
D2.4.2 Semantics for Web Service
Discovery and Composition

Rubén Lara (Universität Innsbruck)

with contributions from:
Walter Binder (EPFL), Ion Constantinescu (EPFL), Dieter Fensel (UIBK),

Uwe Keller (UIBK), Jeff Pan (VUM), Marco Pistore (UniTn),
Axel Polleres (UIBK), Ioan Toma (UIBK),

Paolo Traverso (UniTn), Michal Zaremba (NUIG)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.4.2 (WP2.4)

The description of Web services with formal, explicit semantics promises to bring a new level of
automation to current Web services. In this context, the automatic location and composition of
existing services to fulfill a given user request without the need for neither prior agreements nor
costly custom code plays a central role. In this document, we analyze the challenges in automatic
Web service discovery and composition and propose ways to solve them.
Keyword list: Web services, semantic Web services, semantic Web service discovery, semantic
Web service composition

Copyright c© 2005 The contributors

Document Identifier KWEB/2005/D2.4.2/v1.1
Project KWEB EU-IST-2004-507482
Version v1.1
Date January 29, 2005
State final
Distribution public



Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at
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Executive Summary

This document addresses the problems of automatic discovery and composition of (Web)
services using semantic annotations. The problem of automatic discovery of services can
be seen as the problem of locating a service that can fulfill some requester objectives.
Composition can be seen at two levels: functional-level composition and process-level
composition. Functional-level composition naturally extends the discovery problem se-
lecting, in case a single service that can fulfill the requester goal cannot be found, a
combination of existing services that can fulfill it. Process-level composition covers a
later phase of the overall composition task. Here we assume that the set of Web services
necessary for defining the composition has already been found, and that we have to work
out the details of how to interact with them. The goal is to obtain the executable code that
implements the composition.

In this document we introduce the discovery and composition problems and ways to
solve them. A conceptual model for discovery, involving the description of requester
goals based on pre-defined goals, the discovery of potential candidate services, and the
contracting of the discovered services is provided. Based on this model, we analyze to
what extent current proposals for service discovery cover our needs. Theoretical founda-
tions for the discovery and contracting problem are provided and their relation to currently
available reasoning engines and languages is discussed.

Composition is addressed at the two levels introduced above, namely: functional-level
composition and process-level composition. Planning-based techniques for solving both
problems are presented and their efficiency assessed.

Finally, how discovery and the two types of composition can be integrated is dis-
cussed. This discussion identifies possible integration paths that will be further investi-
gated in the future, as part of the Knowledge Web project.
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Chapter 1

Introduction

1.1 Semantic Web Services

The Web is a tremendous success story. Starting as an in-house solution for exchanging
scientific information it has become, in slightly more than a decade, a world wide used
media for information dissemination and access. In many respects, it has become the
major means for publishing and accessing information. Its scalability and the comfort
and speed in disseminating information has no precedent. However, it is solely a Web for
humans. Computers cannot ”understand” the provided information and in return do not
provide any support in processing this information. Two complementary trends are about
to transform the Web, from being for humans only, into a Web that interweaves computers
to provide support for human interactions at a much higher level than is available with
current Web technology.

• The semantic Web is about adding machine-processable semantics to data. The
computer can ”understand” the information and therefore process it on behalf of
the human user (cf. [Fen03]).

• Web services try to employ the Web as a global infrastructure for distributed com-
putation, for integrating various applications, and for the automation of business
processes (cf. [ACKM03]). The Web will not only be the place where human
readable information is published but the place where global computing is realized.

Nevertheless, the current Web service technology, based on SOAP [W3C03], WSDL
[CCMW01] and UDDI [BCE+02], only addresses the syntactical aspects of a Web ser-
vice and, therefore, only provide a set of rigid services that cannot adapt to a changing
environment without human intervention. The human programmer has to be kept in the
loop and scalability as well as economy of Web services are limited [FB02]. The vision
of semantic Web services is to describe the various aspects of a Web service using ex-
plicit, machine-understandable semantics, enabling the automatic location, combination

1



1. INTRODUCTION

and use of Web services. The work in the area of semantic Web is being applied to Web
services in order to keep the intervention of the human user to the minimum. Semantic
markup can be exploited to automate the tasks of discovering services, executing them,
composing them and enabling seamless interoperation between them [Coa04], thus en-
abling intelligent Web services.

The description of Web services in a machine-understandable fashion is expected to
have a great impact in areas of e-Commerce and Enterprise Application Integration, as
it can enable dynamic and scalable cooperation between different systems and organiza-
tions.

An important step towards dynamic and scalable integration, both within and across
enterprise boundaries, is the mechanization of service discovery. Automatically locating
and contracting available services to perform a given business activity can considerably
reduce the cost of integration and can enable a much more flexible integration, where
providers are dynamically selected based on what they provide and possibly other non-
functional properties such as trust, security, etc.

If service discovery is not able to find a service that matches the user requirements,
it may be still possible to compose (integrate) several services to provide the required
functionality. This process is called service composition. We distinguish between manual
and automated service composition.

In the case of manual service composition, the user explicitly specifies how certain ba-
sic services have to interact in order to provide the desired functionality. The specification
of the composed service may be represented as a workflow. In the case of automated ser-
vice composition, a service composition engine automatically generates a representation
of the composed service based on user requirements. There are also hybrid approaches
involving manual and automated service composition. In such a setting, the composition
engine may serve as an interactive programming tool to help and guide the programmer
definining complex services. The programmer may specify some constraints (a partial
workflow) and the composition engine fills in services in order to complete the workflow
in a consistent way.

In an open environment, service composition always involves service discovery. The
programmer of a composed service has to know which basic services are available, and
because of the openness of the environment, the set of available services changes contin-
uously. For automated service composition, the service composition engine has to have
an up-to-date view of the available services. As the number of published services may be
extremely large (assuming the wide-spread acceptance and adoption of semantic web ser-
vices), the service composition engine may not be able to maintain a copy of all published
service descriptions. Hence, the service composition engine has to dynamically interact
with service directories to discover relevant services when needed.

Automated service composition may be regarded at different levels of abstraction.
From a high-level point of view, we may focus on the required inputs and provided out-
puts of services and compose services in order to generate the outputs needed by the user.

2 January 29, 2005 KWEB/2005/D2.4.2/v1.1
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We call this kind of high-level compositionfunctional service composition, which is ad-
dressed in Section 3.1. There we show how standard planning techniques can be adapted
for functional service composition. Moreover, we discuss the integration of functional
service composition with dynamic service discovery.

Once a functional service composition has been computed, we are interested in the
concrete interactions between the different services. Typically, a service consists not only
of a single function (method), but a given service API has to be used according to some
service protocol e.g. it may be necessary to invoke several service functions (methods)
in a specific order. Hence, a fine-grained,process-level compositionis needed in order
to generate an executable composed service. In Section 3.1 we present an approach for
process-level composition based on model checking techniques.

The potential benefits of semantic Web services have led to the establishment of an
important research area, both in academia and industry. Several initiatives have appeared
for semantically annotating Web services, providing different descriptions of Web ser-
vices and their related aspects that, in turn, bring a different kind of support for discovery
and composition. In the following sections, we present the major initiatives in the area.

1.1.1 OWL-S

OWL-S [Coa04] is a collaborative effort by BBN Technologies, Carnegie Mellon Uni-
versity, Nokia, Stanford University, SRI International and Yale University to define an
ontology1 for semantic markup of Web services. OWL-S, currently at version 1.12, is
intended to enable automation of Web service discovery, invocation, composition, inter-
operation and execution monitoring by providing appropriate semantic descriptions of
services. The purpose of OWL-S is to define a set of basic classes and properties for
declaring and describing services i.e. an ontology in OWL [DS04] for describing Web
services that enable users and software agents to automatically discover, invoke, compose
and monitor Web resources offering services, under specified constraints.

Support for discovery

The upper OWL-S ontology consists of three core elements, namely:service profile, ser-
vice model, andservice grounding. From these, theservice profileprovides the informa-
tion needed for an agent to discover a service [Coa04].

The OWL-S profile unifies the vision of both the requester and the provider. It can
be used to describe what the requester expects from the service execution and the actual
service functionality from a provider point and view. Therefore, the requester is expected

1Ontologies are defined in [Gru93b] asformal, explicit specifications of shared conceptualizations. We
will use this definition throughout this document.

2For a complete account of all DAML-S and OWL-S versions, we refer the reader to
http://www.daml.org/services/owl-s/.

KWEB/2005/D2.4.2/v1.1 January 29, 2005 3



1. INTRODUCTION

to define a service profile which describes the service he is looking for, while the provider
will describe a Web service by providing one or more3 profiles giving information about
what the service actually does.

The profile is intended to capture three different types of information: what organiza-
tion provides the service, what function the service computes, and a host of features that
specify characteristics of the service [Coa04]. Notice that both the first and third kind
of information can be regarded as non-functional properties of the Web service, while the
second kind of information describes the function provided by the service. We will follow
this categorization to give further details of the service profile. As explained before, the
profile is also used to describe a user request, containing information about what is the
organization that has to provide the service sought, what functionality the service has to
fulfill, and what non-functional criteria are to be met.

Non-functional properties. The non-functional properties of the Web service contained
in the service profile are: the service name, a textual description of the service, contact in-
formation of the service responsible, an external categorization of the service, and, finally,
an expandable list of non-predefined properties.

Functionality description. The functional characterization of Web services is expressed
in terms of the information transformation and the state change produced by the execution
of the service. State change, modelled by preconditions and effects, refer to the change on
the state of the world as a consequence of executing the service, and information transfor-
mation, modelled by inputs and outputs, refer to what information is required and what
information is produced (generally depending on the information provided as input) by
the service. Inputs, outputs, preconditions, and effects are normally referred to as IOPEs
[Coa04].

The schema to describe IOPEs instances is defined in the service model, not in the ser-
vice profile. Therefore, these instances are described in the service model and referenced
from the service profile. OWL-S envisions that the IOPEs of the profile are a subset of
those published by the model [Coa04].

OWL-S 1.1 is the first version of OWL-S making use of a concrete rule language
to describe IOPEs, capturing the relation between inputs, outputs, preconditions and ef-
fects. The language used for this purpose is the Semantic Web Rule Language (SWRL)4

[HPSB+04]. We provide a brief overview of the language below.

3OWL-S does not define any minimum cardinality constraint for the profile. Therefore, a Web service
without any profile would still be a valid OWL-S description.

4However, the OWL-S ontology also allows to express conditions using DRS [McD04] or KIF [kif98].
However, DRS only provides a vocabulary for writing down arbritray formulas and does not prescribe their
semantics, and the interfacing of KIF expressions with OWL concepts is unclear.

4 January 29, 2005 KWEB/2005/D2.4.2/v1.1
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SWRL. SWRL is a proposal for combining OWL DL [DS04] and OWL Lite [DS04]
with the Unary/Binary Datalog sublanguages of RuleML5, enabling the combination of
Horn-like rules with an OWL knowledge base. SWRL Rules have the form:

antecedent → consequent

where both theantecedent i.e. the rule body and theconsequent i.e. the rule head are
a conjunction of atoms. Atoms can be of the formC(x), P (x, y), Q(x, z), sameAs(x, y)
or differentFrom(x, y), beingC an OWL DL (not necessarily named) concept,P an
OWL DL object property,Q an OWL DL data property,x andy are either variables or
OWL instances, and z is either a variable or an OWL data value.

Variables are treated as universally quantified within the scope of the rule they appear
in, and only safe rules are allowed6. Existential quantification can be captured by using
the OWLsomeValuesFromrestriction.

Inputs and Outputs.OWL-S inputs and outputs are modelled as subclasses ofpara-
meter, which is in turn a subclass of SWRL variable with a property indicating the class
or datatype the values of the parameter belong to [Coa04]. Local variables can be also
used, and they are modelled in the ontology as subclasses of parameter. Inputs, outputs,
and local variables have as scope the process where they appear.

The inputs and outputs defined in the service model are referenced from the profile
via thehasInputandhasOutputproperties, respectively. Local variables can be referenced
via thehasParameterproperty.

Preconditions and effects.Preconditions are conditions on the state of the world that
have to be true for successfully executing the service. They are modelled as conditions, a
subclass ofexpression. Expressions in OWL-S specify the language in which the expres-
sion is described and the expression itself encoded as a (string or XML) literal. Effects
describe conditions on the state of the world that are true after the service execution. They
are modelled asresults. A result has aninCondition, aResultVar, anOutputBinding, and
anEffect. TheinConditionspecifies the condition for the delivery of the result. TheOut-
putBindingbinds the declared output to the appropriate type or value depending on the
inCondition. Theeffectsdescribe the state of the world resulting from the execution of
the service. TheResultVarsplay the role of local variables for describing results.

Conditions i.e. preconditions defined in the service model are referenced from the
profile via thehasPreconditionproperty, and results via thehasResultproperty.

Figure 1.1 illustrates the description of the functional aspects of the profile. Please
notice that, for simplicity reasons, the complete definition of some classes e.g.binding is
omitted.

5see http://www.ruleml.org/ for details about the RuleML initiative.
6Variables that appear on the consequent must also appear on the antecedent.

KWEB/2005/D2.4.2/v1.1 January 29, 2005 5



1. INTRODUCTION

Figure 1.1: Definition of OWL-S profile

6 January 29, 2005 KWEB/2005/D2.4.2/v1.1
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Support for composition

Automatic Web service composition and interoperation involves the automatic selection,
composition, and interoperation of Web services to perform some complex task, given a
high-level description of an objective. For example, the user may want to make all the
travel arrangements for a trip to a conference. Currently, the user must select the Web
services, specify the composition manually, and make sure that any software needed for
the interoperation of services that must share information is custom-created. With OWL-
S markup of Web services, the information necessary to select and compose services will
be encoded at the service Web sites. Software can be written to manipulate these repre-
sentations, together with a specification of the objectives of the task, to achieve the task
automatically. To support this, OWL-S provides declarative specifications of the prerequi-
sites and consequences of application of individual services (relevant for functional-level
composition), and a language for describing service compositions and data flow interac-
tions (relevant for process-level composition).

1.1.2 WSMO

WSMO is a specification by the WSMO working group7 of the SDK cluster8. WSMO
relies on four major components inspired by the conceptual work done in the definition
of WSMF (see Figure 1.2), namely:

Ontologies. They provide the terminology and formal semantics for describing the other
elements in WSMO.

Goals. These elements provide the means to specify the requester-side objectives when
consulting a Web service, describing at a high-level a concrete task to be achieved.

Web services.They provide a semantic description of Web services, including their func-
tional and non-functional properties, as well as other aspects relevant for interoper-
ating with them.

Mediators. These modelling elements are connectors that resolve heterogeneity prob-
lems in order to enable interoperation between heterogeneous parties.

Support for Discovery

From the elements presented above, the most relevant to the discovery process are:

7http://www.wsmo.org/
8http://www.sdkcluster.org/

KWEB/2005/D2.4.2/v1.1 January 29, 2005 7
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Goals

Mediators

Ontologies Web Services   

Figure 1.2: WSMO core elements [RLeditors04]

Goals. Goals are defined in WSMO as the objectives that a client may have when con-
sulting a Web service. They consist of non-functional properties (from a set of pre-defined
core properties), imported ontologies, used mediators, postconditions and effects.

Postconditions and effects describe the state of the information space and the world
desired by the requester, respectively. Ontologies can be directly imported as the termi-
nology to define the goal when no conflicts need to be resolved. However, if any aligning,
merging, or conflict resolution is required, they are imported throughooMediators.

Web services. Several aspects of Web services are described in WSMO. The required
terminology to describe them, as for goals, can be imported directly or viaooMediators
when conflicts need to be resolved. In addition, the capability and interfaces of the service
are described, from which the capability is the most relevant element for discovery.

WSMO capabilities define the functional aspects of the offered service, modelled in
terms of preconditions, assumptions, postconditions and effects. It is defined separately
from the requester goals, thus distinguishing between the requester and provider points of
view.

Thepreconditionsof the capability describe the valid states of the information space
prior to the service execution.Postconditionsdescribe the state of the information space
that is guaranteed to be reached after the service execution.Assumptionsare similar to
preconditions, but they define valid states of the world for a correct service execution.
Effectsdescribe the state of the world that is guaranteed to be reached after executing the
service.

Mediators. As one of its pillars, WSMO introduces the concept of mediators in order
to resolve heterogeneity problems9. Mediators in WSMO are special elements used to
link heterogeneous components involved in the modelling of a Web service. They define
the necessary mappings, transformations or reductions between the linked elements. As
depicted in Figure 1.1.2, four different types of mediators are defined. From those, of
relevance for discovery are:

9For an introduction to the concept of Mediators, cf. [Wie92].
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Figure 1.3: Mediators in WSMO [RLeditors04]

• ggMediators: They link two goals, expressing the reduction of a source goal into a
target goal. They can useooMediatorsto bypass the differences in the terminology
employed to define these goals. In addition, WSMO allows linking not only goals,
but also goals toggMediators, thus allowing the reuse of multiple goals to define a
new one.

• ooMediators: They import ontologies and resolve possible representation mismatches
between them such as differences in representation languages or in conceptualiza-
tions of the same domain.

• wgMediators: They link a Web service to a goal. This link represents the (total or
partial) fulfillment of the goal by the Web service.wgMediatorscan useooMedia-
tors to resolve heterogeneity problems between the Web service and the goal.

Support for Composition

Functional-level composition can exploit the formal description of capabilities and goals
provided by WSMO. Regarding process-level composition, WSMO provides service in-
terface descriptions that provide information about how the service interacts, and with
what other services it cooperates to achieve its functionality. These descriptions are called
choreography and orchestration, respectively. Process-level composition can exploit the
formal choreography descriptions provided by WSMO to know the external process of a
given service, and construct orchestrations for the composite service generated.
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WSML

The Web Service Modeling Language working group (WSML)10 defines a family of lan-
guages with its roots in Description Logics, First-Order Logic and Logic Programming
[de 04].

The variant WSML-Core semantically corresponds with the intersection of Descrip-
tion Logic and Horn Logic, extended with extensive datatype support in order to be useful
in practical applications. WSML-Core is fully compliant with a subset of OWL, albeit that
the datatype support in WSML-Core is already beyond OWL, because the datatype sup-
port in OWL is very limited. WSML-Core is extended, both in the direction of Description
Logics and in the direction of Logic Programming.

WSML-DL extends WSML-Core to an expressive Description Logic, namelySHOIN .

WSML-Flight extends WSML-Core in the direction of Logic Programming with more
intuitive value restrictions and cardinality constraints. WSML-Flight is the preferred on-
tology modelling language for WSMO, because of its rich set of modelling primitives
for modelling different aspects of attributes, such as value constraints and integrity con-
straints, and its rich logical language which allows for writing down arbitrary rules. Fur-
thermore, WSML-Flight incorporates a fully-fledged rule language, while still allowing
efficient decidable reasoning.

WSML-Rule extends WSML-Flight to a fully-fledged Logic Programming language,
including function symbols and higher-order features of HiLog [CKW93] and possibly
Transaction Logic [BK98].

WSML-Full unifies all WSML variants under a common First-Order umbrella with
non-monotonic extensions. All WSML variants are described in terms of a normative
human-readable syntax. Besides the human-readable syntax, an XML and an RDF syntax
for exchange between machines are provided. Furthermore, a mapping to and from OWL
for basic inter-operation with OWL ontologies through a common semantic subset of
OWL and WSML is also given.

1.1.3 METEOR-S

METEOR-S11, started in 2002 at the LSDIS Lab at the University of Georgia, aims to in-
tegrate Web service standards such as Business Process Execution Language for Web Ser-
vices (BPEL4WS) [ACD+03], Web Service Description Language (WSDL) [CCMW01]
and Universal Description, Discovery and Integration (UDDI) [BCE+02] with Semantic
Web technologies.

METEOR-S aims at automating the tasks of publication, discovery, description, and
control flow of Web services. In the following, we will focus on how METEOR-S

10http://www.wsmo.org/wsml/.
11http://lsdis.cs.uga.edu/Projects/METEOR-S/.
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supports discovery. Although METEOR-S also provides a Discovery Infrastructure for
Web services (MWSDI) [VSSP04], our interest is restricted to how METEOR-S ser-
vices are described to support such discovery, not in the infrastructure which exploits
the METEOR-S descriptions.

Support for Discovery

METEOR-S adds semantics (using ontologies) at two levels [VSSP04]: at the level of
individual Web services and at the level of the registries that store the services. For the
annotation of individual Web services, a bottom-up approach is followed i.e. WSDL mes-
sage types, both inputs and outputs, are mapped to the appropriate concepts in domain
specific ontologies. In addition to the annotation of WSDL inputs and outputs, WSDL
operations are also mapped to ontological concepts from an operations domain ontology
[SVSM03]. In the annotation of WSDL operations, preconditions and effects are also
added, interpreted as logical conditions that must hold for performing the operation, and
as changes in the world caused by the execution of the operation, respectively. The user
goals are expressed using service templates based on the concepts from the domain on-
tologies. In such templates, information about the operation being sought and their inputs
and outputs are given, and, optionally, preconditions and effects can also be specified.

The aim of annotating registries is to enable the classification of Web services based
on their domain. Registries are specialized in a given domain, and store Web services
related to that domain. A specialized ontology, the registries ontology, is used to annotate
registries, mapping the registries to a given domain and giving additional information
about the registry, relations with other registries and relations to other domains.

Support for Composition

Functional-level composition can exploit the semantic description of the inputs, outputs,
postconditions and effects to determine what parts of a request are solved by a given
service and what others remain open. For process-level composition, the BPEL4WS de-
scriptions used in METEOR-S can be exploited. However, as such descriptions do not
come with formal semantics, process-level composition has to rely on externally defined
semantics.

1.1.4 IRS-III

The primary goal of the IRS-III12 project, being carried out by the Knowledge Media Insti-
tute at the Open University13, is to support the discovery and retrieval of knowledge com-
ponents (i.e services) from libraries distributed over the Internet and their semi-automatic

12http://kmi.open.ac.uk/projects/irs/.
13http://kmi.open.ac.uk/

KWEB/2005/D2.4.2/v1.1 January 29, 2005 11



1. INTRODUCTION

configuration in order to realize specific tasks according to user requirements [MDCG03].
The IRS-III framework can be seen as an adaptation of the UPML [FMB+03] framework
to the Web services domain.

Support for Discovery and Composition

IRS-III has adopted the WSMO conceptual model. Therefore, we can assume that the
support provided for discovery and composition is the same as in WSMO.

1.2 A Motivating Use Case

The different approaches for describing services presented above aim at supporting the
automatic location, composition and interoperation with services. In order to illustrate the
problems we aim at solving in this document i.e. the automatic location and composition
of services based on such descriptions, in this section we introduce a B2C use case that
motivates such problems and illustrates how real applications can benefit from a higher
level of automation. This use case will be used in following chapters to illustrate our
proposals for achieving dynamic discovery and composition.

1.2.1 Description

Let us imagine a Virtual Traveling Agency (VTA for short) [Seditors] which is an end user
platform providing eTourism services to customers. These services can cover all kinds of
information services concerned with tourism information, from information about events
and sights in an area to services that support booking of flights, hotels, rental cars, etc.
online. Such VTAs are already existent, but they are mostly simple information por-
tals along with some Web-based customer services. By applying semantic Web services,
a VTA will invoke Web services provided by several eTourism suppliers and aggregate
them into new customer services in a (semi)automatic fashion. Such VTAs providing au-
tomated eTourism services represent an evolution of currently existing VTAs, as they can
dynamically select (from ALL the available tourism services) and compose the appropri-
ate services to fulfill a given end-user request, not being limited to pre-arranged providers
in a pre-arranged way.

Our VTA use case, which aggregates Web services of different tourism service providers,
shall provide the following general functionality: a customer uses the VTA service as the
entry point for his requests. Such end-user services are provided by the VTA by discover-
ing, invoking and combining Web services offered by several tourism service providers.
Figure 1.4 gives an overview (modified and extended from [HHO04]) of the use case.

12 January 29, 2005 KWEB/2005/D2.4.2/v1.1
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Figure 1.4: Use Case Overview: Virtual Travel Agency based on Semantic Web services

1.2.2 Scope

The scenario outlines a general structure for VTAs that can be extended to more complex
scenarios wherein the customer can be a Web service itself, thus creating a network of
composed services that offer complex tourism services. For example, one VTA can pro-
vide flight booking services for an airline union, another VTA aggregates booking service
for a worldwide hotel chain, and a third VTA provides booking services for rental cars by
combining the services of several worldwide operating car rental agencies. Then, another
VTA uses these services for providing an end-user service for booking complete holiday
trips worldwide.

1.2.3 Actors, Roles and Goals

In the general use case there are three actors. The following defines why they participate
in this use case (goal) and the particular interactions they are involved in (roles).

• Customer: the end-user that requests a service provided by the VTA.

– Goal: automated resolution of his tourism service request.

– Role: end-user, interacts with VTA for service usage, payment, and non-
computational assets (e.g. receiving the actual ticket when booking a trip).

KWEB/2005/D2.4.2/v1.1 January 29, 2005 13
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• Tourism service providers: commercial companies that provides specific tourism
services.

– Goal: sell their services to customers.

– Role: provide tourism services as Web services (also provides the necessary
semantic descriptions of Web services).

• VTA: the intermediary between the customer and the tourism service providers.
It provides high-quality tourism services to customers by aggregating the separate
services provided by the single service providers.

– Goal: provides high-quality end-user tourism services, uses existing tourism
services and aggregates these into new services. It represents the union of the
available tourism service providers.

– Role: interacting with the customer, locating, composing (if necessary) and
using the services offered by the tourism providers and, ultimately, solving
the customer request.

1.2.4 Example Usage Scenarios

Here we include some possible scenarios that, among others, can appear in our use case:

• The customer requests the VTA for searching tourism service offers, the VTA de-
tects and queries suitable tourism service providers and gives the results to the cus-
tomer.

• The customer selects a concrete offer and requests booking for this offer (interact-
ing with the VTA), VTA discovers and aggregates tourism service providers for
booking, payment, etc. and returns the result to the customer.

• The VTA interacts with the customer and (one or more) tourism service providers
for checking the delivery status of a given flight ticket.

It can be seen in the above use case that the added value of the VTA resides on its
ability to automatically detect appropriate tourism service providers, aggregate them, and
offer the aggregated tourism services to the customer in a transparent fashion.

This use case will be used in the next chapters of this document to illustrate how we
propose to achieve the automatic discovery of service providers and their composition.
Examples mainly related to the domain of this use case will be given.

14 January 29, 2005 KWEB/2005/D2.4.2/v1.1
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1.3 Goals and overview of this document

This document presents the problems of automatic service discovery and composition
and propose solutions to them. In Chapter 2 we introduce a conceptual model for service
discovery and contracting based on [Pre04] (Section 2.1), analyze the state of the art on
automatic Web service discovery and software component retrieval (Section 2.2), and
introduce our description of services (Section 2.3). With these elements in place, we
address the problem of service discovery in Section 2.4, formalizing different notions
of match for discovery and discussing means to implement them. Section 2.5 discusses
the problem of service contracting and provide different formalizations for it. The relation
between discovery and mediation is discussed in Section 2.6. The final sections of Chapter
2 summarize our achievements, open points and future work.

Chapter 3 is devoted to semantic Web service composition. Two different forms of
compositions are addressed, corresponding to different levels of abstraction in the descrip-
tion of the Web services participation to the composition. In functional-level composition
(Section 3.1) atomic Web services are considered, while in process-level composition
(Section 3.2) the interaction with the Web services are defined as complex protocols. For
each approach we discuss the state of the art, provide a formal description of the com-
position problem and an approach to its solution, we discuss implementation techniques,
and evaluate the proposed solution.

In Chapter 4 the options for integrating automatic discovery, functional-level compo-
sition, and process-level composition are presented.

Finally, our results and plans for future work are summarized in Chapter 5.

KWEB/2005/D2.4.2/v1.1 January 29, 2005 15



Chapter 2

Semantics for Web Service Discovery

In this chapter we address the problem of automatic service discovery by providing a
conceptual model for it and proposals for the different steps involved in the model. Such
conceptual model is presented in Section 2.1. We analyze in Section 2.2 the work avail-
able in the area of automatic Web service discovery and in a strongly related area, software
component retrieval. How services and goals will be described is related in Section 2.3.
Our proposals for service discovery and contracting are presented in Section 2.4 and Sec-
tion 2.5, respectively. Section 2.6 briefly discusses the mediation needs for discovery. In
Sections 2.7, 2.8, and 2.9, we will briefly discuss our achievements on service discovery,
the issues that remain open, and our planned future work, respectively.

2.1 A conceptual model for discovery

A workable approach to service discovery must precisely define its scope and the concep-
tual model and assumptions behind the proposed solution. While, as will be detailed in
Section 2.2, a number of proposals are available in our area of interest, none of them has
precisely discussed these aspects. Therefore, we start by addressing this task and provid-
ing the scope, model and assumptions that guide our proposal for service discovery.

2.1.1 Definition of service

Precisely defining what we mean byserviceand, therefore, what kind of entities we aim at
discovering is needed to reach a common understanding of the problem and to explicitly
describe our assumptions. For providing this definition, we look at the definitions given
in the conceptual architecture for semantic Web services presented in [Pre04]:

• Service as provision of value in some domain. This definition regards a service
as a provision of value (not necessarily monetary value) in some given domain,

16
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independently of how the supplier and the provider interact. Examples of a service
in this sense are the provision of information about flight tickets by a tourism service
provider, or the provision of a booked trip with certain characteristics by a VTA.

• Service as a software entity able to provide something of value. This is the common
understanding of service in the IT community, regarding the service as a software
entity that provides something of value (a service in the sense above). An exam-
ple would be the software that a VTA employs for providing aggregated tourism
services.

• Service as a means of interacting online with a service provider. This definition
refers to services like negotiation services, that do not provide anything of value by
themselves but make the provision of the service possible. An example would be a
WSMO choreography provided by a tourism service provider to interact with it for
booking a given flight.

In the remainder of this chapter, we will refer toservicein the first sense, under-
standing Web services as services that are programmatically accessible over the Web i.e.
WSDL-like services. Services offered through human interaction using traditional Web
sites will not be explicitly considered as they are less amenable to automation, but notice
that they can be discovered and contracted in the same way described above if appropriate
descriptions are given.

2.1.2 Levels of abstraction

Having defined what we understand by service, the next step is to define what kinds of
service are of relevance for us. For doing so, we will look again at the work presented in
[Pre04], where the following types of service are identified:

• A Concrete Serviceis an actual or possible performance of a set of tasks that repre-
sent a coherent functionality (and therefore deliver some value) within some domain
of interest to its associated requestor and provider entities i.e. a concrete service is
an actual service that will be or has been provided, for example the actual booking
of a flight by a VTA.

• An Abstract Serviceis some set of concrete services, and anAbstract Service De-
scription is some machine-processable descriptionD which has, as its model, an
abstract serviceC i.e. an abstract service description specifies the set of concrete
services that can be provided e.g. booking of flights departing from Austria.

• An Agreed Serviceis an abstract service agreed between two parties i.e. it rep-
resents the agreement between a requester and a provider to receive and perform,
respectively, a given service, for example, the agreement to provide information
about flights for a given itinerary between a tourism service provider and a VTA.

