
State-of-the-art in Agent-based
Services

Walter Binder (Ecole Polytechnique Fédérale de Lausanne)
Junichiro Mori (Ecole Polytechnique Fédérale de Lausanne)

David Portabella (Ecole Polytechnique Fédérale de Lausanne)
Valentina Tamma (University of Liverpool)

Michael Wooldridge (University of Liverpool)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.4.3
This deliverable covers the current state-of-the-art in Agent-based services. It consists of two
main parts.
The first part provides an overview of autonomous agents and multi-agents systems, describing
their desired properties and micro (agent-level) and macro (society-level) issues that need to be
addressed to build such systems.
The second part of the document addresses technical issues of building Agent-based services,
describing the FIPA standardization effort, and a list of major publicly available implementations
of agent platforms. Finally this delivery presents the Agentcities testbed.
Keyword list: Agent, MAS, Services, Collaboration, ACL, FIPA, Agentcities

Copyright c© 2005 The contributors

Document Identifier KWEB/2004/D2.4.3/v1.0
Project KWEB EU-IST-2004-507482
Version v1.0
Date October 31, 2004
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document:

École Polytechnique Fédérale de Lausanne
University of Liverpool

4

Executive Summary

There are lots of interpretations about what Agents are. Rather than entering a debate
about the issue, we give a motivation example and afterwards identify the key properties
of such systems, split into micro and macro issues.

For Intelligent Autonomous Agents, two main approaches are identified. First, the tra-
ditional, symbolic approach as a type of knowledge-based system which deals with what
knowledge needs to be represented, how this knowledge is to be represented, what rea-
soning mechanisms are to be used, etc. The second approach does no symbolic reasoning
at all, and agents are designed as a set of task accomplishing behaviours, arranged into a
subsumption hierarchy.

In Multi-Agent Systems, the agents are meant to be self interested: they are attempting
to get the best deal for themselves, hence we enter into the formal setting of game theory.
To obtain the most preferred outcome in such settings agents must engage in strategic
reasoning.

In speech act theory, communication is modelled as actions that alter the mental state
of the communication participants. This theory has inspired a number of languages that
have been developed specifically for agent communication. For agents to communicate in
open distributed environments, it is necessary for them to agree on the terminology that
they use to describe their domain, i.e., to make an ontological commitment. Moreover,
even if agents can successfully communicate, it remains the problem of why and how
agents should cooperate, how agents can recognize and resolve conflicts, how agents can
negotiate or compromise in situations where they are apparently at loggerheads, etc.

After agent theories have been studied and validated, standardization and implemented
tools are needed for the practical commercial and industrial use of heterogeneous and
interacting agents and agent-based systems across multiple vendors’ platforms. Finally,
the Agentcities testbed is analyzed.

Concerning the relationship between Agent-based Services and Semantic Web Ser-
vices, while the former have been studied in the last 25 years, the latter are still in their
infancy. Therefore, they should take profit of the state-of-the-art in the agents domain,
specially in the areas of reaching agreements, communication, and collaboration. This
topic will be addressed and further elaborated in the following deliverable D2.4.4, titled
“Guidelines for the integration of agent-based services and web-based services”.

i

Contents

1 Introduction 1
1.1 What are Agents? . 1
1.2 Micro and Macro Issues . 4

2 Intelligent Autonomous Agents 6
2.1 Logical/Reasoning Architectures . 6
2.2 Reactive Architectures . 8
2.3 Hybrid Architectures . 8

2.3.1 The Procedural Reasoning System (PRS) 9
2.3.2 The 3T Architecture . 11

3 Negotiation and Agreement 15
3.1 Argumentation . 17
3.2 Auctions . 20
3.3 Bargaining . 23

4 Communication and Cooperation 30
4.1 Communication . 30

4.1.1 Speech Acts . 30
4.1.2 Agent Communication Languages 31
4.1.3 Ontologies . 34

4.2 Cooperation . 35
4.2.1 Task Sharing and Result Sharing 35
4.2.2 Coordination . 38

5 Standardization 40
5.1 FIPA: Open Standards for Software Agents 40

5.1.1 Overview . 40
5.1.2 Structure of FIPA . 40
5.1.3 Developments in FIPA . 41

5.2 FIPA Specifications . 42
5.2.1 Specification Structure . 42
5.2.2 Current Generation of FIPA Specifications 42

ii

State-of-the-art in Agent-based Services IST Project IST-2004-507482

5.2.3 Agent Management . 45
5.3 Conclusions . 47

6 Agent Systems 49
6.1 JADE and LEAP platforms . 49
6.2 Publicly available platforms . 50

6.2.1 Agent Development Kit . 50
6.2.2 April Agent Platform . 51
6.2.3 Comtec Agent Platform . 51
6.2.4 FIPA-OS . 52
6.2.5 Grasshopper . 52
6.2.6 JACK . 53
6.2.7 JADE . 53
6.2.8 JAS . 54
6.2.9 LEAP . 55
6.2.10 ZEUS . 56

7 Agentcities 57
7.1 Introduction . 57
7.2 Objectives . 57
7.3 Methodologies . 58
7.4 Project Results and Achievements . 61
7.5 Future works . 65

8 Conclusion 66

KWEB/2004/D2.4.3/v1.0 October 31, 2004 iii

Chapter 1

Introduction

It is probably quite rare for a software technology to seize the imagination of the computer
science community at large. And yet this is precisely what has happened with autonomous
agents and multi-agent systems, perhaps to a greater degree even than the semantic web
itself.

The aim of this deliverable is to survey the state of the art in the area of intelligent
agents and multi-agent systems. While we cannot hope to act as an introduction to all the
issues in a field as rich and diverse as multi-agent systems, the aim is nevertheless to point
the reader at the main areas of interest. Note that the article is intended as an introduction,
not as a specialist, advanced survey.

The article starts — inevitably — by asking the question what is an agent? This leads
to a brief discussion on the topic of what sort of computer systems are most appropriately
conceived and implemented as multi-agent systems. A crude classification scheme is
then introduced, whereby the issues relating to the design and implementation of multi-
agent systems are divided into micro (agent-level) issues and macro (society-level) issues.
In section 1.2, micro-level issues (essentially, what software structure should an agent
have?) are discussed in more detail. Traditional symbolic AI architectures for agents
are reviewed, as well as alternative, reactive architectures, and finally, various hybrid
architectures. One particularly well-known agent architecture is discussed in detail: the
Procedural Reasoning System (PRS) [GL87].

1.1 What are Agents?

Like the question what is intelligence? in mainstream AI, the question what is an agent?
is the most frequently-asked question in multi-agent systems research. Everyone working
in the field has their own interpretation of the term, and their own ideas about what the
important issues are. Rather than enter a debate about the issue, we shall here simply
give an example scenario describing computer systems that it seems useful to think of as

1

1. INTRODUCTION

agents (this example is borrowed from [WJ95]):

The key air-traffic control systems in the country of Ruritania suddenly fail,
due to freak weather conditions. Fortunately, computerized air-traffic control
systems in neighboring countries negotiate between themselves to track and
deal with all affected flights, and the potentially disastrous situation passes
without major incident.

The computer systems — agents — operating in this scenario . . .

• . . . are situated in a constantly changing environment;

Unlike the theorem provers and expert systems of early AI research, agents operate
both in and on some environment, which may be (in this case) the world of air-traffic
control, the real world (in the case of a physically embodied robot), the INTERNET

(in the case of network agents [Whi94]), or a software environment such as UNIX

(in the case of softbots [ELS94]).

• . . . have only partial, possibly incorrect information about the environment, and
are able to make (at best) limited predictions about what the future will hold;

The agents in this example are able to perceive their environment through radar and
radio contact with pilots; clearly, the information they obtain in this way, (partic-
ularly about variables like the weather), is limited and prone to error. Moreover,
any predictions the agent makes (e.g., about tomorrow’s weather) will be liable to
errors.

• . . . are able to act upon the environment in order to change it, but have at best
partial control over the results of their actions;

The agents in this scenario do not have complete control over their environment: in
particular, they have no control over ‘nature’ (in the form of, for example, weather).
They do have limited control over aspects of the environment (in particular, they can
instruct pilots about what course to fly, altitude, speed, and so on), but they cannot
rely upon this control being perfect (pilots can ignore or misunderstand instruc-
tions).

• . . . have possibly conflicting tasks they must perform;

More than one re-routed aircraft may wish to land on the same runway at the same
time. In circumstances such as this, where the agent cannot achieve all the tasks
it has been allocated, it must fix upon some subset of these tasks and commit to
realizing them (see the discussion on BDI architectures in section 1.2).

• . . . have available many different possible courses of action;

There will typically be many different ways that an agent can achieve its tasks; the
agent must select some procedures, that it believes will achieve its selected tasks,

2 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

and commit to performing them. Moreover, the agents should pick the procedures
that are in some sense the best.

• . . . are required to make decisions in a timely fashion.

Real agents do not have infinite resources: the world changes in real time, and
agents must make the best (most rational) decisions possible, given the resources
(information, time, computational power) available to them [RSP93].

(These points are borrowed from [RG95a, p313], where they are discussed in more de-
tail.) It should be clear to anyone with more than a passing appreciation of software
engineering that the design and implementation of computer systems that can operate un-
der these constraints is extremely difficult. Some researchers (e.g., [RG95a]) believe that
such computer systems may usefully be considered as multi-agent systems, and that the
tools and techniques of multi-agent systems research may fruitfully be used to develop
them. Clearly, the scenario above is rather extreme (it is hard to think of many more
difficult computer systems to build!), but the agent concept is likely to be useful even in
domains that do not exhibit such extreme properties.

Let us try to identify the key properties enjoyed by agents such as those in the scenario
above [WJ95]:

• autonomy: agents operate without the direct intervention of humans or others, and
have control over their actions and internal state;

• social ability: agents are able to cooperate with humans or other agents in order to
achieve their tasks;

• reactivity: agents perceive their environment, and respond in a timely fashion to
changes that occur in it;

• pro-activeness: agents do not simply act in response to their environment, they are
able to exhibit goal-directed behaviour by taking the initiative.

For some researches, an intelligent agent is a system that enjoys these properties. Others
argue that different properties should receive greater emphasis. Some other properties
discussed in the context of agency are:

• mobility: the ability of an agent to move around an electronic network [Whi94];

• veracity: the assumption that an agent will not knowingly communicate false infor-
mation [Gal88];

• benevolence: the assumption that agents share common goals, and that every agent
will therefore always try to do what is asked of it [RG85];

KWEB/2004/D2.4.3/v1.0 October 31, 2004 3

1. INTRODUCTION

• rationality: the assumption that an agent will act in order to achieve its goals, and
will not act in such a way as to prevent its goals being achieved — at least insofar
as its beliefs permit [RW91];

• learning: the assumption that an agent will adapt itself to fit its environment.

For others — particularly those working in AI — the term ‘agent’ has a stronger meaning.
They mean an agent to be a computer system that, in addition to having the properties
specified above, is either designed or implemented in terms of concepts more usually
applied to humans. One manifestation of this idea, called agent-oriented programming,
is discussed in section 1.2.

1.2 Micro and Macro Issues

If one aims to build a computer system such as that indicated in the example scenario,
then there are at least two sorts of issues that one needs to address [Gil95, p145]:

• Micro-issues. How does one build an agent that has the kind of properties listed
above? This is the area that has become known as agent architectures.

• Macro-issues. How does one design an agent society that can (co-)operate effec-
tively? This latter area has been the primary focus of research in Distributed AI
(DAI) [Huh87, BG88, GH89].

These two sets of issues are by no means disjoint: the traditional AI approach to building
a system that can operate intelligently in some environment proposes giving that system
some symbolic representation of the environment. If an agent is to co-operate effectively
with other agents, therefore, one might wish to give that agent a symbolic representation
of the cooperative process (see, e.g., Jennings’ cooperation knowledge level [Jen92], and
the co-operation level in the INTERRAP architecture [Mül97]).

The micro/macro distinction has been criticized by a number of researchers. One
objection, for example, is that agents can be comprised of a number of other agents,
in the same way that any complex system can be decomposed into a number of other
subsystems [HRHW+89]. The micro/macro distinction makes little sense if one takes
such a view. As the preceding paragraph illustrated, there is certainly a somewhat grey
area between micro and macro issues. However, for the purposes of this review, it seems
a useful classification scheme.

Micro (Agent Level) Issues

This section presents a short survey of the area known as agent architectures. Researchers
working in this area are concerned with the design and construction of agents that enjoy

4 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

the properties of autonomy, reactivity, pro-activeness, and social ability, as discussed ear-
lier. Following [WJ95], three classes of agent architecture are identified: deliberative, or
symbolic architectures, are those designed along the lines proposed by traditional, sym-
bolic AI; reactive architectures are those that eschew central symbolic representations
of the agent’s environment, and do not rely on symbolic reasoning; and finally, hybrid
architectures are those that try to marry the deliberative and reactive approaches.

Macro (Societal) Issues

So far, this article has considered only the issues associated with intelligent agent design.
We have been concerned with individuals, but not with societies. The design of ‘an agent’
is a classic AI pursuit: in a sense, this is what the whole of the AI endeavour has been
directed towards. However, AI has traditionally not considered the societal aspects of
agency. In the late 1970s and early 1980s, these aspects of agency began to be studied in
a subfield of AI known as Distributed AI (DAI). In this section, our aim is to briefly review
work in DAI: we begin by considering the distinction between distributed problem solving
and multi-agent systems, and go on to examine the issues of coherence and coordination,
communication, cooperation, and negotiation. The best reference to these various issues
is the collection of papers edited by Bond and Gasser [BG88].

KWEB/2004/D2.4.3/v1.0 October 31, 2004 5

Chapter 2

Intelligent Autonomous Agents

2.1 Logical/Reasoning Architectures

The traditional approach to designing agents is to view them as a type of knowledge-based
system. Such architectures are often called deliberate or deliberative. The key questions
to be answered when developing an agent using traditional knowledge-based systems
techniques are thus what knowledge needs to be represented, how this knowledge is to be
represented, what reasoning mechanisms are to be used, and so on.

The symbolic approach to building agents has traditionally been very closely associ-
ated with the AI planning paradigm [Geo87]. This paradigm traces its origins to Newell
and Simon’s GPS system [NS61], but is most commonly associated with the STRIPS plan-
ning system ([FN71]) and its descendents (such as [Sac74, Sac75, Cha87, Wil88]). A
typical STRIPS-style planning agent will have at least the following components:

• a symbolic model of the agent’s environment, typically represented in some limited
subset of first-order predicate logic;

• a symbolic specification of the actions available to the agent, typically represented
in terms of PDA (pre-condition, delete, add) lists, which specify both the circum-
stances under which an action may be performed and the effects of that action;

• a planning algorithm, which takes as input the representation of the environment,
a set of action specifications, and a representation of a goal state, and produces as
output a plan — essentially, a program — which specifies how the agent can act so
as to achieve the goal.

Thus, planning agents decide how to act from first principles. That is, in order to satisfy
a goal, they first formulate an entirely new plan or program for that goal. We can thus
think of planning agent continually executing a cycle of picking a new goal ϕ1, gener-
ating a plan π for ϕ1, executing π, picking a new goal ϕ2, and so on. Unfortunately,

6

State-of-the-art in Agent-based Services IST Project IST-2004-507482

first-principles planning of the type just described has associated with it a number of dif-
ficulties. The most obvious of these is that the processes of finding a goal, generating
a plan to achieve it, and executing it are not atomic: they take time — in some cases, a
considerable amount of time. Yet there is an assumption implicit in this scheme, that the
environment in which the agent is situated does not change so as to invalidate the pre-
conditions of the plan either while the plan is being formed or while it is being executed.
Clearly, in any even moderately dynamic domain, this assumption simply will not hold.

There are a number of theoretical results which indicate that first-principles planning
is not a viable option for agents that operate in time-constrained environments. For exam-
ple, Chapman demonstrated that in many circumstances, first-principles planning is un-
decidable [Cha87]. So, building reactive agents, that can truly respond to changes in their
environment, is not likely to be possible using first-principles planning techniques. Chap-
man’s negative results, (and other intractability results), have caused many researchers
to look for alternative paradigms within which to construct agents; such attempts are re-
viewed below.

Despite the negative results of Chapman and others, planning is still regarded as an
important ability for agents, and many attempts have been made to build planners that,
for example, interleave planning, plan execution, and monitoring of plans. One example
of such a system is Ambros-Ingerson and Steel’s IPEM system [AIS88]. Another example
is Vere and Bickmore’s HOMER system, in which a simulated submarine agent is given
English-language instructions about goals to achieve in a changing environment [VB90].

