages, 
• responding to queries for relationships between ontologies or between terms, 
• facilitating the identification of a shared ontology for communication between two 

agents. 
 
However, this specification deals only with the communication protocols between agents 
and the OA – internal implementation and capabilities are left undefined. 
 
In order to enable agents to communicate and manipulate the knowledge encoded in the 
ontologies a standard knowledge-model and meta-ontology must be adopted.  FIPA uses 
the OKBC frame-based model, and specifies this model in the FIPA-Meta-Ontology 
specification.  This model then serves as an interlingua for knowledge within the agent 
system, and all knowledge provided to or obtained from the OA must conform to this 
model. 
 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005            14 

3. Web Based Services 
 
Web Services are self-contained, modular applications that can be described, published, 
located, and invoked over the Web. They have evolved from distributed object invocation 
systems such as CORBA and are independent of service implementation. They rely on 
several standard languages and protocols, mainly a web service description language 
(WSDL), advertisement and discovery (UDDI), invocation (SOAP) and process 
management (BPEL4WS).  This work comes from industry efforts to focus mainly on 
standardization. 
On the other hand, academic research, mainly the SWSI1 and WSMO2 initiatives, are 
focusing towards developing new paradigms aiming to solve the limitations of current 
solutions by providing semantic information to Web Services. 
 
The W3C Working Group proposes a general view (see Figure 3.1) for the Web Services 
Architecture (on 11th February 2004) [Booth04]. It proposes the steps in the process of 
engaging a Web Service, independently of how it is done (either manually or 
automatically), which deals with the topics of service discovery, service description and 
service choreography explained in the following sections. 

 
 

Figure 3.1:  Web service architecture. 

                                                 
1 Semantic Web Services Initiative (SWSI), http://www.swsi.org/ 
2 Web Service Modeling Ontology (WSMO), http://www.wsmo.org/ 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           15 

3.1 Service Description 
 
The description of the Web Services is a requirement for the automation of the tasks of 
discovery, invocation, interoperation, composition and execution monitoring. The first 
proposal in this direction appeared with the name of Web Service Description Language 
(WSDL), which specified the location of services, the signatures of the operations that 
they expose and some rudimentary natural language description. 
 
But this language only defines how to access the service but it does not explain its 
capabilities, preconditions and effects. This means that the process integration of these 
traditional Web Services, such as Amazon or Google API, requires the developing of 
specific client for each of them. This does not scale in a dynamic world where clients 
need to adapt to changes and new needs. 
 
DAML-S appeared first in 2001 and it was the first attempt to provide an ontology for 
annotating Web services with richer semantics. It is built upon DAML-OIL, a Web mark-
up language that enables the creation of ontologies independently of the domain and is 
amenable to efficient reasoning procedures based on Description Logic. DAML-S lead to 
OWL-S in 2003 in the framework of an international effort towards the development of 
Semantic Web Services – the Semantic Web Services Initiative (SWSI), and it is widely 
supported by the industry with numerous tools and applications. As it will be explained in 
the section 3.4.4, this new ontology does not deprecate WSDL, but it is instead 
complementary. 
 
WSMO is a parallel European initiative for the development of SWS. WSMO defines a 
Conceptual Framework to describe the different aspects related to Web Services (i.e. 
Ontologies, Goals, Web Services and Mediators), using a language, WSML, based highly 
in F-Logic. 
 
The way used to describe SWS will have a clear impact on how much it will improve the 
task of automating discovery, composition, invocation and interoperation. While OWL-S 
is focusing more on improving current standards for Web Services, WSMO starts from 
scratch with a new conceptual framework. 
 
 

3.2 Service Discovery 
 
In service discovery, the basic idea is that service providers register their WS descriptions 
in public registries and requester agents query these registries looking for some 
functionality. Dustdar and Treiber [Dustdar04] classify Web Service Registries 
architectures into centralized, federated and decentralized. They also analyze their 
strengths and weaknesses regarding scalability, fault-tolerance, administrative overhead, 
complexity, and performance. 
 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           16 

Independently of this classification and as mentioned previously, the discovery procedure 
is heavily dependent on the type of SWS description used. We hereby explain how the 
different initiatives can support this functionality. 
 
In OWL-S the capabilities of the service are described using the Service Profile ontology, 
which is used to advertise the service. It has means to include non-functional information 
in an extensible way, although it defines by default some predefined types such as contact 
information of the provider, service categorization within the UNSPSC hierarchy and 
quality rating. But the most important feature for the service discovery task is that it 
allows a functional description of the service expressed in terms of the transformation 
produced by the service [Martin04]. It describes the inputs and preconditions required by 
the service, and the outputs and effects produced. 
In this way, a requester agent looking for some functionality will itself produce a desired 
SWS definition using the OWL-S ontology, and query a registry to look for a match 
among the published services. 
 
WSMO is based on the idea that the provider and the requester agent will not necessarily 
have the same points of view when publishing a SWS and requesting some functionality. 
SWS functionality is described in terms of service capabilities, while requester agents 
define goals that they desire to achieve. The service capability models the functionality of 
the SWS by means of preconditions, assumptions, post-conditions and effects. The 
preconditions and assumptions define the valid instances of the inputs and states of the 
world required by the service, and the post-conditions and effects describe the instances 
of the outputs and the state of the world that will be reached after executing the service. 
In this way, a requester agent looking for some functionality will produce a requirement 
in terms of goals, and request for service discovery - that with the use of mediators will 
look for SWS that can fulfil this requirement. 
 
[Verma04] propose a federated architecture of SWS registries using P2P technology in 
their METEOR-S system. Each registry has an associated hierarchical ontology for a 
specific domain. In comparison to the OWL-S and WSMO initiatives, they use only 
WSDL descriptions which are semi-automatically mapped to the specific registry 
ontology at the time of publication. At the time of discovery, agents can look for relevant 
services by filling an appropriate template built using ontological concepts. The 
algorithm for semi-automatically mapping the WSDL description to the registry ontology 
is based on linguistic similarity between concepts using WordNet [Miller90] and a 
structural similarity between the XML Schema defined complex data types and the 
ontological concepts of the registry ontology. 
At another level, METEOR-S also defines an ontology to annotate the registries 
themselves and their interrelations. 
 
 
 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           17 

3.3 Service Choreography and Orchestration 
 
Once a service with the desired capabilities has been discovered, the client needs to 
interact with the server in order to invoke it and get the capability. The purpose of the 
Choreography is to describe this communication. On the other side, the WSMO initiative 
defines the Orchestration as the description of how a web service interacts with other web 
services in order to fulfil the requested capability. 
 
The WSMO initiative has presented a first working draft this year [WSMO-CO]3, still in 
premature state. They propose to use the Abstract State Machine model, formerly known 
as Evolving Algebras [Gurevich93]. As the choreography describes a kind of “dialogue” 
between the client and the server, they need to be state-based. The state of the machine is 
represented by a signature made of an ontology where the concepts and relations can be 
changed in the next state of the machine based on transition rules. Depending on the 
mode of the concept, it can be changed by a Web Service instance, the environment, 
and/or the service. Transition rules take the form of either Guarded Transitions or Update 
Rules: 

• Guarded transitions are If-Then-Else, ForAll and Choose. 
• Update Rules are add, delete and update. 

 
Previous work in the area of Orchestration is the BPEL4WS language. BPEL4WS 
[Thatte03] defines a model and a grammar for describing the behaviour of a business 
process based on interactions between the process and its partners. The specification is a 
result of a convergence of ideas from XLANG and WSFL specifications. 
 
BPEL4WS distinguishes the public and private part of business processes. Executable 
business processes model the private process, i.e. internal behaviour of a participant in a 
business interaction. The public process is described using the business protocols, that 
specify the mutually visible message exchange behaviour of each of the parties involved 
in the protocol, without revealing their internal behaviour. The process descriptions for 
business protocols are called abstract processes. BPEL4WS defines mechanisms for 
dealing with business exceptions, processing faults and compensation mechanisms for 
unexpected cases. 
 
A process definition is made of activities that can basically specify: 

1) an action to invoke a web service, 
2) the state of waiting and the action of replying a message, 
3) the action of copying a value from a source to a destination variable, and 
4) the indication of failure and process termination. 

 
Complex structures such as sequence, switch and conditional are also allowed. 
 

                                                 
3 We wish to thank James Scicluna for helping us in the understanding about the service choreography and 
orchestration research area. 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           18 

Although formal Semantics of BPEL4WS have been provided using abstract state 
machines (ASM), BPEL4WS lacks form orthogonality as there are some workflow 
patterns that can be specified by similar constructs either from the XLANG or the WSFL 
style [Wohed03]. Moreover, it is a static approach not making use of semantics 
annotations for web services such as OWL-S. WS-CDL4 is a new initiative of W3C, 
whose scope corresponds to the public processes of BPEL4WS. 
 
WSMO Orchestration uses the notion of Goals for dynamically discovering and 
composing semantic services at runtime. Research in this area is still in progress, but is 
envisioned that would be based on a multi-agent asynchronous version of the ASM 
model. 
 
Research on Service Composition, which partially overlaps with Service Choreography, 
has already achieved some results. The OWLS initiative defines the automatic 
composition of Web services as the problem of providing an “automatic selection, 
composition, and interoperation of Web services to perform some complex task, given a 
high-level description of an objective” [Martin04]. Automatic service composition 
techniques are most inspired by AI planning research. Here we explain two of the most 
promising ones. 
 
SHOP2 [Wu03] is a Hierarchical Task Network (HTN) planner well-suited for working 
with the OWL-S Process Model. HTN planning is an AI planning methodology that 
creates plan by task decomposition. The tasks are decomposed into subtasks until the 
planning system finds atomic tasks and a global plan is found. The power of SHOP2 is 
that it can make use of inferencing and reasoning power at the time of the planning. The 
concept of task decomposition in HTN is very similar to the concept of process 
decomposition in OWL-S. This makes it possible that some types of OWL-S composite 
processes composition problem can be easily encoded as a SHOP2 planning problem, and 
so SHOP2 can be used with SWS descriptions to automatically generate a composition of 
Web services calls. The major drawback is that it does not support complex constructs 
like loops. 
 
Situation calculus is a first-order logic language for reasoning about action and change, 
where the state of the world is expressed in terms of functions and relations relativized to 
a particular situation. Golog is an extended language of situation calculus for the 
specification and execution of complex actions in dynamic domains, but that didn’t take 
into account information-gathering actions. An extended version of Golog with 
knowledge and sensing actions has been developed at the University of Toronto 
[McIlraith02]. In comparison to SHOP2, this solution supports complex constructs. 
 
 

                                                 
4 Web Services Choreography Description Language, http://www.w3.org/TR/ws-cdl-10/ 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           19 

3.4 Service Representation Formalisms 
 

3.4.1 SOAP 
 
SOAP 1.25 is a lightweight protocol intended for exchanging structured information in a 
decentralized, distributed environment. The specification has been produced by the XML 
Protocol Working Group6, which is part of the Web Services Activity7.  
 
SOAP provides a distributed processing model that assumes a message originates at an 
initial sender and is sent to an ultimate receiver via zero or more intermediaries. It 
supports many message exchange patterns such as one-way messages, request/response 
interactions, and peer-to-peer conversations. 
A SOAP message is composed of a body intended for the exchange of information 
between the sender and the ultimate receiver, and an optional header that can describes 
some aspects about the processing of the message such as the priority. 
 
SOAP constitutes a basic building block for Web services and is therefore a common 
foundation for several Web services standards, in particular WSDL. 
 
 
 

3.4.2 WSDL 
 
WSDL (Web Services Description Language) describes Web Services as collections of 
"communication endpoints", which send and receive messages according to specified 
protocols, such as HTTP, or SOAP-RPC. The aim of WSDL is to automate the 
communication between Web services. This is done by distinguishing the abstract Web 
Service descriptions from the concrete data formats and protocols used to implement the 
Web Service. In fact, a WSDL binding is a mapping from the abstract description of a 
Web Service to its specific realization [WSDL]. 
 
Web Services are defined in WSDL as sets of endpoints. They are essentially network 
addresses linked to certain protocols and data format specifications. Each endpoint is 
associated with an interface that describes the message exchanges (operations) in which 
the endpoint can take part. In WSDL 1.0 there are four basic kinds of operations: 

• a one-way message, 
• a (two-way) request-response, 
• a (two-way) solicit-response 
• a (one-way) notification message. 

                                                 
5 http://www.w3.org/TR/soap12-part1/ 
6 http://www.w3.org/2000/xp/Group/ 
7 http://www.w3.org/2002/ws/Activity 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           20 

 
This has been improved in WSDL 2.0 by defining 8 basic operations and the possibility 
of being extensible. Message definitions normally employ XML Schema types and thus 
support a broad range of type definitions. Interfaces are reusable and can be bound to 
multiple endpoints. WSDL builds on SOAP by providing a binding for WSDL operations 
to SOAP messages and for WSDL endpoints to SOAP endpoints. 
 
WSDL assumes a stateless client-server model of synchronous or uncorrelated 
asynchronous interactions [Thatte03]. 
 
 

3.4.3 UDDI 
 
Universal Description, Discovery and Integration (UDDI)8 is an OASIS specification for 
a framework for centralized online registries of Web Services. UDDI Version 3 [UDDI] 
focuses on the definition of a set of services supporting the description and discovery of: 
 

1) businesses, organizations, and other Web services providers – businessEntities 
2) the Web services they make available – businessServices 
3) the technical interfaces which may be used to access those services – 

bindingTemplates 
 
UDDI is based on a common set of industry standards, including HTTP, XML, XML 
Schema, and SOAP. 
 
A businessEntity element, can be seen as a White Pages element describing the contact 
information for a business. It describes a business by a name, a key value, a 
categorisation, the services offered (businessService elements) and the contact 
information for the business. A businessService element describes a service using a name, 
a key value, a categorisation and multiple bindingTemplate elements. This can be 
considered to be analogous to a Yellow Pages element that categorises a business. A 
bindingTemplate element in turn describes the kind of access the service requires (phone, 
mailto, http, ftp, fax etc.), the key values and the tModelInstances. 
 
tModelInstances are used to describe the protocols, interchange formats that the service 
comprehends, i.e. the technical information required to access the service. It is also used 
to describe the namespaces for the classifications used in categorisation. Many of the 
elements are optional, including most of the ones that would be required for 
matchmaking or service composition purposes. 
 
Using UDDI, a Web service provider registers its advertisements along with keywords 
for categorisation. A Web services user retrieves advertisements out of the registry based 
on keyword search. So far, the UDDI search mechanism relied on predefined 
                                                 
8 http://www.uddi.org 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           21 

categorisation through keywords, but more recently specifications to use OWL in UDDI 
are emerging as a uniform way to express business taxonomies. Such use of OWL is 
expected to facilitate the service retrieval within the registry. 
 
 

3.4.4 OWL-S 
 
OWL-S [Martin04] defines a set of ontologies, based on OWL whose aim is to allow 
users and software agents to discover, invoke, compose and monitor Web services with a 
high degree of automation. The three main parts of its structure, which will be discussed 
below, are the Service Profile, the Service Model and the Service Grounding. 
 
The Service Profile advertises the service and describes what it does. It includes the 
following types of information: the organisation that provides the service, the function it 
computes and the features that specify its characteristics. The functionality is described in 
terms of its Inputs, Outputs, Preconditions and Effects (commonly referred to as IOPEs). 
In contrast to WSDL, OWL-S defines the inputs and outputs in terms of OWL classes, 
which allows for a richer, class-hierarchical semantic foundation underlying the type 
specifications. 
 
The Service Model describes how the service works with respect to its IOPEs and models 
the service as a set of processes. In the context of OWL-S, a process should not be seen 
as a program to be executed, but as a specification of how a client and a service may 
interact.  
 
The Service Grounding specifies how to access the service. It can be seen as a mapping 
from an abstract specification of the elements present in the interaction, to a concrete one. 
This is done by mapping selected OWL-S ontology elements onto selected elements of a 
WSDL specification. 
 
In brief, these mappings are based on several natural correspondences between OWL-S 
and WSDL: 

• an OWL-S atomic process corresponds to a WSDL (v1.1) operation; 
• the set of inputs and the set of outputs of an OWL-S atomic process each correspond 

to WSDL's concept of message; 
• the types (OWL classes) of the inputs and outputs of an OWL-S atomic process 

correspond to WSDL's extensible notion of abstract type (and, as such, may be used 
in WSDL specifications of message parts). 

 
 
 
 



3. Web Based Services                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           22 

3.4.5 WSMO 
 
WSMO [Roman04] shares with OWL-S the vision that ontologies are essential to support 
automatic discovery, composition and interoperation of Web services. However, despite 
sharing a unifying vision, OWL-S and WSMO differ greatly in their details and their 
approach to achieve these results. Whereas OWL-S explicitly defines a set of ontologies 
that support reasoning about Web services, WSMO defines a conceptual framework 
which comprises the main elements needed to describe the different elements of Semantic 
Web Services, namely, Ontologies, Goals, Web Services and Mediators. 
 
One key difference between OWL-S and WSMO is that WSMO defines the use of Goals, 
which express what the user wants modelled by means of post-conditions and effects, and 
they are decoupled from Web Service capabilities, which describes what the service 
provides. With this approach, the requester (which might be either a human or an agent) 
can create a goal request independently from any Web Service description.  
 
Another difference is that while OWL-S does not make any distinction between types of 
Web services, WSMO places a lot of stress on the specification of mediators that are used 
to solve heterogeneity problems between different entities. There are four different types 
of mediators: 
 

• ooMediators – used to solve terminological problems between different ontologies. 
 
• ggMediators – used to link a goal to another one, defining the refinement of the 

former by the latter. 
 
• wgMediators – link Web Service capabilities to goals that the web service (totally or 

partially) fulfils. 
 
• wwMediators – link different services, and resolve protocol and process differences. 

 
WSMO Choreography and Orchestration, which is ongoing research based on the 
Abstract State Machines methodology, is summarized in section 3.3. 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005            23 

4. Comparing agent services and web services 
 
Despite their separate evolution, multiagent systems and web services both aim to 
provide open, dynamic, service-based architectures.  These services are provided by self-
contained functional elements can select, utilise and compose the functions exposed by 
other such elements, in addition to their own capabilities, in order to achieve their 
individual goals.  However, web services focus on ways of ‘packaging’ and describing 
the functionality utilising standardised languages and formalisms for description, 
invocation, coordination, etc.  Whereas research in agents focuses on ways to provide the 
service functionality based on principles of autonomy, social ability, proactive, reactive 
and goal-directed behaviour [Wooldridge95].  That is, agents provide a top-down, high-
level and theoretical approach to a service oriented architecture, while web services offer 
a bottom-up, pragmatic approach.  Due to this diversity in focus significant differences 
remain between the two architectural conceptualisations, for example: 
 

• Service invocation in web services compared to service request in multiagent 
systems – i.e. remote procedure call compared to message-based communication.  
Giving the agent the choice of refusing the request for self-determined reasons (e.g. 
host system workload levels) – the agent has autonomy, and cannot be ‘ordered’ to 
perform the service [Huhns02]. 