KWEB/2005/D2.4.2/v1.1 January 29, 2005 17
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• A Service Contractis an agreement between a service provider and requestor that
the provider will supply an agreed service to the requestor e.g. a tourism service
provider will provide the service agreed with the VTA.

From these, the abstract service is identified as relevant for the discovery of services,
while the concrete services, agreed services, and service contracts are relevant for the
contract agreement phase [Pre04].

2.1.3 Scope

As presented in [KLP+04], we will differentiate between service discovery and service
contracting. The the abstract service descriptions presented above will be involved in the
discovery phase. In the contracting phase, the concrete services will be used, and this
phase will result in a service contract. Therefore, the overall scope for discovery does not
only include discovery in the sense presented above, but also the contracting of relevant
concrete services.

2.1.4 Assumptions

In order to define a model for service discovery and contracting, we need to make clear
our assumptions on the domain. Such assumptions are related below:

• Assumptions on goals:

– Pre-defined, generic and reusable goals will be available to the requester,
defining generic objectives requesters may have.

– Pre-defined goals are described in a formal manner.

– Pre-defined goals can be refined (or parameterized) by the requester to reflect
his concrete needs.

– Requesters will not write from scratch formalized goals but will reuse and re-
fine pre-defined goals i.e. we do not expect requesters to be able to completely
formalize their goals from scratch.

– Requesters have to be able to locate pre-defined goals that are relevant to them
i.e. as requesters are expected to refine pre-defined goals, we assume that there
will be a way for requesters to locate such pre-defined goals.

• Assumptions on abstract service descriptions:

– Abstract service descriptions will be complete but not always correct [Pre04]
i.e. every concrete service that can be provided will be a model of the de-
scription, but there will possibly be concrete services that are models of the
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description but cannot be actually provided. For example, a tourism service
that provides flights within Europe (but not all possible flights) will describe
its abstract service as being able to provide any flight within Europe. How-
ever, there will be flights that are a model of this description i.e. they are
flights within Europe, but that cannot actually be provided by this concrete
provider. This incorrecteness is a consequence of the abstraction necessary to
make descriptions manageable.

– Abstract service descriptions will only include the expected results of the ser-
vice, but not what input is required to achieve them.

– As abstract service descriptions might not be correct, whether a concrete ser-
vice can be actually provided and therefore agreed and contracted will be de-
termined during the contracting phase i.e. during the contracting phase service
providers will only agree and establish contracts for concrete services that they
can actually provide.

– A service provider will describe the services he is able to provide by making
available an abstract service description, called anabstract capability.

• Assumptions on concrete services:

– A service provider will describe the concrete services he can agree on and es-
tablish a contract for by providing acontracting capability. The contracting
capability will also include the description of what conditions have to be ful-
filled for a successful service provision, as well as the relation of the required
input to the results of the service.

• Assumptions on consistency of descriptions:

– The abstract capability might be automatically derived from the contracting
capability, and both must be consistent.

• Assumptions on the contracting phase:

– The requester goal resulting from refining a pre-defined goal will include the
information necessary for contracting, such as the input information the re-
quester can provide to the service. We do not impose that this (possibly big)
set of information has to be listed for every goal, but can be made available
to the discovery process by other means e.g. an additional service (in the
sense of communication means described in Section 2.1.1) that provides the
information that the requester has available and is willing to disclose1.

– A contract will not be agreed if the requester is not able to provide all the
information required by the provider to actually deliver a concrete service.

1As discussed in [OlPL04], this might involve the use of information disclosure policies and a trust
negotiation process.
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– The communication between the requester and provider to establish a con-
tract will be transparent to us i.e. we will not describe and deal with service
choreographies but only with logic predicates that, in practice, will involve
communication with either the requester or the provider.

2.1.5 Conceptual Model

Based on the definition of service chosen, the different levels of abstraction identified, and
the assumptions on the domain given above, we provide a conceptual model for discovery
that includes the reuse of pre-defined goals, the discovery of relevant abstract services and
the contracting of concrete services to fulfill a concrete requester goal. Figure 2.1 depicts
such conceptual model2. In the following, we provide an explanation of the different steps
of the conceptual model.

Goal Discovery. Starting from a user desire (expressed using natural language or any
other means), goal discovery will locate the pre-defined goal that fits the requester desire
from the set of pre-defined goals, resulting on a selected pre-defined goal. Such pre-
defined goal is an abstraction of the requester desire into a generic and reusable goal.

Goal Refinement. The selected pre-defined goal is refined, based on the given requester
desire, in order to actually reflect such desire. This step will result on a formalized re-
quester goal.

Service Discovery. Available services that can, according to their abstract capabilities,
potentially fulfill the requester goal are discovered. As the abstract capability is not guar-
anteed to be correct, we cannot assure at this level that the service will actually fulfill the
requester goal.

Service Contracting. The services discovered based on their abstract capabilities have
an associated contracting capability. This contracting capability will be used in service
contracting to determine if the selected service can actually fulfill the requester goal,
establishing a contract agreement. If this is the case, the result will be a contracted service.

Let us take as an example a requester who wants to find information about flights from
Innsbruck to Madrid on December 21st, 2004. Such requester can express his desire as a
text of the form ”Search information about flights from Innsbruck to Madrid on December
21st, 2004”. This text can be used to perform keyword-based matching of existing pre-
defined goals, such as a pre-defined goal for searching flight information.

2This model is a revision of the model presented in [KLeditors04]
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Figure 2.1: Discovery conceptual model
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Once such formal pre-defined goal has been located, it will be refined to reflect the
concrete origin and destination given by the requester, as well as the date. This refinement
can be done manually (supported by appropriate tools) or automatically from the textual
desire.

If a VTA service is available describing that it can provide flights from any place
in Austria to any other place in Europe (as its abstract capability), this service will be
selected and considered in the contracting phase. Notice that at this level we do not
expect the VTA to accurately describe all the actual flights it can provide information for,
as in general it is not realistic to expect flight information providers to replicate their flight
databases in the service description. They will, instead, provide an abstraction of the kind
of service they can provide.

During the contracting phase, whether the selected service can actually provide the
requested flight information will be checked i.e. whether the selected VTA can provide
information about flights from Innsbruck to Madrid on the given date will be tested. For
that, the contracting capability of the VTA will be used, and such capability will include
logic predicates that will actually query the database of the VTA (or of the aggregated
tourism service providers) to check whether the requested flight information is available.
In addition, and in case the VTA requires extra information to provide its service e.g.
customer details, it will be checked whether the requester can provide such information.

If all the above criteria are fulfilled, the service will be contracted and eventually the
concrete service provided.

2.2 State of the art on Software Component Retrieval
and Web Service Discovery

In this section, we present and analyze the state on the art on service discovery. Given
its strong relation to Web service discovery, we will start by presenting in section 2.2.1
the the work done in the area of software component retrieval. In Section 2.2.2, we will
analyze the work available in automatic Web service discovery.

2.2.1 State of the Art on Software Component Retrieval

During the 90’s, the computer science research community devoted some efforts to im-
prove the state of the art on reuse of software components. The motivation for this work
was to support the reuse of already existing and tested software components as one of the
key factors for successful software engineering projects [SF97].

The efficient reuse of reliable software components providing a given functionality
obviously requires efficient means to locate such components. A manual approach, in
which the software engineer has to browse (possibly a big number of) libraries of compo-
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nents to locate a suitable one, clearly does not scale. For this reason, the research efforts
were oriented towards the formal specification of the components functionality and the
formal description of the sought component in order to enable semi-automatic retrieval of
appropriate components.

It can be seen that the problem of semi-automatically retrieving software components
is highly similar to the automatic location of services. The concrete relation to the problem
of automatically locating Web services will be discussed at the end of this section.

In the following, we briefly describe the work done in the area of software component
retrieval to specify the functionality of software components and to formally define the
different notions of match that can be of interest.

Specification Matching

Specification matching has been proposed in several works e.g. [JC92, JC93, JC95,
RW91, ZW95] to evaluate how software components relate to a given query i.e. user’s
need. Specification matching relies on the axiomatization of software components and
user queries. A formal (logical) relation is then defined and whether a given query and
component satisfy this relation is checked. Such a relation must capture the notion of
reusability i.e. if the relation holds for formally specified components and queries, it
means that the component can be reused to solve the problem captured by the query.

At the formalization level, the following questions must be answered: a) How the
components and queries are specified, and b) What is the relation to be checked for deter-
mining reusability.

As related in [CC00], a widely used axiomatization of components and queries is
based on [Hoa69]. [Hoa69] provides a logical basis to prove some properties of a pro-
gram, including determining whether a given program provides a certain functionality.
The intended functionality of a program (C) is specified in terms of initial preconditions
(Cpre) i.e. assertions about certain properties of the values taken by the relevant variables
before the program initiation and the relations among them, and postconditions (Cpost) i.e.
the same kind of assertions as for preconditions but about the values after execution. The
relation between the preconditions and postconditions of a given program is formulated
as follows:

Cpre{Q}Cpost

interpreted as ”If the assertionCpre is true before initiation of a program Q, then the
assertionCpost will be true on its completion.” [Hoa69]

Based on this type of axiomatization, most of the work done in specification matching
specifies a componentC as a 2-tuple of predicates (Cpre, Cpost), beingCpre the precon-
dition of the component andCpost its postcondition. Similarly, a query Q is specified as
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(Qpre, Qpost). Preconditions of the component are logical formulas that must hold prior
to the use of the component3, and postconditions are logical formulas that are guaranteed
to be true after the execution of the component. The preconditions and postconditions
of the query give a characterization of the desired component in terms of its precondi-
tions and postconditions. Query preconditions can be interpreted as a description of the
initial states for which the sought component must guarantee the fulfillment of the query
postconditions.

[ZW97] explores different notions of match for retrieving formally-specified software
components. A software componentC is described in terms of their signature,Csig, and
their behaviour specification,Cspec. The former describes statically checkable informa-
tion (component’s type information), while the latter describes the component dynamic
behaviour i.e. functionality. Although both aspects have to be matched for retrieving a
software component given a query, here we are interested in the specification and match-
ing of the component functionality.Cspec is, as explained above, described by the pre-
conditions and postconditions of the component. Similarly, a queryQ is described by its
preconditions and postconditions. All the preconditions and postconditions are first-order
formulas.

Match Definition
1.Mexact−pre/post (Qpre ↔ Cpre) ∧ (Cpost ↔ Qpost)
2.Mplug−in (Qpre → Cpre) ∧ (Cpost → Qpost)
3.Mplug−in−post Cpost → Qpost

4.Mguarded−plug−in (Qpre → Cpre) ∧ ((Cpre ∧ Cpost) → Qpost)
5.Mrelaxed−plug−in (Qpre → Cpre) ∧ ((Qpre ∧ Cpost) → Qpost)
6.Mguarded−post (Cpre ∧ Cpost) → Qpost

7.Mpartial−comp Cpre ∧Qpre ∧ Cpost → Qpost

8.Mexact−pred (Cpre → Cpost) ↔ (Qpre → Qpost)
9.Mgen−pred (Cpre → Cpost) → (Qpre → Qpost)
10.Mspe−pred (Qpre → Qpost) → (Cpre → Cpost)
11.Mexact−pred−2 (Cpre ∧ Cpost) ↔ (Qpre ∧Qpost)
12.Mgen−pred−2 (Cpre ∧ Cpost) → (Qpre ∧Qpost)
13.Mguarded−gen−pred (Qpre → Cpre)∧((Cpre → Cpost) → (Qpre → Qpost))

Table 2.1: Summary of specification matches

[ZW97] identifiesexact matchbased on the pre and postconditions ofQ andC (1st
row in table 2.1), which corresponds to the case in whichC and the desired component
specified inQ are equivalent. As the equivalence between specifications is a strong re-
quirement and in many cases a more general or more specific component can be useful,
various relaxed notions of match are defined.

In plug-in match (2nd row in table 2.1),Q is matched by components with weaker
preconditions and stronger postconditions i.e. the component postconditions imply (and,
therefore, satisfy) the query postconditions, and the preconditions of the query imply the
preconditions of the component. Intuitively,C can be used for obtaining the behaviour

3If the preconditions do not hold, the behaviour of the component is undefined.
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specified inQ, but not the other way around. Plug-in match is also used in [SF97, PA97].
[JC93, JC94] use a subsumption test which is equivalent to plug-in match, and [LW94,
Ame91] uses plug-in match for defining a notion of subtyping.

Plug-in post match (3rd row in table 2.1) does not consider the preconditions for
determining a match. This notion correspond to the cases in which we only care about the
results of the component execution. The preconditions of the component can be assured at
a later stage by the user of the component. In this case, the relation that must hold between
C andQ is that the postcondition ofC must imply i.e. guarantee the postcondition ofQ.
This notion is also considered in [PA97].

The guarded plug-in match (4th row in table 2.1) restricts the plug-in match by
introducing a guard stating that the component postconditions is required to imply the
query postconditions only in cases where the component preconditions are satisfied. For
an example of a case where this assumption is necessary, we refer the reader to [ZW97].
The same notion is used in [PA97], but calledweak plug-in.

Guarded post match(6th row in table 2.1) relates to guarded plug-in match in the
same way plug-in post match relates to plug-in match i.e. it is the result of dropping
the precondition relation checking from guarded plug-in match. [SF97] also describes
guarded post match. This notion is equivalent toweak postmatch in [PA97].

In exact predicate match(8th row in table 2.1), the relation between the precondi-
tions and postconditions of the component must be equivalent to the relation between
pre and postconditions of the query, that is, the functions (relation between pre and
postconditions) specified in the query and in the component must be equivalent. As
stated in [ZW97],Mexact−pre/post → Mexact−pred, and they are equivalent in cases where
Cpre = Qpre = true i.e. exact predicate match is less strict than exact match.

Generalized match(9th row in table 2.1), corresponds to the intuition that the de-
scription of components will be complete, while the description of the queries can be kept
simple. This notion of match retrieves the components providing a functionality more
general than the one specified in the query. Generalized match is less strict than plug-in
match i.e.Mplug−in → Mgen−pred.

Alternative versions of exact predicate match and generalized match can be obtained
by replacing the implication relation between the preconditions and postconditions in
both the component and the query by a conjunction (11th and 12th rows in table 2.1,
respectively).

Guarded generalized predicate match(13th row in table 2.1) is derived from gen-
eralized match by restricting the constraints of generalized match to the domain defined
by the preconditions (Qpre) of the query.

Specialized match(10th row in table 2.1) retrieves components whose functionality
is more specialized than the requested functionality. The rationale behind this notion
of match is that a function whose specification is weaker than the query might still be
interesting as a base to implement the desired functionality [ZW97].
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[SF97] introduces thepartial compatibility match (7th row in table 2.1). Using this
notion of match, a component is matched if it computes the required results on a common
domain. Such domain is defined by the conjunction of the preconditions of the query and
the preconditions of the component. If this conjunction is not satisfiable i.e. the domains
of the query and the component are disjoint, the formula will also be true. However, it is
expected that disjoint domains will be rejected by signature matching.

Relaxed plug-in (5th row in table 2.1), also calledsatisfies matchin [PA97], is in-
troduced in [SF97]. Here, the guard for the relation between the component and query
postconditions is the query precondition i.e. the checking of the relation is restricted to the
domain given by the query preconditions. Notice that this notion of match is implied by
the guarded plug-in match because of the first implication in the formula for relaxed plug-
in i.e. the components retrieved under guarded plug-in are a subset of the ones retrieved
under relaxed plug-in.

Table 2.1, adapted and extended from [CC00], provides a summary of different no-
tions of match presented in [JC95, ZW95, PA97, SF97, Ame91, LW94, DL96].

Figure 2.2 shows the relation between the notions of match presented above. An arrow
from one notion to another means that the first one is stronger i.e. the first one implies
the second one. It is an extension of Figure 4 of [ZW97] with the notions of match not
considered in that paper.

Chen and Cheng [CC00] discuss a measure of reusability and classify some of the
afore-mentioned notions of match according to such measure. Given any component
C and queryQ, they consider a matchM(C, Q) to be reuse-ensuringiff the following
relation holds:

M(C, Q) ∧ {Cpre}C{Cpost} → {Qpre}C{Qpost}

where{p}C{q} means that ifp holds at the beginning ofC ’s execution,C ’s execu-
tion will terminate withq satisfied. The intuitive meaning of the formula above is that,
if a component is matched, and it has preconditionsCpre and postconditionsCpost, the
postconditions of the query will be satisfied by the execution ofC provided that the pre-
conditions of the query hold before its execution.

Under this definition, it is shown that exact-pre/post, plug-in, exact-pred-2, relaxed
plug-in, and guarded-gen-pred matches are reuse-ensuring matches.

Relation to Semantic Web Service discovery

As has been presented in Section 1.1, Web services are described using a similar approach
to Hoare’s axiomatization of software components. In fact, the only difference that arise
in the description of Web services is that, due to their range of application, they can in
general have effects on the real world. Therefore, it is important to separate (information)
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Figure 2.2: Lattice of Function Specification Matches
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postconditions from real-world effects, and (information) preconditions from real-world
assumptions, as different notions of match can be applied to these. Queries in software
component retrieval are described in a similar way to Web service requests or goals.

Some of the notions of match discussed in the context of software component retrieval
have been used in semantic Web service discovery, as will be seen in Section 2.2.2, where
notions such as exact or plug-in match are applied to the automatic location of Web ser-
vices. However, and as have been presented in Section 2.1.5, a conceptual model for Web
service discovery introduces different steps where some notions of match investigated in
software component retrieval are interesting while others do not have practical interest.

Goal Discovery. In goal discovery we do not expect the requester to directly provide a
formal specification of the requester desires. In fact, if it is given, we will skip the goal
discovery and goal refinement steps and proceed with the formalized goal to the service
discovery step. Therefore, the notions of match introduced in this section are not applied.

Service Discovery. During service discovery we will only work with abstract service
descriptions, which only contain a description of the results that can be provided by the
service. Therefore, we will only consider postconditions and effects at this step, and only
notions of match considering the set of results that can be provided by the service wrt.
the set of results requested will be of interest. Theplug-in-postnotion of match presented
before is the only of this kind and, as will be seen in Section 2.4.2, other notions based
on some of the notions investigated in software component retrieval where precondition
checking is dropped will be necessary.

Service Contracting. As explained in Section 2.1.5, service contracting involves the
contracting, among the services selected during discovery, of a concrete service that ful-
fills the requester goal. In this case, the contracting capability of a service will describe
the actual relation between the inputs and the results of the service, which is the way
software components were commonly axiomatized. In addition, the requester goal will
also include a description of the information that can be provided, which can be seen as
the query preconditions in software component retrieval. The notions of match that will
be presented in the following sections are based some of the notions investigated in the
software component retrieval area.

Although many of the notions of match presented in this section cannot be directly
used in our conceptual model for service discovery and contracting, it will be seen in
the remainder of this chapter that most of the notions of match that we will used in our
conceptual model have their roots on the work done in software component retrieval, with
the adaptations necessary for the Web services domain. Particularly, while the notions of
match discussed in this section focus on locating a software component that can be used
in the place where the software component represented by the query could, in service
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discovery we focus on what results can be delivered by the service. For example, the plug-
in notion of match introduced in software component retrieval requires the component
postconditions to be more specific than the query postconditions, while in our case we
will reverse this relation, as we want a guarantee that the service will deliver what was
requested in the goal i.e. every result described by the goal postcondition has to be a result
of the service and, therefore, the goal postcondition has to imply the service postcondition.

2.2.2 State of the art on Web Service Discovery

In this section, we will discuss the work done in automatic Web service discovery based
on the semantic description of the Web service functionality and the user requests. Other
Web service discovery means that offer a low level of automation, such as the use of
UDDI [BCE+02] registries to locate Web services, will not be discussed.

Discovery in OWL-S

[PKPS02] proposes a DAML-S-based4 approach to the semantic matching between ser-
vice advertisements and requests.

In [PKPS02], only the information transformation aspect of the service is considered
i.e. only inputs and outputs are taken into account in the discovery process. A matching
of a service profile and a request goal (also modelled as a profile) occurs when all the
outputs of the goal are matched by (possibly a subset of) the outputs of the capability,
and all the inputs of the capability are matched by (possibly a subset of) the inputs of the
goal. Given a request, the matching algorithm performs this checking for all the available
services. For each service, all the outputs of the request are matched against the outputs
of the capability and, symmetrically, all the inputs of the capability are matched against
the inputs of the request.

The match of both inputs and outputs relies on subsumption reasoning in DAML+OIL.
Different degrees of match are determined for the checking of inputs and outputs depend-
ing on the subsumption relationship that holds between the pairs of outputs (resp. inputs),
which in turn result on a ranking of the matching services. The preferred matches are
exact matches, which correspond to the cases where the outputs (resp. inputs5) being
matched are equivalent concepts6 or the output from the request is a direct subclass of the
output of the service7. The second best cases areplug in matches, where the output of
the service subsumes the output of the request8. The third case, considered worse than the

4Unless explicitly stated, we will use the terms DAML-S and OWL-S interchangeably.
5Note that the inverse subsumption relation wrt. the one tested for outputs is used for inputs in all the

notions of match applied.
6Exact-pre/post match in Section 2.2.1.
7Restricted case of plug-in match in Section 2.2.1.
8Similar to specialized match in Section 2.2.1.
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previous ones, is thesubsumes match, where the output of the request subsumes the out-
put of the service9. The worst case is where no subsumption relation exists between the
outputs, which corresponds to afail. Different score is given to different types of matches
and, taking the worst case match, the matching services are ranked (based on the output
match scores, the input match scores are only considered for equally scoring services).

The approach in [PKPS02] presents some limitations and problems. First, every re-
quester output have to be checked against all the outputs of every single service, so the
number of necessary output subsumption tests isn*m*s, wheren is the number of out-
puts in the request,m is the number of outputs in the capability, ands is the number of
available services. The same applies for input checking. Second, only inputs and outputs
are considered, thus only modelling the communicative aspects i.e. information flow of
the service, excluding the effects on the real world. Third, some limitations are derived
from the use of DAML+OIL10. DAML+OIL does not offer a formalism to express rules.
Although, as described in section 1.1.1, the last OWL-S 1.1 introduces the use of DRS,
KIF, or SWRL to express rules, the version of DAML-S used in [PKPS02] does not em-
ploy them. Because of this lack of rules, how the outputs of the service relate to its inputs
is not defined, and the same applies for effects and assumptions. Therefore the function-
ality of the service is not completely captured. From the conceptual point of view, this
approach does not differentiate discovery and contracting, and does not provide a fully
usable mechanism for any of them. If regarded as service discovery, it introduces the
consideration of inputs, which is not our intention. If regarded as service contracting, it
does not model the relation between inputs and results and, therefore, cannot lead to the
contracting of a concrete service whose usability is guaranteed.

In [LH03], also DAML-S and DL subsumption reasoning is used to perform discov-
ery. In this approach, the whole profile (including inputs, outputs, preconditions and
effects) is defined as a subconcept of the DAML-S service profile, and then classified in
the subsumption hierarchy defined by the advertised service profiles. Also the kind of
matches considered are different from [PKPS02]. Exact match is restricted to equivalent
concepts11, the same subsumption relation is applied to inputs and outputs for plug-in and
subsumes matches12, and intersection match is added. Intersection matches correspond to
the cases where the intersection of the request and the service profile is satisfiable13. A
match occurs whenever the requester and the service profile are compatible i.e. there is
an intersection match, as the other types of match are special cases of this one.

First, the subsumption relation between the requester and the service profile is com-
puted using RACER14. If no subsumption relationship can be established, then the sat-
isfiability of the intersection of these concepts is checked. For that, the negated request

9Plug-in match in Section 2.2.1.
10The limitations also apply to OWL if OWL-S is used.
11Exact-pre/post in Section 2.2.1.
12Variant of plug-in and specialized matches in Section 2.2.1, respectively
13That is, there exists an assignment of variables for whichCpre ∧ Cpost ∧Qpre ∧Qpost holds.
14http://www.sts.tu-harburg.de/ r.f.moeller/racer/.
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is classified in the service profiles hierarchy. Profiles that subsumes but are not equal to
the negated request, are considered to be intersection matches. Profiles subsumed by the
negated request are considered to be failed matches.

[LH03] offers some experimental results with arbitrarily generated service profiles.
It is shown that the computationally hard task is to classify new service profiles into
the profile hierarchy. Once the profiles subsumption hierarchy is computed, matching a
request is done in less than 20 milliseconds.

However, [LH03] does not solve some of the limitations encountered in [PKPS02]:
the lack of rules for DAML+OIL results on an incomplete description of the service func-
tionality and, therefore, it cannot be used for service contracting. This approach can be
used for service discovery if the inputs and preconditions are removed, but not for service
contracting.

The work in [BHRT03] also relies on the use of DAML-S as the ontology for service
descriptions. A subset of DAML+OIL for which the difference operator15 is semantically
unique16 is used to express the service profile inputs and outputs (preconditions and ef-
fects are not considered). However, service discovery is not formulated as a subsumption
reasoning problem but as a rewriting problem i.e. how to rewrite the request in terms of
available services. Given a service request and a service profile, a combination of Web
services that satisfy as much as possible the outputs requested and that require as few as
possible inputs not provided in the request are selected. Such combination is the so-called
best profile cover of the request using the set of available (advertised) services.

Using the difference operator, the services whose outputs satisfy at least one of the
outputs in the request i.e. the difference between the outputs of the request and the outputs
of the service is not the whole set of outputs in the request, are identified. The same
operation (using the difference operator in reverse order) is performed for the inputs. The
set of services that have the smallest set of outputs in the request and inputs of the service
not satisfied is selected. In this way, the best combination of services that provide the
higher number of requester outputs and requires less inputs not given in the request is
selected. The problem of determining such set of services is reduced to the problem of
computing minimal traversals with minimal costs in an hypergraph.

This approach has the advantage of enhancing the discovery process using a simple
type of service composition. In addition, incomplete matches can be found and informa-
tion about what outputs or inputs are missing for a complete match is given, serving as an
explanation that the requester can use to refine his request. However, the problem of the
lack of rules for DAML+OIL and the related problems to capture the service functional-
ity remain. Furthermore, the expressivity of the language is reduced to subsets for which
the difference operator is semantically unique. Some experimental results are given for
different sizes of the problem and different variants of the algorithm. The results do not
clearly show the efficiency of the algorithm, and unacceptable response times are found

15Given concepts C and D, C-D is the information expressed in C and not in D.
16Please refer to [Tee94] for details.
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for certain combinations of experiments data and algorithm variant. This approach, as the
ones presented before, can be (if adapted) used for service discovery, but not for service
contracting.

In general, all the OWL-S-based works miss the relation between input and output
and effects, thus not capturing the functionality of Web Services. Although the use of
SWRL, DRS and KIF has been introduced in the latest release of OWL-S, there is no work
available so far in exploiting conditions and the relation between IOPEs for discovery. As
a consequence, these approaches are not directly suitable for service contracting, and
should be adapted for service discovery in our conceptual model.

Discovery in METEOR-S

As presented in Section 1.1.3, METEOR-S semantically annotates WSDL operations,
inputs and outputs, and adds preconditions and effects to the operations description, using
the extensibility elements of WSDL. The matching process uses subsumption reasoning
to match operations, inputs, outputs, preconditions and effects of the annotated services
against the ones of the template describing the request.

The annotation of registries and its specialization in domains helps to deal with a po-
tentially huge number of published services. However, the METEOR-S approach to ser-
vice description and discovery presents some limitations. Similarly to previous releases
of OWL-S, the METEOR-S annotation does not relate inputs, outputs, preconditions and
effects, therefore providing a not accurate description of the service functionality. Fur-
thermore, the METEOR-S description is too WSDL centered, while approaches such as
OWL-S and WSMO take a more flexible approach, not imposing any language for the
grounding of Semantic Web Services.

It must be noticed that discovery in METEOR-S uses request templates similar to
our pre-defined goals, that are to be parameterized by the requester. However, and as
happened with the OWL-based approaches, service contracting is not addressed.

Discovery in LARKS

[SWKL02] defines the so-called Language for Advertisement and Request for Knowl-
edge Sharing (LARKS), used to describe agent17 capabilities. A capability specification
in LARKS defines the context of the specification, the input and output variables, the con-
straints on these variables, the ontological descriptions used, and a textual description. As
in OWL-S, a capability specification can be treated as a request or as an advertisement.
Given a request and an advertisement, the matchmaking process can apply five differ-
ent filters, namely [SWKL02]: 1) Context matching, 2) Profile comparison, 3) Similarity

17Although LARKS is a language for describing agent capabilities, it can equally be applied to Web
services.
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matching, 4) Signature matching, and 5) Constraint matching. The combination of filters
that will be actually applied can be selected by the requester. In this way, the trade-off
between accuracy and efficiency of the discovery can be selected.

The context in LARKS is defined as a set of keywords that describe the domain of
the agent. Context matching computes the distance [Ros94] between the keywords of
the request and the advertisement, and the subsumption relation between the concepts
corresponding to the pairs of most similar words. The computed similarity, using a given
threshold, will determine if there exists a match.

Profile comparison treats the request and advertisements as documents and determines
the degree of similarity between them based on frequency and relevance of words in a
document. If the similarity exceeds a given threshold, there is a match.

The profile comparison does not consider the structure of the specification, while sim-
ilarity matching does. Such similarity is computed combining distance values for the
pairs of input and output declarations, including their constraints. Again, if the computed
similarity exceeds a threshold, the result will be a match.

Signature matching check if the input and output declarations of the requestR and
the advertisementA match. This is done using subtype inference rules and subsumption
reasoning.

Constraint matching uses the notion of plug-in match. The logical implications are
checked using subsumption reasoning for Horn clauses. Constraint matching uses the
signature filter and, therefore, these two filters work together.

The application of different filters for discovery in LARKS has the advantage of cus-
tomizing the trade-off between accuracy and efficiency by deciding the filters that will be
applied. In addition, the input and output constraints can include the relation between the
input and the output, capturing more accurately the functionality of the agent. However,
the changes in the information space and in the state of the world are not differentiated,
as effects of the action of an agent are implicitly encoded in the output constraints. In
addition, discovery in LARKS does not differentiate between service discovery and con-
tracting.

Other approaches

In [GCTB01], DAML+OIL subsumption reasoning is the central reasoning mechanism
for discovery. It describes Web services as the boolean combination of a set of restrictions
over datatype and abstract properties of the service. The advertised services are classified
in a subsumption hierarchy, and different kind of matches are identified for a given request
Sand a service descriptions hierarchy, namely: equivalent concepts toS, sub-concepts of
S, super-concepts ofS that are subsumed by the general service description concept, and
sub-concepts of any direct super-concept ofSwhose intersection withS is satisfiable. As
for previous DAML+OIL-based approaches, the description of the service functionalities
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is not complete, and therefore contracting cannot be achieved. However, as the approach
in [LH03], is interesting for service discovery, as it relies on the classification of the Web
services in a T-Box, and does not require the checking of each service separately against
the given goal.

In [ZK04], an F-Logic-based approach for the description of Web Services is pre-
sented. The service concept describes the service in terms of non-functional properties
such as provider, location, service type, etc., its behaviour (inputs, outputs, and the rela-
tion between them), and its operations (including the inputs and outputs for each oper-
ation). A requester expresses its goal as a query in terms of the service non-functional
properties, behaviour, and operations. However, the service description cannot model
world-altering services i.e. services with effects on the world. Furthermore, as it uses
simple query answering, the description of the services is limited to ground facts, which
considerably reduces the expressivity allowed for describing the service functionality and
does not allow the description of abstract capabilities.

