——
I

knowledgeweb

realizing the semantic web

D2.4.14 Decentralized
Orchestration of Composite Services

Coordinator Walter Binder (EPFL)

Radu Jurca (EPFL),

Boi Faltings (EPFL)

Ian Blacoe (UniLiv)
Valentina Tamma (UniLiv)
Mike Wooldridge (UniLiv)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.4.14 (WP2.4)

This deliverable focusses on two mechanisms for integrating independent services. It is divided
into two chapters, Chapter 2 presents a flexible approach for efficiently executing composite
services in a decentralized way, whilst Chapter 3 presents a semantic based approach to coordi-
nation of services.

Keyword list: Composite Services, Workflows, Decentralized Orchestration, Coodination, Web
Services

Document Identifier KWEB/2007/D2.4.14

Project KWEB EU-IST-2004-507482
Version vl.1

Date February 02, 2008

State Final

Distribution public

Copyright (©) 2008 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science

Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel @uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel

35512 Cesson Sévigné

France. PO Box 91226

Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi @inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi @iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler @deri.ie

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department

Swiss Federal Institute of Technology

IN (Ecublens), CH-1015 Lausanne

Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings @epfl.ch

Freie Universitit Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de 1’Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person: Jérdme Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asuncién Gémez Pérez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge @csc.liv.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

108 1HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitét Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@ vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document:

Ecole Polytechnique Fédérale de Lausanne
University of Liverpool

Changes

| Version | Date | Author | Changes
0.1 20.01.07 | Walter Binder Creation
0.2 18.02.07 | Radu Jurca Model of service invocation triggers
0.3 12.04.07 | Walter Binder API
0.4 22.06.07 | Radu Jurca Evaluation seetings
0.5 10.07.07 | Radu Jurca Evaluation results
0.6 19.09.07 | Walter Binder Figure and example
0.7 15.10.07 | Walter Binder Security, failure handling
0.8 25.11.07 | Walter Binder Introduction, related work, conclusion
0.9 15.12.07 | Valentina Tamma | Addition of the coordination, update of
introduction and conclusions
1.0 09.01.08 | Walter Binder Minor updates of all sections
1.1 02.02.08 | Walter Binder Addressed reviewer comments

Executive Summary

Service-oriented computing, a new approach to software development, enables the con-
struction of distributed applications by integrating services that are available over the
web [31]. The building blocks of such applications are web services' that are accessed
using standard protocols. In addition, several mechanisms contribute to the integration
and seamless execution of services independently developed. In this deliverable we fo-
cus our attention on two of these mechanisms, namely the composition of individual web
services into a new composit one, and the coordination of the execution of independent
services that make use of scarce resources.

Traditional, centralized workflow orchestration often leads to inefficient routing of
messages. To solve this problem, we present a novel scheme to execute workflows in a
fully decentralized way. We introduce service invocation triggers, a lightweight infras-
tructure that routes messages directly from the producing service to the consuming one,
enabling fully decentralized workflow orchestration. An evaluation confirms that decen-
tralized orchestration can significantly reduce the network traffic when compared with
centralized orchestration.

The coordination of independent services whose execution requires some coordina-
tion mechanisms in order to avoid possible conflicts when accessing resources. Indeed,
coordination is a fundamental problem in open distributed environments where multiple
independent parties require access to shared resources that might be scarce, or be shared
to a different extent. In this deliverable we present a run-time mechanism for coordinat-
ing the execution of independent services accessing scarce resourse. This mechanism is
based on an ontological description of the notion of conflict and of the rules to achieve
coordination. The mechanisms has been implemented as a web service, and an initial
evaluation is presented here.

"'We use the terms web service and service interchangeably.

Contents

1 Introduction
2 Workflow Orchestration
2.1 Service Invocation Triggers,
2.2 Defining Triggers o i e
2.3 Decentralized Workflow Orchestration
24 PFailure Handling
2.5 Security Issues
2.6 Evaluation L
277 RelatedWork
3 Coordination of Services
3.1 Background
3.2 Coordination Ontology,
32,1 Agents
322 RESOUICES v vttt e
3.2.3 Processes and Activities oL
3.2.4 Interdependencies Between Activities
3.2.5 Operational Relationships
3.3 CoordinationRuleso oL
3.3.1 Rulesto Check Activities
3.3.2 Rules to Detect Interdependencies Between Activities
3.3.3 Rules to Manage Interdependencies Between Activities
34 Implementation e
35 UseCase o i e
35.1 TheOntology
352 TheRules L
3.6 Evaluation
3.6.1 Number of Resources vs. Response Time
3.6.2 Number of Activities vs. Response Time
3.6.3 Number of Interdependencies vs. Response Time
3.6.4 Discussion e

iil

10
12
13
14
15

CONTENTS

4 Conclusion 47

iv February 02, 2008 KWEB/2007/D2.4.14

Chapter 1

Introduction

Service-oriented computing, a new approach to software development, enables the con-
struction of distributed applications by integrating services that are available over the
web [31]. The building blocks of such applications are web services' that are accessed
using standard protocols. In addition, several mechanisms contribute to the integration
and seamless execution of services independently developed. In this deliverable we fo-
cus our attention on two of these mechanisms, namely the composition of individual web
services into a new composit one, and the coordination of the execution of independent
services that make use of scarce resources.

The composition of individual web services into an added-value, composite web ser-
vice is usually represented as a workflow. In previous work [17, 15] we presented a flexi-
ble and efficient framework for the fully automated generation of composite web services
based on a given service request and a potentially large-scale repository of web service
advertisements. In this deliverable we complement our service composition infrastruc-
ture with a mechanism for the efficient, distributed execution of composite web services
represented as workflows.

Even though a workflow may invoke services distributed over multiple servers, the
orchestration of the workflow is typically centralized. E.g., BPWS4J [11] acts as cen-
tralized coordinator for all interactions among the individual services within a workflow.
While this approach gives complete control over the workflow orchestration to a single
entity (which may monitor the progress), it often leads to inefficient communication, as
all intermediary results are transmitted to the central workflow orchestration site, which
may become a bottleneck. This is particularly problematic, if a workflow is executed on
a mobile device with limited or expensive network connection.

The first contribution of this deliverable is a novel scheme of fully decentralized work-
flow orchestration. We introduce service invocation triggers, in short triggers, which act
as proxies for individual service invocations. Triggers collect the required input data

"'We use the terms web service and service interchangeably.

1. INTRODUCTION

before they invoke the service, i.e., triggers are also buffers. Moreover, they forward ser-
vice outputs to exactly those sites where they are actually needed, supporting multicast.
In order to make use of triggers, workflows are decomposed into sequential fragments
(dataflows), which contain neither loops nor conditionals, and the data dependencies
within each workflow fragment are encoded within the triggers. In this deliverable we
focus on the orchestration of sequential workflow fragments; in the following, the term
workflow stands for a sequential workflow fragment. Once the trigger of the first service
in a workflow has received all input data, the execution of that service is started and the
outputs are forwarded to the triggers of subsequent services. Consequently, the workflow
is executed in a fully decentralized way, the data is transmitted directly from the producer
to all consumers.

For the discussion in this deliverable, a simplified formalism to describe services is
sufficient. We describe a service by a set of input and a set of output parameters. Each
input (resp. output) parameter has an associated name that is unique with the set of input
(resp. output) parameters. We assume the workflow of a composite service to be consistent
with the specifications of the individual services. Hence, we do not consider the type
of parameters, as we presume that whenever a service receives an input for a particular
parameter, the actual type of the passed value corresponds to the formal type of that
service parameter.

We assume that services are invoked by remote procedure calls (RPC), such as
SOAP RPC [43]. The values for the input parameters are provided in a request message,
while the values for the output parameters are returned in a response message. Asyn-
chronous (one-way) calls can be easily mapped to RPC, which is actually the case for
SOAP over HTTP. Our triggers are designed to be transparent to services, i.e., services do
not need to know whether they are invoked directly by a client or by a trigger. Therefore,
our framework can be deployed without changing existing services.