 
• Agents are capable of extended conversations or dialogues, based on performative 

messaging that enables the receiver to know the intent of the sender, compared to the 
simpler synchronous, request-response communication used by web services.  

 
• Ability of agents to set self-determined (sub-)goals as compared to web services use 

of goals that are fixed at design-time or obtained from service users.  That is, agents 
are able to adapt to changing circumstances in their environment and optimise their 
behaviour according to these circumstances, e.g. using re-planning.  

 
• Agents have awareness about the existence of other elements within their 

environment, whereas web services know only about themselves [Huhns02]. 
 
• “Agents are inherently communicative, whereas web services are passive until 

invoked” [Huhns02].  That is, agents are able to be both proactive and reactive, 
whereas web services are only reactive. 

 
• “Agents are cooperative, and by forming teams and coalitions can provide higher 

level and more comprehensive services” [Huhns02]. 
 
•  Web services have implicit world/domain knowledge, whereas agents are intended 

to base their knowledge and actions upon the observable behaviour of other agents.  
This is now being addressed in web services by proposals for trust and reputation 
models. 



4. Comparing agent services and                      D 2.4.4: Guidelines for the integration of agent- 
    web services                                                            based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           24 

Current attention in web services focusing on coordination between services (automated 
discovery, choreography/orchestration, agreement/negotiation, etc.), has highlighted the 
requirements for more expressive, declarative (but static) specification of services – 
which is being addressed by the use of semantic web languages and approaches.  The 
inclusion of semantic annotation in web services description and communication is 
leading to a degree of convergence with agent communication languages (ACL), and they 
are now encountering many of the same problems addressed in agents, e.g.: 

• ontology-based, ACL communication over SOAP for web services - introducing 
performatives (i.e. richer message-typing) 

• agent negotiation in WS-Agreement 
• web service choreography / orchestration compared to coordination approaches in 

multiagent systems. 
 
 
This leads to significant overlap in certain areas of each service domain: 

• Communication of service requests and responses – i.e. the messages and their 
contents (ACL compared to SOAP). 

• Service registries – yellow, white and green pages (FIPA DF compared to UDDI).  
• Agent service description compared to web service description (FIPA agent-service-

description compared to WSDL/OWL-S/WSMO). 
• Agent interaction protocols and coordination compared to web service 

choreography. 
• Negotiation between service clients and providers (e.g. in WS-Agreement). 

 
 
Therefore, we believe that much of existing and on-going research in a number of agent-
related areas is relevant to semantic web services: 

• Communication based on use of performatives, interaction protocols, and expressive 
content languages (SL). 

• Artificial Intelligence game theory that underlies marketplaces and auctions, 
negotiation techniques, and argumentation.  

• Service requests instead of invocations – enabling services to refuse invocation (and 
potentially providing an explanation why), rather than simply failing to execute. 

• Research on long-running transactions and dialogues (showing that even more 
expressivity in communication is needed). 

• Development of persistence and stateful services may be informed by work on 
agents, that are inherently stateful. 

 
 
Also agents can make use of research in semantic web services: 

• Service description in OWL-S and WSMO is somewhat richer than in FIPA ACL. 
• Work on web service choreography and orchestration overlaps with the body of 

work on agent coordination. 
 



4. Comparing agent services and                      D 2.4.4: Guidelines for the integration of agent- 
    web services                                                            based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           25 

Therefore, three main scenarios exist for interacting agent services and web services 
(though the development metaphor may be advised by emerging Agent Orientated 
Software Engineering): 
 
• Web services provide the more basic level functionality, and agent services provide 

higher-level functions.  Agent services use web services, and act as choreographers 
and orchestrators to combine web services into added-value functions.  Not 
consistent with expanding view of semantic web services, and does not account for 
an agent’s own capabilities. 

 
• Web service communication becomes equivalent (in many areas) to agent 

communication, so the distinction between agents and web services disappears.  
Agent techniques are applied ‘behind the scenes’ in the provision of web services – 
which can be seen as being agents in web service wrappers. So, such web services 
can provide ‘normal’ functions – as per current implementations; or they can offer 
‘agent’ functions – where agent techniques are used in the service implementation 
and operation.  This may enable one global conceptual model of services – based on 
semantic web service standards.  Therefore, as the communication languages allow 
more agent-like behaviour in web services, we would see ‘agent’ web services and 
‘simple’ web services co-existing and using the same communication regime.   

 
• Web services and agent services remain separate, using different communication 

protocols and retaining different focus – creating a heterogeneous service space.  
They interoperate through gateways and translation processes – but these require 
many simplifying assumptions to overcome basic differences.  This scenario results 
in two separate development tracks: one of declarative/functional services; and one 
of reactive (autonomous) services exhibiting agency. 

 
 



 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005            26 

5. Guidelines 
 
In the following sub-sections we discuss various approaches to the integration of web 
service and agent services, and explore a number of ways in which research within the 
agent field may be applied to web services.  Sections 5.1 Description, 5.2 Discovery, and 
5.3 Invocation focus on the overlaps and miss-matches between web service and agent 
service paradigms – discussing existing approaches that contribute to the enablement of 
interoperation them.  Sections 5.4 Coordination, 5.5 Agreement, 5.6 Decision-making, 
and 5.7 Dialogues focus on research from the agent and AI community that has the 
potential to make contributions to the integration of web service and agent services. 
 
 

5.1 Description 
 
In comparison to emerging web service frameworks, the FIPA Agent Management 
ontology Service description appears inadequate to describe a service.  In particular, the 
properties list within the description lacks structure, and there is no provision to describe 
service groundings.  In order to address this shortfall in expressiveness and the 
interoperation between the two paradigms, in 2003 FIPA proposed an Abstract Service 
Architecture [Dale03b].  This is intended to provide a consistent framework within which 
both agent-based and web-based services can be expressed, whilst maintaining the 
semantics of the service descriptions, and respecting the differences in modes of 
invocation and inter-operation.  The architecture envisions agents being able to act as 
both providers and consumers of services, and separates the identity of the agent from 
that of any one of many services it may offer.   
The proposal does not specify the role of web services in the architecture, however, it is 
implied that the web services are only providers of services.  In this architecture any 
coordination of services must be performed by an external entity, i.e. an agent, which 
does not correspond to current views on web service choreography.  Therefore, a useful 
extension of the architecture would be to view all participants, agents and web services, 
as both providers and consumers of services.  However, we see no need to also separate 
the identity of the web service and the service it offers.  The underlying model of a web 
service requires that one web identify correspond to one offered service, though there 
may be multiple groundings of the service.  Furthermore, there is already sufficient 
provision to separate the identity of the web service provider in the non-functional 
parameters of web service descriptions. 
 
 
FIPA Abstract Service Architecture 
 
The proposed architecture defines a number of roles that can manipulate (i.e. search, 
examine, invoke, compose, monitor, etc.) services (see figure 5.1.1): 
 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           27 

• Provider – Any component providing a service or set of services.  Each provided 
service has a service description that is published in one or more registries. 

 
• Requestor – Any component using a provided service.  Requestors discover services 

by querying a registry and then examining the service descriptions to find services 
matching their needs. 

 
• Registry – A component that stores and retrieves service descriptions on request from 

providers and requestors respectively.  A registry acts as a ‘yellow pages’ for the 
services registered with it, though services may be registered with many registries and 
coverage of registries will overlap. 

 
• Monitor – Any component, or function of a component, that can observe, and report 

or act on, the status of any current service invocation. 
 
 

 
 

Requestor 

  Service 
Description 

 Provider 

 Registry 

Service 

Service 
Identifier 

Service Meta-
Information 

Searches 

Invokes Provides 

Has 

Registered in 

Has Has 

 Monitor 

Service 
Sequence 

Service 
Process 
Model 

Monitors 

Has 

Has 

Semantic 
Signature 

Pre- 
conditions 

Post- 
conditions 

Rules Ontologies 

Action 

Signature 

Service 
Semantic 

Service 
Grounding 

Service 
Interface 

InformsHas Has Has Has 

Has Has Has 

Refers to Refers to Refers to Refers to

Contains 

Has 

Figure 5.1.1:  FIPA Abstract Service Architecture. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           28 

• Composer and Orchestrator – These roles are discussed within the architecture but 
not fully defined.  However, the composer is intended to be a component that is able to 
inspect service descriptions, and then either automatically or semi-automatically 
composes the individual services into more complex ones.  Such composition would 
involve using the service semantic section of the service description, matching outputs 
and post-conditions of one service into (some of) the inputs and pre-conditions of 
another service.  Furthermore, any such matching may well involve resolving the 
semantic heterogeneity between the ontologies and rules utilised by each of the 
services in the composition.  Due to this complexity the proposal envisions that this 
task may be performed in a non-dynamic and semi-automatic manner, whereas current 
web service architectures focus on dynamic service composition.  Due to this it 
separates the role of orchestrator, as the invoker and monitor / controller of composed 
services, from that of composer.  In current web service proposals these two roles are 
equivalent to the two separate operations of web service choreography and 
orchestration. 

 
 
Within this architecture each Service has a Service Description which consists of the 
following primary components: 
 
• Service Interface – described in terms of its component Actions, each of which have a 

distinct Signature.  
 
• Service Identifier – A globally unique identifier for an individual service instance. 

 
• Service Meta-information – Non-functional parameters describing the service in 

terms of its intended domain and usage, the providers name and contact details, etc. 
 
• Service Grounding – Concrete groundings to a range of service technologies and 

frameworks, e.g. WSDL, SOAP, UDDI, etc.  These descriptions provide the means to 
determine how a service should be used from a technical standpoint. 

 
• Service Process Model – A description of the internal execution process of the service, 

including a Service Sequence description (or descriptions).  It is unclear whether each 
action within the service has a separate Service Process Model or if the process 
describes the transitions between the actions.  It is also unclear if each action is 
associated with a Service Sequence, or even if a process may contain multiple 
sequences.  

 
• Service Semantic – This is a machine-manipulable description of the actions of a 

service, enabling other components in the architecture to perform a more advanced 
semantic interpretation of its function.  This semantic description comprises a 
Semantic Signature and both Pre-conditions and Post-conditions, each of which may 
refer to published Ontologies and associated Rules to constrain the meaning of their 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           29 

contained terms.  The Actions of the Service Interface may also refer to these 
ontologies to define its vocabulary. 

 
 
 
Zhao et al. of Manchester University have proposed an extension to the W3C Web 
Services Architecture (WSA) based on concepts from multiagent systems research 
[Zhao04].  The authors note the correspondence between the WSA core structure of 
distributed agents exchanging messages in the process of providing and consuming 
services, and the same underlying structure in multiagent systems (MAS).  They also note 
that MAS architectures include the notion of agents collaborating in pursuit of 
dynamically changing goals to create intelligent and flexible software systems.  
Therefore, they propose that two agent systems constructs are added to the WSA to make 
it better suited to dynamic operation: 
 

• Agent Role Model – introduces roles played by agents as encapsulations of dynamic 
behaviour and properties. 

• Agent Communication Model – used to structure agent communication channels and 
organise the roles and responsibilities of agents in the communication. 

 
 
The authors refer to the Web Services Architecture draft of 8th August 2003 [Booth03], 
that distinguishes five key models within the architecture: 
 

1) Message Oriented Model  – focused on the messages, message structures and 
message paths. 

 
2) Service Oriented Model  – focused on services, actions and supply chains. 
 
3) Resource Oriented Model  – focused on resources. 
 
4) Policy Model  – focused on architectural policies and constraints. 
 
5) Management Model  – focused on the management of web services. 

 
 
A subsequent draft of the Web Services Architecture (on 11th February 2004) [Booth04] 
does not include the Management model as one of the five key models, however, the 
other four remain the same and this change does not substantially affect the proposed 
extension.  The extension itself is based on a number of important criticisms of the WSA: 
 

• the Message Oriented Model does not distinguish between types of agent and roles 
played by an agent when referring to:  sender, recipient, and intermediary.  This 
distinction is important, as designing a recipient as an agent would involve a static 
(specialisation) relation between  recipient and agent; whereas designing a recipient 
as a role played by an agent involves an dynamic relation between the two. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           30 

 
• the Service Oriented Model represents the service provision and service request 

behaviours of an agent as two different relations between one agent entity and one 
service entity.  This is inconsistent with the approach in the Message Oriented Model 
where the two behaviours are modelled as two separate concepts (see above). 

 
• the  agent  concept plays a role in all of the WSA key models, but never as the core 

entity – so there is no model that focuses on agents and agent interactions.  This 
makes it difficult to get a coherent view of agents and their roles in the architecture. 

 
• the WSA ‘hides’ agent behaviour and focuses instead on message structures and 

routing.  Agent behaviours in different contexts are represented as specialisations of 
agent,  e.g. sender, recipient, provider, and consumer.  In some of the models these 
specialisations are not even given as separate concepts, but are represented as 
relationships between agent and other model elements.  This creates serious 
difficulties in modelling and managing dynamic behaviour change in agents. 

 
• the Message and Service Oriented Models are described only in terms of their 

concepts and relationships – which gives the impression that everything is linked to 
everything else.  However, there is no structure that describes how the concepts are 
interlinked into a communication channel. 

 
 
Based on these criticisms, Zhao et al. propose the adoption of two additional key models, 
based on research within multiagent systems, within the WSA that address these 
shortcomings: 
 
Agent Role Model 
 
This model is formed from the composition of all the agent roles presented within the 
WSA, and is illustrated in figure 5.1.2.  The diagram shows that an agent plays a 
particular role by accessing that role through a generic Agent Role interface.  It also 
shows that each of the specific roles are implementations of the Agent Role interface. 
 
The Agent Role Model (ARM) exhibits a Role Pattern, a well-known design pattern from 
object-oriented programming, that provides a number of features to the model: 

• Extensibility – new roles can be added to the model without affecting existing inter-
relationships. 

• Consistent viewpoint – roles can only be accessed through the generic interface. 
• Lower coupling – there is only ever a one-to-one relationship between an agent and 

its role. 
• Dynamic binding – an agent is associated with a role dynamically at runtime, so a 

change of roles will not affect the agent itself. 
 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           31 

These four characteristics enable the design of web service applications that have 
dynamic behaviour: each behaviour is separated out and defined as a specific agent role, 
which the agent can then dynamically change between dependent on its context.  The 
authors [Zhao04] see the ARM as the focal point of the WSA, that the other four models 
converge towards.  The intersections between the ARM and the other models can be used 
as integration points, and this central position of the ARM corresponds to the importance 
of agents as proactive actors in the WSA.  However, such integration would require some 
modification of the current models with respect to the representation of agent behaviours 
as Agent Role types.. 
 

 
 
Agent Communication Model 
 
This model is intended to explicitly capture Agent Role communication patterns within 
the WSA.  Examination of the concepts and features relating to communication within 
the Message and Service Oriented Models, reveal an common underlying Proxy design 
pattern.  This can be seen in the intermediary behaviour represented in the Message 
model.  The Proxy design pattern requires clients of a component to communicate with a 
representative, which provides location transparency – a core part of many distributed 
and component-based systems (e.g. CORBA and COM).  Such location transparency 
leads to service transparency – hiding from service users how the services are 
discovered, composed, invoked, etc.; and enabling dynamic service supply-chain 
formation based on user requirements. 
 
Thus, the authors propose an ‘agent-centred’ view of the Web Services Architecture that 
focuses on the roles agents take on and the communication patterns of such roles.  This is 
intended to ‘facilitate the design of dynamic web service applications’ by building upon 
the benefits of roles: dynamic, flexible, context-sensitive, and responsibility-driven. 
 
 

Agent Agent Role 

Contractor Manager 

Sender 

Requester 

Intermediary 

Provider 

Receiver 

Figure 5.1.2:  Agent Role Model in WSA 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           32 

Another approach to the integration of agent service descriptions and web service 
descriptions is translation-based, where (semi-)automatic processes attempt to represent 
descriptions in one formalism in terms of another description formalism.  In the 
Agentcities Technical Recommendation, the point is made that due to the additional 
complexity and semantic richness of agent conversations, no generic mapping of agent to 
web service communication is possible – but that (semi-)automatic mapping is possible in 
one direction from agents to web services [Dale03a].  In this initial proposal, the 
translation between FIPA ACL fipa-service-descriptions and WSDL web 
service descriptions is achieved primarily by a manual initialisation of the agents, web 
services, and descriptions to be used by the gateway. 
 
In the Whitestein Technologies AG implementation of this architecture, the Web Service 
Integration Gateway (WSIG) [Greenwood04], the translation achieved by a 
ServiceDescriptionTranslator component.  The translation uses a mapping schema 
between the service description formalisms, but the translation cannot be one-to-one due 
to mutual inconsistencies between the different service descriptions; therefore, those 
elements with no direct mapping are encoded as optional properties.  In each case, WSDL 
to FIPA, and vice versa, the gateway places the two forms of the service description in its 
internal UDDI and DF registries.  In addition to translating the service descriptions, the 
WSIG performs bi-directional translation between FIPA ACL message and SOAP 
messages by use of a (pre-defined) schema that maps fields in one message format into 
equivalent fields in the other (see section 5.2). 
 
 
Following from [Dickinson05], we can see such combined description and (to a lesser 
extent) translation approaches as being indicative of a view that agents and web services 
are not conceptually distinct (see, for example, [Breese98].  In this view, there is no 
conceptual difference between a web service and an agent: both are active building 
blocks in a loosely-coupled architecture. In such architectures, there is only an 
engineering problem of creating overall system behaviours from active components.  
However, we suggest that there is a distinction between web-services and agents, that is 
useful to both the system designers and its users. If an agent is able to represent, mediate 
and proactively act to achieve a user’s goals, it will manifest this behaviour in the user-
interface in a different way to non-agent components that do not have those properties. 
We propose that agents are necessarily those elements of the system that are most 
parsimoniously describable in terms of mental attitudes, particularly intention (the user's 
or the agent's). 
The observable behaviours of a component that understands user goals and can adopt its 
own mental attitudes in response are distinct and different from deterministic 
components. Clearly a given software component can both represent intention and act as 
a web service, but this makes it different from traditional web services, which don’t. 
Hence representing intention is, in our view, the key conceptual difference between 
agents and services. 
The Web Service Integration Gateway [Greenwood04] also proposes that agents 
exposing their capabilities as web services should use an adapter to translate between 
SOAP and ACL requests. An agent registers entries in a FIPA directory facilitator (DF) 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           33 

to advertise its abstract services, and it is these that are made available as web services 
via the adapter. This implies that agents advertise their capabilities and roles 
procedurally, using the operations they can perform, rather than declaratively describing 
their capabilities. 
 
 

5.2 Discovery 
 
Agentcities, a large-scale development and experimental platform for FIPA agent 
systems, produced a Technical Recommendation document [Dale03a] entitled 
“Integrating Web Services into Agentcities”.  This recommendation describes an 
architecture that enables agents on FIPA platforms to discover and access web services, 
and conversely enables web services to discover and invoke (or more properly – request 
invocation) of agent services.  The recommendation makes a distinction between the 
agents providing services and the services themselves – using the term FIPA Service to 
identify a specific service provided by a specific agent.  The recommendation also 
stresses that this architecture is only able to handle one-shot (atomic) web services, and it 
may not be easily extended to handle more complex interactions. 
This reference architecture (see Figure 5.2.1) is built around two gateways, which utilise 
a translation approach between the two service description formalisms, as described in 
section 5.1. 
 