2.3 Description of Web Services and Goals

As presented in Section 2.2.1, software components and queries were described using
Hoare’s axiomatization [Hoa69]. The intended functionality of a program (C) is specified
in terms of initial preconditions (Cpre) and postconditions (Cpost). A query Q is similarly
specified as (Qpre, Qpost).

Semantic descriptions of Web Services proposed by OWL-S, WSMO, METEOR-S
and IRS-III follow a similar approach, but they also differentiate between real-world ef-
fects and information postconditions, and between real-world assumptions and informa-
tion preconditions.

In the following, we will assume Web service capabilities described in terms of their
preconditions, assumptions, postconditions and effects, using the WSMO terminology18

[RLeditors04]. We will denote these byWpre, Wass, Wpost, andWeff , respectively.Wpre

can be regarded as OWL-S and METEOR-S inputs,Wass as preconditions,Wpost as out-
puts, andWeff as effects. From these, only postconditions and effects will be part of
abstract capabilities of services. Notice that WSMO does not allow multiple capabilities
and does not differentiate between abstract and contracting capabilities. However, and as
related in our assumptions (see Section 2.1.5), the abstract capability might be automat-
ically extracted from the contracting capability, as the former is precisely an abstraction
of the latter and they must be consistent.

Regarding goals, we will also follow the WSMO terminology and denote their post-
conditions and effects byGpost andGeff , respectively, interpreted as the state of the in-
formation and state of the world that is desired after the service execution. These can
be regarded as OWL-S and METEOR-S outputs and effects of the request. However, it

18Such terminology is the same in the IRS-III approach
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is important the conceptual differentiation of the requester point of view (goals) and the
service point of view (capabilities), which is missing in OWL-S. With respect to WSMO,
we introduce a new elementGinput, which describes the input information that can be
provided by the requester and that is (directly or indirectly) part of the goal.

It can be seen that, even though we will adopt a WSMO terminology, the approaches
that will be discussed in next sections are neutral with respect to the proposal for describ-
ing Web services. The basic requirement is that the descriptions capture the aspects of
the Web service functionality and the goal related before. However, different approaches
to Web service discovery will require different expressiveness for the description of such
aspects, which might make WSMO more suitable than other approaches specially when
the relation between inputs and postconditions and effects have to be described.

As shown in [LPL+], the differences between the characterization of service capabili-
ties in OWL-S and WSMO are not many, being the most relevant differences the language
used to express them and the separation of goals and service capabilities in WSMO. A for-
mal mapping between OWL-S and WSMO is being provided in [Leditors04a], which can
be used in the future to translate OWL-S descriptions into WSMO descriptions. If it is
shown that the mapping does not imply a loss of relevant information, this will confirm
that our discovery proposal is also applicable to OWL-S services.

In the following, we will go into the details of the different approaches to Web service
discovery, starting with keyword-based discovery and ending with discovery based on
precise descriptions of the Web Service functionality.

2.4 Automatic Web Service Discovery

In this section, we briefly discuss the use of keyword-based goal discovery, and we present
a set-theoretic approach to Web service discovery. The formalization of this approach first
(unrestrictedly) using first-order logic and later restricting the language expressiveness to
interesting DL languages will be discussed.

As will be discussed in Section 2.6, the single approaches can require different tech-
niques for mediation. The most important technique for us certainly is ontology merging
and alignment. However, the mediation itself is outside the scope of this deliverable.
Therefore, we will assume in the following that mediation is available and that it has
already been performed.

2.4.1 Keyword-based Discovery

Keyword-based discovery is a basic ingredient in a complete framework for semantic Web
service discovery. By performing a keyword-based search, the huge amount of available
services can be filtered or ranked efficiently. The focus of service discovery is not on
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keyword-based discovery but we consider this kind of discovery a useful technique in a
complete semantic Web service discovery framework.

In a typical keyword-based scenario a keyword-based query engine is used to discover
services. A query, which is basically a set of keywords, is provided as input to the query
engine. The query engine match the keywords from the query against the keywords used
to describe the service. A query with the same meaning can be formulated by using a syn-
onyms dictionary, like WordNet19 [Fel98]. The semantic of the query remains the same
but because of the different keywords used, synonyms of previous ones, more services that
possible fulfill the user request are found. Moreover, by using dictionaries like WordNet,
as well as natural language processing techniques, an increase of the semantic relevance
of search results (wrt. to the search request) can be achieved [RS95]; nonetheless, such
techniques are inherently restricted by the ambiguity of natural language and the lack of
semantic understanding of natural language descriptions by algorithmic systems.

The services descriptions are provided in terms of advertisements along with the key-
words for categorization. That means that either keywords have to be extracted from
the abstract capabilities and goal descriptions mentioned in the previous section, or such
descriptions have to be extended to include relevant keywords.

While keyword-based discovery is an interesting technique that has to be kept in or-
der to deal with already existing WSDL-based services, it can be better exploited for goal
discovery. Given that we do not want to pose unrealistic requirements on the knowledge
representation skills of the requester, the most likely way a requester will express his de-
sire is by providing a textual description of it. Keyword-based match can be used to locate
relevant pre-defined goals that also provide a formalization of the requester desire i.e. a
requester goal. Once such pre-defined goal is located, appropriate tools will automatically
refine or parameterize the pre-defined goal to actually reflect his desire, or will support
him on manually refining such goal.

Pre-defined goals can of course also be browsed, but if the number of those is big,
keyword-based match is a useful technique for the purpose of locating the ones relevant
for the requester.

In the following, we will assume that a requester goal has already being generated
from a pre-defined goal, having a formalization of the requester goal which includes the
input information he can provide for the service provision.

2.4.2 Semantic Characterization of Results

Although keyword-based search is a widely used technique for information retrieval, it
does not use explicit, well-defined semantics. The keywords used to retrieve relevant
information do not have an explicit formalization and, therefore, do not allow inferencing
to improve the search results.

19The WordNet homepage: http://www.cogsci.princeton.edu/˜wn/
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For these reasons, as a second approach we consider the use of controlled vocabular-
ies with explicit, formal semantics. Ontologies are well-suited and prominent conceptual
means for this purpose. They provide an explicit and shared terminology, explicate in-
terdependencies between single concepts and, thus, are well-suited for the description of
abstract capabilities and requester goals. Moreover, ontologies can be formalized in logics
which enables the use of inference services for exploiting knowledge about the problem
domain during the discovery process.

In this section we present a formal modelling approach for Web services and goals
which is based on set theory and exploits ontologies as a formal, machine-processable
representation of domain knowledge. We discuss service discovery based on this ap-
proach for simple semantic descriptions and how to implement such set-based model in
the formal framework of logic.

The framework that we present in this section for Web service discovery based on
simple semantic annotations is in fact similar to a model that has recently been proposed
in [GMP04] for discovery in an e-Business setting. In some respects our approach is a
generalization of the model discussed there.

An example. We will illustrate our approach with simple examples in the VTA context:
we model some requester goals and Web service capabilities related to information about
flights and train connections. For the sake of simplicity, we will consider in the following
only postconditions (outputs) of a service and do not treat effects explicitly. Although
they are conceptually different and requesters might want to apply different notions of
match to them, our discussion can be equally applied to both.

The informal description of the requester goals is the following:

G1: I want to know about all flights from any place in Ireland to any place in Austria.

G2: I want to know about some flights from any place in Ireland to any place in Ireland.

G3: I want to know about all flights from Galway (Ireland) to Dublin (Ireland).

G4: I want to know about some flights from Innsbruck (Austria) to some place in Ireland
(the client does not necessarily care which one).

G5: I want to know about some train connections from Galway (Ireland) to Dublin (Ire-
land).

Let us further assume four available Web servicesW1, . . . ,W4 exposing the following
(informal) abstract capabilities:

W1 offers information about all flights from any place in Europe to any place in Europe.

KWEB/2005/D2.4.2/v1.1 January 29, 2005 37



2. SEMANTICS FOR WEB SERVICE DISCOVERY

W2 offers information about flights from all places in Ireland to all other places in
Ireland, but not necessarily information about all such flights.

W3 offers information about all flights from all places in Ireland to Innsbruck (Austria).

W4 offers information about all train connections from Galway (Ireland) to Dublin (Ire-
land).

A set-based Modelling Approach

Frame-based or object-oriented modelling techniques have become popular approaches
to system and domain modelling in both industry and academia. One main characteristic
of these approaches is that the problem domain (or theuniverse) is understood as a set
of objects and single objects can be grouped together into sets (orclasses). Each class
captures common (syntactic and semantic) features of their elements. Features can be
inherited between classes by defining class hierarchies. This way, a problem domain can
be structured as classes of objects and is basically understood as a collection of classes (or
sets of things). In particular, ontologies are a popular knowledge-representation technique
which usually exploit the very same modelling paradigm.

In such modelling approaches the main semantic properties that one is interested in
are certain relationships between such sets of objects of the universe. Establishing and
checking such relationships is the main reasoning task which allows agents to exploit
knowledge formalized in the domain model (or ontology). From a knowledge representa-
tion perspective, this is a very natural and simple modelling approach for human beings.

Modelling of Web services and Goals. The provision of a service results in (wrt. a set
of input values provided by the client) certain information given to the requester (output)
and the achievement of certain changes in the state of the world. Hence, an abstract
service capability can be described in terms of the results that can potentially be delivered
by the service.

Goals describe the information the client wants to receive as a result of a service
provision (outputs), as well as the effects on the state of the world that the client intends
to achieve. This desire can be represented as sets of elements which are relevant to the
client as the outputs and the effects of a service execution.

According to this view, Web services and goals are represented assets of objects. The
descriptions of these sets refer to ontologies that capture general knowledge about the
problem domains under consideration.

An important observation in our approach is that the description of a set of objects
for representing a goal or a Web service actually can be interpreted in different ways and,
thus, the description by means of a set is not semantically unique: A modeler might want
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to express that eitherall of the elements that are contained in the set are requested (in
case of a goal description) or can be delivered (in case of a Web service description),
or that onlysomeof these elements are requested (or can be delivered). A modeler has
some specific intuition in mind when specifying such set of relevant objects for a goal
or Web service description and this intention essentially determines whether we consider
two descriptions to match or not. Thus, these intuition should be stated explicitly in the
descriptions of requested goals and abstract services.

If we take as an example the goalG4 and the serviceW1, the relevant objects they
describe are:

Goal / Web service SetR of relevant Objects Intention ofR

G4

{f |f is a flight starting at Inns-
bruck in Austria and ending at
any cityc located in Ireland}

existential (∃)

W1

{f |f is a flight starting at citys
and ending at citye, s any city
in Europe,e any city in Europe
}

universal (∀)

Semantic Matching. The semantics of a goal or an abstract service descriptionD is
represented by a set of objectsRD ⊆ U (in a common universeU ) which represent the
set of relevant objectsfor the description as well as an explicit specification about the
corresponding intentionID ∈ {∀,∃} of the set.

In order to consider a goalG and a Web serviceW to match on a semantic level, the
setsRG andRW describing these elements have to be interrelated somehow; precisely
spoken, we expect that some set-theoretic relationship betweenRG andRW has to exist.
The most basic set-theoretic relationships that one might consider are the following:

• Set equality: RG = RW

• Goal description subset of Web service description: RG ⊆ RW

• Web service description subset of goal description: RW ⊆ RG

• Common element of goal and Web service description: RG ∩RW 6= ∅

• No common element of goal and Web service description: RG ∩RW = ∅

KWEB/2005/D2.4.2/v1.1 January 29, 2005 39



2. SEMANTICS FOR WEB SERVICE DISCOVERY

These set-theoretic relationships provide the basic means for formalizing ourintuitive
understanding of a matchbetween goals and Web services in the real-world. For this
reason, they have been considered to some extent already in the literature, for instance
in [LH03] or [PKPS02] in the context of service matchmaking based on Description
Logics, as presented in Section 2.2.2.

On the other hand, we have to keep in mind that in our model these sets actually only
captureone part of the semanticsof goals and service description, namely the relevant
objects for the service requestor or service provider. The intentions of these sets in the se-
mantic description of the goal or Web service are not considered but clearly affect whether
a certain existing set-theoretic relationship betweenRG andRW is considered to actually
correspond to (or formalize) an expected match. In the following we will discuss the
single set-theoretical relations as well as their interpretation in detail:

• Set equality : RG = RW

Here the objects that are advertised by the abstract capability ofW (and which thus
can potentially be delivered by the service) and the set of relevant objects for the
requester (given byG) perfectly match, i.e. they coincide.

However, when considering the possible combinations of intentionsIW andIG for
RW andRG, we get the following intuitive interpretations of the set-theoretic rela-
tionship:

1. The service requester wants to get all the objects that he has specified as rel-
evant (IG = ∀), and the service is able to deliver all the objects specified in
RW (IW = ∀). In this case, the requester needs and the advertised service
capability match perfectly.

2. The service requester wants to get some of the objects that he has specified
as relevant (IG = ∃), whereas the service is able to deliver all the objects
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specified inRW (IW = ∀). In this case, the requester needs and the advertised
service capability also match perfectly. In a sense, the service even over-
satisfies the needs of the requester.

3. The service requester wants to get all the objects that he has specified as rel-
evant (IG = ∀), whereas the service provider claims that the Web service is
able to deliver only some of the objects specified inRW (IW = ∃). In this
case, the requester needs cannot be fully satisfied by the service. At best, the
service can contribute to resolve the desire of the client. Thus, we consider
this case as apartial match.

4. The service requester wants to get some of the objects that he has specified as
relevant (IG = ∃), and the service provider claims that the Web service is able
to deliver only some of the objects specified inRW (IW = ∃). In this case, the
requester needs and the advertised service capability again match. This time,
the Web service does not necessarily over-satisfy the needs of the requester.

In [LH03] the situation whereRG = RW can be established is calledexact match.
However, in our model we do not necessarily consider the goal and the Web service
as perfectly matching, as it will depend on the respective intentions of requester and
provider.

• Goal description subset of Web service description : RG ⊆ RW

Here the relevant objects that are advertised by the service provider form a superset
of the set of relevant objects for the requester as specified in the goalG.

In other words, the service might be able to deliver all relevant objects (depending
on the respective intention ofRW).

When considering the possible combinations of intentionsIW andIG for RW and
RG, we get the following intuitive interpretations of the set-theoretic relationship:

1. For intentionsIG = ∀ andIW = ∀), the requester needs are fully covered by
the Web service and we have a match.
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2. For intentionsIG = ∃ andIW = ∀, the requester needs are fully covered by
the Web service. In a sense, the service even over-satisfies the needs of the
requester, since it actually is able to deliver all relevant objects for the client.

3. For intentionsIG = ∀ andIW = ∃, we cannot determine whether there is
actually a match, since we do not know which elements ofRW are actually
delivered. It might happen that the actually delivered set contains all the el-
ements ofRG (in that case we would have indeed a match), but it also might
happen that it contains none of them. Hence, we consider this apossible-
match. At contracting time, we can find three possibilities: a perfect match, a
partial match, or a non-match.

4. For intentionsIG = ∃ andIW = ∃, it is not guaranteed that a relevant element
for the requester will be delivered by the provider. However, it is also possible
that the service delivers some object of interest for the requester and, therefore,
we consider this situation a possible match. At contracting time, there will be
either a perfect match or a non-match.

In [LH03] the situation whereRG ⊆ RW can be established is calledplug-in match.
However, as can be seen above, it can correspond to a match or to a possible match.

• Web service description subset of goal description : RW ⊆ RG

Here the relevant objects that are advertised by the service provider only form a
subset of the set of relevant objects for the requester as specified in the goalG.

In other words, the service in general is not able to deliver all objects that are rele-
vant objects for the requester.

When considering the possible combinations of intentionsIW andIG for RW and
RG, we have the following situations:

1. For intentionsIG = ∀ and IW = ∀, the requester needs can not be fully
satisfied by the service. At best, the service can contribute to resolve the
desire of the client. Thus, we consider this case apartial match.
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2. For intentionsIG = ∃ andIW = ∀, the requester needs are fully covered by
the Web service and, therefore, we have a match.

3. For intentionsIG = ∀ and IW = ∃, the requester needs can not be fully
satisfied by the service but the service can at least contribute to resolve the
desire of the client. Thus, we consider this case apartial match.

4. For intentionsIG = ∃ andIW = ∃, we have the same situation as in the second
case and we consider this situation a match.

In [LH03] the situation whereRW ⊆ RG can be established is calledsubsumes
match. However, in our model we can have a total or partial match.

• Common element of goal and Web service description : RG ∩RW 6= ∅
Here there the set of relevant objects that are advertised by the service provider and
the set of relevant objects for the requester have a non-empty intersection, i.e. there
is at least an object in the common universe which is declared as relevant by both
parties.

In other words, the service in general is not able to deliver all objects that are rele-
vant objects for the requester, but at least one such element can be delivered.

When considering the possible combinations of intentionsIW andIG for RW and
RG, we distinguish the following cases:

1. For intentionsIG = ∀ and IW = ∀, the requester needs can not be fully
satisfied by the service. At best, the service can (weakly) contribute to resolve
the desire of the client. Thus, we consider this case apartial match.

2. For intentionsIG = ∃ andIW = ∀, the requester needs are fully covered by
the Web service and we have a match.
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3. For intentionsIG = ∀ and IW = ∃, the requester needs are not fully cov-
ered. We are not able to determine whether the service actually can deliver a
common element ofRG andRW . However it might happen that the service
can deliver some requested results, so we consider this situation apossible-
partial-match. At contracting time, we can at best have a partial match, and
in the worst case we will have a non-match.

4. For intentionsIG = ∃ andIW = ∃, we consider the situation a possible match.
At contracting time, we can have a perfect match or a non-match.

In [LH03] the situation whereRG∩RW 6= ∅ can be established is calledintersection
match. However, in our model we can have different flavors of match.

• No common element of goal and Web service description : RG ∩RW = ∅
Here, the objects the Web service description refers to and the objects the requester
goal refers to are disjoint. That means that there is no semantic link between both
descriptions and, therefore, there is no element common to both.

Hence, regardless of the corresponding intuitions forRG andRW , we consider this
situation a non-match.

In [LH03] the situation whereRG∩RW = ∅ can be established is calleddisjointness.

Given some goalG and some Web serviceW, Figure 2.3 summarizes the discussion
and shows under which circumstances the presence of which set-theoretic relationship be-
tweenRG andRW is considered as a match (Match), a partial match (PMatch), a possi-
ble match (poMatch), a possible partial match (ppMatch), or a non-match (NoMatch).
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Intention
of G / W IW = ∀ IW = ∃

IG = ∀

RG = RW Match
RG ⊆ RW Match
RG ⊇ RW PMatch

RG ∩RW 6= ∅ PMatch
RG ∩RW = ∅ NoMatch

RG = RW PMatch
RG ⊆ RW poMatch

RG ⊇ RW PMatch
RG ∩RW 6= ∅ ppMatch

RG ∩RW = ∅ NoMatch

IG = ∃

RG = RW Match
RG ⊆ RW Match
RG ⊇ RW Match

RG ∩RW 6= ∅ Match
RG ∩RW = ∅ NoMatch

RG = RW Match
RG ⊆ RW poMatch

RG ⊇ RW Match
RG ∩RW 6= ∅ poMatch

RG ∩RW = ∅ NoMatch

Figure 2.3: Interaction between set-theoretic criteria, intentions and our intuitive under-
standing of matching.

Inconsistent descriptions for goals and services.We have not considered so far
the possibility of inconsistent descriptions for goals and Web services i.e. descriptions
whereRG or RW are empty. They might occur in cases where there is a mistake in the
description e.g. when the descriptions are quite complex or refer to several complex
ontologies which are not themselves designed by the modeler.

Additionally, when just being ignored they can have an undesired impact on matching
and thus discovery. Consider for example an inconsistent goal description, i.e.RG = ∅. If
we checkG for matching Web services using the Plugin-criterium, i.e.RG ⊆ RW , every
Web service will match. For a user (who is not aware that his description is inconsistent,
since otherwise he would usually not pose the query) the result would seem rather strange
and even incorrect because all checked services actually will be matched.

We envision two ways to deal with inconsistent descriptions:

• Do not allow the advertisement of inconsistent goal and Web service descriptions.
If somebody advertises a goal or service description which denotes an empty set,
then just reject the description before it can take part in any discovery. During
discovery we will work only with consistent descriptions. One has to be careful
when considering the consistency-state of some goal or Web service description:
the consistency does not depend exclusively on the description itself but as well on
all the ontologies that the description refers to. Hence, changes to such ontologies
potentially can lead to inconsistent goal and Web service descriptions. For this
reason, one might have to reconsider the consistency of all depending goal and
Web service descriptions that refer to some ontology when changing the ontology.

• Check for inconsistency of goal and Web service descriptions during discovery and
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return acceptable results.In this case we do not assume the consistency of any
of the descriptions which are involved, but we check the consistency during the
discovery phase and deliver reasonable results or inform the requester or Web ser-
vice provider that something is wrong with the advertised description. Checking
the consistency basically means to determine whether there is some elemente ∈ U
such that it satisfies the properties of the given goal (or Web service) description. It
is not hard to extent the criteria in Figure 2.3 in this way.

We recommend to follow the first option for service descriptions and pre-defined
goals. Although it will require to check the consistency of the service descriptions and
pre-defined goals that are already advertised every time an ontology is changed, this can
be done off-line i.e. separated from the discovery process itself. Therefore, it will not
affect the efficiency of the discovery process.

Intentions. In DL based approaches to service discovery like [PKPS02], [LH03]
the notion of ,,intention” has at present not been reflected explicitly. As we have shown
above, intentions capture an important aspect of goal and Web service descriptions and
determine whether certain set-theoretic criteria represent the expected match results.

The DL approaches available so far can be understood as covering only the lower left
part of the table i.e. the situation where a goal has an existential intention and a Web
service has universal intention, i.e.IG = ∃, IW = ∀.

Figure 2.3 shows in detail how the overall picture is affected when intentions come
into play. In contrast to existing approaches where intentions of goal and Web service
descriptions are fixed (and thus can not be affected by modelers), we believe that it is
useful to give modelers additional freedom for precisely capturing the meaning of their
descriptions.

Moreover, we believe that certain pairs of intentions will occur more often in prac-
tice than others: Web service providers have a strong interest in their Web services being
discovered. If we compare the number of possible matches with a given goal under exis-
tential and universal intentions, it seems most likely that providers tend to use universal
intentions, even if the description does not necessarily model the accurate capability of
the service but only an abstraction of it. However, if a service provider wants to be more
accurate with his Web service description then in many situations he would have to use the
existential intention. Even under existential intention, there are actual matches detectable,
when the requester uses goals with existential intention.

For service requesters (in particular in an e-Business setting) we expect that the exis-
tential intention will suffice in many situations, however the requester has the freedom to
properly express stronger requests than existential goals (using universal intention) if he
needs to get more accurate results.
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The different intentions discussed above will determine what formal relationship be-
tween the requester goal and the abstract capability has to be tested. Figure 2.4 describes
the relationship between goal and abstract service descriptions that has to be checked for
each notion of match.

Intention
of G / W IW = ∀ IW = ∃

IG = ∀

Match RG ⊆ RW
PMatch RG ∩RW 6= ∅
poMatch Not possible
ppMatch Not possible
NoMatch RG ∩RW = ∅

Match Not possible
PMatch RG ⊇ RW
poMatch RG ⊆ RW
ppMatch RG ∩RW 6= ∅
NoMatch RG ∩RW = ∅

IG = ∃

Match RG ∩RW 6= ∅
PMatch Not possible
poMatch Not possible
ppMatch Not possible
NoMatch RG ∩RW = ∅

Match RG ⊇ RW
PMatch Not possible
poMatch RG ∩RW 6= ∅
ppMatch Not possible
NoMatch RG ∩RW = ∅

Figure 2.4: Which formal criteria should be used for checking different degrees of match-
ing.

We can also establish that some notions of match will be preferred. It is clear that a
matchwill be preferred over other notions. We also consider apossible matchpreferable
to apartial match, as the possible match can turn out to be a perfect match at contracting
time, while a partial match will never provide all that is requested. Obviously, apartial
matchwill be preferred over apossible partial match, as the former offers a guarantee
that at list some relevant results will be provided, while the latter can turn out to be a non-
match. We show this ordering below, with¹ meaning that the notion on the left-hand
side is preferred over the one on the right-hand side:

match¹ possible-match¹ partial-match¹ possible-partial-match¹ non-match

For the goal and Web service examples given before, the following matches will be
established:

Match:

G1-W1, G2-W1, G2-W2, G3-W1, G4-W1, G5-W4

Possible-match:

G3-W2

Partial-match:

G1-W3
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Matching scenario. During the discovery process the scenario for matching be-
tween goal and Web service descriptions in general is as follows: A requester specifies
his goal (the refinement of a pre-defined goal) by means of a set of relevant objects and
the respective intention ((RG, IG)), and we check for a match using the respective criteria
for intentions(IG, IW) from Figure 2.4. We will start searching different types of matches
following the ordering given below, starting with the most preferred notion of match. .

The discussion shows that during discovery and matching intentions can be dealt with
on a meta-level (in comparison to the set-theoretic notions), i.e. they do not directly affect
single set-theoretic criteria and the necessary checks. Hence, we just need an implemen-
tation of the different set-theoretic criteria in order to realize a system for matchmaking.
We will discuss a logic based approach as a candidate for the implementation of these
formal criteria in Section 2.4.2.

Realization of the Approach in Logic

In the formalization of the approach presented above, we will not enforce at the moment
any specific restriction on the expresiveness of the language used i.e. we will allow a full
first-order language for describing requester goals and abstract capabilities.

Formally, we represent the setsRW andRG used for describing the semantics of a
Web service by means ofunary predicatesin a first-order language. All elements of
the universe which satisfy the predicate (according to its definition) are considered to be
elements of the set.

The precise semantics of the predicate symbolWpost(x)20 is defined by means of a
setW of first-order formulae. In general, we assume that the formulae inW refer to
some set of ontologies. Hence, these ontologies have to also be formally described in
order to define the semantics of the predicate symbolWpost(x) in a formal manner. The
formal representation of these ontologies as a logical theory in our first-order framework
is denoted byO.

The setW of defining formulae must be chosen in such a way that under every in-
terpretationI which is a model ofW as well as the ontologiesO to which the definition
refers to, the predicate is interpreted as the respective set of relevant objects, i.e.

I |= W ⇔ I(Wpost(x)) = RW (2.1)

for every interpretationI.

In this formal sense,W (andO) determine the interpretation of the symbolWpost in
the intended way. Obviously, the symbolWpost has to occur inW.

20A similar predicate can be used for effects. However, and for simplicity reasons, we will limit the
discussion to the postconditions of the service

48 January 29, 2005 KWEB/2005/D2.4.2/v1.1



D2.4.2 Semantics for Web Service Discovery and Composition IST Project IST-2004-507482

In the simplest case, we can just use a single formula of the form

W : ∀x.(ψ(x) ↔ Wpost(x)) (2.2)

whereψ(x) is an arbitrary first-order formula with exactly one free variablex.

For goalsG we do the same and define an unary predicate symbolGpost(x) by means
of a (closed) setG of first-order formulae and the formalizationO of the set of ontologies
which the definition refers to. Again, the definitionG has to satisfy the property

I |= G ⇔ I(Gpost) = RG (2.3)

for every interpretationI.

Again, in the simplest caseGpost(x) can be defined by a single formula of the form

G : ∀x.(φ(x) ↔ Gpost(x)) (2.4)

whereφ(x) is an arbitrary first-order formula with exactly one free variablex.

Logical modelling of the set-theoretic relations. Given the logical definitionsW of an
abstract capability andG of a goal, we now want to show how to represent the set-theoretic
criteria from Section 2.4.2 in our logical framework.

Similar to [LH03], we distinguished five types of criteria. Notice that this criteria
correspond to the formalization of the set relationships used in Figure 2.4, not to the
notions of match themselves i.e. the wordmatchbelow refers to the relation between the
sets described without considering intentions:

• Exact-Match. Here the sets of relevant objects of the Web service description and
the goal description coincide:RG = RW . Each elemente ∈ U of the universeU
which is inRG ⊆ U is as well inRW ⊆ U and viceversa.

Formally, that means that we have to prove the following:

W ,G,O |= ∀x.(Gpost(x) ↔ Wpost(x)) (2.5)

whereW is the definition of the Web service,G is the definition of the goal, andO
is a set of ontologies to which both descriptions refer.

In this case we writeW ≡O G to indicate this particular kind of match.

• Subsumption-Match. Here the set of relevant objects for the Web service is a
subset of the set of relevant objects of the goal:RW ⊆ RG. Each elemente ∈ U of
the universeU which is inRW ⊆ U is as well inRG ⊆ U .

KWEB/2005/D2.4.2/v1.1 January 29, 2005 49



2. SEMANTICS FOR WEB SERVICE DISCOVERY

Formally, that means that we have to prove the following:

W ,G,O |= ∀x.(Wpost(x) → Gpost(x)) (2.6)

In this case we writeW vO G to indicate this particular kind of match.

• Plugin-Match. Here the set of relevant objects for the Web service is a superset
of the set of relevant objects of the goal:RG ⊆ RW . Each elemente ∈ U of the
universeU which is inRG ⊆ U is as well inRW ⊆ U .

Formally, that means that we have to prove the following:

W ,G,O |= ∀x.(Gpost(x) → Wpost(x)) (2.7)

In this case we writeW wO G to indicate this particular kind of match.

• Intersection-Match. Here the intersection between the set of relevant objects for
the Web service and the set of relevant objects of the goal is not the empty set:
RW ∩ RG 6= ∅. There is an elemente ∈ U of the universeU which is in both
RW ⊆ U andRG ⊆ U .

Formally, that means that we have to prove the following:

W ,G,O |= ∃x.(Gpost(x) ∧Wpost(x)) (2.8)

In this case we writeW uO G to indicate this particular kind of match.

• Non-Match. Here the intersection between the set of relevant objects for the Web
service and the set of relevant objects of the goal is the empty set:RW ∩ RG = ∅.
There is no elemente ∈ U of the universeU which is in bothRW ⊆ U andRG ⊆ U .

Formally, that means that we have to prove the following:

W ,G,O |= ¬∃x.(Gpost(x) ∧Wpost(x)) (2.9)

In this case we writeW‖OG to indicate a non-match.

For the formalization of the examples given at the beginning of the section following
the formalizations above we assume that an appropriate set of ontologiesO for geograph-
ical data and travelling are in place. In particular, we have a relationin(x, y) which states
that objectx is geographically located in objecty, a relationflight(f, s, e) which states
thatf is a flight from locations to locatione and a relationtrain(t, s, e) which states that
t is a train connection from locations to locatione.

The modelling of the set of objects relevant to for exampleG1 would be:
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G1 : ∀x.(∃s, e (fligh(x, s, e) ∧ in(s, ireland) ∧ in(e, austria)) ↔ G1post(x)) (2.10)

whereireland andaustriaare constants inO. The modelling of the relevant objects
for, for example,W3 would be:

W3 : ∀x.(∃s fligh(x, s, innsbruck) ∧ in(s, ireland) ↔ W3post(x)) (2.11)

where innsbruckis a constant inO for which the relationin(innsbruck, austria)
holds.