As well as AI planning systems, a great deal of work has been carried out on de-
liberative agents within the paradigm known as agent-oriented programming. Within
AI, it is common practice to characterize the state of an agent in terms of mentalistic
notions such as belief, desire, and intention. The rationale is that these notions are ab-
straction tools used by us in everyday language to explain and predict the behaviour of
complex intelligent systems: people. Just as we can use these notions to explain the
behaviour of people, so, the reasoning goes, we can use them to predict, explain, and,
crucially, even program complex computer systems. This proposal, in its best-known
form, was made around 1989 by Yoav Shoham, building on ideas from John McCarthy
and others [Sho90, Sho93], and is known as agent-oriented programming (AOP). In or-
der to demonstrate the AOP paradigm, Shoham defined a simple experimental language,
AGENT0. This language allowed one to specify the behaviour of agents in terms of rules
that define how an agent generates commitments from the messages it receives and beliefs
it holds. The agent continually executes a cycle of receiving messages, updating be-
liefs, generating commitments, and attempting to discharge current commitments. Build-
ing on Shoham’s work, many others have developed agent programming environments
based on similar ideas. For example: Becky Thomas described an extension to AGENT0
called PLACA [Tho93, Tho95]; Wooldridge and Vandekerckhove developed an AGENT0-
like multi-agent testbed called MYWORLD [Woo95]; Poggi described an agent-oriented
extension to the CUBL concurrent object language [Pog95]; Weerasooriya et al discuss
a (hypothetical) agent-oriented programming language called AGENTSPEAK [WRR95];

KWEB/2004/D2.4.3/v1.0 October 31, 2004 7

2. INTELLIGENT AUTONOMOUS AGENTS

Fisher has developed a multi-agent programming environment based on executable tem-
poral logic, which enjoys many of the properties of AOP [Fis94, Fis95]; Burkhard dis-
cusses some issues in the design of agent-oriented environments [Bur95]; and finally,
Lespérance et al describe a logic-based multi-agent programming environment called
CONGOLOG [LLL+96], which incorporates many ideas from AOP.

2.2 Reactive Architectures

In addition to the criticisms outlined above, there are many other objections to symbolic
to AI and deliberative agents, some of which have led researchers to seek alternative ap-
proaches for building agents. Perhaps the best-known proponent of this ‘alternative AI’
is Rodney Brooks, who, starting in about 1985, began development of the subsumption
architecture [Bro86, Bro90, Bro91b, Bro91a]. The basic idea of the subsumption archi-
tecture is to design an agent as a set of task accomplishing behaviours, arranged into a
subsumption hierarchy. Each task behaviour is implemented as a simple finite-state ma-
chine, which directly maps sensor input to effector output. The layers interact with each
other via suppression and inhibition actions. For example, a lower layer in the hierarchy,
representing low-level behaviour (such as avoiding obstacles) may suppress higher layers
that represent more abstract behaviours (such as exploring or avoiding obstacles). The
process of designing an agent becomes one of systematically adding and experimenting
with behaviours.

It should be stressed that Brooks’ systems do no symbolic reasoning at all. They are,
in a sense, extremely simple in computational terms. And yet experiments have shown
that agents implemented using Brooks’ scheme can achieve near optimal results [Ste90].

A number of other researchers have developed approaches to agent design that borrow
from Brooks’ work. Some well-known examples are Pattie Maes’ agent network architec-
ture [Mae90b, Mae91], and the ABLE and REAL-TIME ABLE (RTA) languages developed
at Philips research labs [CW90, Wav92, WG95]. Other approaches to reactive architec-
tures are [Kae86, Fir87, AC87, RK86]; the book edited by Maes contains many relevant
papers and references [Mae90a].

2.3 Hybrid Architectures

Some researchers strongly believe that the traditional, symbolic approach is the best can-
didate for the future development of AI; others (such as Brooks) just as strongly assert
that symbolic AI is a dead end, and that alternative approaches are required. Still others
accept that both arguments have their merits, and suggest that the best direction for future
research is to try to marry the two styles of architecture. This has led to work on hybrid
architectures.

8 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

Beliefs

Goals

Plan
Library

Interpreter

Intentions

Sensor Input Action Output

Figure 2.1: The PRS — A BDI Agent Architecture

2.3.1 The Procedural Reasoning System (PRS)

Perhaps the best-known agent architecture is the Procedural Reasoning System (PRS)
developed by Georgeff et al [GL87]. The PRS is illustrated in Figure 2.1. The PRS is
an example of a currently popular paradigm for agent design known as the belief-desire-
intention (BDI) approach [BIP88]. As this figure shows, a BDI architecture typically
contains four key data structures. An agent’s beliefs correspond to information the agent
has about the world, which may be incomplete or incorrect. Beliefs may be as simple as
variables, (in the sense of, e.g., PASCAL programs), but implemented BDI agents typically
represent beliefs symbolically (e.g., as PROLOG-like facts [GL87]). An agent’s desires
intuitively correspond to the tasks allocated to it. (Implemented BDI agents require that
desires be logically consistent, although human desires often fail in this respect.)

An agent’s intentions represent desires that it has committed to achieving. The intu-
ition is that an agent will not, in general, be able to achieve all its desires, even if these
desires are consistent. Agents must therefore fix upon some subset of available desires
and commit resources to achieving them. These chosen desires, which the agent has com-
mitted to achieving, are intentions [CL90a]. An agent will typically continue to try to

KWEB/2004/D2.4.3/v1.0 October 31, 2004 9

2. INTELLIGENT AUTONOMOUS AGENTS

achieve an intention until either it believes the intention is satisfied, or else it believes the
intention is no longer achievable [CL90a].

The final data structure in a BDI agent is a plan library. A plan library is a set of plans
(a.k.a. recipes) which specify courses of action that may be followed by an agent in order
to achieve its intentions. An agent’s plan library represents its procedural knowledge, or
know-how. A plan contains two parts: a body, or program, which defines a course of
action; and a descriptor, which states both the circumstances under which the plan can be
used (i.e., its pre-condition), and what intentions the plan may be used in order to achieve
(i.e., its post-condition). PRS agents do no first-principles planning at all.

The interpreter in Figure 2.1 is responsible for updating beliefs from observations
made of the world, generating new desires (tasks) on the basis of new beliefs, and select-
ing from the set of currently active desires some subset to act as intentions. Finally, the
interpreter must select an action to perform on the basis of the agent’s current intentions
and procedural knowledge.

In order to give a formal semantics to BDI architectures, a range of BDI logics have
been developed by Rao and Georgeff [RG91, RG95b]. These logics are extensions to
the branching time logic CTL* [EH86], which also contain normal modal connectives for
representing beliefs, desires, and intentions. Most work on BDI logics has focussed on
possible relationships between the three ‘mental states’ [RG91], and more recently, on
developing proof methods for restricted forms of the logics [RG95b]. In related work,
attempts have been made to graft a logic of plans onto the basic BDI framework, in order
to represent an agent’s procedural knowledge [RGS92, KLR+92].

TouringMachines

An increasingly popular approach to designing hybrid agents is to use a layered archi-
tecture. The idea of layered architectures is well-established in traditional systems con-
trol theory; in AI, it has been popularized by the work of Brooks (see above) and Kael-
bling [Kae86], among others. The basic idea of a layered architecture is that of integrating
different agent control subsystems by layering them. Figure 2.2 illustrates a good example
of a layered agent architecture: Innes Ferguson’s TOURINGMACHINES [Fer92b, Fer92a,
Fer95]. As this Figure shows, TOURINGMACHINES consists of three activity producing
layers. That is, each layer continually produces ‘suggestions’ for what actions the agent
should perform. The reactive layer provides an immediate response to changes that oc-
cur in the environment — it is implemented as a set of situation-action rules, like the
behaviours in Brooks’ subsumption architecture. These rules map sensor input directly
to effector output. The planning layer contains a plan library (much like the PRS — see
above), which the agent can use in order to achieve goals. The modeling layer represents
the various entities in the world (including the agent itself, as well as other agents); the
modeling layer predicts conflicts between agents, and generates new goals to be achieved
in order to resolve these conflicts, which are posted down to the planning layer, which

10 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

Sensor input

Perception subsystem

Modelling layer

Planning Layer

Reactive layer

Control subsystem

Action subsystem

Action output

Figure 2.2: TOURINGMACHINES: A Layered Agent Architecture

then determines how to satisfy them. The three layers are embedded within a control
subsystem, which is responsible for deciding which of the layers should have control over
the agent.

Another example of a layered architecture is INTERRAP [Mül97]. Like TOURING-
MACHINES, the INTERRAP architecture has three layers, with the lowest two layers
corresponding fairly closely to Ferguson’s reactive and planning layers. However, the
highest layer in INTERRAP deals with social aspects of the system: it not only models
other agents, but also explicitly represents social activities (such as cooperative problem
solving). The 3T architecture is another layered architecture, that has been used in several
real-world robotic agents [BKMS96] — we will describe this architecture in more detail.

2.3.2 The 3T Architecture

Like TouringMachines and INTERRAP, the 3T architecture is another example of a three-
level architecture for agent control. An overview of the architecture is given in Figure 2.3,
while a detailed description is given in Figure 2.4.

The three layers in the 3T architecture are as follows (from least to most abstract):

• reactive skills;

• skill sequencing; and

• deliberation and high-level planning.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 11

2. INTELLIGENT AUTONOMOUS AGENTS

Deliberation

Sequencing

Reactive skills

World/Environment

partial task ordering

instantiated tasks

actuator commandssensor readings

Figure 2.3: The 3T architecture

A skill in the 3T architecture is a primitive behaviour that captures a particular kind of
ability. For example, a skill might be the ability of a mobile robot to move from one
location in a warehouse to another location. We can draw an analogy between skills
and (for example), “native methods” in Java. Ultimately, whatever a 3T agent does will
involve the execution of particular skills. The skills layer thus contains a set of such
skills, and typically, one of these skills will be being executed at any given time. Skills
are actually implemented in 3T using Firby’s reactive action packages [Fir87].

The sequencing layer of 3T is responsible for selecting and instantiating individual
skills. Finally, the planning layer is responsible for synthesising high-level plans for the
agent, including deadlines for the completion of activity and plans for the allocation of
resources.

The following example (taken verbatim from [BFG+97]) explains the role of the three
layers in more detail:

Imagine a repair robot charging in a docking bay on a space station. At the

12 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

beginning of a typical day, there will be several routine maintenance tasks
to perform on the outside of the station, such as retrieving broken items or
inspecting power levels. In addition, a human supervisor assigns the robot
a set of inspection and repair tasks at a number of sites around the station.
The planner synthesizes all of these goals into a partially ordered plan list-
ing tasks for the robot to perform. These tasks would call for the robot
to move from site to site conducting the appropriate repair or inspection at
each site. [For example] (1) navigate to the camera-site-1, (2) attach
to camera-site-1, (3) unload a repaired camera, and (4) detach from
camera-site-1. Each of these corresponds to one or more skills. [. . .]
The [sequencing layer] activates a specific set of skills at the skill level. [. . .]
The activated skills (reactive layer) will move the state of the world in a di-
rection that should cause the desired [state of affairs].

KWEB/2004/D2.4.3/v1.0 October 31, 2004 13

2. INTELLIGENT AUTONOMOUS AGENTS

Goal

subgoal subgoal subgoal

task task navigate attach

Planning/Monitoring

World Model

Agenda

navigate

nav-to-site-1
thrusters-on Interpreter

Planner

Sequencer

Skill manager

skill

skill

skill

skill

thrusters
on

skill

skill

subtask

Sequencer Memory

Figure 2.4: The 3T architecture — A Detailed View

14 October 31, 2004 KWEB/2004/D2.4.3/v1.0

Chapter 3

Negotiation and Agreement

Automated negotiation is one of the most distinctive research topics in the multiagent
systems arena. In the field of automated negotiation, we attempt to develop protocols and
algorithms through which software agents can autonomously reach agreements on matters
of common interest. It seems to me that the term ”negotiation” is used with reckless
abandon throughout computer science. For example, one hears of a modem “negotiating”
a baud rate with a host computer, and of course there are many other similar such usages.
The term negotiation, used in this sense, is rather trivial – it simply means that the two
processes use some pre-agreed procedure to fix on a baud rate, which amounts to not
much more than selecting an option from a set of choices. What marks out negotiation
as studied in multiagent systems is the idea that the processes (agents) involved are self
interested: they are attempting to get the best deal for themselves that they can, and
what is best for one is not necessarily best for the other. As a consequence, multiagent
negotiation settings take on the character of games, in the sense that the term is used in
the formal setting of game theory. To bring about their most preferred outcome in such
settings agents must typically engage in strategic reasoning – that is, considering how
other negotiation participants are likely to act, as self-interested, rational entities.

A number of different types of agreement have been discussed in the literature, which
we shall survey here (see Figure 3.1):

Argumentation: Argumentation originally developed as the study of how people reach
agreements, particularly when these agreements relate to beliefs or principles that
they hold. Perhaps the paradigm example of argumentation is the formal process of
argument that takes place in a court of law, where advocates for the prosecution and
defence progressively put forward arguments in an attempt to convince a jury of the
guilt or innocence of a defendant. In the multi-agent systems community, models
of argument have been developed in an attempt to provide a clear underpinning
to this process, and enable software agents to be able to engage in this kind of
discourse. Here, we shall survey just one particularly influential model of argument:
the abstract argument model of Dung [Dun95].

15

3. NEGOTIATION AND AGREEMENT

Agreement on a
principle or belief?

Agreement on
how to divide the

benefits of
cooperation?

Agreement on
which agent gets

a scarce
resource?

Agreement on
which agent

carries out a task?

Auction

Argumentation

Bargaining

Reverse auction
(Contract Net)

Y

Y

Y

Y

N

N

N

Figure 3.1: Types of agreement

Bargaining: Bargaining (also known as one-to-one negotiation) is the process by which
two agents attempt to reach agreement on how to divide the benefits of their coop-
eration. It typically takes place in a series of negotiation steps, where each side puts
forward a proposal. We shall survey one particularly influential type of bargaining:
the alternating offers protocol of Rubinstein [OR90, Kra01].

Auctions: Auctions are a mechanism by which it is possible to efficiently allocate some
(scarce) resource to some agent. Auctions have received a great deal of attention
in the multi-agent systems literature, because the advent of the Internet has made it
possible to run auctions with a very low overhead cost. We will briefly survey the
main types of auctions for multi-agent systems.

Reverse auctions: A reverse auction takes place when, instead of a number of bidders
attempting to gain a scarce resource, the owner of that resource directly contacts
the bidders in an attempt to solicit bidders. Reverse auctions, in the form of the
Contract Net Protocol, are the dominant mechanism for allocating tasks in multi-

16 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

agent systems. As the contract net is discussed elsewhere in this report, we will not
discuss it in this section.

3.1 Argumentation

Argumentation is the process of one agent attempting to convince another of the ac-
ceptability of some position or belief. Several different models of argumentation have
been described in the literature – see [PV01] for an overview. The model of argument
systems that we work with throughout the remainder of this survey was introduced by
Dung [Dun95]. Dung’s aim was to introduce an abstract model of argumentation; that
is, a model of argument systems which abstracts away from what arguments actually are
or how the notion of “attack” between arguments should be interpreted. Arguments in
Dung’s model are atomic elements, and the notion of attack is simply represented by a
binary relation over these arguments, denoting the structure of attacks in this system. By
abstracting away from questions about the content of arguments and the nature of attack,
Dung’s model makes it possible to focus on the status of arguments – whether they are
acceptable or not.

Formally, a Dung-style argumentation framework (DAF) is a pair D = (X, A), where
X = {α, . . .} is a (fixed, finite, non-empty) set of arguments, and A ⊆ X × X is the
attack relation of D, with the intended interpretation that if (α, α ′) ∈ A then α attacks
α′. Let in(α) and out(α) denote the sets of arguments that attack α and that α attacks,
respectively:

in(α) = {α′ ∈ X | (α′, α) ∈ A}
out(α) = {α′ ∈ X | (α, α′) ∈ A}

At this point, let us consider a small example.

Consider the simple DAF D1 = ({p, q, r, s}, {(r, q), (s, q), (q, p)}); this argu-
ment system is illustrated in Figure 3.2 (vertices correspond to arguments and
edges correspond to attacks). In this system, the arguments r and s have no
attackers, while q is attacked by both r and s, and p is attacked by q. Thus,
for example, in(q) = {r, s} while out(q) = {p}.

Given these basic definitions, we can define various notions of when an argument is
acceptable [Dun95]. The basic idea is that an acceptable argument is one that a rational
agent must accept. Unfortunately, there is no universally accepted definition of accept-
ability – there are a number of different notions, each with their own advantages and
disadvantages. Here we shall spell out the key ones.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 17

3. NEGOTIATION AND AGREEMENT

r

s
q p

Figure 3.2: The abstract argument system D1.