 

 
 

Figure 5.2.1:  Adapted reference model for agent services and web services. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIPA agent services environment

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Web services environment 

FIPA 
Directory 
Facilitator 

UDDI 
registry 

Web 
service 

FIPA 
service 

FIPA 
agent 

Web 
service 
client 

FIPA Service 
to Web Service 
Gateway 

Web Service to 
FIPA Service 
Gateway 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           34 

Web Service to FIPA Service Gateway (WStFSG) 
 
• Intercepts REQUEST messages from agents that are intended for web services, and 

then translates this request from FIPA ACL into a SOAP message, before 
performing the SOAP invocation on behalf of the agent. 

• Intercepts the return message resulting from a SOAP invocation, then translates the 
contents into FIPA ACL, before sending the message as an ACL INFORM to the 
originating agent. 

• The gateway may optionally perform automatic querying of known UDDI servers, 
discovering service descriptions, translating them into df-agent-description 
instances, and then registering these with known DF agents – thus enabling agents 
to discover web services from within their own environment. 

 
 
FIPA Service to Web Service Gateway (FStWSG) 
 
• Intercepts SOAP messages from web service clients that are intended for FIPA 

services, and then translates the message into ACL, before sending the message to 
the appropriate agent as a REQUEST. 

• Intercepts INFORM messages from agents that are intended as invocation responses 
to web services, then translates the message into a SOAP method return, before 
sending the SOAP message to the originating web service on behalf of the agent. 

• The gateway may optionally perform automatic querying of known DF agents, 
discovering agent descriptions and translating them into UDDI service 
registrations, and then registering these with known UDDI servers.  

 
 
This architecture is separated into two implementation components – the Web Service 
Agent Gateway; and the SZTAKI service wrapper agents:   
 

• The Web Service Agent Gateway enables existing agent services to be deployed as 
web services, by translating between FIPA ACL messages and SOAP invocations.  
The initial step is to process the WSDL file of the web service, and from this to 
generate a specific ontology and agent deployment code for the web service proxy 
agent. 

 
• The SZTAKI service wrapper agents enable agents to access existing web services, 

by generating wrapper/proxy agents for each of the web services required, and 
translating between ACL and SOAP.  Once the wrapper agent is deployed, agents 
access the web service by sending a REQUEST message to this proxy – specifying the 
web service operation required and the input parameters.  This information is 
specified using the generated ontology, which defines classes for the operations, 
parameters and outputs of the web service that are used in conversations between the 
invoking agent and wrapper agent. 

 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           35 

The Web Service Integration Gateway (WSIG) [Greenwood04] is a further development 
of this Agentcities architecture by Whitestein Technologies AG, built as an extension to 
the JADE multiagent system development platform.  It provides a bridge between agent-
based services, expressed as FIPA Agent Management ontology Service instances and 
registered with a Directory Facilitator agent, and web-based services, expressed as 
WSDL descriptions and registered with a UDDI registry.  The gateway is constructed as a 
stand-alone application, and manages the translation between the formalisms internally, 
rather than having a wrapper agent on the agent platform as a proxy for each of the web 
services being translated – which the authors see as being a more scalable solution.  This 
is achieved by the gateway generating a web service stub from the WSDL file of each 
web service registered with it, and then activates this stub to handle any invocations of 
the web service. 
The WSIG maintains both a Directory Facilitator registry of services and a UDDI registry 
stack, and provides automatic bi-directional translation between Service instances and 
WSDL descriptions.  For each service registration received by the gateway the service is 
translated into the other formalism, and then the two equivalent descriptions are stored in 
their respective registries.   
As part of the translation process the gateway creates grounding end-point stubs for each 
of the agent-based services exposed as WSDL descriptions.  Therefore, when a web 
service sends a SOAP invocation to the WSIG, it translates this synchronous call into an 
asynchronous FIPA ACL communication with the agent providing the invoked service.  
Conversely, when an agent sends a FIPA REQUEST to the gateway with the intention of 
invoking a web service, the WSIG transforms this asynchronous request into a 
synchronous SOAP invocation on the web service required.  From the perspective of the 
client, either agent or web service client, the requested / invoked service is of the same 
type as the invoker – i.e. a web service addresses its invocations only as SOAP messages 
and vice versa.  Therefore, the web service client need not be aware of the fact that the 
invocation is via the WSIG.  However, an agent client must be aware of this, as the 
addressee of the web service invocation REQUEST message is the gateway itself rather 
than the required service – this is specified as part of the ACL message content. 
 
 
An example of the usage of an agent service / web service gateway can be seen in 
[Buhler04], in which the gateway enables services provided by agents to be included in 
BPEL4WS specified workflows as if they were web services.  The authors see agents 
having a symbiotic relationship with web services, where agents can utilise web services 
as externally defined agent behaviours.  In this scenario, because the workflow calls a 
proxy agent for the web service, rather than calling the web service directly, an 
opportunity is created for the agent to perform intelligent action related to the service 
request using other knowledge and capabilities of the agent – instead of simply invoking 
the service without consideration.  This example also serves to highlight some 
shortcomings in agent/web service interaction – noting that it is insufficient to simply 
place web service invocation parameters in the content field of ACL messages, and that 
an ACL content language would enable better encoding of such parameters for use in 
open agent environments. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           36 

Another approach for integrating agent services and web services based on translation 
between description and communication formalisms is that proposed by Iqbal et al. 
[Iqbal04].  Here the authors envisage an ‘Autonomous Distributed Service System’ in 
which: 

• agent services can be offered in a web service environment, by use of WSDL 
descriptions extended with ontology definitions,  

• and web services can be offered in an agent environment, by use of proxy agents 
representing web services.  However, the authors observe that this proxy agent 
approach is “neither scalable nor efficient and non-dynamic as well”. 

 
This proposed architecture aims to incorporate not only agent services and web services, 
but grid services as well – which are themselves based on standard and extended web 
service languages and formalisms.  In addition to using translation (coupled with 
wrapping and simplifying assumptions) to enable agent services to exist in a web service 
environment, the architecture incorporates features of agent systems into its unified 
service environment: 
 

• Autonomy – the entities of the system are self-regulating, and manage their own 
behaviour. 

 
• Adaptability – the entities within the system, and the system as whole, are able to 

adapt their behaviour in response to dynamic events. 
 
 
 
This theme in the literature (as characterised in [Dickinson05]) is based on the 
proposition that agents and web-services can interoperate by either of them initiating 
communications [Greenwood04], [Good99]. That is, agents can invoke web services, and 
vice versa. The Web Service Integration Gateway [Greenwood04] (described earlier) 
shows clearly that it is feasible for web-services to invoke an agent capability, providing 
that an appropriate WSDL to ACL mapping is in place. However, we view the invocation 
of agents by web services as problematic. The implication of the web-service to agent 
invocation is that the agent must expose pre-determined behaviours, for example named 
operations with known parameters. Suppose such exposed methods represent fixed, 
deterministic behaviours. This makes the invoking service easier to write, but violates the 
presumption of the autonomy of the agent. It is not clear why a software component that 
behaves in this deterministic manner can be termed an agent. If the invoked agent is not 
fixed and deterministic in its behaviours, the invoking web-service must behave in an 
agent-like manner to adjust to the agent’s autonomous responses. If the behaviour of the 
web-service is not distinguishable from an autonomous agent, then we argue that it 
should be regarded conceptually as an agent, not a service. 
We generally regard web-services as being more primitive than agents. If an agent is to 
behave plausibly autonomously, and respect its (and its user’s) current intent, then it can 
only expose the most generic interfaces to other services – such as the delivery of a 
message or event. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           37 

5.3 Invocation 
 
Invocation of web services is built upon a Remote Procedure Call (RPC) approach.  A 
client ‘orders’ a service to be executed, and can then assume that the service will execute 
as advertised (providing the correct input parameters have been provided).  Any failure to 
execute the service by the provider simply results in no response being returned to the 
client.  In this scenario the onus is on the client to determine that the service has not 
executed correctly, and then to undertake corrective action – such as re-invoking  the 
same service or finding another appropriate service. 
In multiagent systems the same concept of service invocation does not exist.  Instead, a 
client requiring the performance of a service would send a request message to the 
provider agent asking for the service to be performed.  In this scenario the provider agent 
may chose not to execute the service as requested, e.g. due to its workload the agent is 
unable to provide the service; or the agent may use a recently cached result of an identical 
query rather than re-execute the query and pay any associated costs.  However, the 
provider agent does not simply have to fail to execute a service, as would be the case with 
a web service.  The agent can utilise the richer communication style embodied in FIPA 
ACL to converse with the client agent, in order to seek further inputs for the service, 
explain why the service cannot be executed, etc. 
 
 
The primary focus of research into semantic representations for web services has been to 
use such semantic descriptions to facilitate web service discovery and composition, by 
both human developers and by other web services.  However, a closely related problem is 
that of how these web services go about communicating with each other.  The process 
models in which these services are used, and their service profiles, are becoming 
increasingly sophisticated in comparison to mark-up languages for semantic web 
services.  
 
Willmott et al. [Willmott05] propose the adaptation of language structures and protocols 
from the agent research area to enrich the semantic of web service to web service 
communication.  Agent communication languages have been developed to solve very 
similar problems to those being encountered in the web service arena, that is, arbitrary, 
semantically well-founded communication between autonomous systems.  Of particular 
interest are languages such as FIPA ACL, which are based upon a ‘speech act’ paradigm 
and have well developed structure.  These languages enable the structuring of arbitrary 
communication by sub-dividing the problem into levels that each have clear language 
semantics, such as context, protocols, speech acts, content expressions and domain 
references.  They also provide linkages to higher level agent coordination patterns that 
might be used by web service designers.  The authors identify three specific areas where 
web service communication could benefit from more specific semantics: 
 

• The intent of the component invoking a web service is only partially and indirectly 
encoded in the name of the method called and its association with any triggered 
process.   

 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           38 

• A single interaction with a service may consist of a lengthy sequence of messages, 
whose semantics is not captured by the current focus on atomic request-response 
interactions. 

 
• There may be specific relationships between the arguments of a web service, which 

can only be inferred from the triggered processes, and these relationships can only be 
re-defined by creating new functions. 

 
 
In addition, the application of agent communication approaches would address the 
significant redundancy likely across applications.  This is because different functions in 
different service descriptions will, at a high level of abstraction, have similar intuitive 
meanings, e.g. requests, information statements, etc.  That is, in current web service 
approaches the function definitions are necessarily domain and application specific 
(being directly linked to specific process models), which inhibits reuse. 
 
In order to use FIPA ACL as a web service communication language the authors propose 
the following architecture components: 

• a set of language ontologies, specified in OWL, that encode the grammar of FIPA 
ACL, FIPA SL and supporting elements. 

• XML message representations of messages in these languages, utilising the OWL 
specifications. 

• a logical message structure enabling these messages to be carried over SOAP. 
• a WSDL specification of SOAP endpoints that support the message structure. 

 
Using these components an algorithm can then transform each term of an ACL message 
into an automatically generated instance of the appropriate class of the language 
ontologies.  Instance identifiers are generated automatically and are used to specify the 
relations between the different class instances.  The content field of the ACL message is 
encoded in the same way, using the FIPA-SL ontology, and links to domain ontology 
class instances.  The XML message is then formed of these class instances and properties, 
and is sent in the body of a SOAP message to invoke the required web service. 
In order to preserve the asynchronous basis of agent communication, the required 
responses to SOAP invocations are treated simply as acknowledgements of message 
receipt.  The invoked web service carries out the invoked process in a separate thread of 
control, returning a response at the end of this process – i.e. the web service handles the 
invocation in its own time, not simply as a call and response. 
 
This approach focuses on specifying the grammatical structure of the FIPA ACL 
representations, rather than attempting to capture the meaning of the language elements 
(e.g. inform or  request).  This is because the authors see the modelling of the grammar as 
an essential first step, so that a well-defined message structure is available, and because 
there is no agreement on how best to capture language semantics.  The authors also note 
that OWL/RDF are not fully adequate to express such grammatical and language parsing 
constraints, but that this approach enables a immediate link to be made between language 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           39 

elements and elements in domain ontologies.  Finally, issues remain regarding the mixing 
of elements from different ontologies whilst preserving class relationships – which has 
been side-stepped in the current model by allowing any grammar element to be replaced 
by a reference to an instance from a domain ontology (though this does not allow type-
checking and communicating services would need to apply pre- and post-processing on 
messages). 
 
One potential benefit of using such a generic web service communication language as 
that described above, is that service descriptions (e.g. WSDL/OWL-S groundings) can be 
de-coupled from specific method calls.  By declaring in the service description which 
content languages, ontologies and protocols are supported, other services can 
communicate with the described service by generating messages that fit these constraints.  
However, such communication requires that services have a common interpretation of 
arbitrary statements in the content language used.  In addition, most applications will 
need to employ a number of different content languages to express different elements of 
the communication, and any generic communication framework would need to support 
this use of multiple languages (and their diverse underlying semantic models). 
 
 
 

5.4 Cooperation and Coordination 
 
Building the Semantic Web relies on technologies that permit the various components – 
ontologies, reasoning engines, agents and web services – to work together harmoniously. 
These interactions need to be managed according to a theory that is understood and 
agreed upon by all the components (e.g., web services or agents). Coordination is the 
process of managing the possible interactions between activities and processes, and a 
mechanism to handle such coordination interactions is known as a coordination regime. A 
successful coordination regime will prevent negative interactions occurring (e.g., by 
preventing two processes from simultaneously accessing a non-shareable resource), and 
wherever possible will facilitate positive interactions (e.g., by ensuring that activities are 
not needlessly duplicated). Often, coordination is not required for the agents to be 
successful in their tasks, but there may be a global benefit to be gained by adopting such 
coordination.  There has been significant work in the multiagent systems research area on 
coordination between agents [Wooldridge02], and so we adopt the convention of 
referring to the processes which need to coordinate as agents  – though they may equally 
be any other type of processing entity (such as a web service.) 
 
Effective coordination mechanisms require the sharing of knowledge about activities, 
resources and their properties.  Typically, this sharing is achieved statically, by hard-
coding at design time the coordination mechanism in the agents. However, in more open 
systems, where the processes and resources of the system are not known at design time, 
this approach is often impossible. In such systems, it may be desirable to allow the 
relevant processes to communicate their intentions with respect to future activities and 
resource utilisation, and get them to reason about coordination – with the goal of 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           40 

preventing negative interactions, and facilitating positive interactions.  This is a dynamic 
approach to coordination, since the coordination requirement is handled at run-time, 
rather than design time. The communication implied by this solution requires an agreed 
common vocabulary for coordination, with a precise semantics, that is, an ontological 
approach to dynamic coordination. 
 
In the following sub-sections we present an ontological approach to coordination among 
autonomous entities9.  These sub-sections firstly review the coordination research area, 
particularly regarding agent coordination research; then present our coordination 
ontology; and finally provide details of a test-bed implementation of this ontology-based 
coordination. 
 
 
5.4.1  Coordination 
 
The coordination problem is that of managing relationships between the activities of 
agents [Malone94]. Coordination is essential if the activities that agents engage in can 
interact in any way. Consider the following examples. 
 

• You and I both want to leave the room, and so we independently walk towards the 
door, which can only fit one of us. I graciously permit you to leave first.  

In this example, our activities need to be coordinated because there is a resource (the 
door) which we both wish to use, but which can only be used by one person at a time. 

 
• I intend to submit a grant proposal, but in order to do this, I need your signature. 
In this case, my activity of sending a grant proposal depends upon your activity of 
signing it off – I cannot carry out my activity until yours is completed. In other words, 
my activity depends upon yours. 

 
• I obtain a soft copy of a paper from a Web page. I know that this report will be of 

interest to you as well. Knowing this, I pro-actively photocopy the report, and give 
you a copy. 

In this case, our activities do not strictly need to be coordinated – since the report is 
freely available on a Web page, you could download and print your own copy. But, by 
pro-actively printing a copy, I save you time. 

 
Coordination, defined in this way, subsumes the well-known and widely studied concept 
of synchronisation [Ben-Ari90]. Synchronisation is primarily concerned with the 
restricted case of ensuring that processes do not destructively interact with one another, 
while the concept of coordination is actually much broader than this. Standard solutions 
to synchronisation problems involve hard-wiring coordination regimes into program 
code. Thus, for example, a JAVA method may be flagged as  synchronized  by a 
programmer, indicating that a certain access regime is enforced whenever this method is 
                                                 
9 This description is substantially based upon work produced by the University of Liverpool within the 
OntoGrid project – FP6-511513 [OntoGrid] 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           41 

invoked. However, in large-scale, dynamic, open systems, like the Semantic Web, such 
hard-wired regimes are too limiting. We really want computational processes to be able 
to reason about the coordination issues in their system, and resolve these issues 
autonomously. 
 
Building agents for semantic web applications that can reason about coordination issues 
dynamically, means that we must first identify the possible interaction relationships that 
may exist in these applications. So, the goal here is to derive and formally define the 
possible interaction relationships that may exist between activities.  Prior work on this 
topic—von Martial [vMartial92] puts forward a high-level typology for coordination 
relationships. He suggests that relationships between activities could be either positive or 
negative. Positive relationships “are all those relationships between two plans from which 
some benefit can be derived, for one or both of the agents plans, by combining them” 
[vMartial90]. Such relationships may be requested (I explicitly ask you for help with my 
activities) or non-requested (it so happens that by working together we can achieve a 
solution that is better for at least one of us, without making the other any worse off). Von 
Martial distinguishes three types of non-requested relationships: 
 

• The action equality relationship: We both plan to perform an identical action, and by 
recognizing this, one of us can perform the action alone, and so, save the other effort. 

 
• The consequence relationship: The actions in my plan have the side-effect of 

achieving one of your goals, relieving thus you of the need to explicitly achieve it. 
 

• The favour relationship: Some part of my plan has the side effect of contributing to 
the achievement of one of your goals, perhaps by making it easier (e.g., by achieving 
a precondition of one of the actions in it). 

 
 
Another significant body of relevant work is Partial Global Planning [Durfee88], in 
which agents develop and exchange plans of local activity in order to identify possible 
interactions (positive or negative). The ideas were refined in Decker’s subsequent work 
on Generalised Partial Global Planning (GPGP) in the TÆMS test-bed [Decker95]. 
GPGP makes use of five techniques for coordinating activities: 
 

1) Updating non-local viewpoints:  Agents have only local views of activities, and so, 
sharing information can help them achieve broader views. In his TÆMS system, 
Decker uses three variations of this policy: communicate no local information, 
communicate all information, or an intermediate level. 