The second contribution of this deliverable focusses on the coordination of indepen-
dent services whose execution requires some coordination mechanisms in order to avoid
possible conflicts when accessing resources. Indeed, coordination is a fundamental prob-
lem in open distributed environments where multiple independent parties require access
to shared resources that might be scarce, or be shared to a different extent. If two services
wish to use the same resource simultaneously then their activities are likely to affect one
another. If the resource is nonshareable then this will naturally lead to problems - a lost
update perhaps, but in the worst case even damage to the resource. In other words the
two activities do not act in isolation; there exists an interdependency between them. In
another situation, two activities may use different resources, but one of the activities may
require the results of the other activity before it can begin. Again, an interdependency ex-
ists between the activities. Such interdependencies need not be destructive, however. In
fact, they can be beneficial. For example, suppose two processes are carrying out separate
tasks, both of which rely on some intermediate computation. In this situation it makes
sense for the two processes to proactively exchange information so that effort is not du-
plicated. Here, an interdependency exists between the two activities which, if exploited

2 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

correctly, can increase the overall utility of the system. However, failure to exploit the
interdependency does not prevent the processes from successfully completing their tasks.

Coordination then can be described as the management of interdependencies amongst
activities [27]. It has been the subject of extensive research, not least in the field of
multi-agent systems [33]. One approach for providing coordination is to use hard-wired
low-level constructs such as semaphores or locks to ensure that various activities do not
destructively interfere with one another [4]. This method, known as synchronisation, is
useful in static environments, where the resources and activities comprising the system
are well known in advance and can be taken into account at design-time. However, in
more open systems in which resources can come and go and may constantly evolve it is
often impossible to anticipate every eventuality at design-time and this approach fails.

In such systems, we ideally want to provide services or agents with the ability to
reason about activities they wish to perform and the coordination issues that will arise,
thereby enabling them to resolve any interdependencies autonomously [19]. To achieve
this, the services will need to communicate with one another about their intentions to
utilise particular resources. This communication will in turn require an agreed common
vocabulary with explicit semantics so that all the services can communicate in the same
terms. In other words the services will require an ontology of coordination. This paper
details such an ontology [38] based on previous work by the multi-agents system commu-
nity [19, 27, 34, 42]. It also details a set of rules which can be used to manage activities
and resolve any interdependencies that may exist between them [29].

To determine the feasibility of this approach, a web service was developed containing
the ontology and rules. This service acts as a centralised coordinator with which resources
can be registered. Agents or services> can then request to perform activities using these
resources and the service will coordinate the various requests, detecting and resolving
interdependencies appropriately.

To accompany the web service we have implemented a visualisation client, which
enables us to submit the various calls to the service. The client monitors the internal
state of the service and uses a Gantt chart to illustrate the various resources, activities and
interdependencies to the user.

The rest of this deliverable is composed of mainly two parts, Chapter 2 looks at the
orchestration of individual services, and it is organised as follows: Section 2.1 introduces
the concept of triggers, while Section 2.2 presents a simple API to create and manipulate
triggers. Section 2.3 explains how workflows are mapped to triggers in order to execute
them in a fully decentralized way, which is illustrated with an example. In Section 2.4 we
consider the handling of failures during workflow execution. Section 2.5 treats security
aspects related to the use of triggers. Section 2.6 presents an evaluation confirming that
decentralized orchestration allows to significantly reduce network traffic in comparison
with centralized orchestration, while Section 2.7 discusses related work.

%In the reminder of the deliverable we will use the terms services and agents interchangeably

KWEB/2007/D2.4.14 February 02, 2008 3

1. INTRODUCTION

The aim of Chapter 3 is to illustrate the coordination ontology and rules, provide a
brief overview of the coordination service, and describe how this system can be applied
to a real-life use case taken from the domain of car insurance. An overview of the back-
ground work in coordination is given in Section 3.1. Section 3.2 describes how this is
translated into the coordination ontology. The set of rules that implement the coordina-
tion mechanism are then presented in Section 3.3 before a description of the coordination
service implementation and visualisation client are given in Section 3.4. Section 3.5 then
demonstrates how the approach can be applied to a use case. Finally we draw conclusions
in Chapter 4.

4 February 02, 2008 KWEB/2007/D2.4.14

Chapter 2

Workflow Orchestration

2.1 Service Invocation Triggers

In this chapter we give an overview of service invocation triggers, the main abstraction in
our framework for efficient, decentralized workflow orchestration. A trigger corresponds
to one invocation of a service. Hence, it can be considered a specialized proxy for a single
service invocation. A trigger plays four different roles:

1. It collects the input parameter values for one service invocation.

2. It acts as a message buffer, as each input parameter value may be transmitted by a
distinct sender at a different time.

3. It triggers the service invocation, after a value has been received for each required
input parameter (synchronization). In order to invoke the service, the trigger as-
sembles a RPC request message.

4. It defines the routing for each output parameter value of the service. As each output
parameter value may be routed differently, the trigger may have to split the RPC
response message returned by the service upon invocation. Each output parameter
value may be routed to multiple different triggers, i.e., triggers support multicast.

With the aid of triggers it is possible to distribute the knowledge concerning the data
dependencies of the services within a workflow. The main difference between the work-
flow and the corresponding triggers is that the triggers are distributed and attached to
services. Each trigger defines which service to invoke. The trigger waits until all required
input parameter values are available before it fires (i.e., triggers the service invocation).

5

2. WORKFLOW ORCHESTRATION

; 3
\’
“‘Q 2™ @@

(@) (b)

Figure 2.1: (a) Centralized orchestration versus (b) decentralized orchestration using
triggers.

Moreover, each trigger encapsulates workflow-specific knowledge where the output pa-
rameter values of the service invocation are needed. As the trigger acts as a proxy for
the service, it receives the output parameter values and forwards them to other triggers
according to its routing information.

The following example (see Figure 2.1) shows how triggers can help to optimize the
data transmission between services: Consider a service S4 which requires a single input
parameter /4 and produces two output parameters Op and O, while the services Sp
and S both require a single input parameter, Iz resp. Io. Further, assume a workflow
fragment that requires an invocation of S4 with a given value of [4, passing the value
of the output parameter Op to service Sz (as input parameter /) and O to service S¢
(as input parameter /). If the workflow orchestration is managed in a centralized way
by the client C' (e.g., C' may represent a centralized workflow orchestration engine), C'
has to send /4 to S, S will return the output parameter values Og and O¢ to C, which
C will pass on to S and S¢ (see Figure 2.1 (a)). That is, the output parameter values
Op and O¢ are not directly sent to the place where they are needed, but they are routed
through C'. This routing may not be optimal, if we assume that C' is not interested in Op
and O¢ (which may represent intermediary results of a composite service). Considering
that C' may be connected to a slow or expensive network (e.g., C' may use a mobile device
with a wireless network connection), the negative impacts of the centralized workflow
orchestration become immediately apparent.

In order to optimize the data transmission between services, a trigger shall be installed
as closely as possible to the service it will invoke. In the example before, C' may create
the triggers T4, 1s, and T for the invocation of the services Sy4, Sg, and S¢. T4 shall
be close to S4, T to S, and T to Sc. As triggers allow to define the routing of output
parameter values, 7’4 can be configured to directly send Op to Tz and O¢ to T¢, avoiding

6 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

to pass these intermediary results through C' (see Figure 2.1 (b)).

Even though it is advantageous to install triggers close to the actual services they are
triggering, they may be set up on an arbitrary site. For instance, if the provider of Sp
supports triggers, he may accept triggers directly in the same server running service Sp,
which will result in efficient local communication between Tz and Sg. If it is not possible
to colocate triggers and services within the same server, the provider of S may offer a
separate server dedicated to triggers in his local network. Otherwise, dedicated servers
may offer to host arbitrary triggers.