As we have universal intentions for both the goal and the abstract capability, according
to Figure 2.4, we have to check for a match the following formal relation:

W3,G1,O |= ∀x.(G1post(x) → W3post(x)) (2.12)

which corresponds to the relation:

W3,G1,O |= ∀x.(∃s, e (flight(x, s, e) ∧ in(s, ireland) ∧ in(e, austria)) →
flight(x, s, innsbruck) ∧ in(s, ireland))

(2.13)

which does not hold.

For checking the next preferred possible notion of match i.e. partial match, we have
to check that:

W3,G1,O |= ∃x.(∃s, e (flight(x, s, e) ∧ in(s, ireland) ∧ in(e, austria))∧
(∃s flight(x, s, innsbruck) ∧ in(s, ireland)))

(2.14)

which holds fore = innsbruck if the domain ontology says thatin(innsbruck, austria).
Therefore,W3 is a partial match forG1.

2.4.3 Using DL for Characterizing Results

In this section, we investigate the restriction of the expressiveness allowed to describe
abstract capabilities and requester goals in order to increase the efficiency of the service
discovery process.

We will briefly introduce Description Logics (DLs), describe how DL-based ontology
languages can be applied in Web service discovery, and analyze the computational ben-
efits we get from the use of DL modelling and DL reasoners. We will also discuss DLs
that provide customized datatypes and datatype predicates, as they can be interesting for
Web service discovery.
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Description Logics

Description Logics (DLs) [BN03] are a family of class-based knowledge representation
formalisms, equipped with well-defined model-theoretic semantics [BMNPS02]. They
were first developed to provide formal, declarative meaning to semantic networks [Qui67]
and frames [Min81], and to show how such structured representations can be equipped
with efficient reasoning tools. The basic notions of Description Logics are classes, i.e.,
unary predicates that are interpreted as sets of objects, and properties, i.e., binary predi-
cates that are interpreted as sets of pairs.

Description Logics are characterized by the constructors that they provide to build
complex class and property descriptions from atomic ones. For example, ‘elephants with
their ages greater than 20’ can be described by the following DL class description:21

Elephant u ∃age. >20,

whereElephant is an atomic class,age is an atomic datatype property,>20 is a customized
datatype (treated as a unary datatype predicate) andu, ∃ are class constructors. As shown
above, datatypes and predicates (such as=, >, +) defined over them can be used in the
constructions of class descriptions. Unlike classes, datatypes and datatype predicates
have obvious (fixed) extensions; e.g., the extension of>20 is all the integers that are
greater than 20. Due to the differences between classes and datatypes, there are two
kinds of properties: (i) object properties, which relate objects to objects, and (ii) datatype
properties, which relate objects to data values, which are instances of datatypes.

Class and property descriptions can be used in axioms in DL knowledge bases. DL
Axiomsare statements that describe (i) relations between class (property) descriptions, (ii)
characteristics of properties, such as asserting a property is functional, or (iii) instance-of
relations between (pairs of) individuals and classes (properties). We can use DL axioms
to represent concepts and constraints in an ontology. For example, we can define the class
AdultElephant with the following DL axiom

AdultElephant ≡ Elephant u ∃age. >20; (2.15)

we can assert that the propertyage is functional (e.g.,Elephants can have at most 1
age):

Func(age);

we can also assert that the objectGanesh is an instance of the class description ‘Elephants
who are older than 25 years old’:

Ganesh : (Elephant u ∃age. >25). (2.16)

21Readers are referred to [BN03] for detailed descriptions of DL syntax and semantics.
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A DL system not only stores axioms, but also offersservicesthatreasonabout them.
Typically, reasoning with a DL knowledge base is a process of discovering implicit knowl-
edge entailed by the knowledge base. Reasoning services can be roughly categorized as
basic services, which involve the checking of the truth value for a statement, and complex
services, which can be built upon basic ones. LetΣ be a knowledge base,L a Description
Logic, C,D L-classes,a an individual name. Principle basic reasoning services include:

Knowledge Base Satisfiability is the problem of checking whether there exists a model
I of Σ.

Concept Satisfiability is the problem of checking whether there exists a modelI of Σ
in whichCI 6= ∅.

Subsumption is the problem of verifying whether in every modelI of Σ we haveCI ⊆
DI .

Instance Checking is the problem of verifying whether in every modelI of Σ we have
aI ∈ CI .

For instance, given the axioms (2.15) and (2.16), a DL reasoner (with datatype sup-
port) should be able to infer thatGanesh is anAdultElephant.

The most common complex services include classification and retrieval. Classifica-
tion is a problem of putting a new class in the proper place in a taxonomic hierarchy of
class names; this can be done by subsumption checking between each named class in
the hierarchy and the new class. The location of the new class, let us call itC, in the
hierarchy will be between the most specific named classes that subsumeC and the most
general named classes thatC subsumes. TBox classification, which computes the taxo-
nomic hierarchy of concept names mentioned in a TBox, is a special case of classification,
where> is chosen as the ‘new’ concept. Retrieval (or query answering) is a problem of
determining the set of individuals that instantiate a given class; this can be done naively
by instance checking between each named individual and the given class.

Ontologies and Description Logics

Ontologyis a term borrowed from philosophy that refers to the science of describing the
kinds of entities in the world and how they are related. In computer science, ontology is,
in general, a ‘representation of a shared conceptualisation’ of a specific domain [Gru93a,
UG96]. Ontologies [Gru93a, UG96] have been proposed to provide shared and precisely
defined terms and constraints to describe the meaning of Web resources (including Web
services).

An ontologytypically consists of a hierarchical description of important concepts in a
domain, along with descriptions of the properties of each concept, and constraints about
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these concepts and properties. An ontology usually corresponds to a set of class and prop-
erty axioms in Description Logics. Vocabulary in an ontology can be expressed by named
classes and properties. Background assumptions/constraints can be represented by gen-
eral class and property axioms. Sometimes, an ontology corresponds to a DL knowledge
base. For example, in the OWL Web ontology language [BvHH+04], an ontology also
contains instances of important classes and relationships among these instances, which
can be represented by DL individual axioms.

High quality ontologies crucially depend on the availability of a well-defined seman-
tics and powerful reasoning tools [BHS02, Pan04a]. Description Logics addressboth
these ontology needs. Unsurprisingly, well known ontology languages such as OIL,
DAML+OIL and OWL use DL-style model-theoretic semantics.

Among these Web ontology languages, OWL is particularly important. OWL has
been adopted as the standard (W3C recommendation) for expressing ontologies in the
Semantic Web. There are three sub-languages of OWL: OWL Lite, OWL DL and OWL
Full. In this section, when we mention ‘OWL’ we usually mean ‘OWL DL’ because OWL
DL, equivalent to theSHOIN (D+) DL, is the most expressive decidable sub-language
of OWL, while OWL Lite is simply a sub-language of OWL DL and OWL Full can be
seen as an unsuccessful attempt at integrating RDF(S) and OWL DL [Pan04b]. The reader
is referred to [PSHH04] for details of the abstract syntax and model-theoretic semantics
of OWL DL.

Description Logics and Service Discovery

Description Logics have distinguished logical properties. They emphasize on the decid-
ability of key reasoning problems. Modern DL reasoners, such asFaCT [Hor98], FaCT++,
RACER[HM01], DLP [PS99], and Pellet22 have demonstrated that, even with expressive
DLs, highly optimized implementations can provide acceptable performance in realistic
applications. In other words, thoughtful optimization techniques ([Hor97, HPS98, HS02,
Hor03]) have moved the boundaries of ‘tractability’ to somewhere very close toEXP-
TIME-hard, or worse ([Don03]).

In particular, it can be seen that computing the subsumption relation between concepts
is equivalent to determine the set inclusion relation between the sets described by such
concepts. We can rewrite the formal relations introduced in the previous section in terms
of DL subsumption of concepts, equivalence of concepts, and concept satisfiability. Given
the postconditions of an abstract capability (Wpost) and a requester goal (Gpost) modelled
as DL concepts, we need to check the following:

1. Exact-Match If Wpost andGpost are equivalent concepts, we have an exact match
i.e. CA ≡ CR has to be checked.

22http://www.mindswap.org/2003/pellet/index.shtml
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2. Plugin-Match If Gpost is a sub-class ofWpost i.e. Wpost subsumesGpost we have a
Plugin match i.e.CR v CA has to be checked.

3. Subsumption-Match If Gpost is a super-class ofWpost i.e. Gpost subsumesWpost,
we have a Subsumes match i.e.CA v CR has to be checked.

4. Intersection-Match If the intersection ofWpost andGpost is satisfiable, we have an
intersection match i.e.¬(CA u CR v ⊥) has to be checked.

5. Non-match If none of the above relations hold, we have a non-match i.e.CA u
CR v ⊥ has to be checked.

If we restrict the expressivity allowed for describing abstract capabilities and requester
goals (for discovery) to the DL languages that current DL reasoners can efficiently deal
with, we can efficiently exploit subsumption reasoning. RACER provides efficient sub-
sumption reasoning forSHIQ with incomplete reasoning for nominals. FACT++ sup-
portsSHIF(D). Pellet provides sound and complete reasoning forSHIN (D) and
SHON (D), and sound but incomplete forSHOIN (D).

In [LH03], RACER is used to classify Web services in the T-Box, which is time-
consuming but can be done off-line at publishing time. Once the TBox is classified,
experimental results show that checking the subsumption relation between the user re-
quest and the Web services in the TBox can be done within 20 milliseconds. In additon,
and as it was shown in the Semantic Web Fred (SWF)23 project ([KSF04]), using more
expressive logics (First-order Logic) for set based modelling and a theorem prover for
set-based discovery in principle implies checking every available service individually, as
theorem provers are not optimized for this reasoning task. For a reduced test set of four
available services, the theorem prover required between one and two seconds to determine
the existence of a matching service. Under the assumption that eventually a big number
of services will be available to the discovery engine, a faster filtering of relevant services
before evaluating them one by one is essential to make the discovery scalable. These
results clearly suggest that using DL reasoners to index Web services at publication time
can be a useful, restricting more detailed and more expensive contracting to a (ideally
small) subset of all the available Web services. Notice that a theorem prover could be also
optimized for classification, but it would require a bigger effort, and it is not clear whether
additional expressivity is required for abstract capabilities.

What to classify? One of the major benefits of using DL reasoners is that we can have
the available Web services classified before the discovery process takes place, as DL
reasoners are optimized for this task. Another possibility is to classify the pre-defined
goals. These two options have the following advantages and disadvantages:

23http://www.deri.at/research/projects/swf/
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• The use of pre-defined, formalized goals is expected in our conceptual model. If we
restrict such goals to be described in a DL language, we can classify them off-line
in a DL reasoner TBox. When publishing a Web service, its subsumption rela-
tionship with the classified pre-defined goals can be checked, and a wgMediator
[RLeditors04] can be generated to link the Web service to a pre-defined goal it (to-
tally or partially, depending on the subsumption relation computed) fulfills. In this
way, and as goal discovery should result on a (refined) pre-defined goal, and Web
service discovery is expected to require matching these refined pre-defined goals
against published Web services, Web service discovery is reduced to exploring the
Web services linked via wgMediators to the used pre-defined goal.

• Another option is to classify Web services when they are published. It is expected
that the number of Web services available will be considerably higher than the
number of pre-defined goals and, therefore, we would have to deal with bigger
TBoxes and worse classification times. However, these classification times do not
necessarily affect the time to answer an incoming goal. Another consideration is
that in this case the subsumption relation between a refined pre-defined goal and
the classified Web services would have to be computed for each discovery request,
while in the previous solution subsumption checking is only required once for each
Web service, and only at publication time. However, notice that in this case we
directly obtain the subsumption relation between the concrete refined pre-defined
goal and the Web services, while in the previous case the direct relation between
those is not known but only their relation via the pre-defined goal.

We suggest following the second path, as computing the direct relation between the
concrete requester goal and the abstract capabilities of published services will provide a
better filtering than only checking the relation of these to the pre-defined goal. In addition,
as shown in [LH03], computing the relation of the requester goal with respect to a classi-
fied TBox containing available services can be done efficiently24. Notice that this choice
is under the assumption that abstract capabilities of available services will constitute a
structured domain and not a set of hardly related concepts.

Notice that the intention of the provider cannot be directly modelled using DL. There-
fore, the intention will be an annotation of the concept describing the abstract results of
the service, and it will be used to select what services having a given relation to the goal
will be selected.

In [Leditors04b] the use ofRACER and Pellet has been investigated to classify abstract
service capabilities and goals. The results show that the treatment of nominals is not
fully supported for theSHOIN DL, which limits their use in abstract capabilities and
requester goals for service discovery. However, two possible solutions are foreseen:

24Notice that instead of checking the satisfiability of the intersection of the goal and each available
service, the negated goal can be classified and non-Matches will correspond to the abstract capabilities
subsumed by the negated goal.
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• Forbidding the use of nominals for service discovery and considering instance val-
ues only in contracting, or

• providing an algorithm for replacing instances in service descriptions and requested
goals by corresponding concepts.

Analyzing which option is more adequate for service discovery is out of the scope of
this deliverable and subject of future work. More detailed discussions along this line can
be found in the section of “Discussion: Reasoning with OWL-E” (page 60).

OWL-E: Supporting Customised Datatypes and
Datatype Predicates in Ontologies

One of the most useful features of the above Web ontology languages is the support of
datatypes (such as strings and integers) and datatyped values (such as integers 1,2,3 etc).
Specifically, one can describe not only relationships between terms, but also relationships
between terms and datatypes, e.g., theage of an Elephant, theprice of a Product, the
date of a Conference and thepostcode of a Restaurant. It is these kinds of ‘real world’
relationships, which provide useful concrete information, that ontology applications often
require.

Customised datatypes and datatype predicates (such as>, +) are very helpful because
it is often necessary to enable users to define their own datatypes and datatype predicates
for their applications. For instance, in a computer sales ontology, a service requirement
may ask for a PC with memory size greater than 512Mb, unit price less than 700 pounds
and delivery date earlier than 15/03/2004. Here ‘greater than 512’, ‘less than 700’ and
‘earlier than 15/03/2004’ are customised datatypes of base datatypes integer, integer and
date, respectively. Similar use cases arise in the VTA domain, where a client can ask for
a flight cheaper than 300 euros on 15/03/2004 and arriving before 20:00.

OWL DL has a strong limitation on datatype support [Pan04a]. It supports neither
datatype predicates with arbitrary arities, nor customised datatypes, not to mention cus-
tomised datatype predicates. To overcome these limitations, [PH04, Pan04b] propose
OWL-E, equivalent to theSHOIQ(G) DL, which is a decidable extension of both OWL
DL and DAML+OIL, which provides customised datatypes and predicates; in fact, all the
basic reasoning services of OWL-E are decidable.

OWL-E provides datatype expressions based on the datatype group approach [Pan04b],
which can be used to represent customised datatypes and datatype predicates. Table 2.2
shows the kind of datatype expression OWL-E supports, whereu is a datatype predi-
cate URIref,“si”ˆˆdi are typed literals,v1, . . . , vn are (possibly negated) unary supported
predicate URIrefs,P , Q are datatype expressions andΦG is the set of supported predicate
URIrefs in a datatype groupG. OWL-E provides some new classes descriptions, which
are listed in Table 2.3, whereT, T1, . . . , Tn are datatype properties (whereTi v*/ Tj, Tj v*/ Ti
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Abstract Syntax DL Syntax Semantics
rdfs:Literal >D ∆D

owlx:DatatypeBottom ⊥D ∅
u a predicate URIref u uD

not (u) u
if u ∈ DG , ∆D \ uD

if u ∈ ΦG \DG , (dom(u))D \ uD

if u 6∈ ΦG ,
⋃

n≥1(∆D)n \ uD

oneOf (“s1”ˆˆd1 . . .“sn”ˆˆdn) {“s1”ˆˆd1, . . . , “sn”ˆˆdn} {(“s1”ˆˆd1)D} ∪ · · · ∪ {(“sn”ˆˆdn)D}
domain (v1, . . . , vn) [v1, . . . , vn] vD

1 × · · · × vD
n

and (P, Q) P ∧Q PD ∩QD

or (P,Q) P ∨Q PD ∪QD

Table 2.2: OWL-E datatype expressions

Abstract Syntax DL Syntax Semantics
restriction({T}

someTuplesSatisfy(E) )
∃T1, . . . , Tn.E {x ∈ ∆I | ∃t1, . . . , tn.〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED}
restriction({T}

allTuplesSatisfy(E) )
∀T1, . . . , Tn.E {x ∈ ∆I | ∀t1, . . . , tn.〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) → 〈t1, . . . , tn〉 ∈ ED}
restriction({T} minCardinality(m)

someTuplesSatisfy(E) )
>mT1, . . . , Tn.E {x ∈ ∆I | ]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≥ m}
restriction({T} maxCardinality(m)

someTuplesSatisfy(E) )
6mT1, . . . , Tn.E {x ∈ ∆I | ]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≤ m}
restriction(R minCardinality(m)

someValuesFrom(C) )
>mR.C {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ m}

restriction(R maxCardinality(m)
someValuesFrom(C) )

6mR.C {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ m}

Table 2.3: OWL-E introduced class descriptions

for all 1 ≤ i < j ≤ n),25 R is an object property,C is a class,E is a datatype expres-
sion or a datatype expression URIref, and] denotes cardinality. Note that the first four are
datatype group-based class descriptions, and the last two are qualified number restrictions.

Case Study: Matchmaking in OWL-E

Let us use an example to illustrate how to use OWL-E for service discovery.

We can use the OWL-E to describe both abstract service capabilities and requester
goals. More precisely, they can be represented as an OWL-E class or class restriction, e.g.
the capability that memory size should be either 256Mb or 512Mb, can be represented the
datatype expression-related concept∃memoryUnitSizeInMb.(=256 ∨ =512).

To gain a further insight into the above five relations to be checked to establish a
match, it is often helpful to have some working examples. Suppose, in a scenario of
computer selling, that an agent would like to buy a PC with the following capabilities:

25v* is the transitive reflexive closure ofv.
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• theprocessor must bePentium4;

• thememoryUnitSizeInMb must be 128;

• thepriceInPound must be less than 500.

This can be represented by the following OWL-E class description:

CR1 ≡ PC u ∃processor.Pentium4 u
∃memoryUnitSizeInMb. =int

[128] u ∃priceInPound. <int
[500]

Exact match:CA1 ≡ PC u ∃processor.Pentium4u
>1memoryUnitSizeInMb. =int

[128] u ∃priceInPound. <int
[500]

PulgIn match:CA2 ≡ PC u ∃processor.Pentium4u
>1memoryUnitSizeInMb.(=int

[128] ∨ =int
[256])

u ∃priceInPound. <int
[700]

Subsume match:CA3 ≡ PC u ∃processor.Pentium4u
>1memoryUnitSizeInMb. =int

[128] u ∃priceInPound. <int
[500]

u ∀orderDate.((≥int
[20040801] ∧ ≤int

[20040831])∨
(≥int

[20040901] ∧ ≤int
[20040930])) u ∀orderDate, deliverDate. <int

Intrsect. match:CA4 ≡ PC u ∃processor.Pentium4u
>1memoryUnitSizeInMb. =int

[128] u ∃priceInPound. >int
[400]

u 61priceInPound.>D u ∃CPUFreqInGHz. =real
[2.8]

Disjoint match:CA5 ≡ PC u ∃processor.Pentium4u
>2memoryUnitSizeInMb. =int

[256] u ∃priceInPound. <int
[500]

62memoryUnitSizeInMb. =int
[256]

u ∀HardDiskBrand, USBKeyBrand. =str

Figure 2.5: Example matching advertisements

Figure 2.5 presents five example relations forCR1 and the advertised services. Among
them,CA1 is the exact match. In realistic situations, however, it is not to easy have an
exact match, since advertisements might provide more general or more specific infor-
mation. For example,CA2 states thatpriceInPound is only less than 700 and that the
memoryUnitSizeInMb can be either 128 or 256 (represented by the datatype expres-
sion =int

[128] ∨ =int
[256]). CA3 adds two restrictions onorderDates: firstly, the order date

must be in August and September of 2004, which is represented by the datatype expres-
sion(≥int

[20040801] ∧ ≤int
[20040831]) ∨ (≥int

[20040901] ∧ ≤int
[20040930]); secondly,orderDates should

be sooner than (represented by the binary predicate<int) DeliverDates, indicating that
PCs will be delivered on some dateafter orders are made. As a result,CA2 andCA3 are
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PlugIn match and Subsume match ofCR1, respectively. CA4 says thepriceInPound
is greater than 400, and theCPUFreqInGHz of their PCs is 2.8;26 it is an Inter-
section match. Finally,CA5 advertises that theirPCs have exactly two memory chips,
with the memoryUnitSizeInMb of each chip is 256, and theHardDiskBrand and
USBKeyBrand in their PCs are the same (represented by the binary predicate=str);
hence it is a disjoint (failed) match.

Discussion: Reasoning with OWL-E

In this section, we briefly discuss how to provide practical decision procedures for OWL-
E, theSHOIQ(G) DL. [Pan04a] shows that theSHOIQ(G) DL is decidable, and
that if we have a tableaux algorithm forSHOIQ, we can easily upgrade it to one for
SHOIQ(G). The problem is that, to the best of our knowledge, there exist no published
tableaux algorithms to handle theSHOIQ DL.

‘Divide and Conquer’ Approach The motivation of this approach is that in ontology
applications we might not often need the fullSHOIQ(G) DL. Therefore, instead
of providing a decision procedure for the fullSHOIQ(G) DL, we can provide de-
cision procedures for a set of sub-languages of theSHOIQ(G) DL so that they can
cover all features of theSHOIQ(G) DL. Now we have to decide which set of sub-
languages we should consider. Since theSHOQ(D) DL has been argued to be use-
ful in the context of the Semantic Web [HS01], and theSHIQ DL is the underpin-
ning of the OIL Web ontology language and is implemented in popular DL systems
like FaCT [Hor98] andRACER [HM01], a possible choice would be the following
set of sub-languages{SHOQ(G), SHIQ(G), SHIO(G)} of SHOIQ(G). Tab-
leaux algorithms for theSHOQ(G), SHIQ(G) andSHIO(G) DLs are presended
in [Pan04a]. Among them, the one forSHIQ(G) has been implemented in an
extendedFaCT reasoner.

FOL Approach This approach is based on the observation that theSHOIQ DL can
be translated into theC2 fragment of first order logic (FOL). Therefore, decision
procedures ofC2 can be used as the ones forSHOIQ. To support theSHOIQ(G)
DL, we need to extend the decision procedure(s) forC2, and support also datatypes.
To the best of our knowledge, there exist no such published decision procedures for
the datatype extension ofC2; there exists no published FOL theorem provers that
implement decision procedures ofC2, neither.

Notice that in this section we have not introduced the annotation of registries as pro-
posed for METEOR-S (see Section 1.1.3). However, this annotation can be useful at the

26Note that=real
[2.8] is not a supported predicate for our prototype: our prototype will not reject it and even

provides minimum checking for it; i.e., if=real
[2.8] and its relativised negation=real

[2.8] are both in a predicate
conjunction, this conjunction isunsatisfiable.
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discovery level, when abstract service capabilities can be further abstracted to a common
domain of service and therefore grouped into appropriate registries. Although this can be
an interesting technique to improve the efficiency, providing an additional filter to limit
the service discovery process proposed to a smaller subset of services, it is not in the core
of the discovery problem so we will not elaborate more on this issue.

2.5 Automatic Web Service Contracting

In the previous section we have studied how to model and how to match abstract service
capabilities and requester goals. At that level, we were interested on an abstract charac-
terization of the services that can be provided, without considering the precise description
of concrete services and the relation between the information available from the requester
and the service provided.

However, at the contracting phase a concrete service to be agreed and eventually deliv-
ered needs to be located and, therefore, precise details of such service have to be (directly
or inderectly) captured, including what information has to be provided by the requester in
order to get the desired service.

In the following, we will discuss the extension of our previous model to capture in
the contracting capability the relation between the input to the service and the results
provided, as well as how the requester goal and such capability are matched.

Using simple semantic annotations for a service, as it was described in the previous
section, adds machine-processable semantic information to service descriptions which
allows a discovery mechanism to exploit this semantics during the discovery process and
deliver results with high precision and recall.

Nonetheless, the kind of semantic information that can be expressed in that approach
is limited wrt. the details of the concrete services that can be agreed and contracted, as it
represents, in the general case, solely an abstraction of such concrete services.

In the following we show how to extend the set-based modelling approach discussed
in Section 2.4.2 in the direction of service contracting. In addition, we will discuss an
approach based on Transaction Logic [BK98], an extension of First-order Logic that en-
ables to specify the dynamics of logical theories (or knowledge bases) in a declarative
way. Here, the state of the world is represented by a logical theory and since the provi-
sion of a service changes the state of the world and the information space, it results in
an update of the logical theory. The described approach can be implemented using the
FLORA-2 system [KLP+04].
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A set-based Modelling Approach for Rich Service Descriptions

The informal Service Model revisited. The provision of a service generates (wrt. a
set of input values) certain information as an output and achieves certain effects on the
state of the world. Both an output and an effect can be considered as objects which can
be embedded in some domain ontology.

So far we ignored inputs and their relation to outputs and effects of the Web service
provision. However, when considering concrete services, these willdepend on the pro-
vided input values. Hence, a contracting capability can be described by the sets of outputs
and effects forspecificinput values. In addition, the information the requester is able to
provide, denoted byGinput will play a role in determining whether a concrete service can
be agreed and contracted. Finally, the contracting capability of a given service will in
the general case capture some details that were not considered previously and that will
involve actual communication with the provider e.g. checking if a requested flight infor-
mation can be actually be provided i.e. whether a concrete service fulfilling the concrete
requester goal can be agreed by the provider and, therefore, provided.

Additionally, we can enrich our set of matching notions given in Section 2.4.2 with
an orthogonal dimension: we can express that we can satisfy a particular matching notion
wrt. a single concrete serviceas well as wrt. anarbitrary number of concrete services.
This results in additional matching notions that capture additional semantics in a given
requester goal.

Let us illustrate the difference with a simple example. Imagine the following (infor-
mal) requester goal:

G: ”I want to know about all flights from Innsbruck and Salzburg to Madrid
on December 28th, 2004”

and a Web service with the following (informal) capability

W: ”The service provides information about all flights from any place in
Austria to Madrid, on any date. However, it provides information about a
single itinerary e.g. Innsbruck-Madrid at a time”

Therefore, a single concrete service cannot fulfill the requester goal, but two con-
crete services (one for the itinerary Innsbruck-Madrid and one for the itinerary Salzburg-
Madrid) can be agreed and they fulfill together the requester goal. These two concrete
services correspond to different input information provided by the requester. This can
be seen as a simple form of composition, but it can still be captured in our contracting
framework and in the definition of the formal proof obligations that have to be checked to
determine whether concrete services fulfilling the goal can be contracted.

In the following paragraphs we will show how to formalize the extended service capa-
bility and the corresponding matching notions.
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Formalizing the extended Service Model. Instead of using an unary predicateWpost(x)
for describing the contracting capability of a Web serviceW, we have to express the de-
pendency of the concrete services that can be delivered on the concrete input required for
the provision of such servicesi1, . . . , in.

LetW be a Web service with input parametersi1, . . . , in, then we formalize the con-
tracting capability of the service as follows:

W : ∀x, i1 . . . in.(ws(x, i1 . . . in) ↔ Wpre(i1 . . . in) ∧Wpost(i1 . . . in, x)) (2.17)

whereWpre(i1 . . . in) is an arbitrary first-order formula describing the preconditions of
the Web service andWpost(i1 . . . in) is an arbitrary first-order formula describing its post-
conditions. InWpost(i1 . . . in, x) the variablex refers to the output value(s) resulting from
the service provision. The defined predicatews(x, i1 . . . in) has a natural interpretation:
The valuex will be delivered by the Web serviceW for the input valuesi1 . . . in.

Goals are just described in the same way as in Section 2.4.2.

Adapting the Matching Notions. Since we adapted the way we describe service capa-
bilities for contracting, we have to consequently adapt the formal criteria used to deter-
mine a match. In the following we will show how to adapt the single relations accordingly
and give a definition for the case in which we only considersingle concrete servicesas
well as the case of consideringsets of concrete services.

The inputs considered in the formalizations below have to be provided by the requester
i.e. i1 . . . in ∈ Ginput

• Exact-Match ( W ≡1
O G, W ≡+

O G).

Formally, the relation we have to prove if we restrict ourselves to a single concrete
service is the following:

W ,G,O |= ∃i1, . . . , in.(∀x.(g(x) ↔ ws(x, i1 . . . in)) (2.18)

whereW is the definition of the service contracting capability,G is the definition
of the requester goal, andO is a set of ontologies to which both descriptions refer.

In this case we writeW ≡1
O G to indicate this particular kind of relation.

For multiple concrete services we instead would have to prove the following:

W ,G,O |= ∀x.(∃i1, . . . , in.(g(x) ↔ ws(x, i1 . . . in)) (2.19)

In this case we writeW ≡+
O G to indicate this particular kind of relation.
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• Subsumption-Match ( W v1
O G, W v+

O G).

Formally, the relation we have to prove if we restrict ourselves to a single concrete
service is the following:

W ,G,O |= ∃i1, . . . , in.(∀x.(g(x) ← ws(x, i1 . . . in)) (2.20)

We denote it byW v1
O G.

And for multiple concrete services:

W ,G,O |= ∀x.(∃i1, . . . , in.(g(x) ← ws(x, i1 . . . in)) (2.21)

Denoted byW v+
O G.

• Plugin-Match ( W w1
O G, W w+

O G).

Formally, the relation we have to prove if we restrict ourselves to a single concrete
service is the following:

W ,G,O |= ∃i1, . . . , in.(∀x.(g(x) → ws(x, i1 . . . in)) (2.22)

Denoted byW w1
O G.

For multiple concrete services we have to prove the following:

W ,G,O |= ∀x.(∃i1, . . . , in.(g(x) → ws(x, i1 . . . in)) (2.23)

WrittenW w+
O G.

Notice that inconsistent definitions, both in Plugin and Subsumption-Match can be
dealt with in the very same way as we discussed in Section 2.4.2.

• Intersection-Match( W u1
O G, W u+

O G).

The relation we have to prove for a single concrete service is:

W ,G,O |= ∃i1, . . . , in.(∃x.(g(x) ∧ ws(x, i1 . . . in)) (2.24)

WrittenW u1
O G.

For multiple concrete services we have to prove the following:

W ,G,O |= ∃x.(∃i1, . . . , in.(g(x) ∧ ws(x, i1 . . . in)) (2.25)

Denoted byW u+
O G.
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Notion of match. As discussed for service discovery, the formal relations above do not
represent themselves the notion of match we expect but the relation that has to be checked
to establish a given match relation. In Figure 2.4 the relations that have to be checked
for the different notions of match were presented. Notice that the relations that have to
be checked for contracting are essentially the same but extended with the consideration
of the input. As an example, for checking a perfect match if both requester and provider
have a universal intention, we will have to check the Plug-in or Exact-Match relations
above.