Preferred Extensions

The first notion of acceptability that we define is that of a preferred extension. First, given
a DAF D = (X, A) an argument α ∈ X , and a set S ⊆ X , we say that x is acceptable
with respect to S if any attacker of α is itself attacked by some member of S. We write
acc(α, S) to denote the fact that α is acceptable with respect to S:

acc(α, S) iff ∀α′ ∈ X : (α′, α) ∈ A ⇒ ∃α′′ ∈ S : (α′′, α′) ∈ S.

A set of arguments S is conflict free if no member of this set attacks any other member of
this set; we write cf(S) to indicate that S is conflict free.

cf(S) iff ∀α, α′ : (α, α′) �∈ A & (α′, α) �∈ A.

A set of arguments S is admissible if it is conflict free, and every member of S is
acceptable with respect to S; we write adm(S) to indicate that S is admissible:

adm(S) iff cf(S) & ∀α ∈ S : acc(α, S).

Finally, S is a preferred extension of D is S is a maximal admissible set with respect to
set inclusion, i.e., if S is admissible, and every superset of S is inadmissible. We write
pe(S) to indicate that S is a preferred extension:

pe(S) iff adm(S) & ∀S ′ ⊃ S : ¬adm(S).

Recall the DAF D1, given earlier. In this system, the {p, r, s} is conflict free,
since no member of this set attacks any other member. However, any set
containing q and at least one other member is not conflict free, since both r
and s attack q and q attacks p. The set {p, r, s} is also acceptable with respect
to itself: although p is attacked by q, the argument q is attacked by both r
and s. Thus {p, r, s} is admissible, and since it is not possible to add any
argument from D1 to this set without making it inadmissible, then {p, r, s} is
a preferred extension of D1 (In fact, it is the only preferred extension of D1.)

18 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

The concept of a preferred extension provides perhaps the most common and important
definition of when an argument is “reasonable”. The Dung proved that every DAF has at
least one preferred extension, although this may be the empty set [Dun95].

We say that α is sceptically accepted if it is a member of every preferred extension,
and credulously accepted if it is a member of at least one preferred extension. Since
there will alwatys be at least one preferred extension, it follows that any argument that is
sceptically accepted is also credulously accepted. We use sc(α) and cr(α) to indicate that
α is sceptically and credulously accepted, respectively:

sc(α) iff ∀S ⊆ A : pe(S) ⇒ α ∈ S
cr(α) iff ∃S ⊆ A : pe(S) & α ∈ S

Returning again to D1, the arguments p, r, and s are all sceptically accepted
(and hence credulously accepted). The argument q is neither sceptically nor
credulously accepted.

The idea of a preferred extension thus captures the concept of a mutually supportive
set of arguments, which together present a coherent interpretation to the world. However,
the fact that there may be a single preferred extension may not be useful in practice.
Moreover, the fact that there may be multiple preferred extensions means that there may
be multiple possible putatively acceptable sets of arguments according to this definition –
in which case, which one should we choose as “the” interpretation?

Grounded Extensions

An alternative notion of an acceptable set of arguments, also defined by Dung, is that of
the grounded extension. The idea is as follows. Given an abstract argument system, (such
as D1, above) we start by looking for arguments that are guaranteed to be acceptable:
those that could not possibly be unacceptable under any sensible definition of acceptabil-
ity. The most obvious candidates for such acceptable arguments are those that have no
attackers whatsoever: for surely, the status of arguments that have no attackers whatso-
ever must be beyond question. Having identified such arguments, we can then proceed
to eliminate those that are attacked by these: since these arguments are attacked by ar-
guments that are surely in, then these arguments must surely be out. We can then iterate
this process, deleting arguments that are attacked by arguments that are surely in, until
we find no changes occurring to the argument graph that remains. We refer to the graph
that remains after this as the grounded extension of the argument system. The algorithm
to compute the grounded extension of a Dung argument system is given in Figure 3.3.

If we apply the algorithm in Figure 3.3 to the argument system D1, then we obtain the
following sequence of values for the variable new:

KWEB/2004/D2.4.3/v1.0 October 31, 2004 19

3. NEGOTIATION AND AGREEMENT

1. function ge(X, A) returns a subset of X
2. begin
3. old := ∅
3. new := {α | acc(α, old)}
3. while old �= new do
3. old := new
3. new := {α | acc(α, old)}
3. end-while
13. return new
14. end function ge

Figure 3.3: Computing a grounded extension.

old = ∅ new = {r, s}
old = {r, s} new = {r, s, p}
old = {r, s, p} new = {r, s, p}

at which point, with old = new, the algorithm returns {r, s, p} as the grounded extension.

The main advantage of the notion of grounded extension is that there will always be
such an extension, and this extension is guaranteed to be unique. However, if there are no
arguments that are free of attackers, then the grounded extension will be empty.

Notice that some argument systems appear to be paradoxical. For example, consider
the argument system D2 = ({p, q, r}, {(p, q), (q, r), (r, p)}). This argument system con-
tains an odd length cycle. Clearly, the grounded extension is empty, and it has a single
empty preferred extension. But, nevertheless, surely it should have an interpretation?
For example, one could say that each of the singleton sets of arguments p, q, and r are
reasonable in this case.

Argument systems seem to be an interesting way of modelling dialogue between
agents that are attempting to convince one-another of certain states of affairs. Imple-
mentations of argument systems have been developed, e.g., by Sycara [Syc90] and Kraus
et al [KSE98].

3.2 Auctions

Auctions used to be comparatively rare in everyday life; every now and then, one would
hear of astronomical sums paid at auction for a painting by Monet or Van Gogh, but other
than this, they did not enter the lives of the majority. The Internet and Web fundamentally
changed this. The Web made it possible for auctions with a large, international audience

20 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

to be carried out at very low cost. This in turn made it possible for goods to be put up for
auction which hitherto would have been too uneconomical. Large businesses have sprung
up around the idea of online auctions, with eBay being perhaps the best-known example
[EBA01].

One of the reasons why online auctions have become so popular is that auctions are
extremely simple interaction scenarios. This means that it is easy to automate auctions;
this makes them a good first choice for consideration as a way for agents to reach agree-
ments. Despite their simplicity, auctions present both a rich collection of problems for
researchers, and a powerful tool that automated agents can use for allocating goods, tasks,
and resources.

Abstractly, an auction takes place between an agent known as the auctioneer and a
collection of agents known as the bidders. The goal of the auction is for the auctioneer to
allocate the good to one of the bidders. In most settings – and certainly most traditional
auction settings – the auctioneer desires to maximize the price at which the good is allo-
cated, while bidders desire to minimize price. The auctioneer will attempt to achieve his
desire through the design of an appropriate auction mechanism – the rules of encounter –
while bidders attempt to achieve their desires by using a strategy that will conform to the
rules of encounter, but that will also deliver an optimal result.

There are several factors that can affect both the protocol and the strategy that agents
use. The most important of these is whether the good for auction has a private or a
public/common value. Consider an auction for a one dollar bill. How much is this dollar
bill worth to you? Assuming it is a ‘typical’ dollar bill, then it should be worth exactly $1;
if you paid $2 for it, you would be $1 worse off than you were. The same goes for anyone
else involved in this auction. A typical dollar bill thus has a common value: it is worth
exactly the same to all bidders in the auction. However, suppose you were a big fan of
the Beatles, and the dollar bill happened to be the last dollar bill that John Lennon spent.
Then it may well be that, for sentimental reasons, this dollar bill was worth considerably
more to you – you might be willing to pay $100 for it. To a fan of the Rolling Stones,
with no interest in or liking for the Beatles, however, the bill might not have the same
value. Someone with no interest in the Beatles whatsoever might value the one dollar bill
at exactly $1. In this case, the good for auction – the dollar bill – is said to have a private
value: each agent values it differently.

A third type of valuation is correlated value: in such a setting, an agent’s valuation
of the good depends partly on private factors, and partly on other agent’s valuation of it.
An example might be where an agent was bidding for a painting that it liked, but wanted
to keep open the option of later selling the painting. In this case, the amount you would
be willing to pay would depend partly on how much you liked it, but also partly on how
much you believed other agents might be willing to pay for it if you put it up for auction
later.

Let us turn now to consider some of the dimensions along which auction protocols
may vary. The first is that of winner determination: who gets the good that the bidders are

KWEB/2004/D2.4.3/v1.0 October 31, 2004 21

3. NEGOTIATION AND AGREEMENT

bidding for. In the auctions with which we are most familiar, the answer to this question is
probably self-evident: the agent that bids the most is allocated the good. Such protocols
are known as first-price auctions. This is not the only possibility, however. A second
possibility is to allocate the good to the agent that bid the highest, but this agent pays only
the amount of the second highest bid. Such auctions are known as second-price auctions.

At first sight, it may seem bizarre that there are any settings in which a second-price
auction is desirable, as this implies that the auctioneer does not get as much for the good
as it could do. However, we shall see below that there are indeed some settings in which
a second-price auction is desirable.

The second dimension along which auction protocols can vary is whether or not the
bids made by the agents are known to each other. If every agent can see what every
other agent is bidding (the terminology is that the bids are common knowledge), then the
auction is said to be open cry. If the agents are not able to determine the bids made by
other agents, then the auction is said to be a sealed-bid auction.

A third dimension is the mechanism by which bidding proceeds. The simplest possi-
bility is to have a single round of bidding, after which the auctioneer allocates the good
to the winner. Such auctions are known as one shot. The second possibility is that the
price starts low (often at a reservation price) and successive bids are for increasingly large
amounts. Such auctions are known as ascending. The alternative – descending – is for the
auctioneer to start off with a high value, and to decrease the price in successive rounds.

The main auction types that we may single out from this space of possible auctions
are as follows:

English auctions: The most well known of all auction types, an English auction is a first
price, open cry, ascending auction: the auctioneer starts off by offering the good at
a reserve price, and bidders make progressively higher bids. Bidders can withdraw
at any point in the auction, and the good is allocated to the agent that made the final
bid, when there is only one agent left in the auction; the amount they pay is the
price of the final bid.

Dutch auction: This is a first price, open cry, descending auction. The auctioneer starts
off by offering the good at some unrealistically high price, and the price gradually
comes down by some small amount until an agent makes a bid – at which point the
good is allocated for the amount of this bid.

First-price sealed bid auctions: Here, agents make a single offer for the good, which
is not seen by any other agent. The good is allocated to the agent that makes the
highest bid, and this auction pays the amount they bid.

Vickrey auctions: These are second price sealed bid auctions: each agent makes a single
bid, and the good is allocated to the agent that make the highest bid, but the amount
they pay is the amount of the second highest bid. Although this seems paradoxical,

22 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

it can easily be proved that the optimal strategy for an agent in such a case is to
bid the amount of their private valuation: to bid exactly what they think the good is
worth, and no more.

The study of auctions is one of the most active ongoing areas of research in the multi-agent
systems arena.

3.3 Bargaining

Bargaining is the process of two agents attempting to reach an agreement on matters of
common interest. Notice that bargaining is generally a cooperative endeavour, in the sense
that cooperation to reach an outcome must be in the best interests of those participating
(otherwise they would not engage in negotiation). So, we can think of negotiation as
attempting to reach agreement on the issue of how to divide the benefits of negotiation.
For example, when negotiating with a second-hand car salesman about the price of a
car, you are essentially trying to decide how to distribute the “surplus” benefit gained by
cooperation amongst the participants: the car salesman wants as much surplus as possible
(i.e., he wants the price to be as high as possible) and you also want as much surplus as
possible (i.e., you want the price as low as possible). We can make this idea concrete in
the following example of task sharing [RZ94].

Imagine that you have three children, each of whom needs to be delivered to
a different school each morning. Your neighbour has four children, and also
needs to take them to school. Delivery of each child can be modelled as an
indivisible task. You and your neighbour can discuss the situation, and come
to an agreement that it is better for both of you (for example, by carrying the
other’s child to a shared destination, saving him the trip). There is no concern
about being able to achieve your task by yourself. The worst that can happen
is that you and your neighbour will not come to an agreement about setting
up a car pool, in which case you are no worse off than if you were alone. You
can only benefit (or do no worse) from your neighbour’s tasks.

Assume, though, that one of my children and one of my neighbours’ children
both go to the same school (that is, the cost of carrying out these two deliv-
eries, or two tasks, is the same as the cost of carrying out one of them). It
obviously makes sense for both children to be taken together, and only my
neighbour or I will need to make the trip to carry out both tasks.

What kinds of agreement might we reach? We might decide that I will take
the children on even days each month, and my neighbour will take them on
odd days; perhaps, if there are other children involved, we might have my
neighbour always take those two specific children, while I am responsible for
the rest of the children. [RZ94, p. 29]

KWEB/2004/D2.4.3/v1.0 October 31, 2004 23

3. NEGOTIATION AND AGREEMENT

To formalize this kind of situation, Rosenschein and Zlotkin defined the notion of a task-
oriented domain (TOD). A task-oriented domain is a triple

〈T, Ag, c〉,

where

• T is the (finite) set of all possible tasks;

• Ag = {1, . . . , n} is the (finite) set of negotiation participant agents;

• c : ℘T → R+ is a function which defines the cost of executing each subset of tasks:
the cost of executing any set of tasks is a positive real number.

The cost function must satisfy two constraints. First, it must be monotonic. Intuitively,
this means that adding tasks never decreases the cost. Formally, this constraint is defined
as follows:

If T1, T2 ⊆ T are sets of tasks such that T1 ⊆ T2, then c(T1) ≤ c(T2).

The second constraint is that the cost of doing nothing is zero, i.e. c(∅) = 0.

An encounter within a task-oriented domain 〈T, Ag, c〉 occurs when the agents Ag are
assigned tasks to perform from the set T . Intuitively, when an encounter occurs, there is
potential for the agents to reach a deal by reallocating the tasks amongst themselves; as
we saw in the informal car pool example above, by reallocating the tasks, the agents can
potentially do better than if they simply performed their tasks themselves. Formally, an
encounter in a TOD 〈T, Ag, c〉 is a collection of tasks

〈T1, . . . , Tn〉,

where, for all i, we have that i ∈ Ag and Ti ⊆ T . Notice that a TOD together with an
encounter in this TOD is a type of task environment, of the kind we saw in Chapter 2.
It defines both the characteristics of the environment in which the agent must operate,
together with a task (or rather, set of tasks), which the agent must carry out in the envi-
ronment.

Hereafter, we will restrict our attention to one-to-one negotiation scenarios, as dis-
cussed above: we will assume the two agents in question are {1, 2}. Now, given an
encounter 〈T1, T2〉, a deal will be very similar to an encounter: it will be an allocation of
the tasks T1 ∪ T2 to the agents 1 and 2. Formally, a pure deal is a pair 〈D1, D2〉 where
D1 ∪ D2 = T1 ∪ T2. The semantics of a deal 〈D1, D2〉 is that agent 1 is committed to
performing tasks D1 and agent 2 is committed to performing tasks D2.

The cost to agent i of a deal δ = 〈D1, D2〉 is defined to be c(Di), and will be denoted
costi(δ). The utility of a deal δ to an agent i is the difference between the cost of agent i

24 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

doing the tasks Ti that it was originally assigned in the encounter, and the cost costi(δ) of
the tasks it is assigned in δ:

utilityi(δ) = c(Ti) − costi(δ).

Thus the utility of a deal represents how much the agent has to gain from the deal; if the
utility is negative, then the agent is worse off than if it simply performed the tasks it was
originally allocated in the encounter.

What happens if the agents fail to reach agreement? In this case, they must perform
the tasks 〈T1, T2〉 that they were originally allocated. This is the intuition behind the
terminology that the conflict deal, denoted Θ, is the deal 〈T1, T2〉 consisting of the tasks
originally allocated.

The notion of dominance, as discussed in the preceding chapter, can be easily ex-
tended to deals. A deal δ1 is said to dominate deal δ2 (written δ1 � δ2) if and only if the
following hold.

1. Deal δ1 is at least as good for every agent as δ2:

∀i ∈ {1, 2}, utilityi(δ1) ≥ utilityi(δ2).

2. Deal δ1 is better for some agent than δ2:

∃i ∈ {1, 2}, utilityi(δ1) > utilityi(δ2).

If deal δ1 dominates another deal δ2, then it should be clear to all participants that δ1 is
better than δ2. That is, all ‘reasonable’ participants would prefer δ1 to δ2. Deal δ1 is said
to weakly dominate δ2 (written δ1 � δ2) if at least the first condition holds.