Using triggers, many different workflow orchestration schemes can be implemented.
If all triggers are hosted by the client, it corresponds to the centralized workflow or-
chestration model described before. If all triggers are hosted by a dedicated server, it
corresponds to passing the workflow to a dedicated orchestration engine which executes
it in a centralized way. If each trigger is installed locally with the service that it will
invoke, the workflow is executed in a fully decentralized way, delivering intermediary re-
sults only to those places where they are needed. Our framework does not dictate any of
these settings. Therefore, it is possible to bootstrap the support for triggers by deploying
dedicated servers to host triggers. With the time, service providers may start to directly
support triggers in their environments (incremental deployment).

2.2 Defining Triggers

In this chapter we present more details regarding the installation of triggers. In our de-
scription we use the following abbreviations for identifying services respectively triggers:

SID: Service ID. Globally unique identifier of a service to be invoked. It consists of host,
port, protocol, and local service identifier (e.g., service name and version number,
depending on the protocol). SIDs can be computed from service descriptions, in-
cluding grounding information.

PID: Parameter ID. Locally unique identifier for a service input or output parameter.

TID: Trigger ID. Globally unique trigger identifier. It consists of host, port, and a local
trigger identifier (e.g., an integer number referring to a trigger).

In the following we present a simple API to deal with triggers in an abstract way:

CreateTrigger: Creates and installs a trigger.

Arguments:

e Destination of the trigger (host and port). CreateTrigger will ask the
destination to set up the desired trigger.

KWEB/2007/D2.4.14 February 02, 2008 7

2. WORKFLOW ORCHESTRATION

e SID. The service to be invoked by the trigger.

e Service input parameters to wait for. Each parameter is identified by its P1D.
A parameter may be required or optional. The trigger will fire as soon as all
required input parameters are available. As for a given input parameter multi-
ple values may arrive before the trigger fires (while still some of the required
input parameters are missing), the client has to define which values to pre-
serve: preservelast or preserveFirst. If values for optional input
parameters arrive before the trigger fires, they will be passed to the service.
After the trigger has fired, arriving input parameter values are discarded.

e Optional: Input data. For each input parameter, a default value may be pro-
vided. This value could be transmitted with SendDat a (see below), but in-
cluding it in CreateTrigger may be more efficient and help to reduce
network traffic.

e Output routing. For each output parameter (identified by a PI D) generated
by the service SID, the output routing defines a possibly empty list of pairs
(T'ID;, PID:;) to forward the output parameter value. I.e., whenever the ser-
vice SID returns a value for the output parameter P/ D, the trigger will
forward it to all triggers T'1 D; as input parameter P/ D;, implementing a mul-
ticast. If there is a communication problem with a trigger 7'/ D;, the trigger
will retry to forward the data several times in order to overcome temporary
network problems.

e Desired timeouts:

1. Timeout to wait for input parameter values, starting with the installation
of the trigger. If not all required input parameter values arrive before this
timeout, the trigger will be discarded.

2. Timeout to wait for service completion, starting with the service invoca-
tion.

3. Timeout to wait for completed forwarding of output parameter values,
starting when the trigger receives the response of the service invocation.

e Optional: Destination for failure notification message (host, port, protocol).
In the case of a failure (i.e., service returning a failure message or expiration
of one of the timeouts mentioned before), a failure notification is sent before
the trigger is discarded, including information concerning the current state of
the trigger. The level of detail of this notification can be configured. The
message may simply indicate the reason of the failure, or it may include input
resp. output parameter values the trigger has received so far. This information
may help the client to recover from the failure.

Results:

e T'ID of the installed trigger (if the trigger was accepted).

February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

e Granted timeouts. Each granted timeout may be the desired timeout or shorter.

RemoveTrigger: Explicitly removes a trigger. Normally, a trigger is removed automat-
ically if either a timeout occurs or if the output routing task is completed, i.e., all
output parameter values have been forwarded according to the trigger’s routing in-
formation.

Arguments:
e T'ID. The trigger to remove.

SendData: Sends input parameter values to a trigger. Normally, triggers receive input
parameter values either by initialization (see the input data of CreateTrigger)
or through other triggers (forwarded output parameter values from other services).
However, a client may want to install a trigger and provide input parameter values
later on.

Arguments:

e TID. The trigger to send data to.
e Input data. For each input parameter, a value may be provided.
Status: Returns information concerning the status of a trigger. l.e., whether the trigger
is still waiting for required input, which input parameters have been received so
far, whether it has already triggered the service, whether it is waiting for the ser-

vice output parameters, etc. Status enables monitoring the progress of workflow
execution.

Arguments:

e T'ID. The trigger to ask for its status.
Results:

e Status information.

Three different protocols are involved in the communication with triggers and ser-
vices:

1. Trigger—service: The trigger communicates with the service using remote proce-
dure calls (e.g., SOAP RPC [43]). lL.e., the trigger is transparent to the service, it
behaves as any other client.

2. Trigger—trigger: The communication between triggers is unidirectional. A trigger
forwards results to other triggers. The message sent from trigger 7’4 to trigger 1z
contains at least one value for an input parameter 7z is waiting for. Even though
the communication protocol between triggers need not necessarily comply with

KWEB/2007/D2.4.14 February 02, 2008 9

2. WORKFLOW ORCHESTRATION

standards, SOAP messages are well suited for trigger—trigger communication. If
the service invocation has failed, the trigger does not send any message on the
normal output routing path, but it may generate a failure notification message (if
specified in CreateTrigger). Subsequent triggers will notice the failure by a
timeout.

3. Client-trigger: A dedicated, simple protocol supports the API primitives described
before. For instance, CreateTrigger will try to set up a trigger on the specified
destination platform.

In the following we present a few aspects of our trigger implementation in Java. A
discussion of implementation details had to be omitted due to space limitations. Our
system is based on Axis [3], an implementation of SOAP [43]. There are four differ-
ent service styles in Axis: Three of them (‘RPC’, ‘Document’, and ‘Wrapped’) provide
different ways of XML to Java binding. The fourth one, called ‘Message’, allows to re-
ceive and return arbitrary XML data in the SOAP envelope without any type mapping
(no data binding). In our system, triggers use the ‘Message’ style, while we still assume
that received messages use the ‘RPC’ style encoding. In this encoding, a RPC request
message is modeled as an outer XML element, which matches the operation name and
contains inner XML element tags mapping to service parameters. A trigger extracts all
input parameters from incoming messages and merges them into a single new RPC re-
quest message to invoke the actual service. The RPC response message is split in order to
create outgoing messages for each of the output parameters.

2.3 Decentralized Workflow Orchestration

In this chapter we show how a workflow can be executed using triggers. First, the client
decomposes a given workflow into sequential parts that contain neither loops nor con-
ditionals (dataflows). The common workflow patterns [40] sequence, parallel split, and
synchronization can be directly expressed as data dependencies between triggers, whereas
control structures, such as conditionals or loops, require workflow decomposition. How-
ever, considering automatically composed services, this limitation is often not relevant,
since most current algorithms for automated service composition create only sequential
workflows [17].

Each sequential workflow fragment is executed in the following way:

1. The client creates a (temporary) local service with SID S.;.,; to handle the final
results of the workflow fragment.

2. The clientuses CreateTrigger tolocally install a trigger to handle the workflow
results, referring to Sgjient. 11D jient 1S the resulting T'1D.

10 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

3. Starting with the last service in the sequential workflow fragment, a trigger is cre-
ated for each service invocation. The output parameter values of the last service
shall be routed to T'I D ;e.y. The order of setting up the triggers ensures that for
each service, the triggers of all subsequent services are created before.