Requester input. Notice that the input involved in the proof obligations above has to
be made available by the requester. This does not impose that the requester has to list
for every goal all the information he has available, but he can for example offer a service
that provides his available information on demand. In addition, some input information
can automatically be extracted from the goal description e.g. if the requester wants to fly
from Innsbruck to Madrid we already know that he can provide Innsbruck as the depar-
ture location and Madrid as the arrival location. However, how this information is made
available to the contracting process is beyond the scope of the deliverable, and we assume
that it will be available in some way during the contracting phase.

An example. As an example, let us consider the goalG and the informal contracting
capability of serviceW given above. In addition, let us suppose that the Web service
requires the nationality and such nationality has to be from any European country, and the
requester can provide the start location, end location, date and nationality:

G : ∀x.((∃s flight(x, s, madrid,Dec282004)∧(s = innsbruck∨s = salzburg)) ↔ Gpost(x))
(2.26)

startlocation(innsbruck), startlocation(salzburg), endlocation(madrid),

date(Dec282004), nationality(austrian) ∈ Ginput

(2.27)

W : ∀x, i1, i2, i3, i4(ws(x, i1, i2, i3, i4) ↔
(startlocation(i1) ∧ in(i1, austria) ∧ endlocation(i2) ∧ i2 = madrid

∧date(i3) ∧ nationality(i4) ∧ european(i4))

∧flight(x, i1, i2, i3) ∧ availableinfo(x))

(2.28)

whereavailableinfo(x) is a predicate that involves checking whether information
about flightx is available in the provider knowledge base.
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As both requester and provider have universal intentions, we can have a match involv-
ing multiple concrete services if the formal relationW w+

O G is fulfilled, which is the case
if the predicateavailableinfo(x) evaluates to true. However, if we restrict ourselves to
single concrete services, we will only be able to prove the relationWu1

OG and, therefore,
only a partial match will be possible. In conclusion, ifavailableinfo(x) is true, we will
be able to agree on and contract two concrete services (one for the itinerary Innsbruck-
Madrid and one for the itinerary Salzburg-Madrid), and otherwise we will only agree on
a single concrete service partially fulfilling the goal (for only one of the itineraries).

Notice that the evaluation of the predicateavailableinfo(x) will require the access to
the provider knowledge base. However, and as stated before, we consider this process to
be transparent to us i.e. we just require that we get a truth value from the predicate but we
do not care how the communication with the provider is actually performed. This will be
subject of future work.

Discovery with Transaction Logic

The approach related above does not restrict the expressiveness allowed and requires in
principle the use of a theorem prover, which efficiency is not clear for arbitrary capabilities
and goals.

In order to overcome these problems, we propose the use of transaction logic to model
the proof obligations for service contracting. Transaction logic is an extension of predi-
cate calculus that provides a logical foundation for state changes in logic programs and
databases. It comes with a model theory and sound and complete proof theory. Remark-
ably, the proof does not only verify programs but also executes them. Interesting features
for us are hypothetical updates, constraints on transaction execution, and bulk updates
[BK98].

Proof obligations If the contracting capability of a service models the relation between
its input and its results i.e. if the postconditions and effects delivered by the service are
dependent on the input information made available by the requester to it, we can check
whether a given input information will lead to postconditions and effects that satisfy the
postconditions and effects requested in the goal.

For this purpose, we first need to check that there exists input informationInput
available to the service i.e.Input ∈ Ginput that satisfies the preconditions (Wpre) of a
given serviceW.

If the above holds, we can hypothetically assume that the postconditions and effects of
the Web Service for this input (Wpost(Input) andWeff (Input) hold. Under this assump-
tion, we have the effects and postconditions of the candidate service available; if the goal
postconditions and effects hold in this state, it means that the Web Service provides the
desired results for the available input and, therefore, the concrete service corresponding
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to this input can be agreed and contracted.

This can be formalized by the following proof obligation using transaction logic,
where3 is the hypothetical operator,⊗ is the sequence operator, andO is the set of
domain ontologies the description of the requester goal (G) and the contracting capability
of serviceW refer to:

O,W ,G |= ∃Input

3(Wpre(Input)⊗ insert{Wpost(Input),Weff (Input)}
⊗ Gpost ∧Geff )

(2.29)

Since we use the hypothetical operator (3), the assertion of the service postconditions
and effects will be rolled back i.e. retracted after the checking is finished.

The use of the sequence operator (⊗) means that the preconditions must be tested
before the postconditions and effects of the service can be asserted, and that the goal will
only be tested after this. In this way, we distinguish between the pre and post-state of the
concrete service corresponding to inputInput. This is especially relevant for checking
the preconditions, as the assertion of the Web Service results will change the pre-state27

(both of the information and real-world spaces) and, by definition, the preconditions must
be checked before such changes happen. Similarly, the goal must be tested only in the
post-state i.e. when the postconditions and effects of the Web Service have been asserted.

The proof obligation is illustrated in Figure 2.6. On the left hand side of the picture,
we represent the input information available. From this,Input satisfying the Web con-
tracting capability preconditionsWpre(Input) is considered. Depending on this input,
we hypothetically assume (represented by an arrow in the figure) the postconditions and
effects of the concrete service corresponding toInput. These, represented by the box on
the right hand side of the figure, are the results provided by the concrete service. Finally,
we check whether the goal is satisfied by these results i.e. the results requested in the goal
are generated.

For the description of the goal, we allow the use of both universally quantified goals
i.e. all the results satisfying the conditions stated in the goal have to be delivered by
the Web Service, as well as existentially quantified goals i.e. some results satisfying such
conditions have to be delivered. Whether the request is existential or universal will be part
of the description of the goal itself. Similarly, the contracting capability will also specify
whether it can provide one or all the elements described28. If existential quantification
is used, Web Services providing at least one result satisfying the conditions stated in the
goal will be matched, while only Web Services providing all such results will be matched
if universal quantification is used.

27This is true for every service which really provides something. Otherwise, the service does not have
any interest for the requester and it should not even be considered.

28This can be done by introducing a meta-annotation of the results, declaring local complete knowledge
[HMA02].
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Ginput

Input information
available

Input

Wpre(Input)

Wpost(Input)

Weff(Input)

Input satisfying the
preconditions

Postconditions and
effects for Input

Goal?

Figure 2.6: Hypothetically assuming Web Service postconditions and effects

Single concrete service vs set of concrete services.The proof obligation (2.29)
only considers a single concrete service fulfilling the goal but, as discussed above, it
might be interesting to also consider a set of concrete services fulfilling the request. For
considering this case, we have to modify our previous proof obligation, which leads to
proof obligation (2.30):

O,W ,G |=
3(insert{Wpost(Input),Weff (Input)|Wpre(Input)}

⊗ Gpost ∧Geff )

(2.30)

insert{Wpost(Input),Weff (Input)|Wpre(Input)} corresponds in the previous for-
mula to abulk updatei.e. the assertion of the postconditions and effects will occur for
every Input satisfying the conditions inWpre(Input). Therefore, we hypothetically as-
sume the results of the service for every possible input that satisfies the Web Service pre-
conditions, and we test the goal with all such results hypothetically asserted i.e. we test
the goal over the union of these results. This allows to match multiple concrete services
corresponding to all the inputs that lead to required results.

Let us retake the example used for illustrating the formalization based on first-order
logic. In this case, and using proof obligation 2.30 to allow the agreement and contracting
of multiple concrete services:

1. Inputs matching the service preconditions will be selected. In this case,
startlocation(innsbruck), startlocation(salzburg), endlocation(madrid),
date(Dec282004) andnationality(austrian) fulfill the preconditions.
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2. The postconditions of the service for this input will be hypothetically asserted i.e.
k(flight(f1, innsbruck, madrid, Dec282004)) and
k(flight(f2, innsbruck, salzburg, Dec282004, beingf1 andf2 generated flight
information and thek logical connective meaning that all the information about the
flights with those characteristics will be provided29.

3. The requester goal will be checked and, in this case, fulfilled.

The use of transaction logic introduces the main advantage of explicitly considering
the state in the proof obligations for Web Service discovery. As discussed before, the
preconditions of the Web Service must be checked in the pre-state i.e. before the post-
conditions and effects of the Web service are generated. Not considering the state in the
discovery process might lead to problems in some cases e.g. if the Web service requires
the balance of the requester’s account to be higher than a given amount and one of its ef-
fects is to decrease the balance of such account. If preconditions and effects are checked
in the same state, some expected matches might fail.

The notions of match previously identified are covered by the two proof obligations
introduced in this section. Although partial matches i.e.W v1

O G andW u1
O G are

not directly covered, they can be relaxed toW v+
O G andW u+

O G, respectively. In
fact, partially matching in the first two cases is equivalent to relaxing the intention of the
requester from universal intention to existential intention. Therefore, we can see that this
approach covers all the cases discussed before.

As shown in [KLP+04], an implementation of a very similar proof obligation has been
done usingFLORA-2.

2.6 Relation between Discovery and Mediation

In a distributed environment, different users and Web services can use different termi-
nologies, which leads to the need for mediation in order to make heterogeneous parties
communicate. In this section we analyze the relation between discovery and mediation,
identifying what kind of mediation is required in different scenarios. Providing the me-
diation support required is out of the scope of this deliverable. However, we discuss the
assumptions necessary in different technological scenarios and to what extent these are
realistic. Notice that a strongly similar mediation problem arises in composition, and the
assumptions and requirements presented here are applicable to composition or any other
process involving Web Services.

29The k logical connective used is inspired in the work on Local Closed World reasoning (cf.
[EGW94, HMA02]) and in the K operator introduced in [DLNS98], meaning complete knowledge about
some information.
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2.6.1 Assumptions on Mediation

One could assume that Web services and goals are described using the same terminology.
In that case no mediation problem exists during the discovery process. However, it is
unlikely that a potentially huge number of distributed and autonomous parties will agree
before-hand on a common terminology.

Alternatively, one could assume that goals and Web services are described using com-
pletely independent vocabularies. Although this case might happen in a real setting, dis-
covery would be impossible to achieve. In consequence, we consider an intermediate
scenario where we do not ignore the heterogeneity inherent to the domain, and where
mediation and therefore discovery are possible. Such scenario relies on three main as-
sumptions:

• Goals and Web services use most likely different vocabularies, or in other words, we
do not restrict our approach to the case where both need to use the same vocabulary.

• Goals and Web services use some controlled vocabulary or ontology to describe
requested and provided services.

• There is some mediation service in place. Given the previous assumption, we can
optimistically assume that a mapping has already been established between the used
terminologies, not exclusively to facilitate our specific discovery problem but rather
to support general information exchange between parties using these terminologies.

Under these assumptions, we assume a minimal mediation support that is a pre-
requisite for successful discovery.

Notice that IBROW (cf. [BPM+98]), a project in the area of internet-based match-
making of task descriptions and competence definitions of problem-solving methods, has
adopted a similar approach. Both tasks and methods used different ontologies to describe
their requests and services. However, both description ontologies are grounded in a com-
mon basic ontology that allow to rewrite requests and services in terms of a common
ontology.

2.6.2 Mediation requirements

In the following, we will discuss different technological scenarios for the discovery process
and how this reshapes our assumption on the underlying mediation support that needs to
be in place.

Natural Language Processing and Keywords

Processing written natural language input coming from a human user is commonly used to
derive information for computer consumption. Stemming, part-of-speech tagging, phrase
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recognition, synonym detection etc. can be used to derive machine-processable semantics
from goals and service descriptions. In this way, a set of keywords extracted from a
requester goal are matched against a set of keywords extracted from a service description
or pre-defined goal. Alternatively, both requester and provider can directly use keywords
to describe their requests and offers.

Stemming and synonym recognition already try to reduce different words to their
common conceptual meaning. Still, this mediation support is very generic and only relies
on general rules of language processing. Mediation can also be required for translating
from a given human language into another one. Also in this case the mediation support
required is generic and it can be realistically assumed.

Controlled vocabularies & Ontologies

A different scenario is to assume that requester and provider use (not necessarily the same)
controlled vocabularies30. In order to illustrate such scenario we will refer to controlled
vocabularies for products and services. Efforts like UNSPSC31 or eCl@ss32 (among oth-
ers) provide controlled vocabularies for describing products and services with around
15,000 concepts each. A service is described by a reference to (one or more) classes in
one of the classification schemas and, similarly, a goal is described by a concept taken
from (not necessarily the same) controlled vocabulary.

A mediation service is needed in case the requester and provider use different vocabu-
laries. Since they use controlled instead of ad-hoc vocabularies, requiring such mediation
service is not an unrealistic assumption. Notice that we do not assume a customized me-
diation service for our specific discovery task but rather alignments of generic business
terminologies that may be used for other information exchanges using such terminolo-
gies33.

The border between controlled vocabularies and ontologies is thin and open for a
smooth and incremental evolvement. Ontologies are consensual and formal conceptu-
alizations of a domain (cf. [Gru93b]). Controlled vocabularies organized in taxonomies
and with defined attributes like eCl@ss resemble all necessary elements of an ontology.
Ontologies may simply add some logical axioms for further restricting the semantics of
their elements. Notice that a service requester or provider gets these logical definitions
”for free”. He can select concepts for annotating his service or goal, but he does not
need to write logical expression as long as he only transparently reuses the ones already
included in the ontology.

30Notice that this does not necessarily imply that service provider and requester use directly these con-
trolled vocabularies. The goal discovery process can provide this service. Trials to mechanize such a
process are described in [DKO+02].

31http://www.unspsc.org/
32http://www.eclass.de/
33Establishing this alignments is not an easy and straight-forward task as discussed in [Fen03].
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This scenario looks quite appealing since it adds semantic Web facilities to the Web
service discovery eliminating two major risk factors of logic-based techniques:

• Effort in writing logical expressions. Writing down correct logical formulas is a
cumbersome process. A discovery approach that is assuming this on a large scale
for requesters and providers leads to scalability problems.

• Effort in reasoning about logical expressions. Reasoning over complex logical
statements is computationally hard in case the formal language provides a certain
level of expressivity. Therefore, it is important to decouple the reasoning process
from the actual discovery process. This is possible by using ontologies, as the goal
as well as the service descriptions are abstracted from concrete specifications and
inputs to a generic description at the level of an ontology. The logical relationship
between these concepts can be derived independently from a concrete goal and the
materialized inferences can simply be reused during the discovery process.

As for controlled vocabularies, mediation support is needed in case the requester and
provider use different ontologies. However, since generic ontologies can be used, such
mediation service can be assumed. Again, we do not assume a customized meditation ser-
vice for our specific discovery task but rather generic alignments of generic ontologies34.

Full-fledged logic

Simply reusing existing concept definitions as described in the previous section has the
advantage of the simplicity in annotating services and in reasoning about them. However,
this approach has limited flexibility, expressivity, and grain-size in describing services
and request. Therefore, it is only suitable for scenarios where a more precise description
of goals and services is not required. Furthermore, describing the functionality of a Web
service requires an expressivity which goes beyond the capabilities of current ontology
languages. For these reasons, a full-fledged logic is required when a higher precision is
required for the discovery process. This is the case for service contracting, where concrete
services have to be agreed and contracted.

Mediation can only be provided if the terminology used in the logical expressions is
grounded on ontologies. Otherwise, it is impossible to prove the given logical relation
between goals and service descriptions. Therefore, the mediation support required is the
same as for ontologies.

34See [dMRME04] for a survey on Ontology mapping and alignment.

72 January 29, 2005 KWEB/2005/D2.4.2/v1.1



D2.4.2 Semantics for Web Service Discovery and Composition IST Project IST-2004-507482

2.7 Achievements

In this chapter, we have introduced the problem of automatically locating services that
fulfill a given requester desire. In order to provide a comprehensive solution to the prob-
lem, we have introduced in Section 2.1 a conceptual model for discovery and contracting
of services that takes into account pragmatical issues such as the degree of accuracy in
the formal descriptions of services that can be expected.

In Section 2.2 we have analyzed the work done so far in the area of automatic service
discovery and a strongly related area: software component retrieval.

After introducing our description of goals and Web services in Section 2.3, the formal
semantics for requested goals and abstract capabilities of services have been introduced
in Section 2.4, as well as the formal relation between those that have to be checked in
order to establish different kinds of match. In addition, we have discussed the influence
of the requester and service intentions when describing their goals and abstract capabil-
ities, which has been ignored so far in the literature, and how they affect the relations
that have to be checked for detecting different types of match. Finally, we have provided
a formalization based on first-order logic and an adaptation that restricts the expressive-
ness allowed for describing goals and capabilities and that bring desirable computational
characteristics.

In Section 2.5 we have addressed the last step in our conceptual model i.e. service
contracting, again providing a formalization of the notion of match and introducing the
kind of modelling necessary for contracting capabilities and requester goals. Such for-
malization has been provided using first-order logic and transaction logic, the latter being
implementable usingFLORA-2.

Finally, we have discussed the relation between service discovery and mediation, an-
alyzing the assumptions we have to make on the mediation support.

In summary, we have presented a comprehensive analysis of the problem of automatic
service discovery and a conceptual model for it, providing formal semantics for the most
relevant steps in the model and analyzing the use of different formalisms to achieve it.
Furthermore, our model is independent on the underlying semantic Web service descrip-
tion model, although it does put some requirements on the conceptual elements that have
to be in place and what expressiveness is required for the modelling language used.

2.8 Open points

During our work, we have found several points that remain open and have to be solved
for an implementation of our discovery model. In the following, we list the most relevant
ones:

• The process of refining pre-defined goals based on a user desire has to be either
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automated or at least facilitated.

• An efficient discovery model needs to perform complex and expensive reasoning
only for a small subset of all available services. DL modelling and reasoning is re-
garded as a good candidate for service discovery, as it is expected to efficiently fil-
ter out a big number of irrelevant services. However, current DL reasoners present
problems when dealing with nominals for certain DL languages e.g.SHOIN .
Therefore, a way to overcome this problem has to be found and, eventually, perfor-
mance tests have to be carried out to select the most suitable DL reasoner.

• As DL modelling does not allow the differentiation of different intentions, annota-
tion of DL concepts has to be introduced at a meta-level. How to precisely imple-
ment this is still open.

• Abstract and contracting service capabilities are required. However, the provision
of service descriptions covering these two aspects must be consistent. Whether
the abstract capability can be automatically abstracted from the concrete capabil-
ity has not been proved. If this is not the case, a way to ensure the consistency of
both descriptions is required. Furthermore, these capabilities pose different require-
ments on the language used to describe them. How different languages interact is
an open issue. The WSML family of languages is expected to be a good candi-
date for solving it. We foresee that the WSML-DL variant will be required for
describing abstract capabilities, while WSML-Rule is the most likely candidate for
contracting capabilities. As WSML-Full is expected to provide a common unifying
language for WSML-DL and WSML-Rule, this would almost solve the problem.
WSML-Core can also serve as the language for describing domain ontologies, as it
corresponds to the maximal common subset of WSML-DL and WSML-Rule. The
expressiveness provided by WSML-Core is expected to suffice for most domains
[Vol04], but this has to be tested. A similar problem has to be resolved for the
description of requester goals.

• Contracting capabilities rely on the existence of predicates that (transparently) com-
municate with the service provider e.g. querying the provider knowledge base.
However, communication issues are involved that need to be resolved e.g. the dy-
namic use of service choreographies to communicate with the provider. Similarly,
the information a requester can provide has been assumed to be provided transpar-
ently, without addressing communication issues.

• Mediation support is assumed to make discovery and contracting work in a hetero-
geneous environment. Actual mediation support has to be provided for a real imple-
mentation of discovery and contracting. WSMO provides an appropriate conceptual
framework for it, and wgMediators, ggMediators and ooMediators [RLeditors04]
can be employed for this purpose.

• A discovery engine that implements the proposed approaches has to be imple-
mented and its efficiency tested.
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2.9 Future work

Our future work will concentrate on solving the open issues mentioned in the previous
section, particularly the interaction of abstract and contracting capabilities of services and
the required languages and the evaluation of candidate reasoners. This will eventually
lead to the implementation of a discovery engine based on this conceptual model. This
work has already started (see [Leditors04b]).

A second major line in our future work is to integrate the planned discovery engine
with the approaches for composition that will be presented in the next chapters. A first
conceptual analysis of the nature of such integration will be provided in Chapter 4.
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Chapter 3

Semantics for Web Service Composition

The automatic composition of Web services, namely the problem of providing an “au-
tomatic selection, composition, and interoperation of [existing] Web services to perform
some complex task, given a high-level description of an objective” [Coa04], is one of the
motivating goals of the research in Semantic Web Services. In this chapter we provide
a conceptual model for describing Web service composition problems and we discuss
techniques and tools supporting the automatic service composition.

We distinguish two different forms of Web service composition, namely a “Functional-
Level Composition” and a “Process-Level Composition”.Functional-level composition
addresses the problem of selecting a set of services that, combined in a suitable way, are
able to match a given query. Each existing service is defined in terms of an atomic in-
teraction, i.e., in terms of its input and output parameters as well as of its preconditions
and effects. (Such description is provided for instance in the OWL-S service profile, or
in the WSMO service capability model, see Section 1.1). The query defines the overall
functionality that the composed service should implement, again in terms of its inputs,
outputs, preconditions, and effects. An example of functional-level composition in the
domain of the Virtual Travel Agency (see Section 1.2) is that of identifying the Web ser-
vices that need to be integrated in order to answer to a customer request. The result of
the composition can be the identification of “Flight Booking” service, a “Hotel Booking”
service, and a “Car Rental” service which are adequate for the specific request of the
customer (i.e., the specific destination of the trip).

Process-levelcomposition covers a later phase of the overall composition task. Here
we assume that the set of Web services necessary for defining the composition has already
been found, and that we have to work out the details of how to interact with them. The goal
is to obtain the executable code that implements the composition. In this phase it is not
sufficient to define the Web services in terms of inputs, outputs, preconditions and effects.
A more detailed description of each Web service is necessary in order to generate the
exact sequence of operations for interacting with the service provider. (Such description
is provided for instance in the OWL-S process model, or in the WSMO service interface).
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In the case of the “Flight Booking” service, for instance, this interaction requires several
steps including authentication, submission of a specific request, negotiation of an offer,
acceptance (or refusal) of the offer, and payment. Moreover, these steps may have con-
ditional, or non-nominal outcomes (e.g., there may be no offer available from an existing
service...) that may affect the following steps (e.g., if there is no offer available, an order
cannot be submitted...). All these details are inessential for defining the functional-level
composition, but become important for the generation of the actual code implementing it.
The necessity of doing service composition at the process level is recognized in several
works, notably in [NM02], where an approach is proposed for simulation, verification
and composition of complex services described in OWL-S. An automated approach for
the process-level composition of Web service is described in [TP04]; also in this case
OWL-S is used as modeling language.

The two forms of automatic compositions require different conceptual frameworks
and different techniques. For this reason, in this chapter, functional-level and process-
level composition are discusses separately, in Sections 3.1 and 3.2 respectively. We post-
pone the discussion on how to combine them until Chapter 4, where we will also discuss
how to compose these two functionalities with automatic service discovery.

3.1 Functional-Level Composition

Here we discuss approaches for the fully automated, functional composition of services
according to user constraints. This approach to service composition is very much related
to traditional AI planning. The service composition problem is specified by a set of avail-
able inputs and a set of required outputs. The services correspond to planning operators:
They require certain inputs (preconditions) and provide outputs (effects). The planning
results in an arrangement of services in a workflow to fulfill the user requirements. One
important difference to planning is that the set of service descriptions (i.e., the planning
operators) may be very large and is usually maintained in service directories. Hence, it
is crucial for service composition algorithms to interact with service directories in order
to dynamically retrieve relevant services. In order to achieve reasonable composition per-
formance, the interaction between composition algorithm and service directory has to be
carefully crafted. In this section, we will consider several types of matching that are used
by the functional-level composition. The notions of match used do not totally follow the
conceptual model defined in Chapter 2, and are limited to discovery, not involving con-
tracting. The relation between the model presented in Chapter 2 and composition will be
discussed in Chapter 4, and a complete alignment between the discovery and contracting
model and composition will be subject of future work in the Knowledge Web project.

The remainder of this section is structured as follows: In Section 3.1.1 we briefly re-
view existing planning formalisms and service composition systems based on planning.
In Section 3.1.2 we introduce our formalism to describe service advertisements and re-
quests. We also formalize different forms of matching requests with advertisements.
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In Section 3.1.3 we introduce type-compatible service composition, i.e., service compo-
sition that takes type constraints into account. We also present a concrete service compo-
sition algorithm that supports partial type matches. In Section 3.1.4 we give an overview
of implementation techniques of service directories to support scalable and efficient auto-
mated service composition, including techniques for multidimensional indexing, the sup-
port for large result sets (incremental retrieval of results), efficient concurrency control,
and the support for user-defined search heuristics. Finally, in Section 3.1.5 we present our
testbed that offers several models to simulate large service directories. We present experi-
mental results that underline the benefits of supporting partial type matches in the process
of service composition. Thanks to this support for partial type matches, a much larger
part of the problem set can be solved by automated composition. We also present results
that stress the importance of supporting user-defined heuristics in the directory search.

3.1.1 Background and State of the Art

In this section we briefly review some related work in the area of service composition.
First, we discuss STRIPS planning, which is the basis for many research work in the area
of functional-level service composition. We also review Golog, a composition approach
based on the situation calculus, and SHOP-2, a hierarchical planning system.

STRIPS Planning

STRIPS was adopted by the research community as the basis for the majority of planning
formalisms used today. Different extensions were provided to it and a number of STRIPS
flavors exist [FN71, Lif87, McD03], but the high-level description presented next is com-
mon to all approaches.

In STRIPS the world is described in terms of its state. Actions are described in terms
of precondition, ‘add’ and ‘delete’ lists. The precondition list of an action describes state
that has to be true in the world before the action can be applied. The ‘add’ list describes
state in the world that will be true after the planning operator has been applied. The
‘delete’ list describes state in the world that will be false after the operator has been
applied.

Systems Supporting Automated Service Composition

Golog An initial approach to process composition in [MSZ01] and [MS02b] was to
use a planning formalism based on the situation calculus, a firstorder logical language
for reasoning about action and change. In the situation calculus, the state of the world
is expressed in terms of functions and relations relativized to a particular situation. The
advantage of this approach is that complex control constructs like loops can be modelled
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using this framework. The drawback of this approach is its high computational complex-
ity.

This work builds on and extends Golog, a highlevel, logic programming language,
developed at the University of Toronto. Golog supports the specification and execution of
complex actions in dynamical domains.

SHOP-2 In [Wu,03] the authors describe SHOP2, a hierarchical planning formalism for
encoding the composition domains. This approach is more efficient but it doesn’t support
complex constructs like loops.

SHOP2 is a domain-independent HTN planning system. HTN planning is an AI plan-
ning methodology that creates plan by task decomposition. This is a process in which the
planning system decomposes tasks into smaller and smaller subtasks, until primitive tasks
are found that can be performed directly. The concept of task decomposition in HTN is
very similar to the concept of process decomposition in OWL-S.

One difference between SHOP2 and most other HTN planning systems is that SHOP2
plans for tasks in the same order that they will later be executed. Planning for tasks in
the order they will be performed makes it possible to know the current state of the world
at each step in the planning process, which makes it possible for SHOP2’s precondition-
evaluation mechanism to incorporate significant inferencing and reasoning power, includ-
ing the ability to call external programs. This allows SHOP2 to integrate planning with
external information sources as in the Web environment.

In order to do planning in a given planning domain, SHOP2 needs to be given the
knowledge about that domain. SHOP2’s knowledge base contains operators and methods.
Each operator is a description of what needs to be done to accomplish some primitive
task, and each method tells how to decompose some compound task into partially ordered
subtasks.

3.1.2 Formalism and Semantics

In this section we give some basic definitions and introduce our formalism for describing
service advertisements and service requests together with their associated semantics. This
formalism is very similar to the description of services used in Chapter 2. However, some
differences arise and will be discussed. We briefly repeat from Chapter 2 some state-
of-the-art regarding matchmaking that is of interest for our composition approach. We
introduce interval constraints, a supporting formalism which we use for describing and
matching services.
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Service Advertisements and Requests

The functional aspects of service advertisements and service requests are specified as
parameters and states of the world [CCMW01, DS04]. Parameters can be eitherinput or
output, and states of the world can be eitherpreconditions(required states) oreffects(gen-
erated by the execution of the service). We presume that terms in the service descriptions
are defined using a class/ontological language like OWL [DS04]. Primitive data-types
can be defined using a language like XSD [W3C].1 As specified by the latest version of
OWL-S [Coa04], in our formalism each parameter has two elements:

• A role describing the actual semantics of the parameter (e.g., in a travel domain the
role of a parameter could bedeparture or arrival).

• A type defining the actual datatype of the parameter (e.g., the datatype for both
departure andarrival could belocation).

We define states of the world through preconditions and effects. We extend the normal
semantics of concepts that can be included in preconditions or effects.

In service advertisements input and output parameters, as well as preconditions and
effects, have the following semantics:

• In order for the service to be invokable, a value must be known for each of the
service input parameters and it has to be consistent with the respective semantic
role and syntactic type of the parameter. The parameter provided as input has to be
semantically more specific than what the service is able to accept. Regarding the
parameter type, in the case of primitive data types the invocation value must be in
the range of allowed values, or in the case of classes the invocation value must be
subsumed by the parameter type. The preconditions define in which state the world
has to be before the service can be invoked. All preconditions must be entailed by
the conditions specified by the current state of the world.

• Upon successful invocation the service will provide a value for each of the output
parameters and each of these values will be consistent with the respective parameter
role and datatype. After invocation the state of the world will be modified such that
all effects listed in the service advertisement will be added to the new world state.
Terms in the original state conflicting with terms in the new state will be removed
from the new state.

The above semantics is consistent with the descriptions introduced in Section 2.3.
Service requests are represented in a similar manner but have different semantics:

1At the implementation level both primitive datatypes and classes are represented as sets of numeric
intervals [CF03].
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• The service request inputs represent available parameters (e.g., provided by the
user or by another service). Each of these input parameters has attached a semantic
role description and either some description of its datatype or a concrete value.
Preconditions in a request represent the state of the world available for any matching
service advertisement. They are equivalent to initial conditions in a classic planning
environment. This state has to entail the state required in the precondition of any
compatible service.

• The service request outputs represent parameters that a compatible (composed) ser-
vice must provide. The parameter role defines the actual semantics of the required
information and the parameter type defines what ranges of values can be handled
by the requester. The compatible (composed) service must be able to provide a
value for each of the parameters in the output of the service request, semantically
more specific than the requested role, and having values in the range defined by the
requested parameter type. Effects represent the change of the world desired by the
requester of the service or the goals that the service request needs to be fulfilled. In
order for any of the goals or effects of the service request to be considered fulfilled,
the state of the world after the invocation of a given service will have to contain an
effect entailing the respective goal.

Notice that in the descriptions presented in Section 2.3 inputs are not used for discov-
ery but only for contracting, and at contracting time instance data is expected to be made
available by the requester. In addition, the conditions over the state of the world are not
represented in the goal i.e. request. These differences will be discussed in Chapter 4.

Matchmaking – Current Approaches

As presented in Section 2.2, previous work regarding the matching of software
components [ZW97] has considered several possible match types based on the implica-
tion relations between preconditions and postconditions of a library componentS and a
queryQ. For example thePlugIn match, one of the most useful match types is defined as:

matchPlugIn(Q,S) = (preQ ⇒ preS) ∧ (postS ⇒ postQ).