 
2) Communicate results:  Agents may communicate results in three different ways. A 

minimal approach is where agents only communicate results that are essential to 
satisfy obligations. Another approach involves sending all results. A third is to send 
results to those with an interest in them. 

 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           42 

3) Handling simple redundancy:  Redundancy occurs when efforts are duplicated. 
This may be deliberate – an agent may get more than one agent to work on a task 
because it wants to ensure the task gets done. However, in general, redundancies 
indicate wasted resources, and are therefore to be avoided. The solution adopted in 
GPGP is as follows. When redundancy is detected, in the form of multiple agents 
working on identical tasks, one agent is selected at random to carry out the task. 
The results are then broadcast to other interested agents. 

 
4) Handling hard coordination relationships:  “Hard” coordination relationships are 

essentially the “negative” relationships of von Martial. Hard coordination 
relationships are thus those that threaten to prevent activities being successfully 
completed. Thus a hard relationship occurs when there is a danger of the agents’ 
actions destructively interfering with one another, or preventing each others actions 
being carried out. When such relationships are encountered, the activities of agents 
are rescheduled to resolve the problem. 

 
5) Handling soft coordination relationships:  “Soft” coordination relationships include 

the “positive” relationships of von Martial. Thus, these relationships include those 
that are not “mission critical”, but which may improve overall performance. When 
these are encountered, then rescheduling takes place, but with a high degree of 
“negotiability”: if rescheduling is not found possible, then the system does not 
worry about it too much. 

 
 
 
5.4.2  Coordination ontology 
 
Based on these approaches, we have designed an ontology for coordination, aimed at 
enabling agents to reason about the relationships of their activities to the activities of 
other agents. So, the fundamental purpose of the ontology is to answer the following 
questions: 

• what is a coordinable activity? 
• what coordination relationships do such activities have to one another? 

 
In the sub-sections that follow, we give an overview of the ontology: the key concepts, 
the slots associated with these concepts, the relationships between these concepts, and 
axioms. From the ontological perspective, there exist a number of ontologies that define 
notions similar to these ones we define in the coordination ontology, such as process, 
and activity. One direction to explore is the possible integration of our ontology with 
OWL-S [Martin04], and its first order logic representation of process theory based on 
PSL [PSL]. For example, perhaps an AtomicActivity is a sub-class of an OWL-S process, 
and similarly for OWL-S composite processes. 
 
 
 
 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           43 

Agents 
 
The concept Agent relates to the processing entities in the system, i.e., the things that 
perform the actions requiring coordination – this role may also be filled by web services. 
In the coordination ontology, agents have just one slot: id, which is a string representation 
of the unique identifier for the agent (e.g., a URI). 
 
 
Processes and Activities 
 
Our next concept is Process. A process is an activity that changes the state of the 
environment in some way. It may be terminating or non-terminating, and be carried out 
by a human or other agent, or be a natural (physical) process. The process concept has 
two sub-classes: the most important of which is that of a CoordinableActivity. A 
coordinable activity is a process that can be managed in such a way as to be coordinated 
with other coordinable activities. For example, executing the process of invoking a web 
service would be a coordinable activity, in the sense that the invocation of such a service 
can be managed so as to coordinate with other invocations. For example, suppose we 
have two agents, both of which want to invoke the same web service, with different 
parameters. Then, in general, the agents could manage their invocations so as not to 
interfere with one another.  
 
Not all processes of interest to a system are coordinable – hence we have the 
NonCoordinableActivity concept. We intend this concept to capture all those processes 
whose coordination is not possible by the agents within the system to which a particular 
knowledge base refers. This will include at least the following two types of process 
(although we do not represent these as concepts): 
 

• Natural events: These are physical processes that will take place irrespective of what 
any agent in the system does. An extreme example would be the decay of an atom, 
caused by essentially random quantum events. Clearly, such processes cannot be 
coordinated with other processes: they will take place (or not take place) irrespective 
of what the agents in the system do. 

 
• External processes: These are processes – either physical world processes or natural 

processes – which are simply outside the control of the system, in that they cannot be 
managed by the agents in the system. Notice that such processes may be coordinated 
by entities outside the system: the point is, that for the purposes of the system to 
which the knowledge base refers, they cannot be coordinated. 

 
Another way of thinking about the distinction between a coordinable and a non-
coordinable activity is that there is always an agent (i.e., a software agent within the 
system) associated with a coordinable activity, whereas there is no such agent associated 
with a non-coordinable activity.  
 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           44 

We think of particular CoordinableActivity as being arranged into an and/or tree 
hierarchy of activities, with AtomicActivitys as leaves of the tree. Thus a Coordinable-
Activity is composedOf possibly many other Activitys, and may be: 

• a ConjunctiveActivity: in this case, it is composed of a number of other activities, 
which must all be successfully completed in order for the overall activity to be 
completed; 

• a DisjunctiveActivity: it is composed of a number of other activities, of which at least 
one must be successfully completed in order for the overall activity to be completed; 

• a AtomicActivity – in which case the activity is composed of no further activities. 
(The set of CoordinableActivitys of which this activity is composed is empty.) 

 
 
We can further identify the following sub-classes of AtomicActivity: 

• ConcludedCoordinableActivity: an activity that has taken place in the past, and is 
now fully concluded. 

• ContinuingCoordinableActivity: this is an activity that is currently in progress. 
• ScheduledCoordinableActivity: this is an activity that it is expected will take place, in 

the sense that it is scheduled for execution by some agent. 
• SuspendedCoordinableActivity: this is an activity that whose status is undetermined. 

 
 
Let us briefly consider slots and properties of our concepts. A CoordinableActivity will 
have the following slots: 

• actor: an Agent, i.e., the agent that intends to carry out, or has carried out this 
activity; 

• earliest start date: either a date or null, with a date indicating the earliest date at 
which the activity may begin; null indicates that this information is not known; 

• latest start date: either a date or null, with a date indicating the latest date at which 
the activity may begin; null indicates that this information is not known; 

• expected duration: either a natural number, indicating the number of milliseconds 
the activity is expected to take, or null indicates an unknown duration; 

• latest end date: either a date or null, with a date indicating the latest date at which 
the activity may end; null indicates that this information is not known; 

• actual start date: either a date or null, with a date indicating the date at which the 
activity actually began; null indicates that this information is not known; 

• actual end date: either a date or null, with a date indicating the date at which the 
activity actually ended; null indicates that this information is not known; 

• final status: an enumeration type, either succeeded, failed, or null. 
 
 
There are a number of axioms that may be introduced at this point. With respect to 
Conjunctive and DisjunctiveActivitys, we have the following: 

• a ConjunctiveActivity has successfully terminated if all its components have 
successfully terminated; 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           45 

• a DisjunctiveActvity has successfully terminated if at least one of its components has 
successfully terminated. 

 
With respect to the relationship between scheduled activities and their successful 
completion, we have the following: 

 if an activity is scheduled, then it should have a null actual start date and actual 
end date. 

 if an activity is concluded, then the final status must be non-null; 
 if an activity started before its earliest start date, then it has failed; 
 if an activity started after its latest start date, then it has failed. 

 
 
 
Resources 
 
Next, we have the Resource concept. The idea of this concept, as we discussed in the 
introduction, is that a resource is something that may be required to expedite an activity. 
Thus, we have a one-to-many relationship between AtomicActivitys and Resources. Note 
that we regard this set as being fixed, for any given activity. 
 
The Resource concept has the following slots: 

• viable: a Boolean value, indicating whether the resource is still in a state to be used; 
a value of false here would indicate that the resource could not be used by any 
activity (even if these activities Require it). Another simple way to think about 
viable is that it indicates whether a resource is “broken” or “working”. 

• consumable: a Boolean value, which indicates whether the use of the resource will 
reduce subsequent availability of the resource in some way; more precisely, whether 
the repeated use of the resource in activities would make the resource non-viable. 

• shareable: a Boolean value, indicating whether a resource may be used by more than 
one agent at any given time. 

• cloneable: a Boolean value, indicating whether or not the resource is cloneable (= 
true), or unique and not-cloneable (= false). An example of a cloneable resource 
would be a dataset or a digital document. An example of a unique resource would be 
a physical artefact produced as the output of a particular experiment, or a human 
being. 

• owner: either an Agent (in which case this is the agent that owns the resource), or 
null (in which case the semantics are that the resource may be used by any agent at 
no cost). If a resource is owned by an agent, and another agent wishes to use this 
resource, then it may be necessary to enter into negotiation over the exploitation of 
the resource. 

 
 
 
 
 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           46 

Interdependencies between Activities 
 
We now turn to the interrelationships that exist between activities. Our first concept is 
that of an Interdependency. The interdependency concept has the following slots: 
 

• source and target: both slots are Activities, the idea being that these are the two 
activities which are interdependent. 

 
• isHard: a Boolean value, which indicates whether the relation is “soft” (= false) or 

“hard” (= true), with the following semantics: 
o a hard relation is one which will materially affect the success or otherwise 

of the activities; 
o a soft relation is one which may affect the activities, positively or 

negatively, but will not affect whether they are successful or not. 
 
 
Sub-classes of CoordinationRelation are: 
 

• NegativeCoordination: an interaction which, if it occurs, will lead to a reduction in 
the quality of the solution or the utility of the participants; 

• PositiveCoordination: an interaction which, if it occurs, will lead to an increase in 
the utility of the participants or the quality of the solution. 

 
 
We have a further sub-class of NegativeCoordination: 
 

• FatalCoordination is a hard coordination relationship which, if it occurs, will 
inevitably lead to the failure of one or more of the component activities. Note that 
instances of FatalCoordination relationships are always hard. 

 
 
As sub-classes of FatalCoordination, we have: 
 

• MutuallyExclude: an instance of this relationship will exist between two Atomic-
Activitys iff: 

o they both Require some resource r, 
o the actual or scheduled usage of r by both activities overlaps; 
o r is non-shareable. 

 
The idea is thus that these two activities will be mutually exclusive, in the sense that 
they cannot possibly both succeed, as they require access to a resource that cannot be 
shared. 

 
• ResourceContention: an instance of this relationship will exist between two Atomic-

Activitys iff: 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           47 

o they both Require some resource r; 
o resource r is consumable. 

 
The idea here is thus that one of the activities (the earlier one) could prevent the 
successful completion of the other activity, by depleting it or rendering it unviable. We 
do not require that ResourceContention relationships are hard, although, of course, 
they could be. 

 
• Disables: one activity will disable another if the occurrence of it will definitively 

prevent the occurrence of the other. 
 
 
Sub-classes of PositiveCoordination are: 
 

• ConditionallyFeeds: in such a coordination, the occurrence of activity A1 will 
subsequently make possible the occurrence of activity A2, but it is nevertheless 
possible that A2 could not occur (i.e., the occurrence of A1 is a sufficient but not 
necessary event for the occurrence of A2); 

 
• Enables: the occurrence of activity A1 is both necessary and sufficient for the 

occurrence of A2; 
 

• IsSubsumedBy: activity A1 is subsumed by activity A2 if A2 contains all the activities 
of A1; 

 
• Subsumes: the inverse of IsSubsumedBy; 

 
• Favours: an activity A1 favours another activity A2 if its prior occurrence will 

subsequently improve the overall quality of A2. We include this as a “catch all”. This 
is a soft relationship. 

 
 
 
Operational Relationships 
 
In order to resolve a coordination relationship between two activities, we may have to 
appeal to the operational relationships that exist between the agents that will carry them 
out. Intuitively, operational relationships exist between agents that carry out activities, 
and by understanding these relationships, it can help to resolve the coordination 
relationships. The main concept here is OperationalRelationship. This concept has two 
slots, both of which are Agents: source and target. 
 
 
 
 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           48 

Sub-classes of OperationalRelationship include: 
 

• LegalAuthority: this sub-class indicates that source has legal authority over target (of 
course, this begs the question of what “legal authority” means in the context of 
semantic web services and processes, but this is outside the scope of our current 
work, and is left as a placeholder for the future); 

 
• ContractualAuthority: this indicates that source has contractual authority over target 

(i.e., that both agents “belong” to the same organisation, and that in the context of 
this organisation, source should take precedence over target); 

 
• ProducerConsumer: this indicates that source is the owner of a Resource that is to be 

used by target; 
 
• ConsumerProducer: the inverse of ProducerConsumer; 
 
• Peer: two agents that work as peers, i.e., that neither has any authority over the 

other. 
 
 
 
5.4.3  Implementation 
 
We have implemented our prototype with the plug-in JessTab 1.1 [Eriksson05] in Protégé 
3.0 [Protégé]. JessTab is a plug-in integrating the inference engine Jess (version 6.1 
[Friedman-Hill05] in our case) with Protégé, so that Jess can carry out inferences on the 
knowledge base in Protégé. More precisely, JessTab enables Jess to work with a Protégé 
knowledge base, i.e., Jess can: 

a) access the ontology and the instances represented in Protégé, 
b) directly manipulate these ontology and instances, 
c) infer new facts deduced from these ontology and instances, 
d) perform all the other programming tasks permitted by Jess, such as calculating 

or launching Java operations. 
 
In our prototype, we use these capabilities of JessTab in the following way. We first 
design an ontology for our agents in OWL [OWL] using Protégé. For this proof of 
concept we restrict our attention to few concepts and types of coordination and we do not 
implement the whole ontology described in Section 3. In our implementation, concepts in 
the ontology are translated into Jess facts, whilst the coordination strategy is translated 
into a set of Jess rules. In our ontology , we create the class Agent, with subclasses 
Provider, Requester and Registry, as well as the classes required by these three types of 
Agents, i.e., RegistryMemory, Intention and Resource, which are now outlined. 
 

• A RegistryMemory is related to an instance of Registry by the property 
“hasMemory”. Every instance of RegistryMemory represents either a Requester and 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           49 

one of its Intentions, or a Provider with one of its capabilities and associated 
Resources. 

 
• The second element, Intention, is related to instances of Agent to describe one of the 

activities planned by a particular Agent. Besides an Agent, an Intention may also be 
linked to a RegistryMemory to enable a Registry to memorize an Agent’s Intention. 

 
• The third class is Resource, which contains the name of a resource (we assume this 

name is a unique identifier for this resource) and the flag “isShareable”. 
 
 
After the creation of the classes of this ontology, we populate the ontology with 
instances. In our example, we instantiate one resource Provider, two resource Requesters 
and one Registry. These first two steps related to ontology building do not require 
JessTab, but only Protégé. Finally, we add Jess rules to “animate” our instances. These 
rules implement the choreography between the instanciated Agents. These three stages 
are detailed in the following subsections. 
 
 
Classes in the ontology 
 
As noted, we basically deal with three different classes, namely Provider, Requester and 
Registry. Each time a Provider or a Requester registers to a Registry, this Registry 
records the information sent by this Provider/Requester by creating a RegistryMemory, 
which means that a RegistryMemory is very similar to a Provider/Requester and thus to 
an Agent (of course, only from an ontological viewpoint). To record a RegistryMemory, 
Registry has an object property called “has-Memory” listing instances of RegistryMemory 
used by this Registry. “hasMemory” is the only property of interest in a semantic 
Registry, even if a Registry inherits all the properties of an Agent, namely “hasName”, 
“hasCapabilities”, “hasGoals”, “hasIntention” and “hasResource”. 
 
It is worth noting the difference we make between “hasGoals” and “hasIntention”: in a 
similar way to the BDI (Belief, Desire and Intention) architecture [AOSG], an agent 
desires to achieve its multiple goals, and as a result, this agent selects and adopts the 
appropriate intention (which is a plan of actions in the BDI architecture). In our ontology, 
we translate this in the following way: an Agent has a property “hasGoals” pointing to 
several instances of Intention, and one property “hasIntention” pointing to one of these 
instances of Intention. This latter Intention represents what current action this Agent 
currently tries to achieve. Indeed, this is the main difference between a RegistryMemory 
and an Agent: only an Agent has a property “hasIntention”, while both RegistryMemory 
and Agent have a property “hasGoals”. A semantic Registry uses the property “hasGoals” 
to register in one of its RegistryMemorys what it knows about an Agent’s planned 
activities. In other words, there is one RegistryMemory per Agent (normally, this Agent 
should be a Requester), and as many properties “hasGoals” per RegistryMemory as the 
Agent communicates to the Registry. 
 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           50 

Finally, all Agents may have object properties “hasResource” of type Resource, and 
“hasCapabilities” of type string. As previously stated, there is one RegistryMemory per 
Agent (this Agent should now be a Provider), and as many properties “hasResource” and 
“hasCapabilities” per RegistryMemory as the Agent communicates to the Registry. 
A Resource describes a resource, such as a CPU, a hard drive, a printer, etc. and 
data-type properties “hasCapabilities” of type string, e.g., saving-information, 
calculating, printing, etc. In addition, RegistryMemory has two datatype properties 
“agent-Name” and “agentRef” to respectively record the name (which is the string an 
Agent records in its datatype property “hasName”) and the address of the agent. 
 
 
Example instances for our ontology 
 
As a case study, we have implemented a system with four agents, in which “Requester 1” 
and “Requester 2” look for the non-shareable resource called “Printer”, while “Provider 
Printer” manages this resource. Requester 1 has “intention1”, which describes the fact 
that this agent has scheduled to use Printer from the date 5 and for a duration of 10 time 
units. Figure 4.4.1 displays this Requester 1’s intention to use Printer, as well as 
Requester 2’s. 
 

 
 
In this figure, we can also see that the property “hasGoals” of Requester 2 points to four 
intentions, namely intention21, 22, 23 and 24, and that intention24 is at the same time as 
intention21, 22 and 23.We assume that Agent2 has not seen this overlapping in its own 
schedule, and the registry should thus detect this clash among Agent2’s goals. The 
registry should also detect the clashes between Agent2’s goals and Agent1’s. 
 
 
Orchestration implemented in the prototype 
 
The Jess program roughly adopts the following four steps. By “roughly”, we mean that 
these steps are interlaced in practice, while we are now presenting them sequentially:  
 

intention 1

intention 21

intention 24

0 5 10 15 20 

Requester 1 

Requester 2 

time 

} 
intention 22 intention 23

Figure 4.4.1: Gantt chart of Requester 1’s and Requester 2’s schedules 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           51 

• Step 1:  The Protégé classes, instances and templates are translated into Jess. This is 
performed by the JessTab command (mapclass :THING) that translates the root node 
of the Jess ontology, as well as all its children up to the instances, into Jess. Note that 
this command is an addition of JessTab to Jess. 

 
• Step 2:  Every agent sends (i.e., asserts) a registration message to every registry. This 

message contains the description of this agent, one of its capabilities, one of its goals 
and one of its resources. The agent sends several messages to register all its 
capabilities, goals and resources, and can write “none” if it does not have one of 
these features. 

 
• Step 3:  Every registry receives these messages and saves their content by creating 

RegistryMemorys. One RegistryMemory is created for each registering Agent, and 
this RegistryMemory is almost a copy of Agent reconstructed from the registration 
messages.  In practice, the JessTab commands make-instance and slot-set add 
instances and slots in the Protégé base, and then map instance converts this 
information into Jess, so as the consistency is maintained between Jess and Protégé 
knowledge bases. 