4. Using the optional input data of CreateTrigger or SendDat a, the client sends
the input parameter values of the workflow fragment to the triggers where these in-
puts are needed. The trigger of the first service in the workflow fragment will
receive all required input parameters and execute the service. The results will be
forwarded according to the trigger’s output routing, eventually triggering the ex-
ecuti on of subsequent services. The client is not involved in this process. It is
notified of the completed workflow fragment by the invocation of Sejens.

As an example of the use of triggers, we consider a composite service built from the
following simple services:

e getGPS: Returns the GPS coordinate of an address.
Inputs: {adr_text}, Outputs: {adr_gps}

e getRoute: Computes a route between two GPS coordinates as a TIFF image.
Inputs: {from_gps, to_gps}, Outputs: {route tiff}

e tiff2jpeqg: Converts a TIFF image to a JPEG image.
Inputs: {image_tiff}, Outputs: {image_jpeg}

We assume that as input the client provides two addresses, start and
destination. The composite service generates a map illustrating the route between
these two addresses. As the client has a mobile device with limited memory and a slow
wireless network connection, the map shall be delivered in JPEG format with high com-
pression (result). The composite service may be described by the following workflow.
The variables tmp1, tmp2, and tmp3 are intermediary results the client is not interested
in.

1. getGPS(adr_text «— start): (adr_gps — tmpl)
2. getGPS(adr_text « destination): (adr_gps — tmp2)

3. getRoute(from_gps « tmpl, to_gps « tmp2):
(route_tiff — tmp3)

4, tiff2jpeg(image_tiff « tmp3): (image_jpeg — result)

Certainly, the workflow shall not be executed on the mobile device of the client, since
this would require transferring the large uncompressed TIFF image (tmp3) to and from

KWEB/2007/D2.4.14 February 02, 2008 11

2. WORKFLOW ORCHESTRATION

the resource-constrained mobile device. However, with the aid of triggers, the workflow
can be executed without transferring any intermediary result to the client. The pseudo-
code in Figure 2.2 illustrates how the client sets up the decentralized orchestration of the
workflow. For the sake of easy readability, details, such as the negotation for timeouts,
are left out intentionally.

With createLocalService the client simulates a local service that is able to
receive the final result delivered by tiff2jpeqg. From the client’s point of view, the
delivery of the result is asynchronous, as tiff2 jpeg is not directly invoked by the
client. In this example we assume that it is possible to install the triggers directly within
the different server environments. The triggers are created in reverse order of the service
invocation sequence in the workflow. The input parameter values for the invocations of
getGPS are directly passed with the CreateTrigger primitive, i.e., the triggers TID1
and TID2 will fire immediately after installation. Note that both invocations of getGP S
(viatriggers TID1 and TID2) may be performed in parallel. The output parameter values
will be routed to the trigger TID3, which will wait until both from_gps and to_gps are
available. Finally, TID4 will wait for the data forwarded by TID3 and pass the output
parameter value of t 1 £f2 jpeg to the client (via TIDO).

2.4 Failure Handling

In our approach, composite web services are executed in a completely decentralized way.
Therefore, it is not easily possible to monitor the progress of each service invocation. As
the client will only receive the final results of the composite web service, in general it will
notice a failure only after a timeout. In this case, the client may restart the execution of
the workflow.

If the used web services are not reliable, this approach may result in bad overall per-
formance, since intermediary results may have to be computed multiple times. Hence,
the client should make use of the failure notification mechanism in order to collect par-
tial results that had been computed before the failure has happened. Based on the failure
notification mechanism, the client could exploit redundant execution plans in order to
replace a failed web service. As an alternative (but inefficient) solution, if the decentral-
ized orchestration of a composite web service fails, the client could simply re-execute the
workflow in a centralized fashion (fallback solution).

The client may also use the Status primitive of triggers in order to monitor the
progress of the execution. Note that Status will fail if the trigger has already been
removed (i.e., after a timeout or after completing its task). However, Status creates
additional network traffic, therefore an excessive use of this primitive is not consistent
with the principal idea of our approach to minimize the network traffic involving the
client.

12 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

2.5 Security Issues

In this chapter we briefly discuss topics concerning security that arise due to the use of
triggers. We distinguish between existing security infrastructure that may hamper the use
of triggers and new security threats because of triggers.

As the placement of the triggers affects the communication paths between services and
clients, firewalls may prevent the installation of triggers on certain hosts. For instance,
if the client C' is allowed to communicate with the services S4 and Sp, S4 may not
necessarily be able to directly communicate with Sg. Therefore, a trigger installed close
to S4 may fail to directly forward intermediary results from S 4 to a trigger colocated with
Sp.

A related problem concerns authentication. For example, Sp may want to verify that
the origin of a service request is the client C. However, as triggers act as proxies that
may collect input parameter values from various sources, authentication may fail. This
problem could be mitigated by authenticating only the installation of the trigger, even
though this does not ensure the same level of security as authenticating that all input data
comes from C'. Nonetheless, for the composition of information services that are open to
the public, the problems concerning firewalls and authentication usually do not crop up.

The trigger infrastructure may be the target of attacks. For instance, if 7'/ Ds are not
well protected, an attacker may remove a trigger or send fake data, causing the trigger to
fire. Because of the forged input data, the triggered service will compute incorrect results.
The client may not notice this kind of attack, because once the triggers have been set up,
the client does not control the interaction between services and triggers. This problem
may be addressed by using 7'/ Ds as capabilities, e.g., by chosing a large random number
as a part of the 7'/ D. Then, if triggers are communicated only between trusted parties
across protected (i.e., encrypted) links, forging 7'/ Ds will be very difficult.

The placement of triggers is another important issue. In general, triggers should be
installed only on trusted sites, i.e., either on the client side, on the site of the service to
be invoked, or on the site of a trusted third party. Otherwise, a trigger deployed on an
untrusted site may disclose the collected input data and the output data generated by the
triggered service, or forge input resp. output data.

Another issue are denial-of-service attacks. An attacker may create a large number of
triggers with maximum timeout, he may send large amounts of input data to these triggers
while still one required input parameter is missing. Thus, the triggers will have to process
and store a significant amount of input data. However, in principle this problem is not
much different from traditional denial-of-service attacks against web services. Services
may be invoked very frequently and provided with large amounts of data. Such attacks
may be mitigated by limiting the number of concurrent connections and limiting the size
of message buffers. Similar techniques may be applied to triggers (i.e., limiting the num-
ber of concurrent triggers and limiting the buffer size of each trigger). Triggers may even
improve load-balancing, as they are installed before the actual web service invocation

KWEB/2007/D2.4.14 February 02, 2008 13

2. WORKFLOW ORCHESTRATION

happens. l.e., triggers allow the server to plan ahead the expected load in the near future.

As triggers are automatically removed after service invocation, it is not possible to
set up cyclic trigger dependencies, which otherwise could be easily abused for denial-of-
service attacks.

2.6 Evaluation

In order to evaluate the benefits of our decentralized orchestration scheme, we simulated
the network traffic (i.e., the sum of the sizes of all messages sent over the network during
the execution of a workflow) caused by centralized orchestration and by decentralized
orchestration using triggers.

The evaluation is based on our testbed for service composition [16], which allows to
generate random, acyclic workflows, representing composite web services. Each work-
flow has a random number of nodes N (3 < N < 15). Two of them are special nodes,
START and END, which represent the source of the initial input messages and the destina-
tion of the final output messages. All other nodes represent service invocations. Concern-
ing network traffic, we consider the worst case: Each service is located on a different host,
1.e., each message in the workflow generates network traffic. As START and END repre-
sent the client executing the workflow, they are located on the same host. Directed edges
between nodes represent the flow of messages between the services. Each node, except for
START, receives 1-3 input messages (START does not receive any input message). Each
node, except for END, generates 1-3 output messages (END does not generate any output
message). The concrete number of messages received and generated by a service, as well
as the data dependencies between service invocations (i.e., the edges in the workflow) are
chosen randomly. There is no edge between the START and the END node.