In LARKS [SWKL02] the above condition has been adapted such that the implication
was replaced my a more tractable operation, theθ subsumption over sets of constraints
(¹θ):

matchPlugIn(Q,S) = (preQ ¹θ preS) ∧ (postS ¹θ postQ).

A set of constraintspreS θ-subsumes a set of constraintspreQ (preQ ¹θ preS or
otherwisepreQ v preS or preQ ⇒ preS), if every constraint inpreQ is subsumed by a
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constraint inpreS (similarly for postconditions):

preQ ¹θ preS ⇔
(∀CQ ∈ preQ)(∃CS ∈ preS)(CQ ¹θ CS).

Most recent work regarding matchmaking [PKPS02, LH03, CF03] has extended these
approaches by using description logic based languages [BS01, DS04] for defining terms
of service advertisements or requests.

Interval Constraints

For describing service advertisements and requests we use constraints on sets of intervals
(possibly generated from class descriptions [CF03]). A constraint is a special form of
first order predicate that universally quantifies over the values of the interval sets ; in the
case that an interval represents the encoding of a class the constraint will correspond to a
quantification over all the individuals in the class:

P (C1, C2, ..., Cn) ⇔
(∀x1 ∈ C1)(∀x2 ∈ C2)...(∀xn ∈ Cn)P (x1, x2, ..., xn).

We define a number of possible relations between two interval setsC1 andC2:

C1 v C2 ⇔ (∀i1 ∈ C1) (∃i2 ∈ C2)(i1 ⊆ i2),
C1 ≡ C2 ⇔ C1 v C2 ∧ C2 v C1,
C1u̇C2 ⇔ (∃i1 ∈ C1) (∃i2 ∈ C2)(i1 ∩ i2 6= ∅).

The relation¬u̇ is the logical negation oḟu and holds when the argument interval sets
are disjoint. We define also two special relations: top>̇ that always holds and bottoṁ⊥
that never holds. There is a similarity between theθ subsumption relation between sets of
clauses and the interval set subsumption relationv.

We assume that constraints have unique arities - that is constraints with the same name
have always the same number of terms.

We defineent, a complex entailment relation between two constraintsP1(C11, ..., C1n)
andP2(C21, ..., C2n) having same arityn but possibly different namesP1 andP2. The
predicateent(P1, P2, op1, ..., opn) holds when each of the termsC1i andC2i of the two
constraints are in the relation specified by the respective operatoropi:

ent(P1, P2, op1, ..., opn) ⇔ ∧n
i=1 C1i opi C2i

whereopi ∈ {≡,v,w, u̇,¬u̇, >̇, ⊥̇}, i = 1..n.
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We definenotEnt, a non-entailment relation having semantics in concordance with
those ofent - the predicate holds when at least one of the termsC1i andC2i is not in the
relation specified by the respective operatoropi:

notEnt(P1, P2, op1, ..., opn) ⇔ ∨n
i=1 ¬(C1i opi C2i)

whereopi ∈ {≡,v,w, u̇,¬u̇, >̇, ⊥̇}, i = 1..n.

Constraints can be grouped in constraint stores. A constraint storeS is logically
equivalent to the formula formed as the conjunction of the constraints in the store:

S = {P1(C11, ..., C1n), ..., Pk(Ck1, ..., Ckm)} ⇔
P1(C1, ..., Cn) ∧ ... ∧ Pk(Ck1, ..., Ckm).

By combining universal (all) and existential (some) quantifiers over a pair of
constraint storesQ andS we can define eight predicates (e.g.,allQallS , allQsomeS ,...,
allSallQ, allSsomeQ,..., etc). Each of the predicates holds if the two stores contain
constraints accordingly to the quantificationsqQ andqS that are in a relation as defined
above byent:

q1q2(PQ, PS , op1, ..., opn) ⇔
((∀ | ∃)(PQ | PS))((∀ | ∃)(PS | PQ))
(PQ ∈ Q)(PS ∈ S) ent(PQ, PS , op1, ..., opn),

where q1, q2 ∈ {allQ, allS , someQ, someS}, store(q1) 6= store(q2) and where
store(quantX ) = X for quant ∈ {all, some}, X ∈ {Q,S}.

We also explicitly define the negation of the quantification predicates with semantics
that can be straightforwardly deduced by the application of DeMorgan’s laws for
quantifier transformation. After applying these transformations (assumed to be already
done on the right part of the expression below) the formula can be written in terms of the
non-entailment predicatenotEnt:

¬q1q2(PQ, PS , op1, ..., opn) ⇔
((∃ | ∀)(PS | PQ))((∃ | ∀)(PQ | PS))
(PQ ∈ Q)(PS ∈ S) notEnt(PQ, PS , op1, ..., opn),

whereq1 andq2 are as above and the negation is propagated over the quantifiers using
the extended DeMorgan laws:¬all → some¬, ¬some → all¬, ¬ent → notEnt.
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We definecount a function which returns the cardinality of a set of constraints se-
lected from the constraint storeS accordingly to their entailment relation with constraints
in the storeQ :

countQ,S(PQ, PS , op1, ..., opn) =
| {PS ∈ S : PQ ∈ Q, ent(PQ, PS , op1, ..., opn)} |.

We introduce alsocountQ andcountS two functions which return the cardinality of a
set of constraints having a given nameP from the storesQ or S:

countQ(P ) =| {P (C1, ..., Cn) ∈ Q} |,
countS(P ) =| {P (C1, ..., Cn) ∈ S} |.

Describing Services by Interval Constraints

We use constraint stores to define service advertisements or service requests. In this
deliverable we will consider the latter as user queries but this doesn’t necessarily have to
be so. Input and output constraints are defined over the two kind of elements that describe
a parameter - roles for semantics and types for syntactic compatibility. Preconditions and
effects are defined over concepts describing features of the world. The exact semantics
of input, output parameters and preconditions and effects are defined above, depending
if they are in the scope of a service advertisement or a service request. Four kinds of
constraints are used in service descriptions:

- IN(R, T ) - which defines an input parameter through its roleR and typeT .
- OUT (R, T ) - which defines an output parameter through its roleR and typeT .
- PRE(F ) - which defines a precondition through the world stateF .
- EFF (F ) - which defines an effect through the world stateF .

Let’s consider as an example a service description with two input parameters having
roles A and B and types a1-a2, b1, output parameters having roles C, D and types c1, d1-
d2 with preconditions p1 and p2 and effects g1. This service description would be repre-
sented as the following constraint store:S = { IN(A, a1−a2), IN(B, b1), OUT (C, c1),
OUT (D, d1− d2), PRE(p1),PRE(p2), EFF (g1) }.

In order to illustrate our approach we show below how the basicPlugIn match type
is expressed in our formalism. For a query storeQ and a service storeS this match type
can be specified as:

matchPlugIn(Q,S) =
allSsomeQ(INQ, INS,vrole,vtype)∧
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allQsomeS(OUTQ, OUTS,wrole,wtype)∧
allSsomeQ(PREQ, PRES,v)∧
allQsomeS(EFFQ, EFFS,w).

3.1.3 Automated Service Composition

In this section we introduce type-compatible service composition, i.e., service composi-
tion that takes type constraints into account. We also present a concrete service composi-
tion algorithm that supports partial type matches.

Type-Compatible Discovery and Composition

For composition we considering two kinds of possible approaches: forward chaining and
backward chaining. Informally, the idea of forward chaining is to iteratively apply a
possible serviceS to a set of input parameters provided by a queryQ (i.e., all inputs
required byS have to be available). If applyingS does not solve the problem (i.e., still
not all the outputs required by the queryQ are available) then a new queryQ′ can be
computed fromQ andS and the whole process is iterated. This part of our framework
corresponds to the planning techniques currently used for service composition [TKAS02].
In the case of backward chaining we start from the set of parameters required by the query
Q and at each step of the process we choose a serviceS that will provide at least one of
the required parameters. ApplyingS might result in new parameters being required which
can be formalised as a new queryQ′. Again the process is iterated until a solution is found.

Now we consider the conditions needed for a serviceS to be applied to the inputs
available from a queryQ using forward chaining: for all of the inputs required by the
serviceS, there has to be a compatible parameter in the inputs provided by the queryQ.
Compatibility has to be achieved both for roles, where the role of any parameter provided
by the queryQ has to be semantically more specific (v) than the role of the parameter
required by the serviceS, and for types, where the range provided by the queryQ has to
be more specific (v) than the one accepted by the serviceS. In the formalism introduced
above the forward complete chaining condition would map to theallSsomeQ predicate:

fwdComp(Q,S) =
allSsomeQ(INQ, INS,vrole,vtype) ∧ allSsomeQ(PREQ, PRES,v).

A similar kind of PlugIn match between the inputs of queryQ and of serviceS has
been identified by Paolluci [PKPS02] for the matchmaking of DAML-S services.

Forward complete matchingof types is too restrictive and might not always work, be-
cause the types accepted by the available services may partially overlap the type specified
in the query. For example, a VTA might offer restaurant recommendations when booking

KWEB/2005/D2.4.2/v1.1 January 29, 2005 85



3. SEMANTICS FOR WEB SERVICE COMPOSITION

a full holidays trip. When using a restaurant recommendations provider, a query given by
the VTA for restaurant recommendation services across all Switzerland could specify that
the integer parameter zip code could be in the range [1000,9999] while an existing service
providing recommendations for the french speaking part of Switzerland could accept only
integers in the range [1000-2999] for the zip code parameter.

A major novelty of our approach regarding composition is in that the above condition
for forward chaining is modified such that services withpartial type matchescan be
supported. For doing that we relax the type inclusion to a simple overlap:

fwdPart(Q,S) =
allSsomeQ(INQ, INS,vrole, u̇type) ∧ allSsomeQ(PREQ, PRES,v).

This kind of matching between the inputs of queryQ and of serviceS corresponds to
theoverlap or intersectionmatch identified by Li [LH03] and Constantinescu [CF03].

We will also consider the condition needed for a backward chaining approach. The
serviceS has to provide at least one output which is required by the queryQ. This
corresponds to theplugIn match for query and service outputs. Using the formal notation
above this can be specified as:

backComp(Q,S) = someQsomeS(OUTQ, OUTS ,wrole,wtype) ∨
someQsomeS(EFFQ, EFFS ,w).

As discussed in Chapter 2, other notions of match at discovery time are also possible,
and the intentions of requesters and providers might be considered when determining a
match. In addition, contracting can be seen as a step in the selection of services suitable
for the problem at hand. Finally, in the composition approach presented in this section,
goals i.e. user requests are assumed to be already formalized. However, a goal selection
and refinement might be required for realistic description of user requests. These issues
will be discussed in Chapter 4 and future work will address them.

Type-Compatible Service Composition Versus Planning

As the majority of service composition approaches today rely on planning we will ana-
lyze the correspondence between our formalism for service descriptions with types and
an hypothetic planning formalism using symbol-free first order logic formulas for precon-
ditions and effects.

As an example (see Table 3.1 let’s consider the service description S which has two
input parameters A and B and two output parameters C and D. Their types are represented
as sets of accepted and provided values and are a1, a2 for A, respectively b1, b2 for B,
c1, c2 for C, and d1, d2 for D. This corresponds to an operator S that has disjunctive

86 January 29, 2005 KWEB/2005/D2.4.2/v1.1



D2.4.2 Semantics for Web Service Discovery and Composition IST Project IST-2004-507482

S = { :action S
:precondition

(and
IN(A,[a1, a2]), (or a1 a2)
IN(B,[b1, b2]), (or b1 b2))

:effect
(and

OUT(C,[c1, c2]), (or c1 c2)
OUT(D,[d1, d2]) (or d1 d2))

}

Figure 3.1: Service with types and corresponding planning operator.

preconditions and disjunctive effects. Negation is not required.

Written in this way our formalism has some correspondence with existing planning
languages like ADL [Ped89] or more recently PDDL [McD98] (concerning the disjunc-
tive preconditions) and planning with non-deterministic actions [KHW95] (regarding the
disjunctive effects), but the combination as a whole (positive-only disjunctive precondi-
tions and effects) stands as a novel formalism.

Computing Type-Compatible Service Compositions

In this section we will present algorithms for computing type-compatible service compo-
sitions. Their design is motivated by two aspects specific to large scale service directories
operating in open environments:

• large result sets- for each query the directory could return a large number of ser-
vice descriptions.

• costly directory accesses- being a shared resource accessing the directory (possi-
bly remotely) will be expensive.

We address these issues by interleaving discovery and composition and by computing
the “right” query at each step. For that, the integration engine (see Fig. 3.2) uses three
separate components:

• planner - a component that computes what can be currently achieved from the
current query using the current set of discovered services. From that the problem
that remains to be solved is derived and a new query is returned.
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Figure 3.2: The architecture of our service integration engine.

• composer- a component that implements the interleaving between planning and
discovery. It decides what kind of queries (partial/complete) should be sent to the
directory and it deals with branching points and recoursive solving of sub-problems.

• discovery mediator - a component that mediates composer accesses to the direc-
tory by caching existing results and matching new queries to already discovered
services.

Composition with Complete Type Matches

Composing completely matching services using forward chaining is straightforward: once
the condition for complete type matches in Section 3.1.3 is fullfilled (all inputs required
by the serviceS are present in the queryQ and the types in the query are more specific
than the types accepted by the service) a new queryQ′ can be computed by adding to the
set of available inputs of the current queryQ all the outputs provided by the serviceS.

Composition with Forward Partial Type Matches

Conceptually the algorithm that we use for composing services with forward partial type
matches has three steps (for more details see [CFB04b]):

• Discovery of completely matching services.

• Discovery of services for full coverage of available inputs.

• Discovery of services for correct switch handling.
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Figure 3.3: Flow of algorithm for composition with partial type matches.
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Discovering full input coverage The second step of the algorithm assumes that a so-
lution using only complete matches was not found and that services with partial type
matches have to be assambled in order to solve the problem. By definition any of the
partially matching services is able to handle only a limited sub-space of the values avail-
able as inputs. In order to ensure that any combination of input values can be handled,
the space of available inputs is first discretized in parameter value cells. One cell is a
rectangular hyperspace containing all dimensions of the space of available inputs but only
a single interval for each dimension. A cell corresponds to the guard condition of the
switch. Cells are built in such a way that any of the required inputs for the retrieved par-
tially matching services could be expressed as a collection of cells. Each of the retrieved
partially matching services is assigned to the cells that it can accept as input. The cover-
age is considered complete when all cells have assigned one or more services. When all
cells are covered the algorithm proceeds at the next step. If no more partially matching
services can be found and a complete coverage was not achieved the algorithm returns
failure.

Discovering solution switch The last step of the algorithm assumes that a coverage was
found and a first switch can be created. The goal of this step is to ensure that the switch
will function correctly for each of its branches. For each cell and its set of assigned
services the algorithm will compute the set of output parameters that those services will
provide. Then a new query is computed, having as available inputs the output parameters
of the cell and as required outputs the set of required outputs of the complete matching
phase. The whole composition procedure is then invoked recursively. In the case that all
cells return a successful result the switch is considered to be correct and the algorithm
returns success. Otherwise a new service is retrieved and the process continues. When no
more services can be retrieved the algorithm returns failure.

3.1.4 Implementation Techniques (Directory Support for Automated
Service Composition)

Here we give an overview of implementation techniques of service directories to sup-
port scalable and efficient automated service composition, including techniques for mul-
tidimensional indexing, the support for large result sets (incremental retrieval of re-
sults), efficient concurrency control, and the support for user-defined search heuris-
tics [CBF04b, CBF04a, BCF04].

Multidimensional Access Methods - GiST

The need for efficient discovery and matchmaking leads to a need for search structures
and indexes for directories. We consider numerically encoded service descriptions as
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multidimensional data and use techniques related to the indexing of such kind of infor-
mation in the directory. Our directory index is based on the Generalized Search Tree
(GiST), proposed as a unifying framework by Hellerstein [HNP95] (see Fig. 3.4). The
design principle of GiST arises from the observation that search trees used in databases
are balanced trees with a high fanout in which the internal nodes are used as a directory
and the leaf nodes point to the actual data.

Each internal node holds a key in the form of a predicateP and a number of pointers
to other nodes (depending on system and hardware constraints, e.g., filesystem page size).
To search for records that satisfy a query predicateQ, the paths of the tree that have keys
P satisfyingQ are followed.

ptr
P

ptr
P

ptr
P

ptr
P

ptr
P

ptr
P

ptr
P

Leaf Nodes

Node with 4 entries
Entry with key P and 
pointer ptr

Internal Nodes

Figure 3.4: Generalised Search Tree (GiST).

More concretely, Each leaf node in the GiST of our directory holds references to all
service descriptions with a certain input/output behaviour. The required inputs of the ser-
vice and the provided outputs (sets of parameter names with associated types) are stored
in the leaf node. For inner nodes of the tree, the union of all inputs/outputs found in the
subtree is stored. More precisely, each inner nodeI on the path to a leaf nodeL con-
tains all input/output parameters stored inL. The type associated with a parameter inI
subsumes the type of the parameter inL. That is, for an inner node, the input/output pa-
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rameters indicate which concrete parameters may be found in a leave node of the subtree.
If a parameter is not present in an inner node, it will not be present in any leave node of
the subtree.

Service Integration Sessions and Concurrency Control

As directory queries may retrieve large numbers of matching entries (especially when
partial matches are taken into consideration), it is important to support incremental access
to the results of a query in order to avoid wasting network bandwidth. Our directory
service offerssessionswhich allow a user to issue queries to the directory and to retrieve
the results one by one (or in chunks of limited size).

The session guarantees a consistent view of the directory, i.e., the directory structure
and contents as seen by a session does not change. Concurrent updates (service registra-
tion, update, and removal) do not affect the sequence of query results returned within a
session; sessions are isolated from concurrent modifications.

Previous research work has addressed concurrency control in generalized search
trees [KMH97]. However, these concurrency control mechanisms only synchronize indi-
vidual operations in the tree, whereas our directory supports long-lasting sessions during
which certain parts of the tree structure must not be altered. This implies that insertion
and deletion operations may not be performed concurrently with query sessions, as these
operations may significantly change the structure of the tree (splitting or joining of nodes,
balancing the tree, etc.).

The following assumptions underly the design of our concurrency control mechanism:

1. Read accesses (i.e., queries within sessions and the incremental retrieval of the
results) will be much more frequent than updates.

2. High concurrency for read accesses (high number of concurrent query sessions).

3. Read accesses shall not be delayed.

4. Updates may become visible with a significant delay, but feedback concerning the
update (success/failure) shall be returned immediately.

5. The duration of a session may be limited (timeout).

In order to meet the assumptions above, we have designed a mechanism which guar-
antees that sessions operate on read-only data structures that are not subject to changes.
In our approach the in-memory structure of the directory tree (i.e., the directory index)
is replicated up to 3 times, while the actual service descriptions are shared between the
replicated trees.
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When the directory service is started, the persistent representation of the directory tree
is loaded into memory. This master copy of the directory tree is always kept up to date,
i.e., updates are immediately applied to that master copy and are made persistent, too.
Upon start of the directory service, a read-only copy of the in-memory master copy is
allocated. Sessions operate only on this read-only copy. Hence, session management is
trivial, there are no synchronization needs. Periodically, the master copy is duplicated to
create a new read-only copy.2 Afterwards, new sessions are redirected to the new read-
only copy. Garbage collection frees the old read-only copy when the last session operating
on it completes (either by an explicit session termination by the client or by a timeout).

We require the session timeout to be smaller than the update frequency of the read-
only copy (the duplication frequency of the master copy). This condition ensures that
there will be at most 3 copies of the in-memory representation of the directory at the same
time: The master where updates are immediately applied (but which is not yet visible to
sessions), as well as the previous 2 read-only copies used for sessions. When a new read-
only copy is created, the old copy will remain active until the last session operating on it
terminates; this time span is bounded by the session timeout.

In our approach only updates to the master copy are synchronized. Updates are imme-
diately applied to the master copy (yielding immediate feedback to the client requesting
an update). Only during copying the directory is blocked for further updates. In accord
with the third assumption, the creation of sessions requires no synchronization.

Custom Pruning and Ranking Functions

As directory queries may retrieve large numbers of matching entries (especially when
partial matches are taken into consideration), our directory support sessions in order to
incrementally access the results of a query [CBF04b]. By default, the order in which
matching service descriptions are returned depends on the actual structure of the direc-
tory index (the GiST structure discussed before). However, depending on the service
integration algorithm, ordering the results of a query according to certain heuristics may
significantly improve the performance of service composition. In order to avoid the trans-
fer of a large number of service descriptions, the pruning, ranking, and sorting according
to application-dependent heuristics should occur directly within the directory. As for
each service integration algorithm a different pruning and ranking heuristic may be bet-
ter suited, our directory allows its clients to define custom pruning and ranking functions
which are used to select and sort the results of a query. This approach can be seen as a
form of remote evaluation [FPV98]. Within a service integration session multiple pruning
and ranking functions may be defined. Each query in a session may be associated with a
different one.

2Parts of the tree that have not been changed since the last duplication are not copied; these parts of the
tree are shared with the previous read-only copy.
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API for Pruning and Ranking Functions The pruning and ranking functions receive
as arguments information concerning the matching of a service description in the directory
with the current query. They return a value which represents the quality of the match. The
bigger the return value, the better the service description matches the requirements of the
query. The sequence of results as returned by the directory is sorted in descending order
of the values calculated by the pruning and ranking functions (a higher value means a
better match). Results for which the functions evaluate to zero come at the end, a negative
value indicates that the match is too poor to be returned, i.e., the result is discarded and
not passed to the client (pruning).

As arguments the client-defined pruning and ranking functions take fourParamSet
objects corresponding to the input and output parameter sets of the query, and respectively
of the service. TheParamSet object provides methods like size, membership, union,
intersection, and difference (see Fig. 3.6). The size and membership methods require only
the currentParamSet object, while the union, intersection, and difference methods use
two ParamSet objects – the current object and a secondParamSet object passed as
argument.

It is important to note that some of the above methods address two different issues at
the same time:

1. Basicset operations, where a set member is defined by a parameter name and its
type; for deciding the equality of parameters with same name and different types a
user-specified expression is used.

2. Computation of new typesfor some parameters in the resulting sets; when a para-
meter is common to the two argument sets its type in the resulting set is computed
with a user-specified expression.

The explicit behavior of theParamSet methods is the following:

size: Returns the number of parameters in the current set.

containsParam: Returns true if the current set contains a parameter with the same name
as the method argument (regardless of its type).

union: Returns the union of the parameters in the two sets. For each parameter that is
common to the two argument sets the type in the resulting set is computed according
to the user-specified expressionnewTypeExpr .

intersection: Returns the parameters that are common to the two setsAND for which
the respective types conform to the equality test specified by theeqTestExpr .
The type of these parameters in the resulting set is computed according to the user-
specified expressionnewTypeExpr .
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minus: Returns the parameters that are present only in the current set and in the case of
common parameters only those thatDO NOTconform to the equality test specified
by theeqTestExpr . For the latter kind of parameters the type in the resulting set
is computed according to the user-specified expressionnewTypeExpr .

Parameters whosenewTypeExpr would be the empty type (calledNOTHINGin the
table below) are removed from the resulting set.

The expressions used in theeqTestExpr andnewTypeExpr parameters have the
same format and they are applied to parameters that are common to the twoParamSet
objects passed to aunion , intersection , or minus method. For such kind of para-
meter we denote its type in the two argument sets asA andB. The expressions are created
from these two types by using some extra constructors based on the Description Logic
language OWL [DS04] like>,⊥, ¬, u, t,v,≡. The expressions are built by specifying
a constructor type and which of the argument typesA or B should be negated. For the
single type constructors> and⊥ negation cannot be specified and for the constructorsA
andB the negation is allowed only for the respective type (e.g., for the constructor type
A, only¬A can be set).

Constructor type ¬A? ¬B? Possible expressions
THING - - >
NOTHING - - ⊥
A Y/N - A,¬A
B - Y/N B,¬B
UNION Y/N Y/N A tB, A t ¬B, ¬A tB, ¬A t ¬B
INTERSECTION Y/N Y/N A uB, A u ¬B, ¬A uB, ¬A u ¬B
SUBCLASS Y/N Y/N A w B, A w ¬B, ¬A w B, ¬A w ¬B
SUPERCLASS Y/N Y/N A v B, A v ¬B, ¬A v B, ¬A v ¬B
SAMECLASS Y/N Y/N A ≡ B, A ≡ ¬B, ¬A ≡ B, ¬A ≡ ¬B

We represent an expression as a bit vector having a value corresponding to its re-
spective constructor type. For encoding the negation of any of the types that are argu-
ments to the constructor, two masks can be applied to the constructor types:NEGA and
NEGB. For the actual encoding, see Fig. 3.6. For example,A u ¬B will be expressed as
ParamSet.INTERSECTION | ParamSet.NEG B.

As an example of API usage, assume we need to select the parameters that
are common to the two setsX and Y , which have in X a type that is more
specific than the one inY . In the result set we would like to preserve the
type values in X. The following statement can be used for this purpose:
X.intersection(Y, ParamSet.SUPERCLASS, ParamSet.A) .

The directory supports pruning and ranking functions written in a subset of the Java
programming language. The code of the functions is provided as a compiled Java class.
The class has to implement theRanking interface shown in Fig. 3.6.
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public interface Ranking {
double rankLeaf( ParamSet qin, ParamSet qout, ParamSet sin, ParamSet sout );
double rankInner( ParamSet qin, ParamSet qout, ParamSet sin, ParamSet sout );

}

public interface ParamSet {
static final int THING=1, NOTHING=2, A=3, B=4, UNION=5, INTERSECTION=6,

SUBCLASS=7, SUPERCLASS=8, SAMECLASS=9, NEG_A=16, NEG_B=32;

int size();
boolean containsParam( String paramName );
ParamSet union( ParamSet p, int newTypeExpr );
ParamSet minus( ParamSet p, int eqTestExpr, int newTypeExpr );
ParamSet intersection( ParamSet p, int eqTestExpr, int newTypeExpr );

}

Figure 3.6: The API for ranking functions.

Processing a user query requires traversing the GiST structure of the directory starting
from the root node. WhilerankInner() is invoked for inner nodes of the directory
tree,rankLeaf() is called on leaf nodes.rankLeaf() receives as argumentssin
and sout the exact parameter sets as defined by the service description stored in the
directory. Hence,rankLeaf() has to return a concrete heuristic value for the given
service description. In contrast,rankInner() receives as argumentssin andsout
supersets of the input/output parameters found in any leaf node of its subtree. The type
of each parameter is a supertype of the parameter found in any leaf node (which has the
parameter) in the subtree.rankInner() has to return a heuristic value which is bigger
or equal than all possible ranking values in the subtree. That is, for an inner node the
heuristic function has to return an upper bound of the best ranking value that could be
found in the subtree. If the upper bound of the heuristic ranking value in the subtree
cannot be determined,Double.POSITIVE INFINITY may be used.

The pruning and ranking functions enable the lazy generation of the result set based
on abest-first searchwhere the visited nodes of the GiST are maintained in a heap or
priority queue and the most promising one is expanded. If the most promising node is a
leaf node, it can be returned. Further nodes are expanded only if the client needs more
results. This technique is essential to reduce the processing time in the directory until
the the first result is returned, i.e., it reduces the response time. Furthermore, thanks to
the incremental retrieval of results, the client may close the result set when no further
results are needed. In this case, the directory does not spend resources to compute the
whole result set. Consequently, this approaches reduces the workload in the directory
and increases its scalability. In order to protect the directory from attacks, queries may
be terminated if the size of the internal heap or priority queue or the number of retrieved
results exceed a certain threshold defined by the directory service provider.

Exemplary Ranking Functions In the example in Fig. 3.7 two basic ranking func-
tions are shown, the first one more appropriate for service composition algorithms using
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forward chaining (considering only complete matches), the second for algorithms using
backward chaining. Note the weakening of the pruning conditions for the inner nodes.

Safe and Efficient Execution of Ranking Functions Using a subset of Java as pro-
gramming language for pruning and ranking functions has several advantages: Java is
well known to many programmers, there are lots of programming tools for Java, and,
above all, it integrates very well with our directory service, which is completely written
in Java.

Compiling and integrating user-defined ranking functions into the directory leverages
state-of-the-art optimizations in recent JVM implementations. For instance, the HotSpot
VM [Sun] first interprets JVM bytecode [LY99] and gathers execution statistics. If code
is executed frequently enough, it is compiled to optimized native code for fast execution.
In this way, frequently used pruning and ranking functions are executed as efficiently as
algorithms directly built into the directory.

The class containing the ranking function is analyzed by our special bytecode verifier
which ensures that the user-defined ranking function always terminates within a well-
defined time span and does not interfere with the directory implementation. Efficient,
extended bytecode verification to enforce restrictions on JVM bytecode for the safe ex-
ecution of untrusted mobile code has been studied in the JavaSeal [VBB98] and in the
J-SEAL2 [Bin01, BHVV01] mobile object kernels. Our bytecode verifier ensures the
following conditions:

• TheRanking interface is implemented.

• Only the methods of theRanking interface are provided.

• The control-flow graphs of therankLeaf() and rankInner() methods are
acyclic. The control-flow graphs are created by an efficient algorithm with execu-
tion time linear with the number of JVM instructions in the method.

• No exception handlers (using malformed exception handlers, certain infinite loops
can be constructed that are not detected by the standard Java verifier, as shown
in [BR02]). If the ranking function throws an exception (e.g., due to a division by
zero), its result is to be considered zero by the directory.

• No JVM subroutines (they may result from the compilation offinally {}
clauses).

• No explicit object allocation. As there is some implicit object allocation in the set
operations inParamSet , the number of set operations and the maximum size of
the resulting sets are limited.

• Only the interface methods ofParamSet may be invoked, as well as a well-defined
set of methods from the standard mathematics package.
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public final class RankingForward implements Ranking {
public double rankLeaf( ParamSet qin, ParamSet qout,

ParamSet sin, ParamSet sout ) {
// discard service if it requires parameters that are not in the query;
// the provided input has to be more specific than the required one
if (sin.minus(qin, ParamSet.SUBCLASS, ParamSet.A).size() > 0) return -1.0d;

// services that provide more required parameters are better;
// the provided output has to be more specific than the required one
return (double)

sout.intersection(qout, ParamSet.SUPERCLASS, ParamSet.A).size();
}

public double rankInner( ParamSet qin, ParamSet qout,
ParamSet sin, ParamSet sout ) {

// for forward chaining, pruning inner nodes is not possible,
// but an upper bound of the overlap of the outputs can be easily computed
return (double)

sout.intersection(qout, ParamSet.INTERSECTION, ParamSet.A).size();
}

}

public final class RankingBackward implements Ranking {
public double rankLeaf( ParamSet qin, ParamSet qout,

ParamSet sin, ParamSet sout ) {
// discard service if it does not provide any required output
if (sout.intersection(qout, ParamSet.SUPERCLASS, ParamSet.A).size() == 0)

return -1.0d;

// services that reduce most the number of required outputs are better
ParamSet remaining = qout.minus(sout, ParamSet.SUBCLASS, ParamSet.A);
ParamSet newRequired = sin.minus(qin, ParamSet.SUBCLASS, ParamSet.A);
ParamSet required = remaining.union(newRequired, ParamSet.INTERSECTION);
return 1 / (double)(1+required.size());

}

public double rankInner( ParamSet qin, ParamSet qout,
ParamSet sin, ParamSet sout ) {

if (sout.intersection(qout, ParamSet.INTERSECTION, ParamSet.A).size() == 0)
return -1.0d;

ParamSet remaining = qout.minus(sout, ParamSet.INTERSECTION, ParamSet.A);
return 1 / (double)(1+remaining.size());

}
}

Figure 3.7: Exemplary pruning and ranking functions.
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• Only the static fields defined in the interfaceParamSet may be accessed.