 
• Step 4:  Every semantic Registry detects clashes between non-shareable resources. 

Intention21, 22, 23 and 24 in Figure 2 represent the four possible types of clash with 
intention1. For example, intention1/intention21 is a conflict in which the beginning 
of the time interval represented in intention1 overlaps the end of intention21. This 
conflict is characterized by the following conjunction: (i) the starting date requested 
by Requester 1 is later (greater) than the starting date requested by Requester 2, (ii) 
the starting date requested by Requester 1 is earlier (lower) than the ending date 
requested by Requester 2, (iii) the ending date requested by Requester 1 is later 
(greater) than the ending date requested by Requester 2. Notice that (i) and (ii) mean 
that Requester 1’s starting date is in the time interval requested by Requester 2, 
while (ii) and (iii) mean that Requester 2’s ending date is in the time interval 
requested by Requester 1.  A separate Jess rule is programmed to detect each of 
these four possible clashes. We call 1 the rule detecting the conflict 
intention1/intention21, 2 for intention1/intention22, etc. 

 
 
Results 
 
The execution trace in JessTab is displayed in Figure 3, in which we can see seven 
conflicts, each one beginning with the name of the rule that detected it followed by some 
explanations. For example, the first conflict was detected by the rule 2, and is thus of the 
type intention1/intention22, but this first conflict is not between Requester 1’s intention1 
and Requester 2’s intention22. In fact, this conflict is due to the fact that Requester 2 
wants to use Printer both over [1;6] and [0;20], and thus, the former time interval is 
included in the latter while Printer is non-shareable. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           52 

Conversely to this, the second clash is between two different requesters. In other words, 
inter-agent as well as intra-agent conflicts are detected. We have checked that it is 
possible to add more instances of resources, providers, requesters and registries and 
JessTab still detects the conflicts. 
 
 
 

5.5 Agreement 
 
The dynamic formation of business relationships that is implied in the automated use of 
web services for the outsourcing of business processes depends on three main factors 
[Dan04]: 

• Interoperability – access to services must be based on open standards for service-
oriented architectures (SOA), such as those in web services and grid services. 

• Service-level agreement – to ensure quality of service (upon which the decision to 
outsource was made) the client and provider should jointly define a service-level 
agreement as a part of the service contract. 

• Automated management – the whole life-cycle of a business relationship should be 
provided with automated support, from creation of the service offering, through 
definition of the SLA (including possible negotiation), to monitoring of the service 
to ensure compliance with the SLA.  In order to enable this, the SLA (and any other 
service-related agreements) must be specified in machine-processable forms. 

 
WS-Agreement [Andrieux04] specifies an XML-based language for creating contracts, 
agreements and guarantees from offers between a service provider and a client. An 
agreement may involve multiple services and includes fields for the parties, references to 
prior agreements, service definitions and guarantee terms. Here the service definition is 
part of the terms of the agreement and is established prior to the agreement creation.  The 
guarantee terms specify the service levels that the parties are agreeing to and may be used 
to monitor and enforce the agreement. A service provider publishes an agreement 
template describing the service and its guarantees. Negotiation then involves a service 
consumer retrieving the template of agreement for a particular service from the provider 
and filling in the appropriate fields. The filled template is then sent as an offer to the 
provider. The provider decides whether to accept the offer, depending on its resources.  
 
WS-Agreement specifies an ability by the parties to negotiate about the service-level 
parameters in any agreement document, however it does not provide sufficient means to 
achieve this.  One approach is to extend WS-Agreement by utilising techniques from 
multiagent systems, where negotiation is a well established research area 
[Paroubally05b].  In this approach, the authors note that current web services work fails 
to benefit from the agent communities research in negotiation for coalition formation 
between parties with heterogeneous information needs.  Furthermore, given the view that 
multi-agent systems are groups of agents that interact through cooperation, coordination 
and negotiation to satisfy their individual or common goals, web service and agent 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           53 

technology can complement each other for efficient provisioning and management of 
services.  Since automated negotiation can effectively help in resolving conflicts typically 
over resource allocations and in setting up agreements such as for service provision 
between autonomous entities, this approach develops such negotiation mechanisms 
between web services. These mechanisms address the current limitation of semantic web 
services to support dynamic negotiation strategies for task and resource allocation. Their 
aim is to successfully deploy negotiation and interaction mechanisms between web 
services in the same way that autonomous agents negotiate in a collaborative or 
competitive distributed system. 
 
There are a number of significant shortcomings [Paurobally05a] in WS-Agreement: 
 

• Limited Message Types – The first significant weakness lies in the fact that WS-
Agreement messages are limited to two types – offer and agree – and constrained 
according to a template a service provider publishes. The WS-Agreement 
specification is only used at the last stage in a transaction where the parties close 
their interaction with a contract specified as a WS-Agreement. The offer and agree 
templates are not sufficient or appropriate for modelling negotiation, auctions or the 
contract net protocol [Smith81]. 

 
• No Interaction Protocols – Even with a more varied set of messages (speech-acts), 

WS-Agreement still suffers from the lack of an interaction protocol specified 
between parties. That is, even if we increase the WS-Agreement schema with 
various speech-acts, there is no concept of how to sequence messages through 
interaction protocols to form a valid conversation.  This is the second significant 
weakness. There is only a two step conversation, an offer followed by an agree. 
Without an adequate set of speech-acts and specification of how to construct 
interaction protocols, the usefulness of a WS-Agreement exchange is limited to cases 
such as buying from catalogues, with take-it or leave-it offers from the seller or 
buyer. 

 
• Lack of Semantics – On the whole, WS-Agreement is a specification with vague and 

unclear semantics. The WS-Agreement specification only defines a higher-level 
template for agreements and offers. There is the need of a language to express the 
elements in the service description terms and guarantee Terms.  Thus there is no 
indication of how to access or provision a service from an agreement. 

 
 
In the following sub-sections we show how we adapt the Rubinstein’s alternating offers 
protocol for web service negotiation. Rubinstein’s [Rubinstein82] protocol of alternating 
offers is a well-known strategic negotiation model. In this model two parties A1 and A2 
participate in the negotiation process and makes offers and counteroffers.  Rubinstein first 
proposed this model of alternating offers to describe how two players could share or 
partition a pie of size 1. He assumed that the players cannot opt out of the negotiation. He 
considered situations of fixed discount costs over time and fixed discounting factors. He 
later extended this protocol to deal with incomplete information scenarios. In our case 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           54 

also, we assume the web services have incomplete information about their opponents’ 
preferences.  The features of negotiation normally include a  communication language, an 
interaction protocol and the decision process used to determine responses, concessions 
and criteria for agreement [Singh05]. In the following sections, we adapt each of these 
three components to the web services domain for the case of the Rubinstein’s alternating 
offers protocol. 
 
 
Alternating Offers Negotiation Language 
 
The actions in this model are: offer, counter-offer, agree, reject.  These actions are 
typically called speech-acts [Searle69] and in our XML definition we type them as  wssa 
(for Web Service Speech Act). Each of these actions have as parameters the sender, 
receiver, service description, the process to be executed and the agreement terms such as 
deadline of carrying out the agreement, penalty of not meeting the agreement or 
conditions for de-committing to the agreement. Below, we show the XML definition of a 
counter-offer. 
 
 

<wssa:counter-offer> 

  <wssa:Name> "xsd:NCName" </wssa:Name> 

  <wssa:Parties> 

    <wssa:Sender> xs:anyType </wssa:Sender> 

    <wssa:Receiver> xs: anyType </wssa:Receiver> 

  </wssa:Parties> 

  <wssa:service> 

    <wssa:Name=" xs:NCName" wssa:ServiceName=" xs:NCName"> 

    <xsd:any> . . . </xsd:any> 

  </wssa:service> 

  <wssa:Agreement wssa:Name=" xs:NCName"> 

    <wssa:Deadline> xs: Time </wssa:Deadline> 

    <wssa:Penalty> xsd:integer </wssa:Penalty> 

    <wssa:Reward> xsd:integer </wssa:Reward> 

    <wssa:Decommitment> xsd:any </wssa:Decommitment> 

  </wssa:Agreement> 

</wssa:counter-offer> 

 
 
The other actions, offer, agree, reject can be similarly defined in XML. In the next 
section, we show the interaction protocol for sequencing these actions. For example, an 
offer can be followed by a counter-offer but not by another offer, or an agree cannot 
follow a rejection. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           55 

 
 
Alternating Offers Negotiation Protocol 
 
The parties can act in the negotiation only at discrete time points in the set T = {0, 1, 2, . . 
.}. At each instant t (t ≠ 0) in the negotiation, if the negotiation has not yet terminated, the 
agent, whose turn it is to respond, may send a counter-offer, agree, or reject. If an offer or 
counter-offer made by the agent A1 at time instant t is accepted by A2 then the 
negotiation terminates.  If A2 rejects the offer/counter-offer the process ends in a conflict.  
We express the bilateral protocol in XML so that it is in a language that web services can 
understand. 
A protocol in XML consists of a name, a set of states and transitions. 
First we define XML templates for states and transitions.  As in finite state automata, 
transitions, here through exchanging speech-acts or messages, lead to a change in states – 
from source state to target state. For example, in the source state offered, sending an 
agree message triggers the target state agreed. We define the type state in XML as 
having a name, a boolean attribute (whether the state holds or not), and optionally 
includes the service that triggered the state, the recipients and any action needed. 
 
 

<xsd:element name = "State"/> 

  <xsd:complexType> 

    <xsd:attribute name="xs:Name" type="xs:boolean"/> 

    <xsd:sequence> 

      <xsd:element name="Initiator" type="wsag:Initiator"/> 

      <xsd:element name="Respondent" type="wsag:Respondent"/> 

      <xsd:element name="Process" type="wsdl:Operation"/> 

    </xsd:sequence> 

  </xsd:complexType> 

</xsd:element> 

 
 
The type Transition is defined in XML as having attributes name, source and target 
states, sender (perpetrator) and recipients of the transition. A transition that initialises a 
conversation may not have a source state and therefore the source state is an optional 
field. In contrast, the target state is a compulsory field. A Transition also has an 
optional Process field to encode relevant information such as offering to carry out an 
action α, where the transition is the speech-act name and α is the process attribute.  Using 
the definitions of states and transitions, we show below a partial specification in XML of 
the salient parts of the Rubinstein’s bilateral protocol. It can be seen that we are now able 
to specify which service sent the last message and whose turn it is now to respond and 
what are the valid responses. 
 

 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           56 

<Protocol name="BilateralProtocol" 

  <States> 
    <State Name="offered(X)" > 

    <!-- X sent an offer--> 

      <Initiator> X </Initiator> 

      <Respondents> Y </Respondents> 

      <Process> α </Process> 

    </State> 

    <State Name="agreed(Y)" > 

    <!-- Y sent an agree--> 

<Initiator> Y </Initiator> 

<Respondents> X </Respondents> 

<Process> α </Process> 

    </State> 

  </States> 

  <Transitions> 
    <Transition Name = Y.counter-offer> 

    <!-- Y sends a counter-offer, for Y to do α--> 

<SourceInteraction href="offered(X)"/> 

<DestinationInteraction href="offered(Y)"/> 

<Trigger trigger-process "Y.offer"> 

<!-- offer for Y itself to perform α--> 

  <Sender> Y </Sender> 

  <Recipients> X </Recipients> 

  <Action> α </Action> 

</Trigger> 

    </Transition> 

    <Transition Name = X.reject> 

    <!-- X sends a rejection from an offered state--> 

      <SourceInteraction href="offered(Y)"/> 

<DestinationInteraction href="rejected(X)"/> 

<Trigger trigger-process "X.reject"> 

<!-- rejection from X for Y itself to perform α--> 

  <Sender> Y </Sender> 

  <Recipients> X </Recipients> 

  <Action> α </Action> 

</Trigger> 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           57 

    </Transition> 

  </Transitions> 

</Protocol> 

 
 
Alternating Offers Negotiation Strategies 
 
There are a number of attributes that negotiation strategies ideally seek to satisfy so that 
the parties interact productively and fairly. These attributes include efficiency (no 
wastage of resource), stability (no incentive to deviate from agreed strategies), simplicity 
(low computational and bandwidth costs), distribution (no central decision maker) and 
symmetry (no arbitrary bias against any web service). Here we show a strategy suitable 
for use in negotiation between web services. 
Let the set of all possible agreements be denoted by S. The outcome of the negotiation is 
an agreement s reached at time t and is denoted by the ordered pair (s, t). A disagreement 
denotes a rejection or a negotiation that continues forever without reaching an agreement. 
Each web service would prefer to agree on an outcome that is most favourable to it. The 
utility functions guide the web services in the process of distinguishing favourable 
outcomes from unfavourable ones. A web service’s negotiation strategy defines what the 
web service should do on receiving an offer. Let S denote the set of all possible 
agreements that can be reached at time  t  = {0, 1, 2, . . .} and the offers that a web service 
can receive denoted as {s0, s1, s2, . . .}. A web service’s strategy can be defined as: 
 

  f : {s0, s1, s2, . . .} → S ∪ {reject}  
 
- where reject denotes rejecting an offer or counter-offer. 
 
The utility function assigns a numerical value to the actions of the web services. One of 
the main problems is to determine a strategy that would yield maximum utility for the 
web services. Formally the utility function can be defined as:  
 

U : {S ∪ {reject} × T} →  R.   
 
For every service i {i = 1, 2} and time period t, Possible(i,t) is the set of all agreements 
that web service i prefers to rejection.  If this set is non-empty then the agreement  s (i, t) 
that belongs to Possible (i, t) is called the Best Possible Agreement  if it satisfies: 
 

Ui (s (i, t)) =  max s ∈ Possible(i,t) Ui(s) 
 
Analogously the Worst Possible Agreement  is defined as s(i, t) if it satisfies: 
 

Ui (s (i, t)) =  min s ∈ Possible(i,t) Ui(s) 
 
If S1 is the strategy adopted by web service A1 when the strategy adopted by web service 
A2, then the pair (S1, S2) forms an equilibrium solution if neither can deviate from their 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           58 

strategy without losing utility. It is one of the main objectives of game theoretic problems 
to determine equilibrium solutions. 
 
Having analysed existing proposals for enabling negotiation between web services, we 
have in particular found the WS-Agreement model to be limited and not expressive 
enough for profitable semantic web service negotiation. Thus, in this paper we show our 
specification of negotiation actions and protocols to enable interaction between web 
services and we give an overview of our model for strategic decision-making. 
 
 

5.6 Decision making10 
 
There are clearly scenarios in which the service descriptions provided by semantic web 
services research do provide effective solutions. For example, consider a supply-chain 
automation problem. Given a description of the required materiel for a certain production 
process, it is easy to imagine that a well-designed application could make use of semantic 
descriptions of component suppliers’ ordering and estimation processes, and logistics 
providers’ shipping and tracking processes, to ensure a smooth production supply. The 
supply chain manager process should be able to switch suppliers straightforwardly if one 
supplier forecasts a component shortage, or a delivery channel fails. The semantic 
descriptions of the services allow some robustness to variances in the interfaces to the 
different suppliers’ services. 
 
However, a more open-ended scenario presents greater challenges. In [Pretschner99] 
section 2, it is suggested that OWL-S will help a user to locate a service that (i) sells 
airline tickets between two given airports, and (ii) accepts a certain type of credit card. 
We might speculate that the user's overall goal may be to get home in time for 
Thanksgiving, nevertheless the interaction is based around much more basic operations. 
This puts a strong onus on the user to decompose their own goals down to a level of 
necessary basic actions, which may then be performed by web services. But if the user 
has to perform this goal decomposition themselves, and form a suitable plan for 
achieving their goals, it is unclear how the automation provided by the web service is 
genuinely helping that person. If that user is able to analyse their own needs to that 
necessary degree, would it not would be simpler and easier for them simply to use a 
conventional travel web site to book their trip? 
 
We propose that much of the putative benefit from flexible, advanced IT systems is 
largely contingent on increasing automation. We propose that more of this benefit will be 
delivered when users can specify the goals they wish to achieve, rather than the actions 
they wish to perform.  
 

                                                 
10 This work was undertaken by Ian Dickinson and Mike Wooldridge under the auspices of 
KnowledgeWeb.  Ian Dickinson is employed by Hewlett-Packard, whom we gratefully acknowledge.  



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           59 

A natural idiom for encoding and executing goals is through software agents 
[Wooldridge95]. For the purpose of this discussion, we restrict our attention to 
deliberative agents [Wooldridge00a], that is, agents that have a symbolic knowledge 
representation, and which use symbolic reasoning to achieve their behaviour. In our 
work, we are particularly interested in ways that human users interact with agents, 
especially agents that behave autonomously. Such autonomous behaviour shifts the basis 
of the interaction from a direct manipulation model to a delegation model 
[Negroponte97]. One advantage of deliberative agents over other approaches is that key 
elements of the user-agent interaction, for example the user's goals or the agent's 
strategies, have an explicit representation. Crucially, this enables those objects 
themselves to be part of the dialogue. The user could, for example, critique the agent's 
strategy for achieving a given outcome, perhaps by refining or updating their own 
expressed goal. 
 
Deliberative agents use symbolic structures, founded on predicate logic, to represent 
knowledge. In particular, logical formulae stand for mental attitudes in both the user and 
the agent, where mental attitudes include beliefs, desires, preferences and so forth. Often, 
modal operators, qualified by the name of the actor, distinguish (say) the agent’s beliefs 
from the user’s beliefs. 
 
A key proposal of web-service architectures is that simple (atomic) services can be 
composed together, in a workflow, to form complex composite behaviours. A number of 
researchers (e.g. [Sirin04], [Horrocks02], [Pistore04]) have explored the use of AI 
planning to compose complex behaviours. Such planning is performed on behalf of a user 
to meet some set of goals. This suggests a layered view, in which agents primarily are 
responsible for mediating between users’ goals, and the available strategies and plans. 
Agents invoke, or design, atomic or composite web services as necessary. A related 
approach is explored in [Gibbins03], although in this work the authors seek to generalise 
the interface to web services from specific operations to generic operations that are 
analogous to speech acts. So a web service might have an inform operation, with an 
argument which has a similar role to :content in a FIPA ACL message. 
 
The authors’ approach broadly follows this theme. Web services are invoked by agents as 
component behaviours, but autonomy and intent is only represented at the agent level. In 
the remainder of this section, we explore how this general theme is embodied in their 
experimental BDI agent platform. 
 
 
Nuin BDI Agent Platform 
 
The Nuin agent platform [Dickinson04] is an open-source Java implementation of a 
combination of a belief-desire-intention (BDI [Rao95]) agent platform and semantic web 
techniques. A particular goal of the Nuin architecture was to make the platform easily 
extensible by agent developers. The outline architecture of Nuin is shown in Figure 5.6.1. 
A key extension point is the abstract service boundary. The original design intent for the 
abstract service boundary was as a means to add custom behaviours to the agent, written 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           60 

as Java plug-ins. For example, an incoming event might trigger a plan, which would 
delegate handling of the event to a GUI, incorporated as a plug-in capability. 
 