In our framework, the result of a service invocation is represented by its output pa-
rameters. When delivered to the next services in the workflow, these parameters can be
encapsulated in messages customized for each receiver or can be delivered as the same
message independently of the destination. In our evaluation, we considered both possibil-
ities: In the setting SameMsg, each service invocation generates a single output message
which is sent to the 1-3 target nodes, whereas in the setting DistinctMsg, each service
generates 1-3 distinct output messages.

In the case of centralized orchestration, each message transfer involves the centralized
coordinator, which we assume to be located on the same host as the nodes START and
END. In the setting DistinctMsg, each edge between two nodes that are different from
START and END corresponds to two messages on the network, because the message has
to be sent first to the coordinator. The edges from the START node as well as the edges
to the END node correspond to a single message. In the setting SameMsg, the situation
is different, because each service has to send only a single message to the coordinator.
Moreover, a node sending a message to the END node may send the same message also

14 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

to other nodes without requiring an extra message to the coordinator (as the END node is
located on the same host as the coordinator).

In the case of decentralized orchestration using triggers, each edge corresponds to a
single message (the edges from the START node correspond to client-trigger communi-
cation, all other edges represent trigger—trigger communication). We assume that each
trigger is located on the same host as the service it invokes. l.e., trigger-service com-
munication does not generate network traffic. However, client-trigger communication (in
order to create triggers) causes additional messages, proportional to the number of service
invocations in the workflow. For all measurements, we assume trigger creation messages
to be 2KB. We do not use the input-data argument of the CreateTrigger primitive,
but we assume that input data originating from the START node is sent by the SendData
primitive. Hence, 2KB is a reasonable size for trigger creation messages.

We generated 10 000 random workflows, and for each of them, we computed the net-
work traffic for different settings (SameMsg versus DistinctMsg), different orchestration
schemes (centralized versus decentralized), and varying size of input/output messages
(message size between 1KB and 150KB). Each measurement represents the average net-
work traffic (arithmetic mean) computed over the 10 000 random workflows.

Figure 2.3 depicts the total network traffic caused by the different orchestration
schemes, whereas Figure 2.4 shows the percentage of network traffic caused by decen-
tralized orchestration using triggers relative to the network traffic caused by centralized
orchestration. The results confirm that our decentralized orchestration scheme is able to
significantly reduce network traffic when compared with centralized orchestration. In the
setting SameMsg (resp. in the setting DistinctMsg), decentralized orchestration causes
about 76% (resp. 59%) of the network traffic due to centralized orchestration for in-
put/output messages larger than 20KB. For smaller input/output messages, there is less
reduction of network traffic in the decentralized orchestration scheme. Only for very
small input/output messages (1KB), decentralized orchestration using triggers may cause
extra network traffic of up to 45% (in the setting SameMsg), which is due to the overhead
of trigger creation messages.

2.7 Related Work

There is a large amount of related work concerning workflow systems and the decentral-
ized execution of workflows. For instance, reference [32] describes a workflow trading
system using mobile agents. More recently, the AMOR system [24] uses mobile agents,
too. With the aid of mobile agents, it is possible to move the control of the workflow exe-
cution to different sites, which can help to reduce the network bandwidth used by commu-
nicated (intermediary) results. Moreover, mobile code enables the dynamic deployment
of local data processing functions close to the data where it is needed. For example, if the
client has to transform intermediary results before passing them to another service, the

KWEB/2007/D2.4.14 February 02, 2008 15

2. WORKFLOW ORCHESTRATION

transformation functionality may be provided by the mobile agent which will perform the
transformation where the data originates.

The drawbacks of using mobile agents are increased security risks and usually a high
overhead. Accepting mobile agents in the execution environment opens the door to po-
tentially malicious or erroneous code. Most mobile agent systems are based on Java, even
though it has been shown that current standard Java runtime environments are not able to
protect the host against various kinds of attacks [9, 7]. The workflow trading system pre-
sented in [32] relied on the J-SEAL?2 kernel [6] to protect the host from malicious mobile
agents. The J-SEAL?2 kernel offers operating system functionality, such as strong isola-
tion, safe termination, and mediated communication, on top of standard Java runtime sys-
tems by means of extended program verification and transformation. In order to prevent
denial-of-service attacks, the environment was enhanced with a portable resource control
mechanisms [8]. The disadvantages of this approach are limitations in the programming
model, as well as significant overhead due to the extra verification and transformation. In
the future, safe language execution environments with strong isolation capabilities, such
as Java isolates [26], may allow to build more reliable mobile code platforms. Because of
security risks, our triggers currently do not support mobile code.

In active networking [39], mobile code is used within network packets in order to
customize the routing. In contrast, our approach allows the customization of the routing
of service results at the application level.

The internet indirection infrastructure i3 uses triggers to decouple sender and re-
ceiver [36]. In contrast to our approach, i3 triggers work on the level of individual pack-
ets and do not support waiting conditions (synchronization) to aggregate multiple inputs
from various locations before forwarding the data. i3 supports only a very limited form
of service composition, where individual packets can be directed through a sequence of
services. While our triggers are rather transient (used only for a single service invocation)
and their placement is explicitly controlled by the client, i3 triggers are more persistent
(they act as a longer-term contact point for a service) and are mapped to the Chord [37]
peer-to-peer infrastructure, which allows only a limited form of optimizing the routing
(by selecting a trigger identifier that will map close to a desired location). Summing up,
even though there are some ideas in common, i3 has different goals (indirection, support-
ing mobility, multicast, anycast) and works at a much lower level than our approach. Our
focus is on the efficient routing of intermediary results during the execution of composite
web services.

In reference [30] the authors point out the inefficiencies of the centralized orchestra-
tion of BPEL4WS programs [10] by engines such as BPWS4J [11]. They describe an
algorithm to decompose BPEL4WS programs for decentralized orchestration. In contrast
to this work, which is restricted to the execution of BPEL4WS programs, our service in-
vocation triggers provide a much more generic and lightweight infrastructure that may
serve as the basis for different workflow orchestration models and engines.

The SELF-SERYV system [5] focuses on web service composition. It supports peer-to-

16 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

peer orchestration of composite web services without relying on a centralized coordinator.
While reference [5] describes a rather complex middleware, our triggers are a lightweight
solution that can be easily integrated into existing infrastructure.

KWEB/2007/D2.4.14 February 02, 2008 17

2. WORKFLOW ORCHESTRATION

SID0 = createlocalService ("result");
SID1 = SID2 = locateService ("getGPS");
SID3 = locateService ("getRoute");

SID4 = locateService("tiff2jpeg");

TIDO = CreateTrigger:

destination = location(SID0), // destination = localhost
SID = SIDO,

input = [("result", required, preservelast)],

inputData = [],

output = [];

TID4 = CreateTrigger:

destination = location(SID4),

SID = SID4,

input = [("image_tiff", required, preservelast)],
inputData = [],

output = [("image_jpeg" -> [(TIDO, "result")])]l;

TID3 = CreateTrigger:
destination = location (SID3),
SID = SID3,
input = [("from gps", required, preservelast),
("to_gps™", required, preservelast)],
inputData = [],
output = [("route_tiff" —-> [(TID4, "image_tiff"™)])];

TID2 = CreateTrigger:

destination = location(SID2),

SID = SID2,

input = [("adr_text", required, preservelast)],
inputData = [("adr_text" <- destination)],
output = [("adr_gps" -> [(TID3, "to_gps")])]l;

TID1 = CreateTrigger:

destination = location(SID1),

SID = SIDI1,

input = [("adr_text", required, preservelast)],
inputData = [("adr_text" <- start)],

output = [("adr_gps" -> [(TID3, "from_gps")1)];

Figure 2.2: Executing a composite service using triggers.