• No fields are defined.

• No synchronization instructions.

These restrictions ensure that the execution time of the custom pruning and ranking
function is bounded by the size of its code. Hence, an attacker cannot crash the directory
by providing, for example, a pruning and ranking function that contains an endless loop.
Moreover, these functions cannot allocate memory. Our extended bytecode verification
algorithm is highly efficient, its performance is linear with the size of the pruning and
ranking methods. As a prevention against denial-of-service attacks, our directory service
allows to set a limit for the size of custom functions.

Pruning and ranking functions are loaded by separate classloaders, in order to support
multiple versions of classes with the same name (avoiding name clashes between multiple
clients) and to enable garbage collection of the class structures. The loaded class is in-
stantiated and casted to theRanking interface that is loaded by the system classloader.
The directory implementation (which is loaded by the system classloader) accesses the
user-defined functions only through theRanking interface.

As service integration clients may use the same ranking functions in multiple sessions,
our directory keeps a cache of ranking functions. This cache maps a hashcode of the
function class to a structure containing the function bytecode as well as the loaded class.
In case of a cache hit the user-defined function code is compared with the cache entry,
and if it matches, the function in the cache is reused, skipping verification and avoiding
to reload it with a separate classloader. Due to the restrictions mentioned before, multiple
invocations of the same ranking function cannot influence each other. The cache employs
a least-recently-used replacement strategy. If a function is removed from the cache, it
becomes eligible for garbage collection as soon as it is not in use by any service integration
session.

3.1.5 Evaluation

In this section we present our testbed that offers several models to simulate large service
directories [CFB04a]. We present experimental results that underline the benefits of sup-
porting partial type matches in the process of service composition. Thanks to this support
for partial type matches, a much larger part of the problem set can be solved by automated
composition. We also present results that stress the importance of supporting user-defined
heuristics in the directory search.
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Testbed and Simulation Models

Here we present our testbed for large scale service composition. The testbed is build on
the assumption that the majority of future Web services will be created by exposing in a
machine readable form applications and systems that are currently accessible via human-
level interfaces.

From the technology perspective there are several kinds of options for building Web
sites ranging from static Web pages to more dynamic one developed using languages
specific to server side scripting (e.g., ASP, PHP or JSP). For generating the content to
be presented, the dynamic pages can access directly a data layer (e.g., a relational data-
base) or can use and intermediate objectual layer that implements the business logic and
encapsulates data (e.g., an application server).

At a higher level, different applications are usually organized accordingly to their
domain (e.g., traveling, entertainment, real-estate or medical). Understanding, developing
and using the terminology required for a specific domain requires usually a significant
knowledge engineering effort.

Our testbed builds on the concepts of data distribution and domain distribution by
using application domains as the core idea. In our framework an application domain rep-
resents a collection of terms and their associated data types. Then services are defined
as transformations between sets of terms in two application domains. Formally this is
captured as a directed graph structure, where each node represents an application domain
and each edge represents one or more Web services. Each Web service performs a trans-
formation between two given set of terms from the two application domains associated
with the two ends of the graph edge.

We will present next in more detail the application domain nodes and the service graph
structure.

A, B C, D

A

Input sets: 
in max size=3

{A}, {B}, {C}, {D}, 
{A, B}, {A, C}, 
{A, D}, {B, C}, 
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{A, B, C},  
{A, B, D}, 
{A, C, D}, 
{B, C, D} 
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Output sets: 
out max size=2

Figure 3.8: The application domain node.
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Application Domain Nodes In our framework terms are a first order concept used for
the specification of an application domain. Each term maps in the frame of a service
description specifiying it either to an input or to an output parameter. For each term an
application domain defines a set of possible data types.

For speeding up the generation process we exhaustively generate all possible input or
output parameter sets by generating the power set of the domain terms. Since we consider
that the number of terms in a domain will be of an order of magnitude larger that the
number of parameters that a service will usually use as input or output, we will establish a
maximum sizeof the parameter sets and we will we filter the initial power-set accordingly.
For example in the case of a domain with terms A, B, C, D with the maximum number of
parameters for a service of 2, we will have as possible parameters the sets A, B, C, D, A,
B, A, C, A, D, B, C, B, D and C, D. We will filter out the sets A, B, C, A, B, D, A, C, D,
B, C, D and A, B, C, D since their cardinality passes 2.

As a given service could use a given set of terms in a domain either as input parameters
or as outputs parameters, we make the same differentiation regarding the sets of possible
terms such that by having differentmaximum sizesfor possible inputs and possible out-
puts, we will have a different fan-in and fan-out regarding the number of services that
could make transformation from or to an application domain. For example the domain
previously mentioned could have 2 as theoutput maximum sizebut could have 3 as the
input maximum size, which would result in a fan-in/fan-out rapport of 3/2.

For each term in a domain we define a number of possible data types. First, for each
term a number of “atomic” types is specified. We consider that the number of occurrences
for each of the atomic types obeys a power-law distribution of the form1/ia wherei the
index of the type anda is close to the unit. Using this we compute occurrence frequencies
for each of the atomic types. We then create an “zipf atomic set” of a given size in
which the atomic types appear once or more, accordingly to their frequencies. Then
from the “zipf atomic set” we create as above the power set of the atomic types while
keeping a higher bound for the cardinality of the obtained sets. These sets will represent
“composite types” obtained from the concatenation of one or more “atomic types”. The
“composite types” are normalized such that double occurrences of the same atomic type
are discarded (e.g.,{b1, b1, b2} ⇒ {b1, b2}) and that consecutive types are merged (e.g.,
{b1, b2, b3} ⇒ {b1− b3}).

Service Graph Structure We generate services in our testbed as transformation be-
tween sets of terms in two application domains. For doing that for each service we first
randomly pick two application domains. Then we randomly pick a parameter set from
the set of input parameters of the first application domain and a parameter set from the set
of output parameters of the second application domain. Then for each of the parameters
in the two sets we randomly pick a parameter data-type from the respective application
domains.

The main constraint that we enforce while making the choices above is to pick dif-
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Figure 3.9: The service graph structure.

ferent application domains, as we are interested mainly in the cross-domain chaining of
services. Another constraint that we enforce is the filtering of duplicates, services that
have exactly the same inputs and outputs.

For generating test problems we use a similar algorithm as for creating services, by
randomly picking domains, parameter sets and parameter data-types. The major differ-
ence stands in the different interpretation of input and output parameters in the case of a
query (see the “Type compatible service composition” section). The parameters selected
from the first domain input set are “available inputs” and the parameters selected from the
second domain output set are “required outputs”.

Composition Effectiveness and Performance

For both domains, we have randomly generated services and queries. We then solved
the queries using first an algorithm that handles onlycompletetype matches and then an
algorithm that handlespartial type matches (and obviously includescompletematches).
We have measured the number of directory accesses and the failure ratio of the integration
algorithms.

Fig. 3.10 (a) and Fig. 3.11 (a) show the average number of directory accesses for the

KWEB/2005/D2.4.2/v1.1 January 29, 2005 103



3. SEMANTICS FOR WEB SERVICE COMPOSITION

Layered Domain - Algorithm Performance

0

5

10

15

20

25

30

35

40

480 960 1440 1920 2400 2880 3360 3840 4320 4800 5280 5760

Number of Services

N
u

m
b

e
r 

o
f 

D
ir

e
c
to

ry
 A

c
c
e
s
s
e
s

Complete Type Matches

Partial Type Matches

Ideal

(a)

Layered Domain - Failure Ratio by Match Type

0

10

20

30

40

50

60

70

80

90

100

480 960 1440 1920 2400 2880 3360 3840 4320 4800 5280 5760

Number of Services

F
a

il
u

re
 R

a
te

Complete Type Matches

Partial Type Matches

7x

(b)

Figure 3.10: The layered domain.
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Figure 3.11: The graph domain.
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algorithm usingcompletetype matching versus the average number of directory accesses
for the algorithm also usingpartial type matching. Both algorithms scale well, as there
is at most a slow increase in the number of directory accesses as the number of services
in the directory grows. As it results from the experimental data for both domains the
overhead induced by the usage of partial matches is not very significant and decreases as
the directory gets saturated with services. This is due to the fact that having more choices
makes the coverage problem intrinsic to the partial algorithm easier. More than that in
the layered domain from some point the partial algorithm even performs better that the
complete one (Fig. 3.10 (a) after 3000 services). This is due to the fact that the algorithm
using partial matches fails less on sub-problems and as such makes better usage of already
retrieved services.

The most important result concerns the number of extra problems that can be solved
by using partial matches and can be seen in Fig. 3.10 (b) and Fig. 3.11 (b). The graph
show that the failure rate in the case of using onlycomplete matches is much bigger than
the failure rate whenpartial matches are used: up to7 times in the case of the Layered
domain and2 times in the case of the Graph domain. This shows that using partial
matches opens the door for solving many problems that were unsolvable by the complete
type matching algorithm.

Effects of Service Composition Heuristics

We have evaluated the impact of user-defined pruning and ranking functions on the com-
position performance. As we consider directory accesses to be a computationally expen-
sive operation we use them as a measure of efficiency.

The problems have been solved using two forward chaining composition algorithms:
One that handles only complete type matches and another one that can compose partially
matching services, too [CFB04b]. When running the algorithms we have used two dif-
ferent directory configuration: The first configuration was using the extensible directory
described in this deliverable which supports custom pruning and ranking functions, in par-
ticular using the forward chaining ranking function described in Fig. 3.7. In the second
configuration we used a directory which is not aware of the service composition algorithm
(e.g., forward complete, backward, etc.) and cannot be extended by client code. This di-
rectory implements a generic ordering heuristic by considering the number of overlapping
inputs in the query and in the service, plus the number of overlapping outputs in the query
and in the service.

For both directories we have used exactly the same set of service descriptions and at
each iteration we have run the algorithms on exactly the same random problems. As it can
be seen in Fig. 3.12, using custom pruning and ranking functions consistently improves
the performance of our algorithms. In the case of complete matches the improvement is
up to a factor of 5 (for a directory of 10500 services) and in the case of partial matches
the improvement is of a factor of 3 (for a directory of 9000 of services).
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Figure 3.12: Impact of ranking functions on composition algorithms.

3.2 Process-Level Composition

Given a set of existing Web servicesW1, . . . ,Wn, the problem of building a process-
level composition consist of finding a program that interacts with these Web services in a
suitable way, in order to achieve a given composition requirement.

Let us consider for instance the case of the Virtual Travel Agency presented in Sec-
tion 1.2, and let us assume that a set of Tourism service providers has been identified for
solving a customer request. These services can consists, for instance, of a “Flight Book-
ing” service and a “Hotel Booking” service that are adequate for the specific request of
the customer, e.g., the specific destination.3 The goal of process-level composition is to
obtain the executable code that invokes these Web services, in order to obtain an offer for
the customer’s request.

In the definition of the executable code implementing the composition, we need to
take into account the fact that, in real cases, booking an hotel is not an atomic step, but re-
quires instead a sequence of operations, including authentication, submission of a specific
request, negotiation of an offer, acceptance (or refusal) of the offer, and payment. That is,
Web servicesW1, . . . , Wn are usually composite, i.e., the interaction with them does not
consist of a single request-response step, but they require to follow a complex protocol
in order to achieve the required result. Moreover, the steps defining the complex interac-
tion are not necessarily defining a sequence. Indeed, these steps may have conditional, or

3The selection of such Web services can be the result of a functional level composition, as described in
Section 3.1.
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non-nominal outcomes (e.g., authentication can fail; there may be no offer available from
an existing service...) that affect the following steps (no request can be submitted if the
authentication fails; if there is no offer available, an order cannot be submitted...). It may
also be the case that the same operation can be repeated iteratively, e.g., in order to refine
a request or to negotiate the conditions of the offer.

While the details on the exact sequence of operations required to interact with an exist-
ing service are not important in discovery and functional-level composition, they become
unavoidable when the executable code implementing the composition has to be gener-
ated. For this reason, in process-level composition the existing Web services need to be
described in terms of complex, composite processes, that consist of arbitrary (conditional
and iterative) combinations of atomic interactions, and there atomic interactions may have
conditional outcomes. As a consequence, also the generated executable code has to be a
complex program, since it has to take into account all possible contingencies occurring in
the interaction with the Web services.

“On-The-Fly” Composition Versus “Service Generation”

Two different scenarios of process-level composition are possible. In the first scenario,
calledon-the-fly composition, the composition is created in order to satisfy a specific
request of the customer (e.g., a trip to a specific location in a specific period of time).
In this scenario, a composition task is performed for each submitted request: every time
the Virtual Travel Agency receives a customer’s request, it generates and executes the
composition, thus obtaining an offer that can be given back to the customer. In the second
scenario, calledservice generation, the objective of the composition if to define a generic
program that is able to answer to generic requests from customers. That is, instead of
composing the hotel booking and the flight booking servicesfor a specific request, a
composition of these services is defined so that it can answera generic request. The latter
scenario is called “service generation” since the generated executable code implements a
service provided by the Virtual Travel Agency to answer generic requests of customers,
and it can deployed and executed within the Travel Agency information system.

We will consider both scenarios of process-level composition, stressing commonali-
ties and differences. We remark here a first difference among them, namely the kind of
interactions they support with the user of the composed service. In the case of on-the-fly
composition, the interactions with the user are forced to be atomic: in the case of the Vir-
tual Travel Agency, for instance, after the customer has sent a request, the agency interacts
in a suitable way with hotel and flight services and sends an offer back to the customer. In
the case of service generation, more general interactions with the customer can be consid-
ered. For instance, it is possible to generate a composition that, after receiving a request
from the customer, asks flight and hotel services for possible offers to be combined and
sent back to the customer; the customer can now inspect the offers and decide whether to
accept of refuse them; the virtual travel agency can confirm of cancel the hotel and flight
offers after it receives the feedback from the customer. This way, also the interaction with
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Figure 3.13: Process-Level Service Composition: An Overview

the customer becomes a complex sequence of operations, possibly with conditional and
iterative behaviors. Technically speaking, the customer becomes one of the existing Web
servicesW1, . . . , Wn the generated executable code has to interact with in order to carry
out the composition.

Automated Service Composition: An Overview

Defining the process-level composition, while usually not very complex, is a time con-
suming and error prone activity, since it requires an analysis of the protocols defining the
existing services, and the production of a code that takes into account all possible differ-
ent scenarios that can occur during the interaction with these services. For this reason, an
automated support is desirable to reduce time and errors in the process-level composition
of Web services. We now describe an approach to the automated composition of Web ser-
vice which is able to deal with the features described above. An overview of the approach
is defined in the following, while further details are described in the rest of the section.

Our goal is to automatically generate a new serviceW (called thecomposite service)
that interacts with a set of published Web servicesW1, . . . , Wn (called the component ser-
vices) and satisfies a given composition requirement. More specifically (see Figure 3.13),
we start fromn process-level descriptions of Web servicesW1, . . . , Wn, theWS2STSmod-
ule automatically translates each of them into astate transition system(STS form now on)
ΣW1 , . . . , ΣWn. Intuitively, eachΣWi

is a compact representation of all the possible be-
haviors, evolutions of the component serviceWi. EachΣWi

is described in terms of states,
input and output actions, and internal actions.

We then construct aparallel STSΣ‖ that combinesΣW1 , . . . , ΣWn. Formally, this
combination is a parallel product, which allows then services to evolve concurrently.
Σ‖ represents therefore all the possible behaviors, evolutions of the different component
services, without any control by and interaction with the composite service that will be
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generated, i.e.,W . The second kind of input to the automated composition consists of the
requirementρ for the composite service, which describes what is the functionality that
the composed service is supposed to achieve. GivenΣ‖ andρ, we automatically generate
a STSΣc that encodes the new serviceW that has to be generated, which dynamically
receives and sends invocations from/to the composite servicesW1, . . . ,Wn and behaves
depending on responses received from the external services.Σc is such thatΣc . Σ‖
satisfies the requirementρ, whereΣc . Σ‖ represents all the evolutions of the component
services as they are controlled by the composite service. The STSΣc is then given in
input to theSTS2WS module which translates it into the concrete, executable code that
implements the desired composite Web service.

3.2.1 Background and State of the Art

In this section we give an overview of existing techniques for performing a process-level
composition of Web-services. We distinguish the approaches based on planning tech-
niques (the majority) and the approaches based on automata.

Planning Techniques

There is a large number of works where different planning techniques are used for achiev-
ing automated composition of Web services, both within the semantic Web service re-
search area and outside it (see, e.g., [BDG03, WPS+03, Der98, SdF03, MS02a, MF02,
PBB+04, TP04]). In these works, existing services can be used to construct the planning
domain, composition requirements can be formalized as planning goals, and planning
algorithms can be used to generate plans that compose the existing services.

Most of these works, however, are limited to the case the existing Web services
are atomic (i.e. they are described in terms of their inputs/outputs and of precondi-
tions/postconditions), and hence perform a functional-level composition. We refer to Sec-
tion 3.1.1 for a discussion of the state of the art in functional-level composition, and we
focus here on the few approaches that consider process-level descriptions of the existing
services.

In [NM02], the authors propose an approach to the simulation, verification, and auto-
mated composition of Web services based a translation of DAML-S to situation calculus
and Petri Nets. However, while the framework allows for modeling complex, non-atomic
Web services, the automated composition is limited to sequential composition of atomic
services.

The only planning approach we are aware of which allows for an automated process-
level composition of Web services is the one proposed in [PBB+04, TP04]. This approach
will be described in details in Sections 3.2.2 and 3.2.3.
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Automata-Based Techniques

In [HBCS03], a formal framework is defined for composing e-services from behav-
ioral descriptions given in terms of automata. The problem addressed in this work is
at the process level, since considers services that can perform more complex interactions
than a simple invoke-response operation. However, the composition problem solved by
[HBCS03] is different from the problem we are considering in this section. Indeed, in
their approach, the composition problem is seen as the problem of coordinating the exe-
cutions of a given set of available services, and not as the problem of generating a new
composite Web service that interacts with the available ones. Solutions to the former
problem can be used to deduce restrictions on an existing (composition automaton rep-
resenting the) composed service, but not to generate executable code for implementing
the composition. This is the main conceptual difference also with the work described in
[BCG+03], where automated reasoning techniques, based on Description Logic, are used
to address the problem of automated composition of e-services described as finite state
machines.

More in general, Web service composition shares some ideas with work on the
automata-based synthesis of controllers (see, e.g., [PR89, Var]). Indeed, the compos-
ite service can be seen as a module that controls an environment which consists of the
component services. However, most of the work in this area focuses on the theoretical
foundations, without providing practical implementations. Moreover, it is based on rather
different technical assumptions on the interaction with the environment.

3.2.2 Formal Definition of the Problem

We now present a formal framework for Web service composition, taken from [PTB04].
The central concept is that ofstate transition systems, a general model for describing
dynamic systems which is used for representing both the existing Web services and the
executable code defining the process-level composition.

State Transition Systems

A state transition system defines a dynamic system that can be in several possiblestates
(some of which are marked asinitial states) and can evolve to new states as a result of
performing someactions. Actions are distinguished ininput actions, which represent the
reception of messages,output actions, which represent messages sent to external services,
and a special actionτ , calledinternal action. The actionτ is used to represent internal
evolutions that are not visible to external services, i.e., the fact that the state of the system
can evolve without producing any output, and independently from the reception of inputs.
A transition relationdescribes how the state can evolve on the basis of inputs, outputs,
or of the internal actionτ . Finally, a labeling functionassociates to each state the set
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of propertiesProp that hold in the state. These properties will be used to define the
composition requirements.

Definition 1 (State transition system (STS))
A state transition systemΣ is a tuple〈S,S0, I,O,R,L〉 where:

• S is the set of states;

• S0 ⊆ S is the set of initial states;

• I is the set of input actions;

• O is the set of output actions;

• R ⊆ S × (I ∪ O ∪ {τ})× S is the transition relation;

• L : S → 2Prop is the labeling function.

We assume that infinite loops ofτ -transitions cannot appear in the system. Indeed, an
infinite τ -loop would describe a divergent behavior of the system, i.e., a behavior where
the service is not interacting with the environment.

Figure 3.14 shows the STS corresponding to a very simplifiedHotel Booking Web
service, corresponding to a hotel chain booking system. In this simplified model, the
service waits for arequest from the user, specifying the period of the trip and the
visited location. The service then checks availability of rooms. If there are no rooms
available, a negative (not avail ) answer is sent to the user. If rooms are available,
instead, the service sends anoffer to the user, providing detailed information on the
hotel and a cost for the stay. The user can now confirm (ack ) or cancel (nack ) the room
reservation.

The set of statesS models the steps of the evolution of the process and the values of its
variables. The special variablepc implements a “program counter” that holds the current
execution step of the service (e.g.,pc has valuegetRequest when the process is wait-
ing to receive a booking request, and valuecheckAvailable when it is ready to check
whether the booking is possible). Other variables likeoffer hotel or offer cost
correspond to those used by the process to store significant information. Finally, arrays
like AvailableHotel or CostOfRoom describe predicates and functions expressing
properties of the Web service (e.g., the fact that there is an hotel available for a given
period and in a given location, or the cost of a room in a given hotel for a given pe-
riod). In the initial statesS0 thepc is set toSTART, while all the other basic variables
are undefined. The initial values of the arraysAvailableHotel areCostOfRoom
unspecified, since they can assume any value in the domain.

The evolution of the process is modeled through a set of possible transitions.
Each transition defines its applicability conditions on the source state, its firing
action, and the destination state. For instance, “pc = checkAvailable &
AvailableHotel[req period,req loc] 6= UNDEF -[TAU]- > pc =
isAvailable ” states that an actionτ can be executed in statecheckAvailable ,
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PROCESS
HotelBooking;

TYPE
Period; Location; Hotel; Cost;

STATE
pc: { START, getRequest, checkAvailable, isAvailable, isNotAvailable,

prepareOffer, sendOffer, waitAnswer, prepareNotAvail, sendNotAvail, SUCC, FAIL};
req period: Period∪ { UNDEF};
req loc: Location∪ { UNDEF};
offer hotel: Hotel∪ { UNDEF};
offer cost: Cost∪ { UNDEF};
AvailableHotel[Period,Location]: Hotel∪ { UNDEF};
CostOfRoom[Period,Hotel]: Cost;

INIT
pc = START;
req period = UNDEF;
req loc = UNDEF;
offer hotel = UNDEF;
offer cost = UNDEF;

INPUT
request(p: Period, l: Location);
ack();
nack();

OUTPUT
offer(h: Hotel, c: Cost);
not avail();

TRANS
pc = START -[TAU]-> pc = getRequest;
pc = getRequest -[INPUT request(p,l)]-> pc = checkAvailable, reqperiod = p, reqloc = l;
pc = checkAvailable & AvailableHotel(reqperiod,reqloc) 6= UNDEF -[TAU]-> pc = isAvailable;
pc = checkAvailable & AvailableHotel(reqperiod,reqloc) = UNDEF -[TAU]-> pc = isNotAvailable;
pc = isAvailable -[TAU]-> pc = prepareOffer;
pc = prepareOffer -[TAU]-> pc = sendOffer,

offer hotel = AvailableHotel(reqperiod,reqlocation),
offer cost = CostOfRoom(reqperiod,offerhotel);

pc = sendOffer -[OUTPUT offer(offercost, offerhotel)]-> pc = waitAnswer;
pc = waitAsnwer -[INPUT nack]-> pc = FAIL;
pc = waitAsnwer -[INPUT ack]-> pc = SUCC;
pc = isNotAvailable -[TAU]-> pc = prepareNotAvail;
pc = prepareNotAvail -[TAU]-> pc = sendNotAvail;
pc = sendNotAvail -[OUTPUT notavail]-> pc = FAIL;

Figure 3.14: The STS for theHotel Booking process.
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leading to the stateisAvailable , if there is some hotel with available rooms
for the specified period and location. We remark that eachTRANSclause of Fig-
ure 3.14 corresponds to different elements in the transition relationR: e.g., “pc =
checkAvailable & AvailableHotel[req period,req loc] 6= UNDEF
-[TAU]- > pc = isAvailable ” generates different elements ofR, depending on
the values of variablesreq period andreq loc .

According to the formal model, we distinguish among three different kinds of actions.
The input actionsI model all the incoming requests to the process and the information
they bring (i.e.,request is used for the receiving of the booking request, whileack
models the confirmation of the order andnack its cancellation). The output actions
O represent the outgoing messages (i.e.,not avail is used when the booking is not
possible, whileoffer is used to deliver an offer to the user of the service). The actionτ is
used to model internal evolutions of the process, as for instance assignments and decision
making (e.g., when theHotelBooking process is in the statecheckAvailable and
performs internal activities to decide whether there are available rooms or not, or when,
in the stateprepareOffer , it must decide the hotel and the cost of the room).

Finally, the properties of the STS are expressions of the form<variable> =
<value> or <array>[idx 1,...,idx n] = <value> , and the labeling func-
tion is the obvious one.

The definition of STS provided in Figure 3.14 is parametric w.r.t. the typesPeriod ,
Location , Hotel , andCost used in the messages. In order to obtain a concrete STS
and to apply the automated synthesis techniques described later in this paper, specific
ranges have to be assigned to these types. Different approaches are possible for defining
these ranges. The first, simpler approach is to associate finite (and possibly small) ranges
to each type. This approach, exploited in [PTB04], makes the definition of the STS easy
(and, as we will see, allows for an efficient automated composition), however, it has the
disadvantage of imposing unrealistic assumptions on the data types handled by the Web
services. A more realistic (but more complex) approach consists of using abstract models
for the data types, avoiding an enumeration of all concrete values that these types can
assume, and representing explicitly only those aspects of the data type that are relevant
for the task at hand.

Controller for a Process-Level Composition

The automated composition problem has two inputs (see Figure 3.13): the formal
composition requirementρ and the parallel STSΣ‖, which represents the services
ΣW1 , . . . , ΣWn. We now formally define theparallel productof two STSs, which models
the fact that both systems may evolve independently, and which is used to generateΣ‖
from the component Web services.

Definition 2 (parallel product)
Let Σ1 = 〈S1,S0

1 , I1,O1,R1,L1〉 andΣ2 = 〈S2,S0
2 , I2,O2,R2,L2〉 be two STSs with
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(I1 ∪ O1) ∩ (I2 ∪ O2) = ∅. The parallel productΣ1 ‖ Σ2 of Σ1 andΣ2 is defined as:

Σ1‖Σ2 = 〈S1×S2,S0
1×S0

2 , I1∪I2,O1∪O2,R1‖R2,L1‖L2〉

where:

• 〈(s1, s2), a, (s′1, s2)〉 ∈ (R1‖R2) if 〈s1, a, s′1〉 ∈ R1;

• 〈(s1, s2), a, (s1, s
′
2)〉 ∈ (R1‖R2) if 〈s2, a, s′2〉 ∈ R2;

and(L1‖L2)(s1, s2) = L1(s1) ∪ L2(s2).

The system representing (the parallel evolutions of) the component servicesW1, . . . , Wn

of Figure 3.13 is formally defined asΣ‖ = ΣW1 ‖ . . . ‖ ΣWn.

We remark that this definition only applies to the specific case where inputs/outputs of
Σ1 and those ofΣ2 are disjoint. This is a reasonable assumption in the case of Web service
composition, where the different components are independent (e.g., in the Virtual Travel
Agency domain, there is no direct communication between the Hotel Booking and Flight
Booking services). It is however possible to extend the approach to the more general case
whereΣ1 andΣ2 can send messages to each other (i.e.,(I1 ∪ O1) ∩ (I2 ∪ O2) 6= ∅) by
modifying in a suitable way the definition of parallel product.

The automated composition problem consists in generating a STSΣc that controlsΣ‖
by satisfyingρ. We now define formally the STS describing the behaviors of a STSΣ
when controlled byΣc.

Definition 3 (controlled system)
Let Σ = 〈S,S0, I,O,R,L〉 andΣc = 〈Sc,S0

c ,O, I,Rc,L∅〉 be two state transition sys-
tems, whereL∅(sc) = ∅ for all sc ∈ Sc. The STSΣc . Σ, describing the behaviors of
systemΣ when controlled byΣc, is defined as:

Σc . Σ = 〈Sc × S,S0
c × S0, I,O,Rc .R,L〉

where:

• 〈(sc, s), τ, (s
′
c, s

′)〉 ∈ (Rc .R) if 〈sc, τ, s
′
c〉 ∈ Rc;

• 〈(sc, s), τ, (sc, s
′)〉 ∈ (Rc .R) if 〈s, τ, s′〉 ∈ R;

• 〈(sc, s), a, (s′c, s
′)〉 ∈ (Rc .R), with a 6= τ , if

〈sc, a, s′c〉 ∈ Rc and〈s, a, s′〉 ∈ R.

Notice that we require that the inputs ofΣc coincide with the outputs ofΣ and vice-versa.
Notice also that, although the systems are connected so that the output of one is associated
to the input of the other, the resulting transitions inRc . R are labelled by input/output
actions. This allows us to distinguish the transitions that correspond toτ actions ofΣc or
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Σ from those deriving from communications betweenΣc andΣ. Finally, notice that we
assume that the plan has no labels associated to the states.

A STSΣc may not be adequate to control a systemΣ. Indeed, we need to guarantee
that, wheneverΣc performs an output transition, thenΣ is able to accept it, and vice-versa.
We define the condition under which a states of Σ is able to accept a message according
to our asynchronous model, which abstracts away queues. We assume thats can accept
a messagea if there is some successors′ of s in Σ, reachable froms through a chain of
τ transitions, such thats can perform an input transition labelled witha. Vice-versa, if
states has no such successors′, and messagea is sent toΣ, then a deadlock situation is
reached.4

In the following definition, and in the rest of the paper, we denote byτ -closure(s) the
set of the states reachable froms through a sequence ofτ transitions, and byτ -closure(S)
with S ⊆ S the union ofτ -closure(s) on alls ∈ S.

Definition 4 (deadlock-free controller)
LetΣ = 〈S,S0, I,O,R,L〉 be a STS andΣc = 〈Sc,S0

c ,O, I,Rc,L∅〉 be a controller for
Σ. Σc is said to bedeadlock freefor Σ if all states(sc, s) ∈ Sc × S that are reachable
from the initial states ofΣc . Σ satisfy the following conditions:

• if 〈s, a, s′〉 ∈ R with a ∈ I then there is somes′c ∈ τ -closure(sc) such that
〈s′c, a, s′′c 〉 ∈ R for somes′′c ∈ Sc; and

• if 〈sc, a, s′c〉 ∈ Rc with a ∈ O then there is somes′ ∈ τ -closure(s) such that
〈s′, a, s′′〉 ∈ R for somes′′ ∈ S.