 
 

 
 
   

Figure 5.6.1:  Outline Nuin architecture 
 
 
 
This abstract service boundary provided a natural basis for extending the internal agent 
services to include external web services. So, for example, with the correct service 
binding in place, an invoke action from the agent script can directly call an operation on a 
web-service, and bind the result to a script variable. Moreover, this abstraction boundary 
also provides a natural place to encode know-how – the knowledge that an agent has of 
its own capabilities [Singh94]. Currently, we use an RDF [RDF] knowledge base to store 
any local meta-knowledge an agent has about its own capabilities. The set of known web 
services may be fixed at design time, or dynamically extended at run time. Agents can 
dynamically create web-service bindings by fetching and parsing the WSDL service 
description. 
 
 
Service descriptions 
In order to determine which services to utilise to achieve a given goal or satisfy a given 
intent, the agent requires meta-data describing the available services. As an example, 
consider one aspect of a typical knowledge management application. As part of this 
application, the user can specify a search string to locate articles stored in the systems’ 
database. While it could be said that the user’s intent is to perform a search with the given 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           61 

terms, it is perhaps more accurate that the user’s specific intent is to locate a document 
relevant to a certain task, where the task might be generating a customer bid. Indeed, the 
overall intent is to satisfy the customer’s request for proposals (RFP), with the “locate-
document” intent as a component of that overall goal. Suppose that the agent has access 
to a number of services, including a database search service, and a query-rewrite service. 
The query rewrite service has a number of tactics for modifying the user’s query, for 
example performing WordNet [Miller90] synset expansion or narrowing. We would like 
the agent to be able to offer strategic choices to the user, including the choice of the 
composite service of searching on the re-written query string. How does the agent know 
to offer this composite service to the user, to help satisfy the document location intent? 
The agent must be able to determine that a given service (including composite services) 
is: 

• relevant to the user’s intent 
• strategically useful to meeting the user’s goals 
• describable to the user (when user assent is required before enacting the service) 

 
One key role of a service description is to provide meta-knowledge that the agent will use 
to inform such decisions. A WSDL service description describes the type signature of 
operations. For example, the above query-expansion service takes a query string 
argument, and produces a new query string. It has string → string as a type signature. 
However, this type signature applies to many other string manipulating operations, so 
knowing the type signature alone of an operation is insufficient meta-knowledge to 
determine whether the operation is relevant to the current goal. Post-conditions in the 
service description can make the description more precise. The query-expansion service 
might perhaps state, as a post-condition, that the returned string is a moreGeneralQuery 
than the input string, assuming there is a suitable ontology in which levels of query 
generality are defined. This is the kind description that might be provided by an OWL-S 
semantic web service description. However, this still leaves open the issue whether 
generalising a query is a relevant and useful tactic to offer to the user. Such strategic 
knowledge does not fit conveniently into the OWL-S 1.1 framework. Our current 
approach is to encode strategic knowledge directly into the BDI agent’s knowledge base. 
 
However, encoding the strategic knowledge in the agent's KB may simply introduce a 
knowledge acquisition bottleneck into the design process, which serves to underline a 
fundamental difficulty. The semantic web services descriptions cannot express context-
dependent knowledge. A given web service might be useful to one user, given his or her 
goals and preferences, but (relatively) useless to another user with similar goals but 
whose context is different. The process of mapping from high-level goals to services to 
invoke must draw on knowledge of both the service capability and the user's context. In 
order to remain general, the web service description cannot be too specific to any given 
user's goals. This remains an area where additional research is required. 
   
We note that the Web Services Modelling Ontology (WSMO) [Lara02] includes the 
concept of a wgMediator, which is claimed to encode the mapping between a goal and a 
web service. However, the details of the definition, use and semantics of mediators are 
unclear in the current version of WSMO, so we have not investigated this further. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           62 

Integrating web services in BDI agents 
A goal of BDI architectures is practical reasoning: an attempt to achieve effective 
computational performance in autonomous systems by balancing consideration of how to 
act with acting. BDI agents commit to a course of action, represented by an intention, 
based on their current beliefs about the world and their current goals. In order to be able 
to react to the changing state of the world, it is important that a BDI agent be able to 
adopt new intentions, and drop or modify existing ones if they are no longer relevant. 
In a typical BDI architecture, such as PRS [Georgeff90] or AgentSpeak(L) [Rao96], the 
agent’s starting state includes a plan library, which the agent uses to control its behaviour, 
rather than utilising planning from first-principles. In typical practical reasoning 
approaches, an intention is either the intention-to perform a given plan, or the intention-
that the post-conditions of a given plan become true.  
 
In reactive planning, a complete plan to achieve a given goal is not constructed a priori 
and then executed. Instead, a library of general pre-defined (i.e. defined at compile time) 
plans is provided to the agent, and the agent performs one or more of these plans in 
response to its perceptions of the environment. Thus the agent reacts to actual conditions 
of the world. There are two principal advantages of reactive planning: it is 
computationally more efficient, since a large search-space does not have to be explored, 
and it does not require the planner to have available a symbolic model of the possible 
effects of actions and the initial state of the world. By contrast, first-principles planning 
[Ghallab04] approaches require full knowledge of the initial world-state and of the 
changes that will be brought about by performing a given action. The initial-state 
requirement can be mitigated to some extent by explicitly planning information-gathering 
steps into the plan [Kuter04], but it remains the case that planning from first principles is 
computationally expensive ([Ghallab04], §3.4). 
 
Given that a BDI agent will select a course of action based on its environment 
(determined by incoming messages or sensed percepts), a key issue in BDI approaches is 
what the agent should do if it determines that it has more than one possible course of 
action. In PRS, the interpreter only proceeds once there is exactly one relevant plan to 
follow. If more than one plan is relevant at a given step, the interpreter treats this as a 
problem that can be solved by a meta-level evaluation of the choices. This recursion 
continues until a single course of action has been selected. In AgentSpeak(L), Rao 
abstracts this plan-selection problem into pre-specified evaluation functions, which select 
a single event to process, or a plan to adopt, given multiple choices. While the evaluation 
functions encapsulate the abstract requirement, Rao does not offer a practical solution to 
the representation of evaluation functions. With Nuin, we have decided not to adopt the 
recursive approach of PRS, since in our experience it creates conceptual (and debugging) 
difficulties for the agent programmer. We have allowed for variable evaluation functions 
in the interpreter architecture, following AgentSpeak(L), but this is also unsatisfactory in 
general. We would like the agent’s choice of action to be, at least in-part, determined by 
the agent’s current mental state (i.e. current beliefs, desires and intentions). This is not 
well-defined if the decision procedure is contained within the interpreter. Indeed, Rao’s 
evaluation functions in AgentSpeak(L) do not take the agent’s current mental state as a 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           63 

parameter. We do define in the agent script language actions for modifying the current 
mental state, for example adopting or dropping a goal or intention. 
 
The general problem, then, is how to define strategic knowledge that the agent can use 
both to select its own course of action, and to converse with the user in terms that match 
the user’s conceptualisation of the domain. Our current experimental approach is to 
utilise a structured goal language, in which strategic knowledge is encoded into a 
declarative goal structure. EaGLe [Sycara98] is one example approach. Like EaGLe, we 
define a small number of goal refinement operators (for example: all sub-goals, any sub-
goal, sequence of sub-goals, perform a plan). These goals are stored in an RDF 
knowledge base, which can then be augmented by the user. For example, the agent may 
presume to achieve goal g by sub-goals g0, g1 and g2 in order. A given user may override 
the reduction of g as g2 then g0, ignoring g1. This is only a rather crude first step, but 
will allow us to explore, and refine, the user's ability to influence the agent's behaviour 
through entering a dialogue around such strategic choices. 
One particular reason for using an RDF representation to encode and store the goals 
themselves is to permit the use of semantic web technologies to allow goals, or goal 
strategies, to be shared. We have not yet investigated this in detail, but one way to at least 
mitigate the knowledge acquisition problem alluded to above, would be to allow users in 
a community to share strategies. In particular, sharing strategies that map the pre- and 
post-conditions of newly introduced services to general goal conditions, perhaps related 
to a shared upper ontology, would help an agent community quickly integrate new 
capabilities. With this in mind, the use of URI's for symbols, and other RDF modelling 
commitments, becomes especially valuable. 
 
Whether or not this particular approach is shown to work effectively, we argue that the 
current semantic web services approaches, on their own, lack a standard means to allow 
an agent to relate its intentions in pursuit of stated user goals to the capabilities of 
services. We don't argue necessarily that either OWL-S or WSMO should be extended to 
cover this need, just that there is a currently unmet requirement. 
 
 
Interleaving planning and acting 
Reactive planning, as exhibited by practical-reasoning agents, mixes planning with 
acting. The changes to the world state, combined with the agent’s current intention set, 
determine the choice of next action. Reactive planning uses libraries of pre-defined plans, 
which are activated by the agent’s perceptions of its environment.  
While the reactive planning approach has some advantages, it does suffer from a 
significant drawback when actions have side-effects. The Nuin interpreter allows 
chronological backtracking through side-effect free actions, but it does not permit any 
backtracking through actions that have side-effects. For internal actions, the side-
effecting nature of an action is part of the action description. For web-services, it is not 
clear, a priori, whether an operation is safe to repeat or backtrack through. For example, 
the operation of determining the weather forecast for a certain city is probably 
idempotent, but booking a plane ticket is not. By definition, REST-style web services 
using the HTTP GET method should be idempotent . In general, however, idempotency is 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           64 

not known. We currently understand that neither OWL-S nor WSMO allow for action 
idempotency to be specified in a service description. 
 
For some actions, it may be possible to specify a compensation action, to perform if the 
agent wishes to reverse some partially-completed action. This might mean, for example, 
cancelling a non-committed transaction in a transactional system. In general reversing an 
action is a difficult and open research question. It does suggest, however, that some 
applications, even if predominantly using a reactive planning approach, may require some 
online planning to plan ahead before committing to a course of action. 
 
 
Discussion 
 
A central hypothesis of our work is that explicitly referencing goals and intentions 
provides a more cogent and flexible foundation for human-assisting agent dialogues. 
Deliberative agents provide the representational tools to store and manipulate such mental 
attitudes, and this distinguishes a software agent from a complex web service. 
Nevertheless, web services are being increasingly deployed as units of active behaviour 
on the web. Our work has shown how a BDI-style agent, using a reactive planning 
approach, can mediate between the representations of the user’s and the agent’s mental 
attitudes, and the operational semantics of the web service. Crucial to this mediation is 
the provision of knowledge about the web-services to be invoked. Current semantic web 
service descriptions provide some, but not all, of the necessary knowledge. The particular 
issue that we found is the need for strategic knowledge, which can assist the agent to 
make, or suggest to the user, decisions about choices of which service to invoke. 
In contrast with web-service composition techniques based on planning, reactive planning 
requires fewer runtime computational resources and does not require a complete model of 
the symbolic effects of actions and the world’s initial state. However, reactive planning 
does risk over-commitment to ultimately non-viable courses of action, which can be 
problematic if the actions themselves are side-effecting on the world. We anticipate, 
therefore, that some agent applications will always require the ability to plan ahead in 
time and consider future courses of action without performing actions. Attempting to use 
reactive-planning for web service selection has highlighted that the current semantic web 
service descriptions do not provide a means to describe side-effects, or failure recovery 
actions. 
 
We have experimented with explicitly encoded meta-knowledge, added directly to the 
agent's knowledge base, to assist the process of mapping between the user's (highly 
context-dependent) goals and the (context independent) semantic descriptions of service 
capabilities. Once strategic knowledge is a first-class object in the agent's knowledge 
base, we can enlist the user's assistance to adjust the agent's strategy either  by directly 
modifying strategy parameters, or by updating the original goal. We view this as a 
crucially important aspect of human-agent interaction, and our current approach is just a 
preliminary step. As they encoded in RDF/OWL, we could in principle allow such 
strategic knowledge to be shared among members of a community. We have not fully 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           65 

investigated this yet, but it is one possible approach to mitigating the arguably high cost 
of acquiring strategic knowledge. 
 
 

5.7 Integrating agent platforms and Semantic Web toolkits 
 
To ensure that agents are properly able to understand and utilise knowledge encoded on 
the Semantic Web they require the capability to parse and process Semantic Web 
languages such as RDF and OWL.  This can be achieved by usage of semantic web 
toolkits (such as Jena [Jena]) within agents constructed within multiagent system 
development environments (such as JADE [JADE]).  However, the simple ability to 
extract knowledge encoded in these languages is not sufficient for agents to fully 
integrate into the Semantic Web arena.  This is due to the fact that there may exist many 
semantic and conceptual miss-matches between Semantic Web representations and 
internal agent representations of the same knowledge – introducing semantic 
heterogeneity that in turn will lead to errors in computation.  In addition, the continual 
process of translation between knowledge formalisms imposes a considerable workload 
upon agents whose main sources and consumers of knowledge conform to Semantic Web 
standards. 
 
One approach to this problem would be for agents that are intended to interact with 
Semantic Web entities and knowledge to natively use Semantic Web languages for their 
internal knowledge representation.  In this scenario, agent knowledge would be 
represented by RDF statements that reference OWL concepts and properties.  Building 
agent knowledge upon sharable ontological definitions enhances their ability to interact 
with other entities on the semantic web – using existing ontology mediation (mapping, 
merging, etc.) techniques.  Furthermore, it simplifies the task of interacting with semantic 
web services whose own descriptions are built on top of ontologies expressed in these 
standard languages. 
 
The usage of semantic web languages to encode agent knowledge has been explored in a 
number of research systems, for example the SERSE system [Tamma05] in which RDF is 
used to represent the agent’s knowledge about the web resources at its disposal.  This 
approach has also been explored in the NUIN agent platform [Dickinson04] (see section 
5.6), where RDF and OWL form the basis for all of the knowledge representation within 
the agents.  Furthermore, the use of RDF has been extended to include a representation of 
the goals and the strategies adopted and pursued by the agents – so that they may be 
communicated and reused. 
 
However, much research in agent systems utilises higher-level logics (first-order, modal, 
temporal, etc) to encode agents knowledge and reasoning [Wooldridge00a].  It is unclear 
to what extent description-logic-based formalisms such as OWL can represent such 
constructs as beliefs, desires and intentions.  The NUIN system retains use of first-order 
for BDI representation and reasoning, and implements resource bounded reasoning over 
these constructs.  This is because the designers belief is that agents require the richer 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           66 

representation provided by FOL more than they require the computational tractability 
provided by description logics [Dickinson04]. 
 
 

5.8 Dialogues 
 
Formal dialogue games, adopted from augmentation theory, have been studied in 
philosophy for at least 2500 years [Aristotle28].  They are interactions between players 
(two or more) in which each player can make a ‘move’ in the game by making utterances 
(public statements) that conform to a specific set of rules for that game.  Modern research 
has used such games to study non-deductive forms of reasoning, and to provide game-
theoretic semantics for intuitionistic, classical and quantum logic.  In the artificial 
intelligence research field these dialogue games have been used to model complex human 
interactions, and in agents research the main application is for the design of structured 
agent communication/interaction protocols [McBurney02a].   
The use of formal dialogue games in agent interaction protocols provides a framework for 
the design of structured conversations by supporting the definition of dialogue protocols.  
These protocols are formed from rules that constrain what can, cannot and must be said in 
a dialogue, and when they things are said [McBurney02b].  Such protocols are intended 
to enable agents, in an orderly and efficient manner, to engage in dialogues through 
which they acquire new information – that may lead to them changing their beliefs or 
preferences.  To achieve this agents require means to question or challenge another 
agent’s statements.  It may be expected that the more information, relevant to the 
interaction, passed between participating agents, the more likely the interaction will 
succeed in its aims.  This increased chance of success is the point of using information-
rich dialogue games for interactions, as compared to less rich economic interaction 
mechanisms, such as auctions [Parsons98].  Although, such mechanisms typically have 
the advantages of simplicity and analytical tractability [Sandholm99], the provision for 
exchange of information is limited.  For example, in auctions the participants normally 
have no means to provide reasons for their acceptance or rejection of a bid. 
 
From research into human dialogues, argumentation theorists Walton and Krabbe 
proposed the following model of primary dialogue types [Walton95], that has been 
influential in the application of dialogue game protocols to agent interactions.  This 
dialogue model is based on the information that participants have at the dialogue 
commencement, the participants’ individual goals for the dialogue, and their shared 
dialogue goals. 
The model defines the following typology: 
 

• Negotiation dialogues  – in which participants bargain over the division of some 
scare resources between themselves.  The global goal of such dialogues is a division 
of the resource acceptable to all participants, which may be in conflict with the goals 
of individual participants. 

 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           67 

• Persuasion dialogues  – in which one participant seeks to persuade another to 
believe/endorse some proposition that they do not currently believe. 

 
• Information seeking dialogues  – in which one participant seeks to get another 

participant (that is believed by the first to know the answer) to answer some 
question. 

 
• Inquiry dialogues  – in which participants collaborate to jointly seek the answers to  

questions (where these answers are not known to any one participant). 
 

• Deliberation dialogues  – in which participants collaborate to determine a course of 
action to be adopted in some situation.  The participants share responsibility for the 
decision; or at least share a willingness to discuss their shared responsibility.  Again, 
the best result for the group may conflict with individual preferences or goals.  In 
addition, no one participant may have all the necessary information to make the 
‘best’ decision. 

 
• Eristic dialogues  – in which participants argue verbally to air perceived grievances. 

 
It is important to note that most ‘real’ dialogues involve a mixture of the dialogue types, 
where a dialogue proceeds from one type to another, forming sequences or loops, or 
embedding one type of dialogue within another.  
 
 
McBurney and Parsons define a model of a generic formal dialogue game, that consists of 
the following elements [McBurney02c]: 
 

• Commencement rules  – that define the circumstances under which the dialogue 
begins. 

 
• Locution rules  – that define what utterances are permitted, which typically include 

those permitting participants to assert propositions, question or contest prior 
assertions, and to justify contested assertions.  Such rules may also permit 
participants to assign degrees of commitment to their assertions, i.e. enabling one to 
propose something rather than asserting it.  

 
• Combination rules  – that define the context (i.e. when and where within a sequence 

of locutions, actions, etc.) within which particular locution may, may not, or must be 
uttered.   

 
• Commitment rules  – that define the circumstances under which participants express 

commitment to a proposition.  An assertion of a proposition indicates to the other 
participants that the speaker has (some level of) commitment to the proposition.  
Formal dialogue systems typically use publicly available commitment stores for each 
participant [Hamblin70]. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           68 

 
• Termination rules  – that define the circumstances under which a dialogue ends. 

 
 
The commitments referred to above are dealt with in a number of different ways in 
dialogue game research.  However, as our interest is from the perspective of interactions 
between autonomous agents (that the agents enter into in order to achieve some goal), 
such commitments can reasonably be defined in terms of future actions or propositions 
external to the dialogue itself [McBurney02a]. 
 