A deal that is not dominated by any other deal is said to be pareto optimal. Formally,
a deal δ is pareto optimal if there is no deal δ ′ such that δ′ � δ. If a deal is pareto optimal,
then there is no alternative deal that will improve the lot of one agent except at some cost
to another agent (who presumably would not be happy about it!). If a deal is not pareto
optimal, however, then the agents could improve the lot of at least one agent, without
making anyone else worse off.

A deal δ is said to be individual rational if it weakly dominates the conflict deal. If a
deal is not individual rational, then at least one agent can do better by simply performing
the tasks it was originally allocated – hence it will prefer the conflict deal. Formally, deal
δ is individual rational if and only if δ � Θ.

We are now in a position to define the space of possible proposals that agents can
make. The negotiation set consists of the set of deals that are (i) individual rational,
and (ii) pareto optimal. The intuition behind the first constraint is that there is no purpose
in proposing a deal that is less preferable to some agent than the conflict deal (as this
agent would prefer conflict); the intuition behind the second condition is that there is no

KWEB/2004/D2.4.3/v1.0 October 31, 2004 25

3. NEGOTIATION AND AGREEMENT

s0

s1

s3

s2

s4

agent 1 makes proposal

agent 2 rejects

agent 2 makes proposal

agent 1 rejects

agent 2 accepts

agent 1 accepts

Figure 3.4: The alternating offers protocol (state s0 is the start state, state s2 is the end
state).

point in making a proposal if an alternative proposal could make some agent better off at
nobody’s expense.

So far, we have said nothing about how agents might actually engage in negotiation
in such scenarios. We will introduce a particular model: the alternating offers model
of Rubinstein [OR90, Kra01]. We assume just two agents: 1 and 2. Negotiation takes
place in a sequence of rounds, which we will assume are indexed by the natural numbers.
Agent 1 begins, at round 0, by making a proposal x0 (from the negotiation set), which
agent 2 can either accept (A) or reject (R). If the proposal is accepted, then the deal x0

is implemented. Otherwise, if agent 2 rejected the proposal, then negotiation moves to
another round, where agent 2 makes a proposal and agent 1 chooses to either accept or
reject it. The overall protocol is illustrated by the state transition diagram in Figure 3.4,
where state s0 is the start state and state s2 is a terminal (sink) state.

There is of course nothing to stop negotiation using the alternating offers protocol
going on for ever: according to the protocol, they can just keep on Ring and Ring and
Ring. . . If the agents never reach agreement, (i.e., a history of the proposal simply con-
sists of a sequence of deals and associated Rs), then we define the outcome of negotiation
to be the conflict deal, Θ.

26 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

The following basic assumptions are made [OR90, p.33–34]1:

Disagreement is the worst outcome: Both agents prefer any outcome at least as much
as disagreement.

Agents seek to maximise utility: Agents really do prefer to get larger utility values.

Time is valuable: For any outcome x and times t1 and t2, both agents would prefer out-
come x at time t1 over outcome x at time t2 if t2 > t1. Thus, given a choice between
agreement x being made now and x being made later, we would always prefer x to
be made now.

This basic model captures perhaps the most pertinent aspects of negotiation, but as it
stands, it admits some arguably strange and undesirable behaviours. Consider the follow-
ing situation, for example.

The two agents are “dividing a pie”. That is, there is some resource whose
value is “1”, which can be divided into two parts, such that (i) the value of
the two parts must each be between 0 and 1; and (ii) the values of the parts
must sum to 1. Now, suppose that agent 1 uses the following strategy for
negotiation: always propose that agent 1 gets the whole pie, and reject any
other offer. Now, suppose that agent 1 plays this strategy: what is agent 2’s
best response? If agent 2 rejects the proposal, then the agents will never reach
agreement, and so by definition the conflict deal Θ is enacted. By definition,
this would be worse for agent 2 than the deal where agent 1 gets the whole
pie, and so agent 2’s best response is to accept the proposal that agent 1
makes. Moreover, again by assumption, if agent 2 is to accept agent 1’s
proposal, then it is better to do this on the first round, (because it will lose out
in any delay). So, agent 2’s best strategy in response to agent 1 is to accept
agent 1’s proposal on the first round. Since getting the whole pie on the first
round is obviously agent 1’s best outcome, it cannot improve on it at all, and
so these two negotiation strategies are in fact in Nash equilibrium with one
another [OR90, p.42]!

In fact, it is not hard to see that the alternating offers bargaining scheme admits an infinite
set of Nash equilibrium outcomes: for any possible deal x in the negotiation set, there is
a Nash equilibrium pair of negotiation strategies such that the outcome will be agreement
on the deal x in the first time period.

Notice that for agent 2 to understand the situation, it must have access to agent 1’s
strategy. In human terms, this would mean something like agent 2 being convinced that
agent 1 was going to use this strategy. In terms of software agents, however, we can place

1Some other technical assumptions are made, but these are the “central” ones.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 27

3. NEGOTIATION AND AGREEMENT

a different interpretation on this: namely, that agent 2 has access to agent 1’s program.
This is not unrealistic: think of agent 1 is a mobile agent, or Java applet, for example. In
such cases, agent 1 can benefit by making its code available: it can in effect say “look,
here is my strategy” – you have no choice other than to accept my proposal.

If the analysis of alternating offers is deepened somewhat, we can recover a slightly
more interesting result – a “fundamental theorem” of alternating offers. Given a modest
set of additional assumptions, it is possible to prove that there is a unique “subgame
perfect equilibrium” in which agent 1 (making the first proposal) makes the proposal that
agent 2 would make in the second time period, and this deal is accepted. This actually
results in the agent 1 – the “first mover” getting a bigger slice of the pie. This may seem
paradoxical, but the point is that agent 2 has no incentive to delay agreement: if it rejects
the proposal made by agent 1 in the first time period, then both agents will suffer by
having the value of their slice of the pie depreciate because of the delay.

Notice that if the preferences over time are different, then the more patient agent will
benefit in negotiating, because it has increased power. It can “hold out” for longer; it’s
threats will be more credible. For example, suppose that each agent i’s time preferences
are given by a discount factor, δi ∈ (0, 1), so that the utility to agent i of a deal x at time
t is δt

ix. A larger value for δi thus implies more patience; a smaller value means less
patience. In this case, the agreement that will be reached in the first time step involves
agent 1 getting

1 − δ2

1 − δ1δ2

of the pie, and agent 2 getting

δ2(1 − δ1)

1 − δ1δ2

of the pie. As δ1 approaches the value 1 (i.e., as agent 1 becomes patient) than its slice
of the pie becomes larger and larger.

Despite its simplicity, the alternating offers model is one of the most popular and most
influential models of bargaining in multi-agent systems. For example, [Kra01] studies its
use in the data allocation problem, where one is given a set of servers and a set of datasets,
with utility functions for each server. The servers are each allocated a set of data sets, and
provide answers to queries posted by a local client base; answering a query may require
only locally held datasets, or datasets held by other queries, in which case the datasets
must be purchased. Negotiation in this domain relates to the way in which allocation of
datasets to servers: suppose a server has queries relating to a particular dataset, then it may
benefit from being allocated this dataset and not having to purchase it from other servers.
But, if queries relating to the dataset are popular (think “Britney Spears”), then other
servers might also prefer this allocation. Kraus gives a detailed analysis of the different

28 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

kinds of utility functions that servers might have in such scenarios, and the different ways
in which such utility functions can depend upon time. She then gives a brief theoretical
analysis of the negotiation problem, and demonstrates that treating the allocation problem
as a centralised optimisation problem is not feasible, as the problem is computationally
rather complex (it is NP-complete).

Kraus [Kra01] also reviews the use of negotiation in the resource allocation problem,
where the situation is as follows. The agents are negotiating over the use of some resource
that, although it may be renewed infinitely often (in the sense that once one agent has fin-
ished using it, another agent can begin), cannot be used by more than one agent at the
same time. A deal in such a scenario thus involves producing a schedule, describing who
will have access to the resource when. The story is made more interesting by the fact that
the agents may have preferences about when they have access to the resource. The struc-
ture of the analysis of this scenario is broadly the same as that for data allocation: Kraus
gives a detailed discussion of the various properties that utility functions in such scenar-
ios might have, an analytical study of negotiation in such scenarios, and finally, detailed
simulation results. She then goes on to study richer multi-attribute resource allocation in
much the same way.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 29

Chapter 4

Communication and Cooperation

By considering the consistency with other chapters, the abstract of this chapter should be
here as follows.

In the multiagent systems, communications are indispensable for agents to cooperate
each other. In this chapter, the foundations of agent communication are explained. It
is also explained how agents can cooperate by using the communications. Most of this
chapter is organized and described based on Woodridge’s book [Woo01].

4.1 Communication

4.1.1 Speech Acts

Speech act theory treats communication as action. In the speech act theory, communica-
tions are modelled as actions that alter the mental state of communication participants.
It is predicated on the assumption that speech actions are performed by agents just like
other actions, in the furtherance of their intentions.

The theory of speech acts is generally recognized to have begun with the work of
the philosopher John Austin[Aus62]. He noted that a certain class of natural language
utterances had the characteristics of actions, in the sense that they change the state of the
world in a way analogous to physical actions.

Austin identified a number of performative verbs, which correspond to various differ-
ent types of speech acts. Examples of such performative are request, inform, and promise.
In addition, he distinguished three different aspects of speech acts: locutionary act (act of
making an utterance), illocutionary act (act performed in saying something), perlocution
(effect of the act)

Austin’s work was extended by John Searle[Sea69]. Searle identified several proper-
ties that must hold for a speech act performed between a hearer and a speaker to succeed.

30

State-of-the-art in Agent-based Services IST Project IST-2004-507482

• Normal I/O conditions: The conditions state that HEARER is able to hear the re-
quest, the act was performed in normal circumstances, etc.

• Preparatory conditions: The conditions state that what must be true of the world in
order that SPEAKER correctly choose the speech act. In this case, HEARER must
be able to perform ACTION, and SPEAKER must believe that HEARER is able
to perform ACTION. Also, it must not be obvious that HEARER will do ACTION
anyway.

• Sincerity conditions: The conditions distinguish sincere performances of the re-
quest; insincere performance of the act might occur if SPEAKER did not really
want ACTION to be performed.

In the late 1960s and early 1970s, a number of researchers in AI began to build systems
that could plan how to autonomously achieve goals. Clearly, if such a system is required to
interact with humans or other autonomous agents, then plans must include speech actions.
This introduced the question of how the properties of speech acts could be represented
such that planning systems could reason about them. Cohen and Perrault[CP79] gave an
account of the semantics of speech acts by using techniques developed in AI planning
research. The aim of their work was to develop a theory speech acts by modelling them
in a planning system as operators defined in terms of speakers’s and hears’beliefs and
goals. Thus, speech acts are treated in the same way as physical actions. The formalism
chosen by Cohen and Perrault was the STRIPS notation, in which the properties of an
action are characterized via preconditions and postconditions[FN71]. Cohen and Perrault
demonstrated how the preconditions and postconditions of speech acts such as request
could be represented in a multimodal logic containing operators for describing the beliefs,
abilities, and wants of the participants in the speech act.

While the plan-based theory of speech acts was a major step forward, it was recog-
nized that a theory of speech acts should be rooted in a more general theory of rational
action. This observation led Cohen and Levesque to develop a theory in which speech
acts were modelled as actions performed by rational agents in the furtherance of their
intentions[CL90b]. The foundation on which they built this model of rational action was
their theory of intention[CL90a].

4.1.2 Agent Communication Languages

Speech act theories have directly informed and influenced a number of languages that
have been developed specifically for agent communication. In the early 1990s, the US-
based DARPA-funded Knowledge Sharing Effort (KSE) was formed, with the remit of
developing protocols for the exchange of represented knowledge between autonomous
information systems.

The KSE generated two main deliverables as follows.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 31

4. COMMUNICATION AND COOPERATION

• The Knowledge Interaction Format (KIF). KIF is a language explicitly intended to
allow the representation of knowledge about some particular ‘domain of discourse’.
It was intended primarily to form the content parts of KQML messages.

• The Knowledge Query and Manipulation Language (KQML). KQML defines an
‘envelope’ format for messages, using which an agent can explicitly state the in-
tended illocutionary force of a message. KQML is not concerned with the content
part of messages[Pat92][MLF96].

KIF

KIF[GF92] was originally developed with the intent of being a common language for ex-
pressing properties of a particular domain. It was not intended to be a language in which
messages themselves would be expressed, but rather it was envisaged that the KIF would
be used to express message content. KIF is closely based on first-order logic. Thus, for
example, by using KIF, it is possible for agents to express properties of things of domain,
relationships between things in a domain, and general properties of a domain. In order
to express these things, KIF assumes a basic, fixed logical apparatus, which contains the
usual connectives that one finds in first-order logic: the binary Boolean connectives and,
or, not, and so on, and the universal and existential quantifiers forall and exists. In addi-
tion, KIF provides a basic vocabulary of objects such as numbers, characters, and strings.
Some standard functions and relations for these objects are also provided. A LISP-like
notation is also provided for handling lists of objects. Using this basic apparatus, it is
possible to define new objects, and the functional and other relationships between these
objects.

KQML

KQML is a message-based language for agent communication. Thus KQML defines a
common format for messages. A KQML message may crudely be thought of as an object:
each message has a performative, and a number of parameters.

The take-up of KQML by the multiagent systems community was significant, and sev-
eral KQML-based implementations were developed and distributed. Despite this success,
KQML was subsequently criticized on a number of grounds as follows.

• The basic KQML performative set was rather fluid. It was never tightly constrained,
and so different implementations of KQML were developed that could not interop-
erate.

• Transport mechanisms for KQML messages (ways of getting a message from agent
A to agent B) were never precisely defined, again making it hard for different
KQML-talking agents to interoperate.

32 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

• The semantics of KQML were never rigorously defined, in such a way that it was
possible to tell whether two agents claiming to be talking KQML were in fact using
the language ‘properly’. The ‘meaning’ of KQML performatives was only defined
using informal, English language descriptions, open to different interpreatations.

• The language was missing an entire class of performatives (commisives) by which
one agent makes a commitment to another. As Cohen and Levesque point out, it
is difficult to see how many multiagent scenarios could be implemented without
commisives, which appear to be important if agents are to coordinate their actions
with one another.

• The performative set for KQML was overly large and, it could be argued, rather ad
hoc.

These criticisms led to the development of a new, but rather closely related language by
the FIPA consortium.

FIPA ACL

In 1995, the Foundation for Intelligent Physical Agents (FIPA) began its work on devel-
oping standards for agent systems. The centerpiece of this initiative was the development
of an ACL[FIP99]. This ACL is superficially similar to KQML: it defines an ‘outer’ lan-
guage for messages, it defines 20 performatives (such as inform and request) for defining
the intended interpretation of messages, and it does not mandate any specific language
for message content. In addition, the concrete syntax for FIPA ACL messages closely
resembles that of KQML: the structure of message is the same, and the message attribute
fields are also very similar. The most important difference between the two languages is
in the collection of performatives they provide.

Given that one of the most frequent and damning criticisms of KQML was the lack
of an adequate semantics, it is perhaps not surprising that the developers of the FIPA
ACL felt it important to give a comprehensive formal semantics to their language. The
approach adopted drew heavily on Cohen and Levesque’s theory of speech acts as ratio-
nal action[CL90b], but in particular on Sadek’s enhancements to this work[BS97]. The
semantics were given with respect to a formal language called SL. This language allows
one to represent beliefs, desires, and uncertain beliefs of agents, as well as the actions
that agent perform. The semantics of the FIPA ACL map each ACL message to a formula
of SL, which defines a constraint that the sender of the message must satisfy if it is to
be considered as conforming to the FIPA ACL standard. FIPA refers to this constraint
as the feasibility condition. The semantics also map each message to an SL-formula that
defines the rational effect of the action (the purpose of the message: what an agent will
be attempting to achieve in sending the message). However, in a society of autonomous
agents, the rational effect of a message cannot be guaranteed. Hence conformance does

KWEB/2004/D2.4.3/v1.0 October 31, 2004 33

4. COMMUNICATION AND COOPERATION

not require the recipient of a message to represent the rational effect part of the ACL
semantics (only the feasibility condition).

Several FIPA implementations have been developed, of which the Java-based Jade
system is probably the best known[PR00].

4.1.3 Ontologies

If two agents are to communicate about some domain, then it is necessary for them to
agree on the terminology that they use to describe this domain. Therein, the issue of
ontologies arises. An ontology is a specification of a set of terms as follows: An ontology
is a formal definition of a body of knowledge. The most common type of ontology used
in building agents involves a structural component. Essentially, a taxonomy of class and
subclass relations coupled with definitions of the relationships between these things.