18 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

4500

Centralized, DistinctMsg /
Centralized, SameMsg

4000 -
Decentralized (Triggers) /

m 3500
[3)
E 3000 / /
[
; 2500]
[
2 2000
[T}
< //
= 1500
3 //
1000

500 A

0 T

1 21 41 61 81 101 121 141
Message size [KB]

Figure 2.3: Total network traffic using centralized orchestration (settings SameMsg and
DistinctMsg) resp. decentralized orchestration (average computed over 10000 random,
acyclic workflows).

KWEB/2007/D2.4.14 February 02, 2008 19

2. WORKFLOW ORCHESTRATION

110%

Relative network traffic:

SameMsg
== DistinctMsg
21 41 61 81 101 121 141

Message size [KB]

Figure 2.4: Percentage of network traffic with decentralized orchestration using triggers
relative to centralized orchestration (average computed over 10 000 random, acyclic work-

flows).

20

February 02, 2008 KWEB/2007/D2.4.14

Chapter 3

Coordination of Services

3.1 Background

Coordination is possibly the defining problem of cooperative working and is essential
when the activities that agents perform can interact in any way. The coordination prob-
lem is concerned with how to manage interdependencies between the activities of agents.
Consider the following real-world examples.

e Jerry and George want to leave a room, and so they independently walk towards
the door, which can only fit one person through at a time. Jerry graciously permits
George to leave first. In this example, the activities need to be coordinated because
there is a resource (the door) which both people wish to use, but which can only be
used by one person at a time.

e George intends to submit a grant proposal, but in order to do this, he needs Jerry’s
signature. In this case, George’s activity of sending a grant proposal depends upon
Jerry’s activity of signing it off — George cannot carry out his activity until Jerry’s
is completed. In other words, George’s activity depends upon Jerry’s.

e Jerry obtains a soft copy of a paper from a Web page. He knows that this report
will be of interest to George as well. Knowing this, Jerry pro-actively photocopies
the report, and gives George a copy. In this case, the activities do not strictly need
to be coordinated — since the report is freely available on a Web page, George could
download and print his own copy. But, by pro-actively printing a copy, Jerry saves
him some time.

Notice that coordination, defined in this way, encompasses the well-known (and
widely studied) concept of synchronisation [4]. Synchronisation is generally concerned
with the rather restricted case of ensuring that processes do not destructively interact with
one another. While solving this problem certainly requires coordination, the concept of

21

3. COORDINATION OF SERVICES

coordination is actually much broader than this. Standard solutions to synchronisation
problems involve hard-wiring coordination regimes into program code. Thus, for exam-
ple, a programmer may flag a Java method as synchronized, indicating that a certain
access regime should be enforced whenever the method is invoked. However, in large-
scale, open, dynamic systems, such hard-wired regimes are too limiting. We ideally want
computational processes to be able to reason about the coordination issues in their system,
and resolve these issues autonomously.

In order to build agents that can reason about coordination issues dynamically, we
must first identify the possible interaction relationships that may exist between the agents’
activities. Hence, the goal is to derive and formally define the possible interaction rela-
tionships that may exist between activities. Some prior work on this topic exists — von
Martial [42] puts forward a high-level typology for coordination relationships. He sug-
gested that, broadly, relationships between activities could be either positive or negative.
Positive relationships “are all those relationships between two plans from which some
benefit can be derived, for one or both of the agents plans, by combining them” [41,
p. 111]. In other words, positive relationships lead to an increase in the quality of the
solution or utility of participants whereas negative relationships lead to a reduction in the
quality of the solution or utility of the participants. Such relationships may be requested
(one agent explicitly asks another for help with its activities) or non requested (it so hap-
pens that by working together mutliple agents can achieve a solution that is better for at
least one of them, without making the other any worse off). Von Martial distinguishes
three types of non-requested relationships:

The action equality relationship: Jerry and George plan to perform an identical action
and, by recognizing this, one of them can perform the action alone, thereby saving
the other some effort.

The consequence relationship: The actions in Jerry’s plan have the side-effect of achiev-
ing one of George’s goals, thus relieving George of the need to explicitly achieve
it.

The favour relationship: Some part of Jerry’s plan has the side effect of contributing
to the achievement of one of George’s goals, perhaps by making it easier (e.g., by
achieving a precondition of one of the actions in it).

Another major body of work on this issue is that on Partial Global Planning
(PGP) [21]. The basic idea of PGP is that an agent can represent the activities it in-
tends to perform as a plan. It then exchanges this plan of local activity with other agents
in order to identify possible interactions (positive or negative). Changes to one or more
plans can then be proposed in order to improve performance and the planned local ac-
tivities are modified in accordance with the coordinated proposal. This work led Durfee
to propose the Common Representation for Coordination Hypothesis which stated that
“organizations, plans and schedules have a common representation, but differ in their

22 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

degree of specificity along different descriptive dimensions.” [20]. He termed this com-
mon representation a behavior and included amongst the descriptive dimensions: what
the behaviour was intended to achieve, how it would attempt to achieve it, who was par-
ticipating in the behaviour, when the behaviour would occur, and why the behaviour has
been instituted.

The ideas of PGP were refined in Decker’s subsequent work on Generalised Partial
Global Planning (GPGP) in the TEMS testbed [18]. GPGP focuses on coordination
while agents are scheduling their activities rather than when they are planning to meet
goals. Whereas in PGP agents exchange complete schedules at a fixed level of abstrac-
tion, in GPGP agents exchange scheduling commitments to particular tasks at any level of
abstraction. It utilises domain dependent mechanisms for detecting and predicting coor-
dination relationships and domain independent mechanisms to manage them (by posting
constraints to the local scheduler). Five techniques are used for coordinating activities:

e Updating non-local viewpoints: Agents have only local views of activities so shar-
ing information can help them achieve broader views. In his TAMS system, Decker
uses three variations of this policy: communicate no local information, communi-
cate all information, or an intermediate level.

o Communicate results: Agents may communicate results in three different ways. A
minimal approach is where agents only communicate results that are essential to
satisfy obligations. Another approach involves sending all results. A third is to
send results to those with an interest in them.

e Handling simple redundancy: Redundancy occurs when efforts are duplicated. This
may be deliberate — an agent may get more than one agent to work on a task because
it wants to ensure the task gets done. However, in general, redundancies indicate
wasted resources and are therefore to be avoided. The solution adopted in GPGP is
as follows. When redundancy is detected, in the form of multiple agents working
on identical tasks, one agent is selected at random to carry out the task. The results
are then broadcast to other interested agents.

e Handling hard coordination relationships: “Hard” coordination relationships are
those that threaten to prevent activities being successfully completed. Thus a hard
relationship occurs when there is a danger of the agents’ actions destructively inter-
fering with one another, or preventing each others actions being carried out. When
such relationships are encountered, the activities of agents are rescheduled to re-
solve the problem.

e Handling soft coordination relationships: “Soft” coordination relationships include
those that are not “mission critical”, but which may improve overall performance.
When these are encountered, then rescheduling takes place, but with a high degree
of ‘ negotiability”: if rescheduling is not found possible, then the system does not
worry about it too much.

KWEB/2007/D2.4.14 February 02, 2008 23

3. COORDINATION OF SERVICES

Another body of work was performed by Singh, who proposed an event-based linear
temporal logic for scheduling service calls [33]. This can be used to provide guards on
events, thereby enabling events to be ordered and to be permitted or not based upon the
occurence of other events. The approach can be used to enforce coordination relationships
such as:

e enables: event f cannot occur unless event e occurs beforehand.

conditionally feeds: if events e and f both occur then e occurs before f.

guaranteeing enables: event f can only occur if event e has occured or will occur.

initiates: event f occurs if and only if event e precedes it.

Jjointly require: if events e and f occur in any order then event g must also occur (in
any order).

e compensates: if event e occurs and event f does not then event g must be performed.