Process-Level Composition Problems

In a Web service composition problem, we need to generate aΣc that guarantees the
satisfaction of a composition requirementρ (see Figure 3.13). This is formalized by
requiring that the controlled systemΣc . Σ‖ must satisfyρ, which is defined in terms of
the executions thatΣc . Σ‖ can perform.

In order to define formally whenΣc . Σ‖ satisfiesρ, we need to define first the execu-
tions ofΣc .Σ‖. In doing this, we need to take into account that the state transition system
Σ‖ models a domain that is only partially observable byΣc. That is, at execution time,
the composite serviceΣc cannot in general get to know exactly what is the current state
of the component services modeled byΣW1 , . . . , ΣWn. Consider for instance the STS
corresponding to theHotelBooking service (see Figure 3.14). The composite Virtual
Travel Agency service has no access to the values of the hotel service’s internal variables,
and can only deduce their values from the messages exchanged with theHotelBooking

4We remark that, if there is such a successors′ of s, a deadlock can still occur. This can happen if a
different chain ofτ transitions is executed froms that leads to a states′′ for which a cannot be executed
anymore. In this case, the deadlock is recognized ins′′.
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process. This uncertainty has two different sources. The first one is the standard source
of uncertainty in planning, namely the presence of non-deterministic transitions (e.g., the
two τ transitions of theHotelBooking from “pc = checkAvailable ”, which model
the fact that rooms may be available or not for a given customer’s request). The second
source of uncertainty is due to the fact that we are modeling an asynchronous frame-
work and that, therefore, it is not possible for the Virtual Travel Agency to know when
internal τ transitions are performed in theHotelBooking service. Due to this uncer-
tainty, after a message “request(s,l) ” has been sent to theHotelBooking service,
it is impossible to distinguish whether the booking service is still checking whether the
delivery is possible (pc = checkAvailable ), or whether this task has terminated
positively (pc is isAvailable , prepareOffer , or sendOffer ) or negatively (pc
is isNotAvailable , prepareNotAvail , or sendNotAvail ). This uncertainty
disappears only when an “offer ” or a “not avail ” message is received by the Virtual
Travel Agency.

In the definition of the executions ofΣc .Σ‖ (and, more in general, of a state transition
systemΣ) we take into account this uncertainty by considering, at each step of the exe-
cution, a set of possible states, each equally plausible given the partial knowledge that we
have of the system. Such a set of states is called abelief state, or simplybelief. The initial
belief for the execution is the set of initial statesS0 of Σ. This belief is updated whenever
Σ performs an observable (input or output) transition. More precisely, ifB ⊆ S is the cur-
rent belief and an actiona ∈ I ∪O is observed, then the new beliefB′ = Evolve(B, a) is
defined as follows:s ∈ Evolve(B, a) if, and only if, there is some states′ reachable from
B by performing a (possibly empty) sequence ofτ transitions, such that〈s′, a, s〉 ∈ R.
That is, in definingEvolve(B, a) we first consider every evolution of states inB by inter-
nal transitionsτ , and then, from every state reachable in this way, their evolution caused
by a.

Definition 5 (belief evolution)
Let B ⊆ S be a belief on some state transition systemΣ. We define the evolution ofB
under actiona as the beliefB′ = Evolve(B, a), where

Evolve(B, a) = {s′ : ∃s ∈ τ -closure(B).〈s, a, s′〉 ∈ R}.

In the definition of goal satisfaction, we use beliefs to describe the different “config-
urations” reached during execution. In order to characterize goal satisfaction, we need to
define when a beliefB satisfies a given state propertyp. In planning under partial observ-
ability, B is said to satisfyp simply if all statess ∈ B satisfyp. The definition becomes
more complex in our asynchronous setting, due to the presence ofτ transitions. Let us
consider again theHotelBooking service. After a request message has been sent to the
service, it is not yet possible to predict whether the booking can be fulfilled or not; there-
fore, we expect that conditionspc = prepareOffer andpc = notAvailable
are both false inB. On the other hand, after an acknowledge message has been received
by the booking service, it is unavoidable to reach a successful state; therefore, we want to
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be able to conclude that conditionpc = SUCCis true in the corresponding belief. Infor-
mally, we are assuming that the execution ofτ transitions cannot be postponed forever.
Therefore, if the execution ofτ transitions is guaranteed to reach a state satisfying a given
condition, then we can assume that the condition holds also in belief stateB. Conversely,
if there is some sequence ofτ transitions that does not contain states satisfyingp and that
cannot be further extended with otherτ transitions so thatp is reached, then the property
p is not satisfied inB.

Definition 6 (belief satisfying a property)
Let Σ = 〈S,S0, I,O,R,L〉 be a STS,p ∈ Prop be a property forΣ, andB ⊆ S be
a belief. We say thatB satisfiesp, written B |=Σ p, if the following condition holds.
Let s0, s1, . . . , sn be such thats0 ∈ B, 〈si, τ, si+1〉 ∈ R and eithersn has no outgoing
transitions or there existssn+1 such that〈sn, a, sn+1〉 with a 6= τ . Thenp ∈ L(si) for
some0 ≤ i ≤ n.

We are now ready to define the STS that defines the executions ofΣc . Σ‖ and, more
in general, of a STSΣ. We call it “belief-level” STS, since its states are beliefs ofΣ and
its transitions describe belief evolutions.

Definition 7 (belief-level system)
Let Σ = 〈S,S0, I,O,R,L〉 be a STS. The corresponding belief-level STS isΣB =
〈SB,S0

B, I,O,RB,LB〉, where:

• SB are the beliefs ofΣ reachable from the initial beliefS0;

• S0
B = {S0};

• transitionsRB are defined as follows: if Evolve(B, a) = B′ 6= ∅ for somea ∈
I ∪ O, then〈B, a, B′〉 ∈ RB;

• LB(B) = {p ∈ Prop : B |=Σ p}.

We remark that a belief-level STS is a very restricted case of STS, since it only has one
initial state, there are noτ transitions, and, for all beliefsB and actionsa there is at most
one beliefB′ such that〈B, a, B′〉 ∈ RB. For these reasons, it is straightforward to re-
interpret onΣB the definitions of requirements satisfaction proposed in the literature for
a large set of requirements specification languages, such as temporal logics like CTL or
LTL ([Eme90]) or goal languages for planning problems (e.g., strong and strong cyclic
reachability goals [CPRT03], or temporally extended goals likeEAGLE [DLPT02]). In
the following, we writeΣB |= ρ whenever the belief-level STSΣB satisfies requirement
ρ.

We can now characterize formally a (process-level) composition problem.

Definition 8 (composition problem)
LetΣ1, . . . , Σn be a set of state transition systems, and letρ be a composition requirement.
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The composition problem forΣ1, . . . , Σn andρ is the problem of finding a controllerΣc

that is deadlock-free and such thatΣB |= ρ whereΣB is the belief-level STS ofΣc . (Σ1 ‖
. . . ‖ Σn).

3.2.3 Automated Process-Level Service Composition

We now address the problem of automatically generating a process-level Web service
composition. According to Figure 3.13, we distinguish four separated steps:

1. From Web Services to State Transition Systems.This step consists of acquiring
the process-level descriptions of the existing Web services that are composed, and
of translating the description of each of such service into a State Transition System.

2. Expressing Composition Requirements.This step concerns the definition of the
requirementρ that defines the functionality that the composed Web service should
provide.

3. Synthesis of the Composition.During this step, the State Transition System im-
plementing the composition of the Web services is automatically generated starting
from the STS built is step 1 and from the requirement defined in step 2.

4. Deployment and Execution of the Composed Service.In this step, the STS gen-
erated in step 3 is translated into executable code.

In the following, we detail the four steps described above.

From Web Services to State Transition Systems

This phase is performed separately for each existing Web service participating to the
composition. It can be seen as the combination of two steps: the acquisition of the process
level description of the Web service; and the translation of this description into a state
transition system.

We do not describe the technical details on the acquisition of the process level de-
scription of a Web service, since they are strongly technology and language dependent.
We remark that, since such a description is necessary for allowing the interactions with
the Web service, each technology will have to provide a mechanism for publishing this
process level description. While a natural language description of the protocol that has to
be followed for interacting with a Web service is sufficient for hand-written composition,
it is clear that a formal description of such protocol is necessary for supporting this com-
position with automatic tools. Indeed, languages providing a process-level description
of Web services and supporting the automated composition have been proposed by the
main the Semantic Web Service approaches, see for instance theOWL-S process models
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or theWSMO interfacemodel of Web services. The necessity of process-level description
languages is also recognized outside the Semantic Web Service community. For instance,
the BPEL4WS language, an industrial standard language for Web service modeling and
execution, allows for the publication of the so-calledabstractdescription of a Web service
process, i.e., the description of the sequence of interactions that are necessary in order to
perform a long term interaction with a given service provider.

Once the process level description of an existing Web service is obtained, this descrip-
tion is translated into State Transition Systems. This translation depends on the specific
process-level specification language. Specific translations have been defined in [TP04]
for the case of OWL-S process models and in [PBB+04] for the case of process-level de-
scriptions expressed in BPEL4WS. Translations from other languages are easy to define,
due to the generality and expressiveness of State Transition Systems.

Expressing Composition Requirements

This is a critical step, since it is responsibility of the composition requirement to define
precisely what are the expected behaviors of the composition. In the introductory part
of Section 3.2 we distinguished two different scenarios of application for process-level
composition, namely an on-the-fly scenario and a service generation scenario. These
two scenarios require different kinds of composition requirements, so we consider them
separately.

In the case of theon-the-fly compositionof Web services, we have to generate exe-
cutable code that satisfies a specific customer’s request. In the case of the Virtual Travel
Agency, for instance, the customer’s request specifies a given locationl to be visited in
a given periodp. In order to satisfy this request, the travel agency has to find flight and
hotel room compatible with the request of the customer. The composition requirement
could be the something like:

if a travel offer is possible,
then sell a travel offer to the customer.

In our framework, the offer is possible if it is possible to book flight and/or hotel for the
period and for the location specified by the customer. The fact that the offer is sold is
described by requiring that theHotelBooking and theFlightBooking processes reach the
success state. The goal condition can hence be specified by the formula:

HotelBooking.AvailableHotel[p,l] 6= UNDEF &
FlightBooking.AvailableFlight[p,l] 6= UNDEF

→ HotelBooking.pc = SUCC & FlightBooking.pc = SUCC &
h = HotelBooking.AvailableHotel[p,l] &
f = FlightBooking.AvailableFlight[p,l] &
c = HotelBooking.CostOfRoom[p,h] +

FlightBooking.CostOfFlight[f]
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wherec , f , andh describe, respectively, the cost of the offer, and the specific flight and
hotel information. This requirement has to be interpreted as a condition that must hold at
the end of the execution of the code implementing the composition.

The case of theservice generationis more complex. Consider the following example,
where we want to automatically generate the composite service implementing the Virtual
Travel Agency. The goal of the travel agency is to“sell a travel offer to the customer”.
This means we want the Virtual Travel Agency service to reach the situation where an
offer has been made to the customer, the customer has confirmed this offer, and the service
has confirmed the corresponding (sub-)offers to the HotelBooking and FlightBooking
services. However, the hotel may have no available rooms, the flight may not be possible,
the user may not accept the offer due to its cost... We cannot avoid these situations, and we
therefore cannot ask the composite service to guarantee this requirement. Nevertheless,
we would like the Virtual Travel Agency service totry (do whatever is possible) to satisfy
it. Moreover, in the case the“sell a travel offer to the customer” requirement is not
satisfied, we would like that the Virtual Travel Agency does not commit to an order for a
room or for a flight, since we do not want the service to book and pay rooms and flights
that will not be accepted by the customer. Let us call this requirement“never a single
commit”. Our global requirement would therefore be something like:

try to “sell a travel offer to the customer”;
upon failure,
do “never a single commit”.

Notice that the secondary requirement (“never a single commit”) has a different strength
w.r.t. the primary one (“sell a travel offer to the customer”). We write “do” satisfy,
rather than “try” to satisfy. Indeed, in the case the primary requirement is not satisfied,
we want the secondary requirement to be guaranteed.

We need a formal language that can express requirements as those of the previous
example, including conditions of different strengths (like“try” and“do”), and preferences
among different (e.g., primary and secondary) requirements. For this reason, we cannot
simply use a state formula as we did for the case of on-the-fly composition. We use
instead theEAGLE language, which has been designed with the purpose to satisfy such
expressiveness. A detailed definition and a formal semantics for theEAGLE language can
be found in [DLPT02]. Here we just explain howEAGLE can express the composition
requirement of the running example.

TheEAGLE formalization of the requirement is the following:

TryReach
HotelBooking.pc = SUCC & FlightBooking.pc = SUCC &
Customer.pc = SUCC &
Customer.h = HotelBooking.AvailableHotel[Customer.p,Customer.l] &
Customer.f = FlightBooking.AvailableFlight[Customer.p,Customer.l] &
Customer.c = HotelBooking.CostOfRoom[Customer.p,Customer.h] +
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FlightBooking.CostOfFlight[Customer.f]
Fail DoReach

HotehlBooking.pc = FAIL & FlightBooking.pc = FAIL &
Customer.pc = FAIL

The goal is of the form “TryReach c Fail DoReachd”. TryReach c requires a ser-
vice that tries to reach conditionc, in our case the condition“sell a travel offer to the
customer”. During the execution of the service, a state may be reached from which it is
not possible to reachc, e.g., since the flight is not available. When such a state is reached,
the requirementTryReach c fails and the recovery conditionDoReach d, in our case
“never a single commit” is considered.

Synthesis of the Composition

This is the core step of the automated composition: starting from a set of STS mod-
eling the existing Web services and from a composition requirement, a new STS is
generated which implements the composed service. (A formal definition of the func-
tionality performed in this step is given in Definition 8.) The approach adopted in
[PBB+04, TP04, PTB04] for achieving this automated synthesis is based on the “plan-
ning as model checking” [BCPT03, BCP+01] framework.

As discussed in Section 3.2.1, there is a large number of works where different plan-
ning techniques are used for achieving automated composition of Web services. Most of
these works, however, are limited to the case the existing Web services are atomic, i.e.,
they perform functional-level composition. This limitation is also enforced by the fact
that the planning techniques exploited in those approaches are not able to deal with the
advanced features required for performing process-level composition.

More precisely, a planning technique capable of performing process-level composition
should provide ways of dealing with the following difficulties.

• Nondeterminism: The planner cannot foresee the actual interaction that will take
place with external processes, e.g., it cannot predict a priori whether the answer to
a request for availability will be positive or negative, whether a user will confirm or
not acceptance of a service, etc.

• Partial Observability : The planner can only observe the communications with
external processes; that is, it has no access to their internal status and variables. For
instance, the planner cannot know a priori the list of items available for selling from
a service.

• Extended Goals: As we have discussed previously, composition requirements of-
ten involve complex conditions on the behavior of the process, and not only on its
final state. For instance, we might require that the process never gets to the state
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where it buys an item costing more than the available budget. Moreover, require-
ments need to express conditional preferences on different goals to achieve. For
instance, a process should try first to reserve and confirm both a flight and an ho-
tel from two different service providers, and only if one of the two services is not
available, it should fall back and cancel both reservations.

We remark that, while the third problem only occurs if one is interested in “service gen-
eration”, the first two problems are general of process-level composition and also occur
in the case of “on-the-fly” composition.

We address these problems by exploiting planning techniques based on the “planning
as model checking” approach, which has been devised to deal with nondeterministic do-
mains, partial observability, and extended goals, and is hence suitable for process-level
composition of Web services.

• The “planning as model checking” framework exploits a family of nondeterministic
transition systems for modeling the planning domain as well as the generated plans.
The STSΣ‖ used to described the “composition” domain can be translated into a
planning domain modeled as nondeterministic transition systems and, vice-versa, a
converse mapping can be defined mapping the generated plan into an STS defining
the composed service.

• The “planning as model checking” framework deals with partial observability in the
planning domain by performing a transformation of the nondeterministic transition
system defining the domain into a “belief-level” nondeterministic transition system.
This transformation is similar to the one described in Definition 7, and can hence
be applied to Web service STS as well.

• The “planning as model checking” framework supports different kinds of planning
goals, including classical goals consisting of conditions that must hold at the end of
the plan execution and temporally extended goals defined in the EaGLe language
[DLPT02]. In the case of Web service composition, the former kind of goal is used
for “on-the-fly” composition while the latter kind is used for “service generation”.

• Finally, the “planning as model checking” framework has shown to offer a very effi-
cient approach for plan generation, since it takes advantage ofBDD-based symbolic
mechanisms originally developed for solving model checking problems [BCM+92].
These symbolic mechanisms allow for a compact representation and for an effi-
cient exploration of the search space in nondeterministic and partially observable
planning domains. They permit an efficient generation also when applied to the
synthesis of composed Web services.

A detailed description of the exact correspondence between service composition and plan-
ning problems, and the proof of correctness of adopting planning techniques for solving
service composition problems, can be found in [PTB04].
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Deployment and Execution of the Composed Service

In this step, the STS which defined the composed service is transformed into executable
code. In the case we are interested in an on-the-fly composition, the code is immediately
executed. In the case of service generation, the code is deployed, and is ready to answer
to users’ requests.

Different languages can be used as target languages of this translation. One possibility
is to exploit generic languages like Java for implementing the control constructs of the
plans and Web service calls for implementing the interactions with the component Web
services.

A more interesting approach consists in generating BPEL4WS code (see [PBB+04,
PTB04]). BPEL4WS is a language designed for describing and deploying executable
Web services that perform complex tasks through long term interactions with one of more
external services. It is hence a natural target language in the case of a “service generation”
composition. The translation of an STS into BPEL4WS is easy, since BPEL4WS provides
the standard control flow constructs (if-them-else, switch, while...) and special constructs
for interacting with external Web services.

Finally, the generated STS can be translated into semantic languages such as OWL-S
or WSMO. In the case of OWL-S, in particular, aprocess modelcan be used to define the
sequence of operations that defined the composed service. We remark, however, that this
translation is possible only in the case of “on-the-fly” composition. Indeed, the OWL-S
process model allows for defining a suitable combination of invocations of atomic oper-
ations provided by the component Web services (e.g., the Hotel Booking and the Flight
Booking service). However, it does not allow for intermixing these invocations with in-
teractions with the “user” (i.e., the Customer of the Virtual Travel Agency), since OWL-S
does not allow to model a process that is both invoked by and invoker of external services.

3.2.4 Evaluation and Assessment

In order to test the performance of the automated composition techniques described in
the previous section, we have conducted some experiments.5 We have considered two
different classes of experiments, which we called synthetic domains and real domains.
The former are artificial domains, and are used to test the performance of automated
composition on scalable problems. The latter describe realistic scenarios for automated
composition and are used to validate the results of the experiments on synthetic domains.
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Figure 3.15: Experiments with parametrized domains
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Synthetic domains

We consider two different sets of synthetic domains. In the first set of experiments, we
test automated synthesis w.r.t. the number of services to be composed. Each component is
represented by a very simple process that is requested to provide a service and can respond
either positively or negatively. The composition requirement is also very simple: either all
services end successfully or a failure is reported to the invoker of the composed service.
The results are shown in the left side of Figure 3.15. In the horizontal axis we have the
number of components. In the vertical axis, we report in seconds the time formodel
construction(i.e., the time to build the parallel state transition systemΣ‖ in Figure 3.13
starting from the component Web services) and the time for automatedcomposition(i.e.,
the time spent to generate the composite STSΣc and to emit is as Web service).

As expected, the time for model construction increases regularly with the number of
components. Also the composition time increases with a similar trend, but less regularly.
This depends on theBDD-based symbolic mechanisms adopted in the synthesis of the
composition, which are responsible of constructing a compact internal representations of
the search space for the composition phase. This internal representation can be more of
less efficient, depending on the specific problem instance, with strong impacts on the per-
formance of the composition. With these examples, the time required for the automated
synthesis increases less than exponentially6 and manages to deal with a rather high num-
ber of components in a rather short time. The case with the worst performance among the
considered experiments is that of 20 components, where model construction takes about
70 seconds, while automated composition takes about 1000 seconds.

We remark that the component Web services used in the previous experiment are very
elementary, as they implement essentially an invoke-response protocol. In the second set
of synthetic experiments, we have considered the case of a composition of Web services
which require a complex interaction. More precisely, we have complicated the parame-
terized domain by imposing a composition that requires a high degree of interleaving
between components. Here, the interactions with each component are more complex than
a single invoke-response step, and, to achieve the composition, it is necessary to carry out
interactions with all components in an interleaved way. Such interleaving is common in
the Virtual Travel Agency example where, e.g., the an offer can be sent to the customer
only after both the Hotel Booking and the Flight Booking services are confirmed that there
are available places, and the flight and hotel bookings are confirmed only if the customer
accepts the Travel Agency offer.

As shown in the graph on the right side of Figure 3.15, automated synthesis in this case
is more difficult than in the previous set of experiments. While in the previous experiment
model construction and automated composition with 12 components took, respectively,

5All experiments have been done over a 1.8 GHz Pentium machine, equipped with 1 GByte memory,
and running a Linux 2.6.7 operating system.

6A precise analysis of the times shows that they grow proportionally ton4, wheren is the number of
components.
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25 and 45 seconds, now they take both about 1200 seconds. In spite of the fact that the
required interleaving reduces performances, the technique still manages to deal with a
rather large number of components, since we expect that realistic compositions will not
include more than 12 components.

Real domains

To validate the results of the experimental evaluation on the synthetic domains, we have
also conducted some experiments of automated composition on problems extracted from
realistic Web service domains. The results are reported in Figure 3.16. The first two
cases correspond to a furniture purchase and shipping (P&S) domain. It combines two
separate, independent, and existing services, a furniturePRODUCERand a delivery service
(SHIPPER), so that the user may directly ask the composed serviceP&S to purchase and
deliver a given item at a given place. In the first variant of theP&S domain, automated
composition is very fast, since in spite of the interleaving required, we have just three
components (shipper, producer, and user of theP&S). We have then experimented with
a more complex version ofP&S. We have added a further service, taking into account
that, in realistic cases, the composite service may require the payment to be dealt by a
third party, i.e., aBank, that is delegated to receiving the money from the client. In
this example, the interleaving of interactions is increased by the necessity of receiving
a payment confirmation from theBank before the order can be confirmed toProducer
andShipper. The experimental result confirms that the problem is more difficult than
in the previousP&S example, and automated composition time increases of one order of
magnitude.

number of model composition
components construction

P& S 3 8.4 sec. 1.0 sec.
P& S + BANK 4 39.6 sec. 35.4 sec.
WMO1 5 187.5 sec. 31.6 sec.
WMO2 5 173.1 sec. 48.6 sec.
WMO3 5 174.9 sec. 120.6 sec.

Figure 3.16: Experiments with different applications.

Finally, we experiment with a case study taken from a real e-government application
we are developing for a private company. We aim at providing a service that implements
a (public) waste management office (WMO), i.e. a service that manages user requests to
open sites for the disposal of dangerous waste. According to the existing Italian laws,
such a request involves the interaction of different offices of the public administration. In
particular, aProtocol Office is in charge of providing a unique identifier (the ’protocol’)
to the request; aTechnical Committee must be invoked to produce an evaluation regard-
ing the technical feasibility and ecological impact of the site, and aProvince Board is
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responsible to take a final decision. In the application we consider also aCitizen Service
that interacts with the citizen or the company that makes the request, and aSecretary
Service that interacts with a secretariat office. The composition requirement here can be
described with a set of constraints on the order of execution of different procedural steps
performed by different offices. We consider three variants of this domain, corresponding
to an increasing interleaving between the different services, getting in all cases a very
good performance.

In all the realistic examples, automated composition has shown to be feasible and
take a rather low amount of time, surely much faster than manual development of the
composite processes. Moreover, the times required for the composition confirm the trends
of the experiments reported in Figure 3.15.

KWEB/2005/D2.4.2/v1.1 January 29, 2005 127



Chapter 4

Integration of Discovery and
Composition

In this chapter we discuss possible approaches for combining service discovery,
functional-level service composition, and process-level service composition.

The organic composition of these functionalities within an integrated process is out-
side the scope of this document (it is actually one of the objectives of the KnowledgeWeb
work-plan for the next months). For this reason, we give here only a preliminary descrip-
tion of possible ways for combining these functionalities, and we postpone their detailed
analysis to further deliverables.

The rest of the chapter is organized in several sections, each analyzing a different
scenario of possible combination of discovery and composition.

4.1 Discovery within Composition

This scenario corresponds to the invocation of discovery functionalities within a com-
position task. This master-slave integration of the two functionalities is already adopted
by different functional-level composition approaches. Notably it is adopted by the ap-
proach described in Section 3.1.3, where a discovery mediator is exploited to find exist-
ing services that match a new generated (partial) composition goal (see for instance the
architecture of the service integration engine in Figure 3.2).

Such an integration of discovery within composition is less natural in the case of
process-level composition. Indeed, the assumption in this case is that the component
services are already known when the composition starts. On the other hand, we can as-
sume that the process-level service that are composed are “generic”, in the sense that
they describe the operations needed to interact with a generic service providing a given
functionality (e.g., a generic Hotel Booking service). Once the process-level composition
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has been achieved, discovery functionalities are used to find “concrete” instances of these
processes (i.e., the Hotel Booking service for a specific hotel chain). This is particularly
interesting in the case of the “service generation” case of process-level composition: in
this case, it is reasonable to foresee that different concrete implementations for the generic
services exploited in the composition need to be discovered for each of the different cus-
tomer requests (e.g., different flight booking services need to be exploited depending on
whether the customer travels in Europe or outside Europe).

4.2 Incremental approach

In this scenario, discovery, function-level composition, and process-level composition are
applied in sequence, in order to find solutions of different complexity for a “discovery”
query. More precisely, given a query defining a service, the following steps are performed:

1. first, we look for a single, atomic Web service that matches the query (service dis-
covery);

2. if no suitable service is found in step 1, then we search for a composition of atomic
Web services matching the query (functional-level composition);

3. if no suitable composition is found in step 2, then we search for a process-level
composition of Web services matching the query (process-level composition).

We remark that the composition in the third step is more general than the one in the second
step, since it allows for a general interleaving among the composed services. For instance,
if we compose a Hotel Booking service and a Flight Booking service, we can interleave
the interactions with the two services, what we cannot do in the case of functional-level
composition.

An important advantage of this scenario is that it permits a black-box integration of
the three functionalities. The only constraint is that a common query (or composition
goal) has to be used for the three functionalities.

4.3 Iterative Approach

The goal of this scenario is to incrementally refine a service composition. Initially, the
composition is defined as a single abstract service that corresponds to the composition
goal. During the incremental composition, the partially developed composition will in-
clude concrete services as well as abstract services that represent goals for further refine-
ments. During each refinement step, an abstract service of the partially developed compo-
sition is selected and further refined. The incremental composition terminates when the
generated process contains no abstract service.
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Different forms of refinement steps are possible during the incremental generation of
the composition:

• the abstract service is replaced by a single concrete service (complete matching);

• the abstract service is replaced by a concrete service and by a new abstract service
describing the “remaining” of the original abstract process (complete type match-
ing);

• the abstract service is replaced by a switch, where each branch consists of a concrete
service and a “remaining” abstract service (switch matching);

• a process-level refinement is done, i.e. the abstract process is refined into a general
composition of other (abstract and concrete) Web services.

Different strategies can be adopted for choosing the transformation to be performed during
a refinement step, and suitable heuristics can be exploited to guide this process.

Incremental composition can be seen as a generalization of the algorithm for compo-
sition with partial type matching described in Figure 3.3, which already includes the first
three kinds of refinement steps.

We remark that this scenario can also be seen as a generalization of the incremental
approach defined previously. In this case, however, the different discovery and composi-
tion functionalities are not combined black-box, but are integrated in a single composition
algorithm.

4.4 Two-level Composition

In this scenario, the two kinds of composition are executed in sequence, in order to de-
fine the composition at the two levels of abstraction. Functional-level composition is
performed first, in order to identify a set of Web services that have to be composed, and
to obtain a high-level description of their composition. Then, process-level composition
is performed in order to refine this high-level description of the composed service into a
low-level, executable composition.

In this scenario, a single composition goal has to be specified, namely the goal for the
functional-level composition. Indeed, the high-level specification obtained after the first
step is then used as “goal” for the process-level composition. A problem that has to be
solved for implementing this scenario is to understand how to use the high-level composed
service to guide the low level composition. Another challenge is to understand how to pass
information back to high-level composition from low-level composition whenever the
latter discovers that a given high-level composition cannot be refined into an executable
composition and a modification of the high-level composition has to be triggered.
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4.5 Process-level discovery

This scenario is different from the previous ones as it corresponds to a different kind of
“integration” between discovery and composition. The discovery described in Chapter 2
can be considered at the functional level. Indeed, Web services to be discovered are
described in terms of their inputs, outputs, preconditions, and effects. Similarly to what
happens for composition, we can think to a lower-level type of discovery, namely process-
level discovery. In this case, in the query we do not specify only the functional parameter
of a service to be discovered, but we also specify conditions on the whole protocol that
need to be followed to interact with the service.

Process-level discovery is useful to express in the search query conditions on the inter-
action flow with the services (e.g., we can specify that we want a Hotel Booking service
that allows us to cancel our reservation in any moment; or a service that requires our credit
card number only if we are interested to accept an offer). Process-level discovery can also
be used to refine and restrict the set of services returned by a functional-level discovery
step.
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Chapter 5

Conclusions

The description of Web services in a machine-understandable fashion is expected to have
a great impact in areas of e-Commerce and Enterprise Application Integration, as it can
enable dynamic and scalable cooperation between different systems and organizations.

An important step towards dynamic and scalable integration, both within and across
enterprise boundaries, is the mechanization of service discovery. Automatically locating
and contracting available services to perform a given business activity can considerably
reduce the cost of integration and can enable a much more flexible integration, where
providers are dynamically selected based on what they provide and possibly other non-
functional properties such as trust, security, etc.

A practical and realistic approach to service discovery has to be based on a conceptual
model that considers the characteristics of the domain of application, and that make real-
istic assumptions. We have presented such a model and analyzed how current proposals
for service discovery and software component retrieval relate to it. It turns out that they
only cover partial aspects of it. For this reason, we have proposed approaches for service
discovery and composition and formalized the notions of match involved, identifying the
required reasoning support.

Service composition allows to integrate existing services into more complex added-
value services, which can be tailored to the particular needs of a user in a certain situation.
In this document we have focused on automated service composition, which we addressed
at different abstraction levels. From a high-level point of view, we have developed tech-
niques for functional service composition, which interacts with the service discovery to
dynamically retrieve relevant service descriptions. In order to obtain an executable com-
posed service, it is necessary to follow the protocols of the different services involved.
We propose process-level service composition based on model checking techniques for
this purpose.
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5.1 Future work

Future work will focus on solving the open issues described in Section 2.8, especially the
interaction of abstract and contracting capabilities of services and the required languages,
and the evaluation of candidate reasoners. This will eventually lead to the implementation
of a discovery engine based on this conceptual model. This work has already started (see
[Leditors04b]).

A second major line in our future work is to integrate the planned discovery engine
with the approaches for composition presented in this document. For that purpose, we will
further elaborate our first ideas presented in Chapter 4 and provide an integrated approach
to automatically discover, contract and compose available services to fulfill a given goal.
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