Practical ontology languages are being adopted. For example, the W3C recently rec-
ommended the OWL [Hef04] language and RDF for building web ontologies. These
language specifications were developed over several years both within and outside of
the organization, and OWL is rapidly replacing its predecessor DAML+OIL [CvHH+01]
with the blessing of the DAML [dam] Office in the Department of Defense, which funded
much of its early development. Commensurate W3C standardization activities are now
underway to expand the development framework for building and using web ontologies
with web services [owl03, RLK04], deductive rules, and optimized query languages.

Numerous commercial and open-source software tools are available for building and
deploying ontologies, and for integrating inference systems with web and database infras-
tructures. Increasingly, these tools directly support the emerging web ontology standards,
as well as related, standard-language efforts like Simple Common Logic (SCL as an off-
shoot of KIF) and ISO EXPRESS.

Reference to taxonomies and ontologies by vendors of mainstream enterprise-application-
integration (EAI) solutions are becoming commonplace. Popularly tagged as semantic in-
tegration, vendors like Verity, Modulant, Unicorn, Semagix, and many more are offering
platforms to interchange information among mutually heterogeneous resources including
legacy databases, semi-structured repositories, industry-standard directories, vocabular-
ies like ebXML, and streams of unstructured content as text and media. Ontologies, for
example, are being used to guide the extraction of semantic content from collections of
plain-text documents describing medical research, consumer products, and business top-
ics.

34 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

4.2 Cooperation

Given languages that agents might use to communicate with one another, the important
thing is how agents can be designed so that they can work together effectively. The term
‘cooperation’ is frequently used in the concurrent systems literature, to describe systems
that must interact with one another in order to carry out their assigned tasks. Working
together involves several different kinds of activities such as the sharing both of tasks and
of information

Historically, most work on cooperative distributed problem solving (CDPS) has made
the benevolence assumption: that the agents in a system implicitly share a common goal,
and thus that there is no potential for conflict between them. This assumption implies that
agents can be designed so as to help out whenever needed, even if it means that one or
more agents must suffer in order to do so.

In contrast to this, the more general area of multiagent systems has focused on the is-
sues associated with societies of self-interested agents. Thus agents in a multiagent system
cannot be assumed to share a common goals, as they will often be designed by different
indivisuals or organization in order to represent their interests. One agent’s interests may
therefore conflict with those of others, just as in human societies. Despite the potential for
conflict of interest, the agents in a multiagent system will ultimately need to cooperate in
order to achieve their goals. Multiagent system research is therefore concerned with the
wider problems of designing societies of autonomous agents, such as why and how agents
cooperate; how agents can recognize and resolve conflicts; how agents can negotiate or
compromise in situations where they are apparently at loggerheads; and so on.

The main issues to be addressed in cooperative distributed problem solving include
the following.

• How can a problem be divided into smaller tasks for distribution among agents?

• How can a problem solution be effectively synthesized from sub-problem results?

• How can the overall problem-solving activities of the agents be optimized so as to
produce a solution that maximizes the coherence metric?

• What techniques can be used to coordinate the activity of the agents, so avoiding
destructive interaction, and maximizing effectiveness?

4.2.1 Task Sharing and Result Sharing

How do a group of agents work together to solve problems? Smith and Davis[SD80]
suggested that the CDPS process can canonically be viewed as a three-stage activity as
follows.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 35

4. COMMUNICATION AND COOPERATION

• Problems decomposition. In this stage, the overall problem to be solved is decom-
posed into smaller sub-problems. The decomposition will typically be hierarchical,
so that sub-problems are then further decomposed into smaller sub-problems, and
so on, until the sub-problems are of an appropriate granularity to be solved by indi-
vidual agents.

• Sub-problem solution. In this stage, the sub-problems identified during problem
decomposition are individually solved. This stage typically involves sharing of
information between agents: one agent can help another out if it has information
that may be useful to the other

• Solution synthesis. In this stage, solutions to individual sub-problems are integrated
into an overall solution. As in problem decomposition, this stage may be hierarchi-
cal, with partial solutions assembled at different levels of abstraction

Given this general framework for CDPS, there are two specific cooperative problems-
solving activities that are likely to be present: task sharing and result sharing.

Task sharing

Task sharing takes place when a problem is decomposed to smaller sub-problem and
allocated to different agents. The key problems to be solved in a task-sharing system
is that of how tasks are to be allocated to individual agents. In cases where the agents
are really autonomous, then task allocation will involve agents reaching agreements with
others by using the techniques such as negotiation.

The Contract Net (CNET) protocol is a high-level protocol for achieving efficient
cooperation through task sharing in networks of communicating problem solvers[SD80].
The basic metaphor used in the CNET is contracting as follows.

• A node that generates task advertises existence of that task to other nodes in the net
with a task announcement, then acts as the manager of that task for its duration. In
the absence of any information about the specific capabilities of the other nodes in
the net, the manager is forced to issue a general broadcast to all other nodes.

• Nodes in the net listen to the task announcements and evaluate them. When a task
to which a node is suited is found, it submits a bid. A bid indicates the capabilities
of the bidder that are relevant to the execution of the announced task.

• A manager may receive several bids in response to a single task announcement.
Based on the information in the bids, manager selects the most appropriate nodes to
execute the task. The selection is communicated to the successful bidders through
an award message.

36 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

• These selected nodes assume responsibility for execution of the task, and each is
called a contractor for that task.

The Contract Net has become the most implemented and best-studied framework for dis-
tributed problem solving.

Result Sharing

Result sharing involves agents sharing information relevant to their sub-problems. This
information may be shared proactively (one agent sends another agent some information
because it believes the other will be interested in it), or reactively (an agent sends another
information in response to a request that was previously sent).

In result sharing, problem solving proceed by agents cooperatively exchanging infor-
mation as a solution is developed. Typically, these results will progress from being the
solution to small problems, which are progressively refined into larger, more abstract so-
lutions. Durfee[Dur99] suggests that problem solvers can improve group performance in
result sharing in the following ways.

• Confidence: independently derived solutions can be cross-checked, highlighting
possible errors, and increasing confidence in the overall solution.

• Completeness: agents can share their local views to achieve a better overall global
view.

• Precision: agents can share results to ensure that the precision of the overall solution
is increased.

• Timeliness: even if one agent could solve a problem on its own, by sharing a solu-
tion, the result could be derived more quickly.

One of the major problems that arises in cooperative activity is that of inconsistencies
between different agents in the system. Agents may have inconsistencies with respect to
both their beliefs and their goals, intentions. Inconsistencies between goals generally arise
because agents are assumed to be autonomous, and thus not share common objectives.
Inconsistencies between the beliefs that agents have can arise from several sources. First,
the viewpoint that agents have will typically be limited. No agent will ever be able to
obtain a complete picture of their environment. Also, the sensors that agents have may be
faulty, or the information sources that the agents has access to may in turn be faulty.

In a system of moderate size, inconsistencies are inevitable: the question is how to
deal with them. Durfee et al.[DLC89] suggest a number of possible approaches to the
problem as follows.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 37

4. COMMUNICATION AND COOPERATION

• Do not allow it to occur or at least ignore it. This is essentially the approach of the
Contract Net: task sharing is always driven by a manager agent, who has the only
view of the problem that matters.

• Resolve inconsistencies through negotiation. While this may be desirable in theory,
the communication and computational overheads incurred suggest that it will rarely
be possible in practice

• Build systems that degrade gracefully in the presence of inconsistency.

4.2.2 Coordination

The defining problem in cooperative working is that of coordination. The coordination
problem is that of managing inter-dependencies between the activities of agents: some
coordination mechanism is essential if the activities that agents can engage in can inter-
act in any way. von Martial suggested a typology for coordination relationships[vM90].
He suggested that, broadly, relationships between activities could be either positive or
negative.

Positive relationships are all those relationships between two plans from which some
benefit can be derived, for one or both of the agents plans, by combining them. Such
relationships may be requested (I explicitly ask you for help with my activities) or non-
requested (it so happens that by working together we can achieve a solution that is better
for at least one of us, without making the other any worse off).

Coordination in multiagent systems is assumed to happen at run time, that is, the
agents themselves must be capable of recognizing these relationships and where neces-
sary, managing them as part of their activities. Some approaches have been developed for
dynamically coordinating activities.

Partial global planning

The main principle of partial global planning[DL87] is that cooperating agents exchange
information in order to reach common conclusions about the problem solving process.
Planning is partial because the system does not (indeed cannot) generate a plan for the
entire problem. It is global because agents form non-local plans by exchanging local
plans and cooperating to achieve a non-local view of problem solving.

Partial global planning involves three iterated stages.

• Each agent decides what its own goals are, and generates short-term plans in order
to achieve them.

• Agents exchange information to determine where plans and goals interact.

• Agents alter local plans in order to better coordinate their own activities.

38 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

Joing intentions

The second approach to coordination is the use of human teamwork models. Therein,
intentions play a critical role in coordination: they provide both the stability and pre-
dictability that is necessary for social interaction, and the flexibility and reactivity that is
necessary to cope with a changing environment. When humans work together as a team,
mental states that are closely related to intentions appear to play a similarily important
role. It is also important to be able to distinguish coordinated action that is not cooper-
ative from coordinated cooperative actions. Being part of a team implies some sort of
responsibility towards the other members of the team.

Mutual modelling

Another approach to coordination, closely related to the models of human teamwork is
that of coordination by mutual modelling. The idea is to put ourselves in the place of the
other: to build a model of other agents - their beliefs, intentions, and the like - and to co-
ordinate our activities around the predictions that this model makes. This approach to co-
ordinate was first explicitly articulated in Genesereth et al.[GGR83] , where the approach
was dubbed ‘cooperation without communication’. The models that were proposed were
essentially the game-theoretic models. The idea was that if you assume that both you and
the other agents with which you interact share a common view of the scenario (in game-
theory terms, you all know the payoff matrix), then you can do a game-theoretic analysis
to determine what is the rational thing for each player to do.

Norms and social laws

In our everyday lives, we use a range of techniques for coordinating activities. One of
the most important is the use of norms and social laws[Lew69]. A norm is simply an
established, expected pattern of behaviour (e.g. forming a queue when waiting for a bus,
and allowing those who arrived first to enter the bus first); the term social law carries
essentially the same meaning, but it is usually implied that social laws carry with them
some authority. Although the norm is not enforced in any way, it provides a template that
can be used by all those around to regulate their own behaviour.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 39

Chapter 5

Standardization

In the multiagent systems, standardization is indispensable for agents to cooperate each
other. In this chapter, an overview of the FIPA standardization effort is given, providing
an introduction to the current set of FIPA specifications. Most of this chapter is organized
and described based on FIPA document 00024 [BDW01].

5.1 FIPA: Open Standards for Software Agents

5.1.1 Overview

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 as a non-
profit organisation with the remit of producing software standards for heterogeneous and
interacting agents and agent-based systems across multiple vendors’ platforms. This is
expressed more formally in FIPA’s official mission statement:

The promotion of technologies and interoperability specifications that facilitate the
end-to-end interworking of intelligent agent systems in modern commercial and industrial
settings.

The emphasis here is therefore on the practical commercial and industrial uses of
agent systems. The aim is to bring together the latest advances in agent research with
industry best practice in software, networks and business systems.

FIPA undertakes its work at meetings that are held four times a year and conducts its
standardisation process in a collaborative and open manner as specifications are publicly
accessible during their life time and participation to meetings is free of charge.

5.1.2 Structure of FIPA

FIPA is organised and structured according to two groups:

40

State-of-the-art in Agent-based Services IST Project IST-2004-507482

Administrative Groups

• The FIPA Board of Directors (BoD) is responsible for managing and conducting
the business of the FIPA organisation.

• The FIPA Architecture Board (FAB) is the authority within FIPA that is responsible
for ensuring the consistency, accuracy and suitability of FIPAs technical work.

• The FIPA secretariat, in charge of administration, logistics, membership and infor-
mation dissemination of FIPA.

• The Image committee is building some communication channels for FIPA and pre-
sentations of the standard inside and outside the Agent Community.

Technical Groups

FIPA’s core standardisation activities are centred around the creation and maintenance of
specifications.

• Technical Committees (TCs) produce technical work and write the FIPA specifi-
cations. The life cycle of a TC starts with a work plan submitted to the FAB. If
approved, the FAB proposes to create a TC, the BoD takes the decision and the TC
is created with the mission to fulfil the work plan.

• it Working Groups (WGs) are designed to carry out other aspects of FIPA’s work,
which are not necessarily defined by technology; they may have an application
focus or be responsible for coordinating implementation activities. The lifecycle of
a WG is similar to the one of a TC.

• Special Interest Groups (SIGs) undertake auxiliary work which is of interest to sec-
tions of FIPA membership, such as liasing with other standards bodies and dealing
with emerging technologies which might be suitable for standardisation.

5.1.3 Developments in FIPA

The year 2000 - 2001 there was intense activity within FIPA and great changes in the
technological landscape which forms the backdrop for its activities. This resulted in both
technical advances and changes to FIPAs structure and specification process. The main
procedural changes can be summarised as follows:

• A new, more open specification process based on a permanently open call for work
plans from both members and non-members (see http://www.fipa.org/about/fab.html).

KWEB/2004/D2.4.3/v1.0 October 31, 2004 41

5. STANDARDIZATION

• A multi-track standardisation process decoupling standards to enable work in dif-
ferent areas to progress at different speeds.

• A multi-step document process reflecting the different levels of maturity of the
specifications through successive grades of maturity: Preliminary, Experimental,
Standard through Deprecated and Obsolete.

There was also significant progress in technical work:

• Development of a global Framework to link together the totality of FIPA specifica-
tions into a single Abstract Architecture.

• Integration of Web technologies into the standards including: HTTP message trans-
port, XML encodings for FIPA ACL messages and an RDF content language.

• Modularisation of all specifications to create a plug and play architecture support-
ing interchangeable component specifications for areas such as content languages,
performatives, protocols, message transport and language syntax complemented by
profiles to link together sets of components.

5.2 FIPA Specifications

Since January 2000, FIPA adopted a new procedure for classifying, organising and releas-
ing specifications to ensure coherence, completeness and consistency of its work as well
as its relevance to industrial and commercial interests. This section provides an overview
of the new specification structure and the current set of FIPA specifications.

5.2.1 Specification Structure

FIPA specifications are divided into five categories: Applications, Abstract Architecture,
Agent Communication, Agent Management and Agent Message Transport. Each area of
specifications has one or more specification documents assigned to it and involved one or
more technical committees or working groups.

5.2.2 Current Generation of FIPA Specifications

Abstract Architecture

The purpose of the FIPA Abstract Architecture (see [FIPA00001]) is to foster interoper-
ability and reusability, this leads to the identification of architectural abstractions linked
by their relationships. It makes a distinction between those elements which can easily

42 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

be defined in an abstract manner, such as agent message transport, FIPA ACL, directory
services and content languages, and between those elements that cannot, such as agent
management and agent mobility. These are considered difficult to represent abstractly
since they occur too close to the concrete realisation (implementation) of an agent system
and very little commonality can be derived from analysing them. Yet, these issues will
have to be addresses by developers and the abstract architecture will provide a number of
instantiation guidelines in the future for specific groupings of implementation technolo-
gies.

The first concrete realization of the abstract architecture will be the Java Agent Service
project which is being developed as part of the Java Community Process.

Agent Message Transport

The FIPA Agent Message Transport Specifications deal with the delivery and represen-
tation of messages across different network transport protocols, including wireline and
wireless environments.

At the message transport level, a message consists of a message envelope and a mes-
sage body. The envelope contains specific transport requirements and information that is
used by the Message Transport Service (MTS) on each agent platform to route and handle
messages. The message body is the payload and is usually expressed in FIPA ACL but is

The agent message transport reference model provides facilities for (see5.1):

• General support for an MTS within an agent platform (see [FIPA00067]).

• Guidelines for using specific Message Transport Protocols (MTPs), such as IIOP
(see [FIPA00075]), HTTP (see [FIPA00084]) and WAP (see [FIPA00076]).

• Message envelope representations that are suitable for each MTP, such as an XML
encoding for HTTP (see [FIPA00085]) and a bit-efficient encoding for WAP (see
[FIPA00088]).

• FIPA ACL representations, such as a string encoding (see [FIPA00070]), an XML
encoding (see [FIPA00071]) and a bit-efficient encoding (see [FIPA00069]).

The MTS on each agent platform can support any number of message transport proto-
cols and will normally translate between a FIPA-supported MTP that is used for interoper-
able communication between heterogeneous agent platforms (such as XML over HTTP)
and an MTP that is used internally to the agent platform (such as Java objects over the
Java Messaging Service).