 
McBurney, Parsons and Wooldridge [McBurney02b] propose a set of desiderata for 
designers of agent interaction protocols that are based upon formal dialogue games.  
These desiderata are themselves based on research in agent interaction, critical 
assessment of auction mechanisms, and elements from argumentation theory and political 
theory.  It is assumed that the agents participating in a dialogue have autonomously 
decided to participate, are free to enter and leave a dialogue when they choose, and that  
within a dialogue an agent is autonomous, and is not compelled to accept or reject any 
proposition.  Furthermore, it is assumed that the specification (referred to by the authors 
as a Dialectical System) of a dialogue game protocol consists of a set of discussion topics, 
the syntax for locutions concerning these topics, and commencement, locution, 
combination, commitment and termination rules (as defined above).  The thirteen 
desiderata are: 
 

• Stated dialogue purpose  – A dialectical system should have one or more publicly-
stated purposes, and its locutions and rules should facilitate the achievement of these 
purposes.  Such purposes may be categorised using a model of dialogue types, such 
as that described previously.  The purposes need to be stated so that all agents are 
aware of them before participation, and the dialogue will be successfully resolved 
when these stated purposes are achieved. 

 
• Diversity of individual purposes  – A dialectical system should permit participating 

agents to achieve their own private purposes that are consistent with the overall 
dialogue purpose.  These purposes may conflict, as in a negotiation dialogue, or 
coincide, as in a inquiry dialogue.  

 
• Inclusiveness  – A dialectical system should not preclude participation by any agent 

that is qualified and willing to participate.  Due to their autonomy, all agents can be 
seen as deserving equal treatment, and having a moral right to be included in 
decisions that may affect them [Bohman97].  In addition, inclusion of affected 
parties in decisions can improve the quality of the decision outcomes [Fiorino89]. 

 
• Transparency  – Dialogue participants should be aware of the rules and structure of 

the dialectical system before the dialogue commences.  Any reference from such 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           69 

dialogues to an external entity should be explicitly stated, e.g. when commitments 
made inside a dialogue imply a subsequent real-world obligation. 

 
• Fairness  – A dialectical system should treat all participants equally, or should 

explicitly state any inequalities in such treatment.  For example, agents may play 
different roles within a dialogue, and these roles may have different rights and 
responsibilities, which the specification should make known to all participants. 

 
• Clarity of argumentation theory  – A dialectical system should conform to a stated 

theory of argumentation, e.g. Principles for Rational Mutual Inquiry [Hitchcock91] 
or persuasion dialogue rules (as in [Eemeren92]), so that all participants can be 
aware of the rules of inference and procedure, can adhere to their obligations, and 
have reasonable expectations of the responses of other agents in the dialogue.   

 
• Separation of syntax and semantics  – In a dialectical system the syntax should be 

defined separately from the semantic.  Primarily this is because semantic verification 
of agent communication is a complex issue [Wooldridge00b], as any sufficiently 
complex agent can mimic the required internal states.  So specification of the syntax 
separately at least enables verification of conformance to the protocol syntax, even if 
the semantics cannot be completely verified. 

 
• Rule-consistency  – The rules and the locutions of a dialogue protocol should be 

internally consistent, and should not lead to deadlocks or infinite loops. 
 

• Encouragement of resolution  – Normal termination (or resolution) of a dialogue 
should be assisted and facilitated by the rules and locutions of the system. 

 
• Discouragement of disruption  – The rules of a dialectical system should attempt to 

preclude any disruptive behaviour by participants, e.g. repeatedly issuing the same 
locution.  However, a balance must be struck between stopping such behaviour and 
yet permitting freedom of expression [Krabbe01], and this balance will differ from 
application to application. 

 
• Enablement of self-transformation  – A dialectical system should permit the 

participants to dynamically alter their knowledge, goals, valuations, degrees of 
belief, etc. during the course of a dialogue based on information received from others 
- that is, the system should permit participants’ self-transformation [Forester99].  For 
example, participants can retract a statement they have previously made in the same 
dialogue.  Such transformation is the essential point of engaging in dialogues, as 
without it one agent could not persuade another to change beliefs, intended actions, 
etc. 

 
• System simplicity  – The rules and locutions of the system should be as simple as is 

possible, whilst remaining consistent with the previous desiderata.  Each locution 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           70 

should have a clear purpose in the dialogue, and the rules should lead to efficient 
resolution. 

 
• Computational simplicity  – A dialectical system should minimise computational 

requirements, both for the participants and the system itself, whilst remaining 
consistent with the previous desiderata. 

 
 
In addition to these desiderata the authors note that they have not specified that any such 
dialectical system should be a realistic model of human dialogues, and if fact such 
systems could be applied to dialogue that humans could not undertake, e.g. hundreds of 
participants undertaking simultaneous negotiations over multiple resources 
[McBurney02b].  For specific types of dialogue there may be additional appropriate 
desiderata, for example, in negotiations by purely self-interested agents over a scarce 
resource it may well be desired that the outcome be Pareto optimal (i.e. any other 
outcome would leave at least one participant worse off).  However, desired outcomes, 
such as Pareto optimality, may be unachievable due to other operational constraints upon 
the dialogue agents, e.g. time constraints, resource constraints, specific dialogue rules, 
social constraints, etc. 
 
These desiderata (specifically those on Clarity of Argumentation Theory and Enablement 
of Self-transformation) as based upon a particular view of joint decision-making by 
autonomous entities.  A distinction can be made between market-place (or rational 
choice) models and models of social decision-making (deliberative democracy) 
[Bohman97].  In the market-place models, each participant is seen as entering the process 
with a fully-formed set of beliefs, preferences, utilities, etc.  These models do not allow 
for such beliefs to be dynamically determined during the interaction, nor do they allow 
for a group view (in terms of wider social consequences) of the decision-making issues to 
be formed.  Deliberative democracy models, in contrast, focus upon the way in which 
beliefs, etc. can be formed and changed through the process of interaction, by participants 
undergoing self-transformation [Forester99].  This transformation occurs by argument 
and debate – i.e. by participants sharing information, challenging and defending 
assertions, and by persuasion or joint consideration. 
 
 
Dialogue game protocols have mainly been proposed for autonomous agent interactions, 
however, an agent communication language is required to enable the agents to interact in 
dialogues.  Although, the FIPA Agent Communication Language has been designed as a 
generic agent language, it could potentially be used as the communication mechanism in 
dialogue games.  Therefore, it is interesting to assess the ACL with respect to the 
desiderata described above: 
 

• Stated dialogue purpose  – The language is mainly intended for use in purchase 
negotiations, and there does not seem to be any means to declare the purpose of 
other dialogue types. 

• Diversity of individual purposes  – Enabled. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           71 

• Inclusiveness  – Enabled. 
• Transparency  – Enabled. 
• Fairness  – Enabled. 
• Clarity of argumentation theory  – The language has no explicit underlying 

argumentation theory, and the implicit theory has only limited ability to question and 
contest received information (by use of  not-understood). 

• Separation of syntax and semantics  – These are not separate, as the syntax is 
defined in terms of the semantics. 

• Rule-consistency  – Enabled. 
• Encouragement of resolution  – Resolution is not discouraged, but no rules exist for 

dialogue termination. 
• Discouragement of disruption  – This is not addressed by any specific rules, 

however, the conditions imposed by the language semantics may limit disruptive 
behaviour. 

• Enablement of self-transformation  – This is limited, due to the sincerity constraints 
imposed on agent utterances by the language semantics, and the fact that there is no 
means for agents to retract previous assertions, qualify assertions, or express degrees 
of belief. 

• System simplicity  – The language locutions consist of both substantive locutions 
(e.g. accept-proposal) and procedural locutions (e.g. propagate), which should be 
explicitly defined as different classes of locution. 

• Computational simplicity  – This is difficult to assess, as the ACL is basically just a 
message format system.  However, any internal proof mechanisms used by the 
agents (e.g. to ensure sincerity) must use the first-order model logic of the ACL 
semantics [Labrou99], and this is only semi-decidable. 

 
 
Therefore the key weakness of FIPA ACL in respect of its support for the use of formal 
dialogue games between agents is that it has limited support for formal argumentation 
and for self-transformation by agents.  This is in part due to the fact that the ACL is based 
on a market-place (or rational choice) model of decision-making, due to its intended use 
in purchase negotiation interactions, and does not attempt to model a theory of 
argumentation.  This would seem to suggest that the FIPA ACL cannot be used in the 
more complex, argumentation-based dialogue games described above. 
 
 
Development of the thirteen desiderata above, and analysis of various concrete protocols 
using the desiderata, lead to the proposal of a set of guidelines for designers and users of 
agent interaction protocols based on argumentation [McBurney02b]: 
 

1) The protocol should embody a formal and explicit theory of argument. 
 

2) The rules for the protocol should ensure that the reason(s) for conducting the 
dialogue are stated within the dialogue at its commencement. 



5.  Guidelines                                                    D 2.4.4: Guidelines for the integration of agent- 
                                                                                   based services and web-based services 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           72 

 
3) The protocol should include locutions which enable participants to: 

a) formally enter a dialogue, 
b) request information, 
c) provide information, 
d) request arguments and reasons for assertions, 
e) provide arguments and reasons for assertions, 
f) challenge statement and arguments, 
g) defend statement and arguments, 
h) retract previous assertions, 
i) make tentative proposals, 
j) express degrees of belief in statements, 
k) express degrees of acceptability or preferences regarding proposals, 
l) formally withdraw from a dialogue. 

 
4) The protocol syntax should be defined in observable terms, so that its 

conformance can be verified without reference to internal states or mechanisms 
of the participants. 

 
5) The rules of the protocol should seek to preclude disruptive behaviour. 

 
6) The rules of the protocol should indicate circumstances under which a dialogue 

terminates. 
 

7) The rules of the protocol should identify any difference in formal roles and the 
rights and duties pertaining to these. 

 
 
 
This discussion of dialogues in multiagent systems demonstrates that FIPA ACL itself 
does not support some of the advanced communication features required for agents to 
realise their full potential in this context.  It is clear that in agent communication, as in all 
other forms,  that the more sophisticated the reasoning and action sought from agents, the 
more sophisticated and knowledge-rich their communication is required to be.  However, 
any increase in communication and reasoning complexity causes the design and 
implementation of such multiagent systems to become significantly more complex also.  
This clashes with the intention behind web services – that they are relatively simple 
components that can be easily constructed and used.  Therefore, it would seem unlikely 
that a single communication formalism could, at the same time, be both simple to 
implement and use, and be able to support the sort of complex dialogues discussed above.



 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005            73 

6. Conclusions 
 
Examination of various research efforts seeking to interoperate and/or integrate 
(semantic) web services and agent services reveals three main integration themes: 
 

1) Two service spaces using uni-directional inter-operation. 
Web services are seen as providing only relatively straight-forward services, that 
conform to the simple request-response model embodied in SOAP.  Agents are 
seen as providing more complex services, where the services are embedded within 
interaction protocols (e.g. contract-net, auctions, etc.).  This view-point often 
includes the usage of such basic web services by agents, where the each of the web 
services used contribute a part of the overall service provided by the agent – i.e. the 
agent is acting in the role of choreographer and orchestrator of the web services 
(e.g. the Nuin system described in section 5.6).   
Such situations would support the usage of gateway and translation techniques 
(such as the Web Services Integration Gateway described in section 5.2), that 
enable agents to discover and invoke web services. 
This approach has been applied in situations where the role of the agent is as an 
intelligent user interface that dynamically discovers and utilises appropriate web 
services in response to action requests directly from the user (e.g. Semantic Web 
Fred [SWF] and the proposal of Iqbal et al. described in section 5.1). 
However, current research in the semantic web services field is based on the 
development and usage of complex, choreographed and orchestrated services 
within a web services environment.  This does not coincide with the view of web 
services as a ‘simple’ service layer, and removes some of the basis for the 
distinction between agent services and web services. 

 
 

2) Single service space using bi-directional inter-operation. 
Agents and web services fully inter-operate and there is no significant conceptual 
difference between them.  This is implied by single conceptual models 
encompassing both types of service (such as the FIPA Abstract Service 
Architecture described in section 5.1).  This view is also partially implied by 
gateway architectures that provide bi-directional inter-operation via translation 
between service formalisms (such as the Agentcities gateway proposal and the 
Web Service Integration Gateway described in section 5.2).  Such gateway 
proposals retain some distinction between the two service types, though this is 
largely based on the different formalisms used. 
However, this conceptualisation of little or no distinction between the services 
types loses part of the agency of the agent services. A simple example of this can 
be seen in the difference between web service invocation and agent service 
requests.  In addition, web services invoking agents services presupposes that 
agents publish declarative service descriptions of pre-determined behaviours, 
which has serious implications for agent autonomy.  If the service can be written to 
conform to the web service pattern of declarative description and pre-determined 



6. Conclusions                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           74 

behaviour it is difficult to see in what way it is an agent service.  Agency is about 
more than just using FIPA - agency is about how the service is implemented, not 
the technology stack used.  Furthermore, multiagent systems have an underlying 
conceptualization that takes into account the fact that the providers of services and 
users of these services may have competing goals that drive their behaviour.  
Agent interaction protocols require a significant degree of complexity to enable 
agents to successfully (in terms of their own goals) interact under these 
circumstances. 

 
 

3) Single integrated service space. 
In this view web services in the dominant paradigm that provides the service 
oriented architecture middleware for all services.  Such web services conform to 
the vision of semantic web services, in that they are dynamic, coordinable (through 
choreography and orchestration), flexible, etc.  These web services may utilise 
agent and AI techniques within their implementation, and can, therefore, exhibit 
degrees of autonomy, social ability, pro-activity, etc. 
However, web services are limited in their ability to exhibit agency, largely due to 
limitations imposed by web service communication formalisms.  Attempts to 
overcome these limitations can be seen in efforts to apply agent communication 
techniques to web service communication (such as that by Willmott et al. 
described in section 5.3). 
Therefore, is this scenario both conventional web services and agent web services 
would co-exist in a single service architecture, but in order to retain a single 
description, invocation and coordination framework the degree to which agent 
techniques can be applied is severely limited.  Extensions to web service 
communication would reduce the limitations on agency, but this may then require a 
distinction to be made between the service types.  This then leads to the situation 
described above, in which different service types interoperate via 
translation/gateways.  One possible approach to managing the different service 
types within a single architecture would be to use a layered communication model. 

 
 
 
In light of these identified research themes, we can see that there are two intertwined 
avenues that can be pursued to bring web services and agent-based services closer 
together: 
 

• Interoperation 
Web services and agent-based service retain a separate identity and focus, creating 
two heterogeneous service spaces.  Interoperation is mainly based on agents using 
web services, using gateways and translation between formalisms (plus some 
implicit assumptions regarding service use).  However, the use of agent-based 
services by web services (or any other client using web service formalisms) remains 
problematic. 

 



6. Conclusions                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           75 

• Integration 
Current developments in semantic web services have lead to an increasing overlap 
with agent-based services, both in the aims and abilities of the paradigms.  
Therefore, there is now some scope for providers of web services to utilise some 
agent / artificial intelligence techniques in their implementation, leading to a degree 
of integration of agent services into web services.  This is particularly true for those 
agent services whose claim to agency was weak, and largely based upon the 
development/implementation environment rather than the characteristics of the 
service itself. 
However, there is a limit to this integration due to fundamental differences in system 
conceptualisation: 
 

- The key feature of agent systems is that of autonomy – agents are designed 
as independent entities that act on the basis of their own goals and 
knowledge. ‘High-level’ agent systems are based on modelling processes in 
terms of ‘mentalistic notions’, such as in Belief, Desire, Intention (BDI) 
models.  In such systems, interaction between agents is based on 
conversations, negotiation and argumentation dialogues (see section 5.8), in 
which the agents autonomously pursue individual (or group) goals.  These 
systems produce ‘societies’ of independent agents, which may exhibit 
emergent behaviour at this societal level. 

 
- Web services are intended to provide an underlying architecture for 

distributed functionality, based on declarative advertisement of services 
followed by dynamic discovery and invocation of the services.  Web services 
are intended to be relatively simple, i.e. easy to use and implement, robust, 
reliable, etc. 

 
Therefore, increasing use of agent techniques in web service implementations moves 
them away from their intended task, i.e. makes them complex to implement and use.  
In a web service architecture the ability to exhibit autonomy must be limited in order 
to respect the requirements service advertisement and invocation.  This implies that a 
distinction must remain between ‘high-level’ agent societies and web services, and 
that interoperation between them is limited to the use of web services by agents as 
external functionalities.  One of the goals of continuing research into semantic web 
services must be to determine the degree to which agent techniques can be applied to 
web services, and the degree to which web services can and should exhibit agency.  
It is important to recognize when it is appropriate to use agent-based solutions – if a 
component does not exhibit any features of agency then there is no necessity to 
implement it as an agent. 
 

 
 
 
 
 



6. Conclusions                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           76 

Finally, in addition to the possibilities of interoperation and integration between web 
services and agent-based services, it is clear that there are a number of areas in which the 
two paradigms address similar issues and could usefully inform each other: 
 

• Dynamic service coordination  –  agent interaction protocols and web service 
choreography bear significant similarity.  In conjunction with other related 
approaches (such as the coordination ontology described in section 5.4), these . 

 
• Negotiation and agreement  –  as applied in WS-Agreement (see section 5.5). 
 
• Representation of user goals and intentions  –  widespread research in this within the 

agent research field.  Connecting abstract user goals to concrete services. 
 
• Service description and matchmaking  –  service description and consequently 

service matchmaking stronger in web services. 
 
• Intelligent decision-making  –  agent research can contribute significant experience 

in enabling components to reach intelligent decisions and take intelligent actions 
based on their own knowledge.  For example the Nuin system, that uses semantic 
web languages to represent knowledge within a Belief, Desire, Intention model that 
enables the agents to use this knowledge to act in pursuit of their own goals (see 
section 5.6). 

 
 
 
 



 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005            77 

Bibliography 
 
 
[Andrieux04] – Andrieux, A., Czajkowski, K., Dan, A., et al.  “Web Services Agreement 
Specification (WS-Agreement)”.  World-Wide-Web Consortium (W3C), 2004. 
 
[AOSG] – Agent Oriented Software Group: Company web site, 2004. 
 
[Aristotle28] – Aristotle. Topics. Clarendon Press, Oxford, UK, 1928. W. D. Ross, 
Editor. 
 
[Ben-Ari90] – Ben-Ari, M.  Principles of Concurrent and Distributed Programming. 
Prentice Hall, 1990. 
 
[Bohman97] – Bohman, J. and Rehg, W. (eds.)  Deliberative Democracy: Essays on 
Reason and Politics. MIT Press, Cambridge, MA, USA, 1997. 
 
[Booth03] – Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., 
and Orchard, D. (eds.)  Web Services Architecture, W3C Working Draft, 8th August 2003. 
http://www.w3.org/TR/2003/WD-ws-arch-20030808/ 
 
[Booth04] – Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., 
and Orchard, D. (eds.)  Web Services Architecture, W3C Working Group Note, 11th 
February 2004. 
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ 
 
[Breese98] – Breese, J.S., Heckerman, D., and Kadie, C. “Empirical Analysis of 
Predictive Algorithms for Collaborative Filtering”.  In Proceedings of the 14th 
Conference on Uncertainty in Artificial Intelligence, 1998.  
 