Singh also stated an important consideration for designing coordination mechanisms:
“there is a trade-off between reducing heterogeneity and enabling complex coordina-
tion.” [33, p. 282] So the more detail of tasks that is given, the better the coordination
mechanisms that can be designed but the less widely applicable those mechanisms will
be. When designing a general purpose coordination mechanism then, it is best to focus on
the most widely shared attributes of tasks. From these a core set of coordination mecha-
nisms can be designed, which can be extended with more domain specific mechanisms.”

In related work, WS-Coordination [28] specifies a coordination service consisting of
three kinds of sub-service: an Activation Service used by service providers to create the
coordination context of their service; a Registration Service used by service requesters to
inform the coordination service of their future need for the service; and several Protocol
Services that perform the actual coordination. Essentially, it describes what a coordination
service should look like and how to interact with it (in particular, describing the messages
to be used in such interactions), but nothing is said about how the Protocol Services should
perform the actual coordination.

Based on all this body of work, an ontology for coordination was designed, which is
presented in the next section. Although ontologies for service based computing have been
developed, such as OWL-S [13] and Web Services Modelling Ontology (WSMO) [12],
they mainly focus on describing the services and their orchestration/composition.

We argue that our ontology is complementary to existing efforts. Coordination is
indeed an important aspect of service based computing, however it addresses the way
in which independent, and possibly conflicting agents choreograph with others. While in
efforts like OWL-S and WSMO the interaction and composition of processes are modelled
as a workflow that is determined a priori and that is executed by a workflow execution

24 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

Operational Relationship Interdependency
L L,
'~ Legal Authority }v V
-)
i gontr actual Authority NegativeCoordination PositiveCoordination
| eer]
1= Producer Consumer 1> MutuallyExcludes i’> Enables
"= Consumer Producer = Impedes :’> ConditionallyFeeds
hesTarcetAGent = Fatal Coordination 1= SQubsumes
asTargetAgen [
1= ResourceContention Fa;vours
[, asSource
Disables
hasSourceAgent | hasTarget
Activity
,,,,,,,,, FR
actor v i
Adent Cpordi nableActivity NonCoordinableActivity
gen bone !
i | }ét(:)nr? g:fggvi ‘r> Natural Events
1~ Requester = -omp Y ' External Processes

"> Provider = I=ConjunctiveActivity
'>DigjunctiveActivity

owner requires
—_— isCoordinatedWith ﬁ‘/
Coordi nap onRules Resource

oS-SS T TS T T TS T TS T T T T
v v
CheckActivities Findlnterdependencies CoordinationMechanism

X
ClassA——= ClassB: instances of ClassA have the object property X with instances of ClassB
ClassA----- = ClassB: ClassB is a subclass of ClassA

Figure 3.1: An overview of the coordination ontology

component, in agent-based coordination, the choreography is determined by the exchange
of messages among the agents that need to interact (protocol). However, the first order
logic representation of process theory in OWL-S, based on PSL [1], could be integrated
in our ontology, in a future implementation !. .

3.2 Coordination Ontology

Figure 3.1 provides an overview of the coordination ontology, illustrating the main con-
cepts and relationships. The basic idea is to enable agents to reason about the relationships
of their activities to the activities of other agents. So, the fundamental purpose of the on-
tology is to answer the following questions:

e what is a coordinable activity?

e what coordination relationships such activities have to one another?

The sub-sections that follow describe the ontology: the key concepts, the slots asso-
ciated with these concepts, the relationships between these concepts, and axioms. In the

'The ontology for coordination was developed in the FP6 EU project Ontogrid (FP6-511513), where
a mechanism for coordinating grid services under bounded constraints was developed. The coordination
services deployed in Ontogrid relied on a set of rules representing the constraints deriving from the use
within Grid environments, such as the use of stateful resources.

KWEB/2007/D2.4.14 February 02, 2008 25

3. COORDINATION OF SERVICES

interests of comprehensibility, not all of the components of the ontology are presented:
the aim is to provide a good overview of the ontology, rather than present all the low-level
technical details.

3.2.1 Agents

Our starting concept is Agent, which relates to the agents in the system, i.e., the things
that do the actions in the system needing to be coordinated. For the purposes of the
coordination ontology, agents have just one slot: ¢d, which is a string representation of
the unique identifier for the agent (e.g., a URI). Agents can provide or consume a resource.
To this end, there are two subclasses of agent, provider and requester. As an agent may
be simultaneously both a provider and a requester these subclasses are not disjoint from
one another.

3.2.2 Resources

The Resource concept describes resources that may be required to expedite an activity. It
has the following slots:

e viable: a Boolean value, indicating whether the resource is still in a state to be
used; a value of false here would indicate that the resource could not be used by
any activity (even if these activities require it). Another simple way to think about
viable is that it indicates whether a resource is “working” or “broken”.

e consumable: a Boolean value, which indicates whether the use of the resource will
reduce subsequent availability of the resource in some way; more precisely, whether
the repeated use of the resource in activities would make the resource non-viable.

e shareable: a Boolean value, indicating whether a resource may be used by more
than one agent at any given time.

e cloneable: a Boolean value, indicating whether or not the resource is cloneable
(= true), or unique and not-cloneable (= false). An example of a cloneable
resource would be a dataset or a digital document. An example of a unique resource
would be a physical artefact produced as the output of a particular experiment, or a
human being.

e owner: either an Agent (in which case this is the agent that owns the resource), or
null (in which case the semantics are that the resource may be used by any agent
at no cost). If a resource is owned by an agent, and another agent wishes to use this
resource, then it may be necessary to enter into negotiation over the exploitation of
the resource.

26 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

3.2.3 Processes and Activities

The next concept is Activity, whose definition was influenced by the OWL-S model of
processes [13]. It represents an activity that changes the state of the environment in some
way. It may be terminating or non-terminating, and be carried out by a human or other
agent, or be a natural (physical) process.

The activity concept has two sub-classes: the most important of which is that of a Co-
ordinableActivity. A coordinable activity is a process that can be managed in such a way
as to be coordinated with other coordinable activities. For example, executing the process
of invoking a web service would be a coordinable activity, in the sense that the invocation
of such a service can be managed so as to coordinate with other invocations. For example,
suppose there are two agents, both of which want to invoke the same web service, with
different parameters. Then, in general, the agents could manage their invocations so as
not to interfere with one another.

Not all processes of interest to a system are coordinable — hence the NonCoordinable-
Activity concept. This concept is intended to capture all those processes whose coordina-
tion is not possible by the agents within the system to which a particular knowledge base
refers. This will include at least the following two types of process:

e Natural events: These are physical processes that will take place irrespective of
what any agent in the system does. An extreme example would be the decay of
an atom, caused by essentially random quantum events. Clearly, such processes
cannot be coordinated with other processes: they will take place (or not take place)
irrespective of what the agents in the system do.

e External processes: These are processes — either physical world processes or nat-
ural processes — which are simply outside the control of the system, in that they
cannot be managed by the agents in the system. Notice that such processes may be
coordinated by entities outside the system: the point is, that for the purposes of the
system to which the knowledge base refers, they cannot be coordinated.

Another way of thinking about the distinction between a coordinable and a non-
coordinable activity is that there is always an agent (i.e., a software agent within the
system) associated with a coordinable activity, whereas there is no such agent associated
with a non-coordinable activity.