Consequently, the components of the MTS are designed to be modular and exten-
sible to handle different message transport protocols, message envelope and FIPA ACL
representations in the future.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 43

5. STANDARDIZATION

Figure 5.1: Agent Message Transport Reference Model

44 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

Figure 5.2: A
gent Management Reference Model

5.2.3 Agent Management

The FIPA Agent Management Specification (see [FIPA00023]) provides the framework
within which FIPA agents exist and operate. It establishes the logical reference model for
the creation, registration, location, communication, migration and retirement of agents.

The reference model (see5.2) describes the primitives and ontologies necessary to
support the following services in an agent platform:

• White pages, such as agent location, naming and control access services, which are
provided by the Agent Management System (AMS). Agent names are represented
by a flexible and extensible structure called an agent identifier, which can support
social names, transport addresses, name resolution services, amongst other things.

• Yellow pages, such as service location and registration services, which are provided
by the Directory Facilitator (DF).

• Agent message transport services as described previously in section 3.2.2.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 45

5. STANDARDIZATION

In conjunction with the FIPA Agent Message Transport Specifications, the FIPA Agent
Management Specification also provides support for intermittently connected devices,
such as laptop computers and personal digital assistants through message buffering, redi-
rection and proxying.

Agent Communication

Developers of multi-agent systems require specialised communication techniques in or-
der to structure the interactions in their agent systems. Ad hoc techniques are usually
not sufficiently well designed or documented to be consistently extensible and imple-
mentable by others, or generally applicable to a wide set of agent problems. The FIPA
specifications for agent communication address these issues. The core of these specifica-
tions was largely completed in FIPA 97, but this specification set has required continual
maintenance and development since then. The specifications of the communication lan-
guage, along with libraries of predefined communicative act types, interaction protocols
and content languages were developed:

• FIPA ACL Communicative Act Specifications is the library of all the 22 FIPA com-
municative acts and their requirements (see [FIPA00037])

• FIPA ACL Message Structure Specification describes the grammatical structure of
the FIPA ACL (see [FIPA00061])

• FIPA Interaction Protocol Library Specification is the library of FIPA interaction
protocols and requirements for new interaction protocols (see [FIPA00025]). Cur-
rently existing FIPA interactions protocols are:

– FIPA Request Interaction Protocol Specification (see [FIPA00026])

– FIPA Query Interaction Protocol Specification (see [FIPA00027])

– FIPA Request When Interaction Protocol Specification (see [FIPA00028])

– FIPA Contract Net Interaction Protocol Specification (see [FIPA00029])

– FIPA Iterated Contract Net Interaction Protocol Specification (see [FIPA00030])

– FIPA English Auction Interaction Protocol Specification (see [FIPA00031])

– FIPA Dutch Auction Interaction Protocol Specification (see [FIPA00032])

– FIPA Brokering Interaction Protocol Specification (see [FIPA00033])

– FIPA Recruiting Interaction Protocol Specification (see [FIPA00034])

– FIPA Subscribe Interaction Protocol Specification (see [FIPA00035])

– FIPA Propose Interaction Protocol Specification(see [FIPA00036])

46 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

• FIPA Content Language Library is a generic description of the requirements for a
FIPA content languages. (see [FIPA00007]). The following content languages have
been specified by FIPA:

– FIPA SL Content Language Specification (see [FIPA00008])

– FIPA CCL Content Language Specification (see [FIPA00009])

– FIPA KIF Content Language Specification (see [FIPA00010])

– FIPA RDF Content Language Specification(see [FIPA00011])

AgentApplications

FIPA has developed specifications of four agent-based applications that contain service
and ontology descriptions and case scenarios:

• Personal Travel Assistance: individualised, automated access to travel services (see
[FIPA00080]).

• Audio-Visual Entertainment and Broadcasting: negotiating, filtering, and retriev-
ing audio-visual information, in particular for digital broadcasting networks (see
[FIPA00081]).

• Network Management and Provisioning: automated provisioning ofdynamic Vir-
tual Private Network services where a user wants to set up a multi-media connection
with several other users (see [FIPA00082]).

• Personal Assistant: management of a user’s personal meeting schedule, in partic-
ular in determining time and place arrangements for meetings with several partici-
pants (see [FIPA00083]).

Additionally, the Agent Software Integration specification (see [FIPA00079]) contains
guidelines for integrating legacy software, that is, software that does not communicate
using FIPA ACL.

5.3 Conclusions

FIPA has devoted its first years to specify the basics elements of an agent-based world,
defining the Communication language, the management and the connection to existing
software. This initial specification has been implemented by several teams and showed
the way for further improvement towards a more modular agent environment capable of
evolution and integration of new technologies, e.g. using several Message Transport Lay-
ers, and moving towards higher levels of abstraction. Four of these new implementations

KWEB/2004/D2.4.3/v1.0 October 31, 2004 47

5. STANDARDIZATION

are already accessible in open source, and new FIPA implementations enable now agents
to run on small wireless devices such as PDA. As such FIPA is making an important con-
tribution to the practical and commercial viability of agent systems by providing a good
basis to develop future agent-based applications.

FIPA is now looking ahead to some of the major challenges that are already beginning
to arise in the new networked world, and works on specifications for:

• Domains, policies, agreements and contracts, security, dependencies between large
numbers of agents, and agent usage of ontology.

• Key applications such as product manufacturing and design and peer-to-peer sys-
tems.

• Large-scale deployment of agent systems in open environments.

48 October 31, 2004 KWEB/2004/D2.4.3/v1.0

Chapter 6

Agent Systems

Once standardization would be achieved, implemented tools are needed for the practical
commercial and industrial use of heterogeneous and interacting agents and agent-based
systems. As described in [vEHKB02], many agent platforms are available, both commer-
cial and academic. All agent platforms try to provide support for mobile agent technology,
i.e. to support migration, naming, location and communication services. These systems
differ widely in architecture and implementation, thereby impeding interoperability and
rapid deployment of mobile agent technology in the marketplace.

To promote interoperability, some aspects of mobile agent technology need to be stan-
dardised.

6.1 JADE and LEAP platforms

Because it is well-developed, we describe the JADE/LEAP platform in more detail.

JADE 3 is an agent platform developed under a grant from the European Commis-
sion (IST-1999- 10211). It is software framework implemented in the Java programming
language. Agents are defined within the scope of a platform. The agent platform can
be distributed across machines (which do not even need to share the same OS) and the
configuration can be controlled via a remote GUI. The configuration can be even changed
at run-time by moving agents from one machine to another one, as and when required. A
platform is composed of a number of agent containers, which is an agent s home environ-
ment in a platform, there is one and only one main container and any number of normal
containers. The main container can also host normal agents, but in any case, it contains
a number of platform agents that perform special functions on the platform such as the
Agent Management System (AMS), the Agent Communication Channel (ACC) and the
Directory Facilitator (DF), which is a white and yellow page directory where agents can
request each other s address and where they can check whether agents exists anywhere
that perform specific functions. In addition, JADE implements support for FIPA s Agent

49

6. AGENT SYSTEMS

Communication Language (ACL).

LEAP is the result of a different EU project of a consortium consisting of Motorola,
ADAC, BT, Broadcom Eireann Research, Telecom Italia Lab, University of Parma and
Siemens, which has been integrated with JADE. LEAP (Bergenti & Poggi, 2001) stands
for Leightweight and Extensible Agent Platform, it has a small footprint that makes it pos-
sible to run an agent container on any Java enabled (mobile) device. In this way, an agent
platform can be extended to include such mobile devices, which means the advantages of
agentbased technology can be extended to those devices through wireless communication.

6.2 Publicly available platforms

Following is a list of major publicly available implementations of agent platforms which
conform to the FIPA Specifications published in the FIPA web site.

6.2.1 Agent Development Kit

Name Agent Development Kit
Authors Tryllian BV
Description Tryllian introduces the latest release of the Agent Develop-

ment Kit (ADK), a mobile component-based development
platform that allows you to build reliable and scalable in-
dustrial strength applications.
The ADK features dynamic tasking, JXTA-based P2P ar-
chitecture with XML message-based communication that
supports FIPA and SOAP, JNDI directory services, using
a reliable, lightweight runtime environment based on Java.
These allow Java Developers to easily build, deploy and
manage secure, large-scale distributed solutions that operate
regardless of location, environment or protocol, enabling an
adaptive, dynamic response to changes.

License Commercial license. Free research license available for se-
lected projects.

Requirements Environment, minimal configuration.
Contact http://www.tryllian.com/

50 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

6.2.2 April Agent Platform

Name April Agent Platform
Authors Jonathan Dale (jonathan.dale@fla.fujitsu.com) and Johnny

Knottenbelt (jak97@doc.ic.ac.uk)
Description The April Agent Platform (AAP) is a FIPA-compliant agent

platform that is designed to be a lightweight and powerful
solution for developing agent-based systems. It is written
using the April programming language and the InterAgent
Communication System (IMC), and provides many features
to accelerate the development and deployment of agents and
agent platforms.

License GPL
Requirements The AAP requires the April programming language and the

ICM to be installed, and runs either on Linux, Unix or Win-
dows.

Contact http://sf.us.agentcities.net/aap/

6.2.3 Comtec Agent Platform

Name Comtec Agent Platform
Authors Information-Technology Promotion Agency, Japan and

Communication Technologies
Description Comtec Agent Platform is an open-source, free imple-

mentation of FIPA agent communication, agent manage-
ment, agent message transport and some of the applica-
tions. Unique to the Comtec Platform is the implementation
of FIPA Ontology Service and Agent/Software Integration,
which require SL2 as the content language.

License GPL
Requirements JDK 1.2 or higher.
Contact http://ias.comtec.co.jp/ap/

KWEB/2004/D2.4.3/v1.0 October 31, 2004 51

6. AGENT SYSTEMS

6.2.4 FIPA-OS

Name FIPA-OS
Authors Emorphia and contributors
Description FIPA-OS was the first Open Source implementation of the

FIPA standard and has now recorded thousands of down-
loads. Dedicated developers from around the world have
contributed to numerous bug fixes and upgrades, leading to
over 10 formal new releases. FIPA-OS now supports most
of the FIPA experimental specifications currently under de-
velopment. With the new in depth developers guides, it is
an ideal starting point for any agent developer wishing to
benefit from FIPA technology. FIPA-OS 2 is a component-
based toolkit implemented in 100% pure Java. One of the
most significant contributions received is a small-footprint
version of FIPA-OS (FIPA-OS), aimed at PDAs and smart
mobile phones, which has been developed by the University
of Helsinki as part of the IST project Crumpet.

License The license is EPL, details of which can be found at
http://www.emorphia.com/EPL/

Requirements Java virtual machine
Contact http://fipa-os.sourceforge.net/

6.2.5 Grasshopper

Name Grasshopper
Description Grasshopper is an open 100% Java-based mobile intelli-

gent agent platform, which is compliant to both available
international agent standards, namely the OMG MASIF and
FIPA specifications. Grasshopper includes two optional
open source extensions providing the OMG MASIF and
FIPA standad interfaces for agent/platform interoperability.

Requirements Java virtual machine
Contact http://www.grasshopper.de/

52 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

6.2.6 JACK

Name JACK Intelligent Agents
Description JACK is an environment for building, running and in-

tegrating commercial-grade multi-agent systems using a
component-based approach. JACK is based upon the com-
pany’s Research and Development work on software agent
technologies. The JACK Agent Language is a programming
language that extends Java with agent-oriented concepts,
such as: agents, capabilities, events, plans, agent knowl-
edge bases (Databases) and resource and concurrency man-
agement.

Contact http://www.agent-software.com/

6.2.7 JADE

Name JADE
Authors TILAB (fromerly CSELT)
Description JADE simplifies the development of multi-agent applica-

tions, which comply with the latest FIPA 2000 specifica-
tions. While appearing as a single entity to the outside
world, a JADE agent platform can be distributed over sev-
eral hosts. Agents can also migrate or clone themselves to
other hosts of the platform, regardless of the OS. The life
cycle of agents can be remotely controlled via a GUI, which
also allows debugging tools to be started. The communica-
tion architecture tries to offer (agent transparent) flexible
and efficient messaging by choosing, on an as needed basis,
the best of the FIPA-compliant Message Transport Proto-
cols (MTP) that are activated at platform run time. JADE
is implemented in version 1.2 of JAVA and has no further
dependency on third-party software.

License LGPL
Requirements Java Virtual Machine (1.2 minimum)
Contact http://jade.cselt.it/

KWEB/2004/D2.4.3/v1.0 October 31, 2004 53

6. AGENT SYSTEMS

6.2.8 JAS

Name Java Agent Services API (JAS)
Authors Fujitsu, Sun, IBM, HP, Spawar, InterX, Institute of Human

and Machine Cogtnition, Comtec, Verizon.
Description The Java Agent Services (JAS) project defines an indus-

try standard specification and API for the deployment of
agent platform-service infrastructures. It is an implemen-
tation of the FIPA Abstract Architecture within the Java
Community Process [http://www.jcp.org] initiative and is
intended to form the basis for creating commercial grade
applications based on FIPA specifications. Specifically, the
project consists of a Java API (in the javax.agent names-
pace) for deploying open platform architectures that sup-
port the plug-in of third-party platform service technology.
The API provides interfaces for message creation, message
encoding, message transport, directory and naming. This
design is intended to ensure that a JAS based system deploy-
ment remain transparent to shifts in underlying technology
without causing interruption to service delivery and there-
fore the business process. The project also delivers a Refer-
ence Implementation of the API, including sample services
for RMI, LDAP and HTTP. The forthcoming Technology
Compatibility Kit will ensure compliance of all JAS based
implementations.

License Open Specification License v0.4 [http://www.java-
agent.org/Documents/OSLFLAvo.4.htm]
Common Public License v0.5
[http://www.opensource.org/licenses/cpl.html]

Requirements Java Virtual Machine (1.1 minimum)
Contact http://www.java-agent.org/

54 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

6.2.9 LEAP

Name LEAP
Description LEAP (Lightweight Extensible Agent Platform (IST-1999-

10211)) is a development and run-time environment for In-
telligent Agents, is the precursor of the second generation
of FIPA compliant platforms. It represents a major techni-
cal challenge - it aims to become the first integrated agent
development environment capable of generating agent ap-
plications in the ZEUS environment and executing them on
run-time environments derived from JADE, implemented
over a large family of devices (computers, PDA and mobile
phones) and communication mechanisms (TCP/IP, WAP).
In this way LEAP benefits from the advanced design-time
features of Zeus and the lightweight and extensible proper-
ties of JADE.

Requirements Java Virtual Machine
Contact http://leap.crm-paris.com/

KWEB/2004/D2.4.3/v1.0 October 31, 2004 55

6. AGENT SYSTEMS

6.2.10 ZEUS

Name ZEUS
Description ZEUS is an Open Source agent system entirely imple-

mented in Java, developed by BT Labs and can be con-
sidered a toolkit for constructing collaborative multi-agent
applications. Zeus provides support for generic agent func-
tionality and has sophisticated support for the planning and
scheduling of an agent’s actins. Moreover, Zeus provides
facilities for supporting agent communications using FIPA
ACL as the message transport and TCP/IP sockets as the
delivery mechanism. Zeus also provides facilities for build-
ing agents in a visual environment and support for redirect-
ing agent behavior. The Zeus approach to planning and
scheduling involves representing goals and actions using
descriptions that include the resources they require and the
pre-conditions they need to be met in order to function. This
allows goals to be represented using a chain of actions that
have to b fulfilled before the goal can be met. This action
chain is built up using a process of backwards chaining.

Requirements As ZEUS uses the latest Swing GUI components it will run
on any platform that has had a JDK1.2 (aka JDK2) virtual
machine installed. Each host machine should also be ca-
pable of TCP/IP communication, but there is no need for
any middleware services to be installed. So far ZEUS has
been successfully tested on Windows 95/98/NT4 and So-
laris platforms.

Contact http://www.labs.bt.com/project/agents.htm

56 October 31, 2004 KWEB/2004/D2.4.3/v1.0

Chapter 7

Agentcities

In this chapter, an evaluation of the topics discussed in this deliverable is described by
means of the Agentcities project. Considering the results and achievements of the project,
the remaining problems and future works are also discussed.

7.1 Introduction

Aiming at the development of an open, worldwide interoperable agent network, Agentcites
projects[age] includes two projects: Agentcites.RTD[rtd] and Agentcities.NET[net].

Agentcities.RTD was a European Commission funded 5th Framework IST Research
project which ran from July 2001 to June 2003. The project deployed a 24/7 testbed
backbone of 14 live agent platforms representing: 12 European cities (Barcelona, Berlin,
Chambery, Dublin, Ipswich, Lausanne, Lisbon, London (2 platforms), Paris, Parma, Saar-
bruecken, Turin), 1 Japanese city (Sendai), 1 American city (San Francisco). All agent
platforms in the backbone and the prototype agent services running on them has been
publicly accessible. The Agentcities.NET project is a taken-up measure project engaging
in a series of concerted actions to make the Agentcities network accessible to the research
and business community.