[Buhler04] – Buhler P.A. and Vidal J.M. “Integrating Agent Services into BPEL4WS 
Defined Workflows”.  In Proceedings of the Fourth International Workshop on Web-
Oriented Software Technologies,  Munich, Germany, 2004. 
 
[Burdett04] –  Burdett, D. and Kavantzas, N. WS Choreography Model Overview 
(working draft).  2004.  
http://www.w3.org/TR/2004/WD-ws-chor-model-20040324/ 
 
[Christensen01] – Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S.  Web 
Services Description Language (WSDL) 1.1.  2001.  
http://www.w3.org/TR/wsdl 
 
[Dan04] – Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H., 
Polan, M., Spreitzer, M., and Youssef, A. “Web services on demand: WSLA-driven 
automated management”.  In IBM Systems Journal, vol. 43, num. 1, 2004. 



Bibliography                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           78 

 
[Dale03a] – Dale, J., Hajnal, A., Kernland, M., and Varga, L.Z. “Integrating Web 
Services into Agentcities Recommendation”.  Agentcities Technical Recommendation 
[actf-rec-00006], 2003. 
 
[Dale03b] – Dale, J. and Lyell, M.  “Towards an Abstract Services Architecture for 
Multi-agent Systems”, 2003.  
www.agentcities.org/Challenge03/ Proc/Papers/ch03_dalelyell.pdf  
 
[Decker95] – Decker, K. and Lesser, V.  “Designing a family of coordination 
algorithms”. In Proceedings of the First International Conference on Multi-Agent 
Systems, San Francisco, CA, 1995. 
 
[Dickinson03] – Dickinson, I. and Wooldridge, M.  “Towards Practical Reasoning 
Agents for the Semantic Web”.  In Proceedings of Autonomous Agents and Multi-Agent 
Systems, Melbourne, Australia, 2003. 
 
[Dickinson04] – Dickinson, I.  Nuin: the Jena Agent Framework.  2004.  
http://www.nuin.org 
 
[Dickinson05] – Dickinson, I. and Wooldridge, M. “Agents are not (just) we services: 
considering BDI agents and web services”.  To appear in Proceedings of SOCABE’05, 
2005. 
 
[Durfee88] – Durfee, E.H. Coordination of Distributed Problem Solvers. Kluwer 
Academic Publishers, Dordrecht, The Netherlands, 1988. 
 
[Dustdar04] – Dustdar, S. and Treiber, M. “A View Based Survey on Web Services 
Registries”.  2004. 
http://www.infosys.tuwien.ac.at/Staff/sd/papers/TUV-1841-2004-
19.pdf 
 
[Eemeren92] – van Eemeren, F.H. and Grootendorst, R.  Argumentation, Communication 
and Fallacies: A Pragma-Dialectical Perspective.  LEA, Mahwah, NJ, USA, 1992. 
 
[Eriksson05] – Eriksson, H.  JessTab, 2005. 
http://www.ida.liu.se/˜her/JessTab/ 
 
[Fikes03] – Fikes, R., Hayes, P., and Horrocks, I. “OWL-QL – A Language for 
Deductive Query Answering on the Semantic Web.”  Technical Report: Knowledge 
Systems Laboratory (KSL-03-14), Stanford University, CA, 2003 
 
[FIPA] – FIPA Specification, Foundation for Intelligent Physical Agents, 2002. 
http://www.fipa.org/ 
 



Bibliography                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           79 

[Fiorino89] – Fiorino, D.J. “Environmental risk and democratic process: a critical 
review”.  In Columbia J. Environmental Law, vol. 14, pp. 501–547, 1989. 
 
[Forester99] – Forester, J. The Deliberative Practitioner: Encouraging Participatory 
Planning Processes.  MIT Press, Cambridge, MA, USA, 1999. 
 
[Friedman-Hill05] – Friedman-Hill, E.  Jess, 2005. 
http://herzberg.ca.sandia.gov/jess/ 
 
[Georgeff90] – Georgeff, M. and Ingrand, F.  Research on Procedural Reasoning 
Systems (Final Report – Phase 2).  SRI International, 1990. 
 
[Ghallab04] – Ghallab, M., Nau, D., and Traverso, P.  Automated Planning : Theory & 
Practice.  Morgan-Kaufmann, 2004. 
 
[Gibbins03] – Gibbins, N., Harris, S., and Shadbolt, N. “Agent-Based Semantic Web 
Services”.  In Proceedings of the Twelfth International World Wide Web Conference, 
ACM, 2003. 
http://eprints.ecs.soton.ac.uk/7278/ 
 
[Good99] – Good, N., Schafer, J.B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., 
and Riedl, J. “Combining Collaborative Filtering With Personal Agents for Better 
Recommendations”.  In  Proceedings of the 16th National Conference on AI (AAAI-99), 
pp. 439–446,  AAAI Press, 1999.  
 
[Greenwood04] – Greenwood, D. and Calisti, M.  “An Automatic, Bi-Directional Service 
Integration Gateway”.  In Proceedings of AAMAS Workshop on Web Services and Agent-
based Engineering, New York, USA, 2004. 
 
[Gurevich93] – Gurevich, Y. “Evolving Algebras 1993: Lipari 
Guide”. In Börger, E. (ed.) Specification and Validation Methods, pp. 9-36, Oxford 
University Press, 1995. 
 
[Hamblin70] – Hamblin, C.L.  Fallacies.  Methuen, London, UK, 1970.  
 
[Hitchcock91] – Hitchcock, D. “Some principles of rational mutual inquiry”. In van 
Eemeren, F., et al. (eds.) Proceedings of the 2nd International Conference on 
Argumentation, pp. 236–243, Amsterdam, 1991. 
 
[Horrocks02] – Horrocks, I.  “Reasoning With Expressive Description Logics: Theory 
and Practice”. In Voronkov, A. (ed.)  Proceedings of the 18th International Conference 
on Automated Deduction (CADE-18), pp. 1–15, Springer Verlag, 2002. 
 
[Huhns02] – Huhns, M.N.  “Agents as Web Services”.  In IEEE Internet Computing, 
July, 2002. 
 



Bibliography                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           80 

[Iqbal04] – Iqbal, K., Farooq Ahmad, H., Ali, A., Suguri, H., and Jamshed, M. 
“Autonomous Distributed Services Implementation”.  In Proceedings of the 24th 
International Conference on Distributed Computing Systems Workshops, Tokyo, Japan, 
2004. 
 
[JADE] – Telecom Italia Lab. JADE: Java Agent DEvelopment Framework. 
http://sharon.cselt.it/projects/jade/ 
 
[JENA] – HP Labs Semantic Web Research.  Jena: Semantic Web Framework for JAVA. 
www.jena.sourceforge.net/ 
 
[Krabbe01] – Krabbe, E.C.W. “The problem of retraction in critical discussion”.  In 
Synthese, 127(1-2), pp. 141–159, 2001. 
 
[Kuter04] – Kuter, U., Sirin, E., Nau, D., Parsia, B., and Hendler, J. “Information 
Gathering During Planning for Web Service Composition”.  In  Proceedings of the Third 
International Semantic Web Conference (ISWC2004), 2004. 
http://www.mindswap.org/papers/ISWC04-Enquirer.pdf 
 
[Labrou99] – Labrou, Y., Finin, T., and Peng, Y.  “Agent communication languages: The 
current landscape”.  In IEEE Intelligent Systems, 14(2), pp. 45–52, 1999. 
 
[Lara04] – Lara, R., Roman, D., Polleres, A., and Fensel, D. “A Conceptual Comparison 
of WSMO and OWL-S”.  In Proceedings of the European Conference on Web Services 
(ECOWS 2004),  2004. 
http://www.uibk.ac.at/~c703225/papers/conceptualcomparison.pdf 
 
[Lashkari94] – Lashkari, Y., Metral, M., and Maes P.  “Collaborative Interface Agents”.  
In Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, 
Washington, 1994.   
 
[McBurney02a] – McBurney, P. and Parsons, S.  “Dialogue Games in Multi-Agent 
Systems”.  In Informal Logic. Special Issue on Applications of Argumentation in 
Computer Science, 22 (3), pp. 257-274, 2002. 
  
[McBurney02b] – McBurney, P., Parsons, S., and Wooldridge, M.  “Desiderata for Agent 
Argumentation Protocols”.  In Proceedings of Autonomous Agents and Multi-Agent 
Systems (AAMAS ’02), Bologna, Italy, 2002. 
 
[McBurney02c] – McBurney, P. and Parsons, S. “Games that agents play: a formal 
framework for dialogues between autonomous agents”.  In Journal of Logic, Language 
and Information, 11(3), pp. 315-334, 2002.  
 
[McIlraith02] – McIlraith, S.A. and Cao Son, T.  “Adapting Golog for composition of 
semantic web services”.  In Fensel, D., Giunchiglia, F., McGuinness, D., and Williams, 



Bibliography                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           81 

M. (eds.)  Proceedings of the 8th International Conference on Principles and Knowledge 
Representation and Reasoning (KR-02), pp. 482–496, 2002. 
 
[Malone94] – Malone, T.W. and Crowston, K.  “The interdisciplinary study of 
coordination”.  In  ACM Computing surveys, vol. 26, 1994. 
 
[Martin04] – Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, 
S., Narayanan, S., Paolucci,  M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and 
Sycara, K.  OWL-S: Semantic Mark-up for Web Services (v. 1.1),  2004. 
http://www.daml.org/services/owl-s/1.1/overview/ 
 
[Miller90] – Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K.  
“Introduction to WordNet: An On-Line Lexical Database”.  In International Journal of 
Lexicography, vol. 3, pp. 235-244, 1990. 
 
[Negroponte97] – Negroponte, N. “Agents: From Direct Manipulation to Delegation”. In 
Bradshaw, J. (ed.)  Software Agents,  pp. 57-66, AAAI Press, 1997. 
 
[OntoGrid] – Ontogrid Project. Paving the way for Knowledgeable Grid Services 
and Systems. 
http://ontogrid.net/ 
 
[OWL] – W.W.W. Consortium.  Website for the specification of OWL,  2004. 
http://www.w3.org/2004/OWL/ 
 
[Paolucci03] – Paolucci, M., Sycara, K., and Kawamura, T. “Delivering Semantic Web 
Services”.  In Proceedings of the 12th International Conference on the World Wide Web, 
ACM Press, 2003. 
 
[Paolucci04] – Paolucci, M., Soudry, J., Srinivasan, N., and Sycara, K.  “A Broker for 
OWL-S Web services”.  In Proceedings of the AAAI Spring Symposium Series – 
Semantic Web Services, Southampton, UK, 2004. 
 
[Parsons98] – Parsons, S., Sierra, C., and Jennings, N.R. “Agents that reason and 
negotiate by arguing”.  In  Journal of Logic and Computation, 8(3), pp. 261-292, 1998. 
 
[Paurobally05a] – Paurobally, S. and Jennings, N.  “Protocol engineering for web service 
conversations”.  In Engineering Applications of Artificial Intelligence - Special Issue on 
Agent-oriented Software Development, 18(2), pp. 237–254, 2005. 
 
[Paroubally05b] – Paroubally, S., Tamma V., and Wooldridge, M.  “Coorperation and 
Agreement between Semantic Web Services”.  To appear in Proceedings of the W3C 
Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 2005. 
 
[Pistore04] – Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., and Traverso, P. 
“Planning and Monitoring Web Service Composition”.  In Proceedings of Workshop on 



Bibliography                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           82 

Planning and Scheduling for Web and Grid Services,  2004. 
http://www.isi.edu/ikcap/icaps04-workshop/final/pistore.pdf 
 
[Pretschner99] – Pretschner, A. and Gauch, S.  “Ontology Based Personalized Search”.  
In  Proceedings 11th International Conference on Tools with Artificial Intelligence (TAI 
99),  pp. 391-398, IEEE Computer Society, 1999. 
 
[Protégé] – Stanford Medical Informatics.  Protégé, 2005. 
http://protege.stanford.edu/ 
 
[PSL] – PSL: process specification language.  
http://www.mel.nist.gov/psl/ 
 
[Rao95] – Rao, A. and Georgeff, M. “BDI Agents: From Theory to Practice”.  In 
Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95),  
1995. 
 
[Rao96] – Rao, A. “AgentSpeak(L): BDI Agents Speak Out in a Logical Computable 
Language”.  In  Proceedings of the 7th European Workshop on Modelling Autonomous 
Agents in a Multi-Agent World (MAAMAW '96), pp. 42–55, Springer-Verlag, 1996.  
 
[RDF] – World Wide Web Consortium (W3C).  The Resource Description Framework 
(RDF), 2004.   
http://www.w3.org/RDF/ 
 
[Roman04] – Roman, D., Lausen, H., and Keller, U.  “D2v02. Web Service Modelling 
Ontology - Standard”.  WSMO Working Draft, 2004. 
http://www.wsmo.org/2004/d2/v02/20040306/ 
 
[Rubinstein82] – Rubinstein, A. “Perfect equilibrium in a bargaining model”. In 
Econometrica, 50(1), pp. 97–109, 1982. 
 
[Sandholm99] – Sandholm, T.W. “Distributed rational decision making”. In Weiss, G. 
(ed.) Multiagent Systems: A Modern Introduction to Distributed Artificial Intelligence, 
pp. 201-258, MIT Press, Cambridge, MA, USA, 1999.  
 
[Searle69] – Searle, J.R.  Speech acts: An essay in the philosophy of language. 
Cambridge University Press, 1969. 
 
[Singh94] – Singh, M.  Multiagent Systems: a Theoretical Framework for Intentions, 
Know-How, and Communications,  Springer-Verlag, 1994. 
 
[Singh05] – Singh, M. and Huhns, M.  Service-Oriented Computing, Wiley, 2005. 
 
[Sirin04] – Sirin, E. and Parsia, B. “Planning for Semantic Web Services”.  In  
Proceedings of the Workshop on Semantic Web Services: Preparing to Meet the World of 



Bibliography                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           83 

Business Applications,  2004. 
http://www.ai.sri.com/SWS2004/final-versions/SWS2004-Sirin-
Final.pdf 
 
[Smith81] – Smith, R.G. “The contract net protocol: High-level communication and 
control in a distributed problem solver”.  In IEEE Transactions on Computers, C-29(12), 
pp. 1104–1113, 1981. 
 
[SOAP] – SOAP  version 1.2. 
http://www.w3.org/TR/soap/ 
 
[SWF] – Semantic Web FRED. 
http://swf.deri.at 
 
[Sycara88] – Sycara, K., Lewis, M., Lenox, T., and Roberts, L. “Calibrating Trust to 
Integrate Intelligent Agents into Human Teams”.  In Proceedings of the 31st Annual 
Hawaii International Conference on System Sciences, pp. 263 – 268, IEEE, 1998. 
 
[Sycara02] – Sycara, K.P., Widoff, S., Klusch, M., and Lu, J.  “Larks: Dynamic 
matchmaking among heterogeneous software agents in cyberspace”.  In Autonomous 
Agents and Multi-Agent Systems, vol.5, num.2, pp. 173–203, 2002. 
 
[Thatte03] – Thatte, S. (ed.)  Business Process Execution Language for Web Services. 
Specification v1.1,  2003. 
ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf. 
 
[UDDI] – UDDI Specification.  Technical Committee Draft, 19 October 2004. 
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf 
 
[vMartial90] – von Martial, F. “Interactions among autonomous planning agents”. In 
Demazeau, Y. and Muller, J.P. (eds.)  Decentralized AI - Proceedings of the First 
European Workshop on Modelling Autonomous Agents in a Multi-Agent World,  Elsevier 
Science Publishers B.V., Amsterdam, The Netherlands, 1990. 
 
[vMartial92] – von Martial, F. “Coordinating Plans of Autonomous Agents”. In LNAI 
vol. 610, Springer-Verlag, Berlin, Germany, 1992. 
 
[Verma04] – Verma, K., Sivashanmugam, K., Sheth, A., and Patil, A. “METEOR-S 
WSDI: A scalable P2P infrastructure of registries for semantic publication and discovery 
of web services”.  In  Journal of Information Technology and Management, 2004. 
 
[W3CSW] – W3C.  W3C Semantic Web Activity, 2001.  
http://www.w3.org/2001/sw/ 
 
[Walton95] – Walton, D.N. and Krabbe, E.C.W.  Commitment in Dialogue: Basic  



Bibliography                                   D 2.4.4: Guidelines for the integration of agent- 
                                                                                based services and web-based services 
 

 
KWEB/2004/D2.4.4/v1.1        8/23/2005           84 

Concepts of Interpersonal Reasoning,  SUNY Press, Albany, NY, USA, 1995.  
 
[Willmott05] – Willmott S., Pena F.O.F., Merida-Campos C., and Constantinescu I. 
“Adapting Agent Communication Languages for Web Service to Web Service 
Communication”.  To appear in  Proceedings of the 2005 IEEE/WIC/ACM International 
Conference on Web Intelligence, Compiegne, France, 2005. 
 
[Wohed03] – Wohed, P., van der Aalst, W.M.P., Dumas, M., and ter Hofstede, A.H.M. 
“Analysis of Web Services Composition Languages: The Case of BPEL4WS”. In 
Proceedings 29th EUROMICRO Conference - Track on Software Process and Product 
Improvement,  pp. 298-307, Belek-Antalya, Turkey, 2003. 
 
[Wooldridge95] – Wooldridge, M. and Jennings, N. “Intelligent Agents: Theory and 
Practice”.  In  Knowledge Engineering Review,  vol. 10:2,  pp. 115-152,  1995. 
 
[Wooldridge00a] – Wooldridge, M.  Reasoning About Rational Agents,  MIT Press, 2000. 
 
[Wooldridge00b] – Wooldridge, M. “Semantic issues in the verification of agent 
communication languages”.  In  Autonomous Agents and Multi-Agent Systems, 3(1), pp. 
9–31, 2000. 
 
[Wooldridge02] – Wooldridge, M.  An Introduction to Multiagent Systems,  John Wiley  
& Sons, 2002. 
 
[WSDL] – Web Services Description Language (version 2.0)  Part 1: Core Language. 
W3C Working Draft,  2004. 
http://www.w3.org/TR/wsdl20/ 
 
[WSMO-CO] – “D14v0.2: Ontology-based Choreography and Orchestration of WSMO 
Services”.  WSMO Working Draft,  2005. 
http://www.wsmo.org/TR/d14/v0.2/20050702/ 
 
[Wu03] – Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. “Automating DAML-S 
Web Services Composition Using SHOP2”. In Proceedings of 2nd International 
Semantic Web Conference (ISWC2003), 2003. 
 
[Zhao04] – Zhao, L., Mehandjiev, N., and Macaulay, L. “Agent Roles and Patterns for 
Supporting Dynamic Behaviour of Web Services Applications”.  In Proceedings of 
Autonomous Agents and Multiagent Systems (AAMAS’04), New York, USA, 2004. 
 
 