7.2 Objectives

The Agentcities project[DWB02][rep03] aimed to develop a foundation for the vision of
an ambient proactive environment where heterogeneous, autonomous and increasingly
intelligent systems representing businesses, services and individuals are able to interact
with each other and enable flexible and dynamic composition of services.

More formally, the objectives were as follows[rep03].

57

7. AGENTCITIES

1. Open Network Architecture: Achieve advances in technology / understanding of
open systems supporting many heterogeneous, autonomous interacting entities to
produce sustainable network architecture for on-line open systems.

2. Dynamic Value Creation: Achieve greater understanding of the type of mecha-
nisms, methodologies and techniques required to achieve seamless, effective ser-
vice composition in an open dynamic environment.

3. Service Level Interoperability: Perform validation and refinement of agent com-
munication technologies (such as semantic models, ontology models, content ex-
pression techniques and interaction protocols) for use in open dynamic environ-
ments.

These project objectives were translated into a primary set of operational goals[rep03]:

1. To implement a realistic, decentralised, open distributed system enabling high-level
peer-to-peer interoperability between agents on multiple platforms across Europe
and the World.

2. To develop a rich trading environment through agent-based business services, en-
abling business transactions between agents in the system to support the dynamic
composition of services in a JIT (just-in-time) manner.

3. To create agent-based applications by deploying a large number of agents offer-
ing diverse services which can turn platforms into Agentcities by offering leisure,
entertainment and community services for European and World cities.

4. To ensure that the network, platforms and services are open to and accessible by
project external users - thereby serving as a continuously running demonstrator and
resource for others.

7.3 Methodologies

The nodes in the Agentcities Network are agent platforms that are running on one or more
machines and are hosted by an organization or individual. Agents running on a particu-
lar Agentcity are able to connect to other publicly available cites and can communicate
directly with their agents. Applications involving agents on multiple different cities can
be created through the flexible use of inter-agent communication models and semantic
frameworks, shared ontologies, content languages and interaction protocols that support
it. This model consists of the following levels:

• Network level: Platforms in the Agentcities Network interoperate and exchange
basic communications at the communication and infrastructure level.

58 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

• Service composition level: The services provide an open test bed where anybody
can observe services at work, run services, and/or add new services into this net-
work. This level should be able to host business components including their service
and behaviour descriptions.

• Semantic interoperability level: In the longer term, Agentcities become a test
bed for system-system communication in an open environment that is capable to
dynamically host business components without requiring human intervention to set
perform service discovery and invocation.

To realize the above models, the Agentcities Network might be implemented in the
multiagent systems. The multiagent systems are distributed systems, with each agent
able to act autonomously and able to reason and make decisions about the environment
in which it is embedded. The distributed and autonomous nature of mulitagent systems
potentially supports flexibility and robustness in system operation and organization, but
it is precisely these features that make it difficult to design, build, test, integrate and even
use computer systems composed of communicating agents. FIPA created one of the first
steps to developing a standard environment to lead the way to autonomous entities that
can semantically interoperate. Agentcities.RTD project used these initial developments
and results, such as, specifications, agent platforms, and initial interoperable results as the
first step towards creating a large scale test-bed of a network of agent platforms.

In the Agentcities Network, the coordination feature of the multiagent systems may
be distributed over four abstractions:

• Ontologies: A detailed approach of designing and building collaborative ontologies
is used. These ontologies and their concepts are shared between agents to enable
delivery of coherent services.

• Actions: An agent providing a service or a task provides access to these services
and tasks through a set of actions (e.g. make-cinema-booking). These sets of ac-
tions can also be modelled as an ontology, and a published as part of the service
description.

• Service description: Each service is described using the FIPA service description
and registered in a FIPA-DF so that agents can find the service they need for a
particular task.

• Communication language: All of these abstractions are captured in a structured
way in the FIPA-ACL, this allows the interoperability of services and the exchange
of information to occur. This also enables incremental testing through each service
provider publishing sample messages both as a receiver and sender.

The actual reasoning about these aspects of a communication, which is communicated
from an agent, needs to be internalised so the reasoning behaviour of an agent can deal

KWEB/2004/D2.4.3/v1.0 October 31, 2004 59

7. AGENTCITIES

with the intended meaning of the content. The receiving agent must take into account
the protocol and its own belief model and current behaviour status of a set of current
interactions.

The fundamentally difference between an agent approach and other engineering ap-
proaches is that when a message is dispatched from an agent, it is not object or method
dependent but is a rich context of information that can be read (not necessarily understood)
by another computational entity. A developer at the ACL level focuses on understanding a
computational message protocol context. So part of the trade-off is whether development
is more effective at the detailed API level or at interpreting the protocol context. We can
assist in developing tools such as parsers and dialogue managers for the protocol context.

There are tools and parsers available to allow engineers to develop distributed software
service systems through an agent approach. Developers can treat the communication
language as a software interface. The interactions, dialogues or protocols are a set of calls
to a particular program. Often an internal model of an agent interprets the input from a
message, using both its current beliefs and the message to create a context in which to
determine what to do next. Agent developers, like with most software development, will
have a knowledge of both the expected input (communications received) and the expected
output (communications sent). Protocols, communicative acts and content definitions are
driven by the application requirements. Certain degree of separation can be achieved (e.g.
through the use of FIPA protocols to obtain a level of architectural openness).

These multiagent architectures on the Agentcities Network are implemented based on
following principles.

• Autonomous and communication principals of agent technology for developing and
demonstrating how to create and benefit from semantic interoperability.

• FIPA-based platforms and specifications: Using state of the art distributed software
engineering principals and deployment, for loosely coupled autonomous software
entities and semantic communication theories for enabling high-level semantic in-
teroperability.

• Fundamental bases of the design was the use of “ontological” engineering approach
to the utilization of domain concepts, knowledge, and content.

• Use of current developments and advances in the Semantic Web and W3C, such
as, the standards developing for defining ontologies in an open Web-based manner,
taking into account where possible the issues that impact “open semantic” based
environments.

• State of the art research and development in enabling dynamic composition of ser-
vices define through autonomous agent entities.

• Development tools and advancement of tools to assist organizations to join the net-
work with platforms, test the network, in particular web interface for viewing the

60 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

activity of the agent platform network and testing the basic interoperable position
of a particular platform through use of the test suite.

• Experimentation of network via deployment of set of services and tested work flow
cases.

• Openness of results, following an open source policy where possible to enable
broader set of developer and users to participate in research test-bed. All results
and developments published for use where possible.

7.4 Project Results and Achievements

The Agentcities project produced the following major results:

• A global scale, live and open test environment for development and deployment of
service composition technologies.

• Technical frameworks, methods and software illustrating how Agent, Semantic
Web and Web Services technologies can be combined to support the construction
of dynamic application across open networks of automated software components.

• A large-scale demonstration application combining over 25 different service types
and nearly 200 individual service components deployed throughout Europe, the
USA and Japan.

More precisely, the achievements of the project are described as follows.

Agentcities Network

Since the launch of the project, the network has grown explosively to over 150 registered
platforms and the network involves well over 100 organisations worldwide contributing
to the construction of the testbed, developing applications and gathering experiences from
it.

The network and all services are completely open to enable third parties to access
services, add their own and extend the functionality and richness of the environment.
This not only makes the result a public resource but also forces Agentcities to address
fundamental issues related to open system and provides a vital feedback channel.

The Agentcities testbed network is now being actively used by a wide range of organ-
isations and this usage is supported by a range of network services which enable: service
advertisement/discovery, identity management, communication as well as basic manage-
ment. These systems will now be maintained under the auspices of a new non-profit

KWEB/2004/D2.4.3/v1.0 October 31, 2004 61

7. AGENTCITIES

organisation to enable collaboration between project users. Specifically they will also re-
ceive support from the following new projects: Agentcities.ES (Spain), Agentcities.UK
(UK), @lis technology net (Europe and Latin America) which will keep the servers and
systems available. This will keep the testbed usable for continued research and develop-
ment.

The current services are of a prototype nature but well tested. With new project ac-
tivity the services will be regularly upgraded to keep pace with new needs. All technical
documents, recommendations and interfaces associated with the network services will be
free and in the public domain.

Agent Platforms and Standards

In respect to the agent platforms, the deployment of the network and combination of
technologies lead to:

• The development of new FIPA compliant Agent platforms and the adaptation of
existing non-compliant platforms - specifically at the beginning of the project there
were 3-4 platforms which had been shown to interoperate effectively (in a FIPA
ebake-offf interoperability test) and by the end of the project nearly 20 compliant
toolkits are available. Much of this growth in interest is attributable to the value of
connecting to the Agentcities network.

• The deployment of FIPA platforms has increased very significantly over the period
of the project - with over 150 platforms deployed at one point or another during the
project. While FIPA platforms had previously been deployed in individual organ-
isations and projects there is little doubt that Agentcities strongly encouraged this
take up.

• Agentcities’s adoption of DAML-OIL/OWL[CvHH+01][Hef04] and subsequent doc-
umentation in Agentcities technical recommendations undoubtedly raised aware-
ness of the technology among Agent researchers and encourage use of it in con-
junction with FIPA Agent languages.

One of the first objectives of the Agentcities project was to ensure that different im-
plementations of the FIPA standard could interoperate. In order to achieve this, a Test
Suite was created. It is a tool, available on the web, that allows to test the main inter-
operability features of FIPA platforms. The implementations of the FIPA standard used
in the project were consequently improved to allow smooth interoperation. In turn, the
feedback of this experience allowed the FIPA standard to be refined. Finally, considering
the success of the deployment of the Agentcities network, several platform developers
added FIPA-compliance in order to connect to Agentcities This resulted in the following
outcome:

62 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

• A Test Suite that allows to test the main interoperability features of any platforms.
The Test Suite remains available on the web for public use.

• A wider choice of FIPA-compliant platforms, with different types of license, allow-
ing each to choose the best-suited platform and enhancing competition between the
platforms.

• An overall better experience in FIPA platforms interoperation. This makes deploy-
ment of applications in the network more realistic

The work carried out in Agentcities has also impacted standards development in sev-
eral key ways:

• Generating direct feedback and input to standards organisations such as the FIPA
and the W3C.

• Encouraging the take up and re-use of standards within the research community to
create an installed base of users.

• Working towards the integration of standards from different organisations to pro-
duced a unified view of how standards can be combined to serve open, dynamic
service environments.

For the first point, Agentcities contributed to the FIPA standards organisation with in-
formal inputs (to a number of Technical Committees such as Security), informal feed-
back from a number of Agentcities.RTD partners, formal inputs to the X2S experimental
to standards conversion process and finally the submission of a formal input document
documenting Agentcities use of FIPA technology and recommendations for further stan-
dardisation. The major Agentcities.RTD output documents have also been made available
as resources for future FIPA standardisation. The primary formal contribution made by
Agentcities.RTD to W3C standardisation was through the submission of a use case based
on the project scenario that was included in the documentation leading to the W3C stan-
dardisation of the OWL ontology language. Further informal inputs have been passed on
through partners involved in both Agentcities and W3C Semantic Web activities.

The second and third points are in strongly encouraging integration of FIPA (FIPA
languages, FIPA Management and FIPA Message Transport specifications) and W3C
(DAML-OIL and OWL) standards. The project decided to use DAML+OIL as the on-
tology representation framework given the current and widely disseminated trend to-
wards DAML+OIL. This decision has shown to be well justified since W3C has chosen
DAML+OIL as the basis for their Ontology Representation Standard OWL.

Service Composition

Agentcities developed a framework for service composition in an open environment that
was instantiated using the FIPA standards and a number of open-source and proprietary

KWEB/2004/D2.4.3/v1.0 October 31, 2004 63

7. AGENTCITIES

software toolkits into a functioning use case. The implementation was then deployed on
the Agentcities testbed environment and trialled in the live environment. Service compo-
sition is the process of taking a number of independently produced services, provided by
a number of different providers and organising them into a workflow so that they run to
perform one group task. For example a service that summarises text, a service that pro-
vides news and a service that sends text messages may be combined together to provide a
news feed to a users mobile phone.

The specific services built by the Agentcities project are constructed from the abstract
service model and can be categorised as followed:

• Component Services. These are core service providers. Agentcities has built com-
ponent services for Restaurants, Cinemas, Theatres and Hotels.

• Information Brokers. These are finders that provide aggregated searching across
multiple Component Services. Agentcities has built finder services to match the
component services (Restaurant, Cinema, Theatre and Hotel finders).

• Organising Applications. These are composite service provides which bind a num-
ber of component services and information brokers into a combined service offer-
ing. Agentcities has built the Evening Organiser application which can operate over
component services and information brokers for Restaurants, Cinemas, Theatres
and Hotels.

The potential of this framework is to provide a common starting point for the de-
scription of service composition solutions. This will provide (at the lowest level) a docu-
mentation standard for developers. At the higher level this will provide a mechanism for
understanding and dimensioning interoperability challenges in a proposed system.

The relevance of the result is in the realisation of service-orientated architectures for
software development and deployment which will enable software outsourcing and a more
flexible form of ASP (application service provision). This will enable organisations to
control and optimise spending on software use and provide a new business model for
software developers.

Creation of a Community

The Agentcities project has been to create an active, worldwide user community of re-
searchers (academic and industry) applying testbed technologies to their own application
areas. The number of organisations involved is approximately 100 with groups all over
Europe as well as in Australia, China, Japan, New Zealand and the USA. Activities by
many of the teams are supported by new research projects such as Agentcities.ES (Spain),
Agentcities.UK (UK), WATAC (Finland), an Australia linkage grant (Australia) and the
Europeaid @lis technology network project (Europe and Latin America).

64 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

The community is in the process of forming a non-profit body to guide the further
development of the Agentcities testbed and enable collaboration between these different
projects. The non-profit body and associated resources help users share information about
technical problems and act as a forum for reaching consensus on emerging issues.

7.5 Future works

Agentcities developed the first global network environment to allow the deployment of
agents, enable communication between them on the basis of standard protocols, agent
languages and ontologies and enable them to dynamically discover on another through
directories and support interactions between them to establish coordination relationships.
The network enables high-level semantic interoperability between systems and builds
knowledge and understanding of dynamic open environments for eventual transition to
usage in reliable commercial grade systems.

Although the result has shown the maturity agent technology as a software paradigm to
create a test-bed of interoperable software systems, many works should be done to achieve
the fully interoperable systems in an open dynamic environment. By considering the
different level of communications between agents, the interoperability between different
ontologies is a remaining problem and must be supported in the future. And the languages
in the content level must be interoperable.

In addition to the interoperability, the service composition must be worked further
to be the fully automatic. The coordination technology such as the global planning will
be one approach. The other related issues to solve in the open network are service dis-
covery (meaningful description of building block services) and stability (interdependence
between remote building block services). As the Agentcities network grows and becomes
a more heterogeneous environment, challenging these issues for the full interoperability
and automatic service composition will be important.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 65

Chapter 8

Conclusion

This deliverable has revised the current state-of-the-art in agent systems (Sections 1-4),
as well as standardization and validation efforts (Section 5-7).

In a first part it has provided an overview of autonomous agents and multi-agents
systems, making a clear distinction between micro (agent-level) and macro (society-level)
issues.

Afterwards, it has described the FIPA standardization effort (Section 5), a list of major
publicly available implementations of agent platforms (Section 6) as well as the Agentci-
ties validation framework (Section 7).

Concerning the relationship between Agent-based Services and Semantic Web Ser-
vices, while the former have been studied in the last 25 years, the latter are still in their
infancy. Therefore, they should take profit of the state-of-the-art in the agents domain,
specially in the areas of reaching agreements, communication, and collaboration. This
topic will be addressed and further elaborated in the following deliverable D2.4.4, titled
“Guidelines for the integration of agent-based services and web-based services”.

66

Bibliography

[AC87] P. Agre and D. Chapman. PENGI: An implementation of a theory of ac-
tivity. In Proceedings of the Sixth National Conference on Artificial Intel-
ligence (AAAI-87), pages 268–272, Seattle, WA, 1987.

[age] Agentcities web. See http://www.agentcities.org/.

[AIS88] J. Ambros-Ingerson and S. Steel. Integrating planning, execution and mon-
itoring. In Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI-88), pages 83–88, St. Paul, MN, 1988.

[Aus62] J. L. Austin. How To Do Things With Words. Oxford University Press,
1962.

[BDW01] B. Burg, J. Dale, and S. Willmott. Open standards and open source for
agent-based systems, 2001.

[BFG+97] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller, and
M. G. Slack. Experiences with an architecture for intelligent, reactive
agents. Journal of Experimental and Theoretical Artificial Intelligence,
9(3-4):237–256, 1997.

[BG88] A. H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intel-
ligence. Morgan Kaufmann Publishers: San Mateo, CA, 1988.

[BIP88] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded
practical reasoning. Computational Intelligence, 4:349–355, 1988.

[BKMS96] R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences
with an architecture for intelligent, reactive agents. In M. Wooldridge, J. P.
Müller, and M. Tambe, editors, Intelligent Agents II (LNAI Volume 1037),
pages 187–202. Springer-Verlag: Berlin, Germany, 1996.

[Bro86] R. A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, 1986.

[Bro90] R. A. Brooks. Elephants don’t play chess. In P. Maes, editor, Designing
Autonomous Agents, pages 3–15. The MIT Press: Cambridge, MA, 1990.

67

BIBLIOGRAPHY

[Bro91a] R. A. Brooks. Intelligence without reason. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91), pages
569–595, Sydney, Australia, 1991.

[Bro91b] R. A. Brooks. Intelligence without representation. Artificial Intelligence,
47:139–159, 1991.

[BS97] P. Bretier and D. Sadek. A rational agent as the kernel of a cooperative
spoken dialogue system:implementing a logical theory of interaction. In
Intelligent Agents III, pages 189–204, 1997.

[Bur95] H.-D. Burkhard. Agent-oriented programming for open systems. In
M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theo-
ries, Architectures, and Languages (LNAI Volume 890), pages 291–306.
Springer-Verlag: Berlin, Germany, January 1995.

[Cha87] D. Chapman. Planning for conjunctive goals. Artificial Intelligence,
32:333–378, 1987.

[CL90a] P. R. Cohen and H. J. Levesque. Intention is choice with commitiment.
Artificial Intelligence, 42:213–261, 1990.

[CL90b] P. R. Cohen and H. J. Levesque. Rational interaction as the basis for com-
munication. In Intention in Communication, pages 221–256, 1990.

[CP79] P. R. Cohen and C. R. Perrault. Elements of a plan based theory of speech
acts. Cognitive Science, 3:177–212, 1979.

[CvHH+01] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. Daml+oil reference description, w3c note,
2001. See http://www.w3.org/TR/daml+oil-reference.

[CW90] D. Connah and P. Wavish. An experiment in cooperation. In Y. Demazeau
and J.-P. Müller, editors, Decentralized AI — Proceedings of the First Euro-
pean Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW-89), pages 197–214. Elsevier Science Publishers B.V.: Ams-
terdam, The Netherlands, 1990.

[dam] The darpa agent markup language. See http://www.daml.org.

[DL87] E. H. Durfee and V. R. Lesser. Using partial global plans to coordinate
distributed problem solvers. In Proceeding of the 10th International Joing
Conference on Artificial Intelligence, pages 875–883, 1987.

[DLC89] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Cooperative distributed
problem solving. In Handbook of Artificial Intelligence, pages 83–147,
1989.

68 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

[Dun95] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artifi-
cial Intelligence, 77:321–357, 1995.

[Dur99] E. H. Durfee. Distributed problem solving and planning. In Multiagent
Systems, pages 121–164, 1999.

[DWB02] J. Dale, S. Willmot, and B. Burg. Agentcities: Challenges and deployment
of next-generation service environments. In Proceedings of the Pacific Rim
Intelligent Multi-Agent Systems Conference, 2002.

[EBA01] EBAY. The eBay online marketplace, 2001. See
http://www.ebay.com/.

[EH86] E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘not never’ revisited:
on branching time versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986.

[ELS94] O. Etzioni, N. Lesh, and R. Segal. Building softbots for UNIX. In O. Et-
zioni, editor, Software Agents — Papers from the 1994 Spring Symposium
(Technical Report SS–94–03), pages 9–16. AAAI Press, March 1994.

[Fer92a] I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational,
Mobile Agents. PhD thesis, Clare Hall, University of Cambridge, UK,
November 1992. (Also available as Technical Report No. 273, University
of Cambridge Computer Laboratory).

[Fer92b] I. A. Ferguson. Towards an architecture for adaptive, rational, mobile
agents. In E. Werner and Y. Demazeau, editors, Decentralized AI 3 —
Proceedings of the Third European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW-91), pages 249–262. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands, 1992.

[Fer95] I. A. Ferguson. Integrated control and coordinated behaviour: A case for
agent models. In M. Wooldridge and N. R. Jennings, editors, Intelligent
Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages
203–218. Springer-Verlag: Berlin, Germany, January 1995.

[FIP99] FIPA. Specification part 2 — Agent communication language, 1999. The
text refers to the specification dated 16 April 1999.

[Fir87] J. A. Firby. An investigation into reactive planning in complex domains.
In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence (IJCAI-87), pages 202–206, Milan, Italy, 1987.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 69

BIBLIOGRAPHY

[Fis94] M. Fisher. A survey of Concurrent METATEM — the language and its
applications. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic
— Proceedings of the First International Conference (LNAI Volume 827),
pages 480–505. Springer-Verlag: Berlin, Germany, July 1994.

[Fis95] M. Fisher. Representing and executing agent-based systems. In
M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theo-
ries, Architectures, and Languages (LNAI Volume 890), pages 307–323.
Springer-Verlag: Berlin, Germany, January 1995.

[FN71] R. E. Fikes and N. Nilsson. Strips: a new approach to the application
of theorem proving to prblem solving. Artificial Intelligence, 2:189–208,
1971.

[Gal88] J. R. Galliers. A Theoretical Framework for Computer Models of Coop-
erative Dialogue, Acknowledging Multi-Agent Conflict. PhD thesis, Open
University, UK, 1988.

[Geo87] M. P. Georgeff. Planning. Annual Review of Computer Science, 2:359–400,
1987.

[GF92] M. R. Genesereth and R. E. Fikes. Knowledge interchange format, version
3.0 reference manual. Technical report, Computer Science Department,
Stanford University, 92-1, 1992.

[GGR83] M. R. Genesereth, M. Ginsberg, and J. S. Rosenschein. Cooperation with-
out communication. In Proceedings of the 5th National Conference on
Artificial Intelligence, pages 125–129, 1983.

[GH89] L. Gasser and M. Huhns, editors. Distributed Artificial Intelligence Volume
II. Pitman/Morgan Kaufman, 1989.

[Gil95] N. Gilbert. Emergence in social simulation. In N. Gilbert and R. Conte,
editors, Artificial Societies: The Computer Simulation of Social Life, pages
144–156. UCL Press: London, 1995.

[GL87] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Pro-
ceedings of the Sixth National Conference on Artificial Intelligence (AAAI-
87), pages 677–682, Seattle, WA, 1987.

[Hef04] J. Heflin. Owl web ontology language. use cases
and requirements, w3c recommendation, 2004. See
http://www.w3.org/TR/webont-req/.

[HRHW+89] B. Hayes-Roth, M. Hewett, R. Washington, R. Hewett, and A. Seiver. Dis-
tributing intelligence within an individual. In L. Gasser and M. Huhns,

70 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

editors, Distributed Artificial Intelligence Volume II, pages 385–412. Pit-
man Publishing: London and Morgan Kaufmann: San Mateo, CA, 1989.

[Huh87] M. Huhns, editor. Distributed Artificial Intelligence. Pitman Publishing:
London and Morgan Kaufmann: San Mateo, CA, 1987.

[Jen92] N. R. Jennings. Towards a cooperation knowledge level for collaborative
problem solving. In Proceedings of the Tenth European Conference on
Artificial Intelligence (ECAI-92), pages 224–228, Vienna, Austria, 1992.

[Kae86] L. P. Kaelbling. An architecture for intelligent reactive systems. In M. P.
Georgeff and A. L. Lansky, editors, Reasoning About Actions & Plans —
Proceedings of the 1986 Workshop, pages 395–410. Morgan Kaufmann
Publishers: San Mateo, CA, 1986.

[KLR+92] D. Kinny, M. Ljungberg, A. S. Rao, E. Sonenberg, G. Tidhar, and
E. Werner. Planned team activity. In C. Castelfranchi and E. Werner,
editors, Artificial Social Systems — Selected Papers from the Fourth Eu-
ropean Workshop on Modelling Autonomous Agents in a Multi-Agent
World, MAAMAW-92 (LNAI Volume 830), pages 226–256. Springer-Verlag:
Berlin, Germany, 1992.

[Kra01] S. Kraus. Strategic Negotiation in Multiagent Environments. The MIT
Press: Cambridge, MA, 2001.

[KSE98] S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through ar-
gumentation: a logical model and implementation. Artificial Intelligence,
104:1–69, 1998.

[Lew69] D. Lewis. Convention - a Philosophical Study. Harvard University Press,
1969.

[LLL+96] Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B.
Scherl. Foundations of a logical approach to agent programming. In
M. Wooldridge, J. P. Müller, and M. Tambe, editors, Intelligent Agents II
(LNAI Volume 1037), pages 331–346. Springer-Verlag: Berlin, Germany,
1996.

[Mae90a] P. Maes, editor. Designing Autonomous Agents. The MIT Press: Cam-
bridge, MA, 1990.

[Mae90b] P. Maes. Situated agents can have goals. In P. Maes, editor, Designing
Autonomous Agents, pages 49–70. The MIT Press: Cambridge, MA, 1990.

[Mae91] P. Maes. The agent network architecture (ANA). SIGART Bulletin,
2(4):115–120, 1991.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 71

BIBLIOGRAPHY

[MLF96] J. Mayfielod, Y. Labrou, and T. Finin. Evaluation kqml as an agent com-
munication language. In Intelligent Agents II, pages 347–360, 1996.

[Mül97] J. Müller. A cooperation model for autonomous agents. In J. P. Müller,
M. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III (LNAI
Volume 1193), pages 245–260. Springer-Verlag: Berlin, Germany, 1997.

[net] Agentcities european project (agentcities.net). See
http://www.agentcities.org/EUNET/.

[NS61] A. Newell and H. A. Simon. GPS: A program that simulates human
thought. In Lernende Automaten. R. Oldenbourg, KG, 1961.

[OR90] M. J. Osborne and A. Rubinstein. Bargaining and Markets. The Academic
Press: London, England, 1990.

[owl03] Owl-s: Semantic markup for web services, version 1.0, 2003. See
http://www.daml.org/services/owl-s/1.0/owl-s.pdf.

[Pat92] R. S. Patil. The darpa knowledge sharing effort: progress report. In
Proceeding if Knowledge Representation and Reasoning, pages 777–788,
1992.

[Pog95] A. Poggi. DAISY: An object-oriented system for distributed artificial intel-
ligence. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents:
Theories, Architectures, and Languages (LNAI Volume 890), pages 341–
354. Springer-Verlag: Berlin, Germany, January 1995.

[PR00] A. Poggi and G. Rimassa. Adding extensible synchronization capabilities
to the agent model of a fipa-compliant agent platform. In Proceeding of the
First International Workshop AOSE, pages 307–322, 2000.

[PV01] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In
D. Gabbay and F. Guenther, editors, Handbook of Philosophical Logic
(second edition). Kluwer Academic Publishers: Dordrecht, The Nether-
lands, 2001.

[rep03] Deliverable d1.4 final report agentcities.rtd, 2003.

[RG85] J. S. Rosenschein and M. R. Genesereth. Deals among rational agents.
In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence (IJCAI-85), pages 91–99, Los Angeles, CA, 1985.

[RG91] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In R. Fikes and E. Sandewall, editors, Proceedings of Knowl-
edge Representation and Reasoning (KR&R-91), pages 473–484. Morgan
Kaufmann Publishers: San Mateo, CA, April 1991.

72 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

[RG95a] A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In
Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 312–319, San Francisco, CA, June 1995.

[RG95b] A. S. Rao and M. P. Georgeff. Formal models and decision procedures for
multi-agent systems. Technical Note 61, Australian AI Institute, Level 6,
171 La Trobe Street, Melbourne, Australia, June 1995.

[RGS92] A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans: A prelimi-
nary report. In E. Werner and Y. Demazeau, editors, Decentralized AI 3 —
Proceedings of the Third European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW-91), pages 57–76. Elsevier Sci-
ence Publishers B.V.: Amsterdam, The Netherlands, 1992.

[RK86] S. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with
provable epistemic properties. In J. Y. Halpern, editor, Proceedings of the
1986 Conference on Theoretical Aspects of Reasoning About Knowledge,
pages 83–98. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

[RLK04] D. Roman, H. Lausen, and U. Keller. Web service modeling on-
tology - standard (wsmo - standard), version 0.2, 2004. See
http://www.wsmo.org/2004/d2/v02/.

[RSP93] S. J. Russell, D. Subramanian, and R. Parr. Provably bounded optimal
agents. In Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence (IJCAI-93), pages 338–344, Chambéry, France,
1993.

[rtd] Agentcities european project (agentcities.rtd). See
http://www.agentcities.org/EURTD/.

[RW91] S. J. Russell and E. Wefald. Do the Right Thing — Studies in Limited
Rationality. The MIT Press: Cambridge, MA, 1991.

[RZ94] J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Con-
ventions for Automated Negotiation among Computers. The MIT Press:
Cambridge, MA, 1994.

[Sac74] E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intel-
ligence, 5:115–135, 1974.

[Sac75] E. Sacerdoti. The non-linear nature of plans. In Proceedings of the Fourth
International Joint Conference on Artificial Intelligence (IJCAI-75), pages
206–214, Stanford, CA, 1975.

[SD80] R. G. Smith and R. Davis. Frameworks for cooperation in distributed prob-
lem solving. volume 11, 1980.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 73

BIBLIOGRAPHY

[Sea69] J. R. Searle. Speech Acts: an Essay in the Philosophy of Language. Cam-
bridge University Press, 1969.

[Sho90] Y. Shoham. Agent-oriented programming. Technical Report STAN–CS–
1335–90, Computer Science Department, Stanford University, Stanford,
CA 94305, 1990.

[Sho93] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

[Ste90] L. Steels. Cooperation between distributed agents through self organi-
zation. In Y. Demazeau and J.-P. Müller, editors, Decentralized AI —
Proceedings of the First European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW-89), pages 175–196. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

[Syc90] K. P. Sycara. Persuasive argumentation in negotiation. Theory and Deci-
sion, 28:203–242, 1990.

[Tho93] S. R. Thomas. PLACA, an Agent Oriented Programming Language. PhD
thesis, Computer Science Department, Stanford University, Stanford, CA
94305, August 1993. (Available as technical report STAN–CS–93–1487).

[Tho95] S. R. Thomas. The PLACA agent programming language. In
M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theo-
ries, Architectures, and Languages (LNAI Volume 890), pages 355–369.
Springer-Verlag: Berlin, Germany, January 1995.

[VB90] S. Vere and T. Bickmore. A basic agent. Computational Intelligence, 6:41–
60, 1990.

[vEHKB02] R. van Eijk, J. Hamers, T. Klos, and M. S. Bargh. Agent technology for
designing personalized mobile service brokerage. 2002.

[vM90] F. von Martial. Interactions among autonomous planning agents. In Pro-
ceeding of the First European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, pages 105–120, 1990.

[Wav92] P. Wavish. Exploiting emergent behaviour in multi-agent systems. In
E. Werner and Y. Demazeau, editors, Decentralized AI 3 — Proceedings
of the Third European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW-91), pages 297–310. Elsevier Science Pub-
lishers B.V.: Amsterdam, The Netherlands, 1992.

[WG95] P. Wavish and M. Graham. Roles, skills, and behaviour: a situated action
approach to organising systems of interacting agents. In M. Wooldridge
and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures,

74 October 31, 2004 KWEB/2004/D2.4.3/v1.0

State-of-the-art in Agent-based Services IST Project IST-2004-507482

and Languages (LNAI Volume 890), pages 371–385. Springer-Verlag:
Berlin, Germany, January 1995.

[Whi94] J. E. White. Telescript technology: The foundation for the electronic mar-
ketplace. White paper, General Magic, Inc., 2465 Latham Street, Mountain
View, CA 94040, 1994.

[Wil88] D. Wilkins. Practical Planning: Extending the Classical AI Planning
Paradigm. Morgan Kaufmann Publishers: San Mateo, CA, 1988.

[WJ95] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 10(2):115–152, 1995.

[Woo95] M. Wooldridge. This is MYWORLD: The logic of an agent-oriented testbed
for DAI. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents:
Theories, Architectures, and Languages (LNAI Volume 890), pages 160–
178. Springer-Verlag: Berlin, Germany, January 1995.

[Woo01] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiely, 2001.

[WRR95] D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a concurrent
agent-oriented language. In M. Wooldridge and N. R. Jennings, editors,
Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume
890), pages 386–402. Springer-Verlag: Berlin, Germany, January 1995.

KWEB/2004/D2.4.3/v1.0 October 31, 2004 75