A CoordinableActivity will have the following slots:

e actor: an Agent, i.e., the agent that intends to carry out, or has carried out this
activity;

e carliest start date: either a date or null, with a date indicating the earliest date at
which the activity may begin; null indicates that this information is not known;

KWEB/2007/D2.4.14 February 02, 2008 27

3. COORDINATION OF SERVICES

e latest start date: either a date or null, with a date indicating the latest date at
which the activity may begin; null indicates that this information is not known;

e expected duration: either a natural number, indicating the number of milliseconds
the activity is expected to take, or null indicates an unknown duration;

e latest end date: either a date or null, with a date indicating the latest date at which
the activity may end; null indicates that this information is not known;

e actual start date: either a date or nul1l, with a date indicating the date at which the
activity actually began or is scheduled to begin; null indicates that this informa-
tion is not known;

e actual end date: either a date or null, with a date indicating the date at which the
activity actually ended or is scheduled to end; null indicates that this information
is not known;

e shareable result: a Boolean indicating whether the result of the activity can be
shared with other agents;

e status: an enumeration type, which takes a value as follows: An activity begins
by being requested and then becomes scheduled if no coordination is required or
proposed if a change has been proposed. If the activity starts before its earliest start
date or after its latest start date or if it ends after its latest end date then it is outOf-
Bounds. 1f the results of the activity are available elsewhere then it is superfluous.
If the activity is no longer needed for some reason then it is redundant. When the
activity is performed it is continuing though it may become suspended. When the
activity finishes it must have either failed or succeeded.

There are two direct sub-classes of coordinable activity: AtomicActivity and Compos-
iteActivity. An atomic activity is the most basic type of activity and is indivisible into other
activities. It has an additional property requires, which states the resource that it requires.
A composite activity is one which is made up of other coordinable activities. Thus, they
can be viewed as being arranged into an and/or tree hierarchy of coordinable activities
(atomic or composite), with atomic activities as leaves of the tree. A slot composedOf
contains the list of sub-activities. There are two sub-classes of composite activity:

e ConjunctiveActivity: a composite activity that succeeds if all of its sub-activities
succeed

e DisjunctiveActivity: a composite activity that succeeds if any one of its sub-
activities succeeds

Though these two classes may be used directly to implement coordination mecha-
nisms, it is generally more useful to extend them by creating further subclasses with

additional semantics. This is illustrated in practice in Section 3.5.

28 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

3.2.4 Interdependencies Between Activities

The Interdependency concept is used to describe the various inter-relationships that can
exist between activities. The semantics of this concept are based on the work discussed
in Section 3.1. Thus, there are two subclasses:

e NegativeCoordination: an interaction which, if it occurs, will lead to a reduction in
the quality of the solution or the utility of the participants;

e PositiveCoordination: an interaction which, if it occurs, will lead to an increase in
the utility of the participants or the quality of the solution.

- and the following set of slots:

e source and target: both slots are Activities, the idea being that these are the two
activities which are interdependent.

e lype: an enumeration, which indicates whether the relation is “soft” or “hard”, with
the following semantics:

— a hard relation is one which will materially affect the success or otherwise of
the activities;

— a soft relation is one which may affect the activities, positively or negatively,
but will not affect whether they are successful or not.

Subclasses of NegativeCoordination include:

o MutuallyExcludes: an instance of this relationship will exist between two atomic
activities iff:

1. they both Require some resource 7,
2. the actual or scheduled usage of r by both activities overlaps;

3. r is non-shareable.

The idea is thus that these two activities will be mutually exclusive, in the sense that
they cannot possibly both succeed as scheduled, as they require access to a resource
that cannot be shared. The type of this interdependency is therefore hard.

e [Impedes: an instance of this relationship will exist between two AtomicActivitys
iff:

1. they both Require some resource 7,

KWEB/2007/D2.4.14 February 02, 2008 29

3. COORDINATION OF SERVICES

2. the actual or scheduled usage of r by both activities overlaps;

3. ris shareable.
The idea is thus that these two activities will impede one another though they will

not necessarily prevent each other from succeeding. The type of this interdepen-
dency is soft as it need not necessarily be managed for the system to run effectively.

There is a further sub-class of NegativeCoordination: FatalCoordination is a hard co-

ordination relationship which, if it occurs, will inevitably lead to the failure of one or more
of the component activities. Note that instances of FatalC'oordination relationships are
always hard. Sub-classes of FatalCoordination include:

30

e Disables: one activity will disable another if the occurrence of it will definitively
prevent the occurrence of the other. This is a hard interdependency.

e ResourceContention: an instance of this relationship will exist between two
atomic activities iff:

1. they both require some resource 7;

2. resource r is consumable.

The idea here is thus that one of the activities (the earlier one) could prevent the
successful completion of the other activity, by depleting it or rendering it unviable.
ResourceContention relationships are not required to be hard although, of course,
they could be.

Sub-classes of PositiveCoordination are:

e ConditionallyFeeds: in such an interdependency, the occurrence of activity A; will
subsequently make possible the occurrence of activity A,, but it is nevertheless pos-
sible that A, could occur (i.e., the occurrence of A; is a sufficient but not necessary
event for the occurrence of A,). This is a hard interdependency.

e Enables: the occurrence of activity A; is both necessary and sufficient for the oc-
currence of As. This is a hard interdependency.

e Subsumes: activity A, subsumes activity A, if A; contains all the activities of As.
This is a soft interdependency.

e Favors: an activity A; favors another activity A, if its prior occurrence will subse-
quently improve the overall quality of A,. We include this as a “catch all”. This is
a hard interdependency.

February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

3.2.5 Operational Relationships

In order to resolve a coordination relationship between two activities, it may be necessary
to appeal to the operational relationships that exists between the agents that will carry
them out. Intuitively, operational relationships exist between agents, and by understand-
ing these relationships, it can help to resolve interdependencies. The main concept then is
OperationalRelationship. This concept has two slots, both of which are Agents: source
and target. Sub-classes of OperationalRelationship include:

e LegalAuthority: this sub-class indicates that source has legal authority over target
(of course, this begs the question of what “legal authority” means in the context of
semantic web services and processes, but this is outside the scope of our current
work, and is left as a placeholder for the future);

e ContractualAuthority: this indicates that source has contractual authority over
target (i.e., that both agents “belong” to the same organisation, and that in the
context of this organisation, source should take precedence over target);

o ProducerConsumer: this indicates that source is the owner of a Resource that is
to be used by target;

o ConsumerProducer: the inverse of ProducerConsumer;

e Peer: two agents that work as peers, i.e., that neither has any authority over the
other.

3.3 Coordination Rules

The ontology provides a means of describing activities and the interdependencies that may
exist between them. This knowledge can then be used to coordinate the various activities
with one another. For this purpose, a number of rules were developed. For the sake of
clarity, they are split into three groups:

e Rules to check activities
e Rules to detect interdependencies between activities

e Rules to manage interdependencies between activities

The sets of rules can be seen as building upon one another. The first set ensure that the
descriptions of activities are complete and consistent. The second set then use these con-
sistent description to identify any interdependencies that exist between activities. Finally,
the third set take the interdependencies identified and manage them accordingly.

KWEB/2007/D2.4.14 February 02, 2008 31

3. COORDINATION OF SERVICES

3.3.1 Rules to Check Activities

These rules are used to check activities and detect any inconsistencies or omissions. Es-
sentially they are used to capture some of the basic axiomatic properties of the ontology.
This entails that whenever a new type of activity is added to the ontology it may be nec-
essary to add some new rules to this set.

Rules to Check All Coordinable Activities

. If an activity’s latest start date is after or the same as its latest end date, then set the

latest start date to be the latest end date - the expected duration

. If an activity’s actual end date is not its actual start date + expected duration, then

change the actual end date accordingly

. If an activity started before its earliest start date, then its status should be set to

’outOfBounds’

. If an activity started after its latest start date, then its status should be set to ’outOf-

Bounds’

. If an activity started after its latest end date, then its status should be set to *outOf-

Bounds’

. If an activity ended after its latest end date, then its status should be set to *outOf-

Bounds’

. If an activity’s earliest start date is after or the same as its latest end date, then its

status should be set to "outOfBounds’

. If an activity’s earliest start date is after its latest start date, then its status should be

set to “outOfBounds’

Rules to Check Composite Activities

32

1. If a composite activity does not have an enables or conditionally feeds interdepen-

dency with another activity then its actual start date should be that of the component
activity with the earliest actual start date. (The expected duration is also modified
accordingly.)

. The actual end date of a composite activity should be that of the component activity

with the latest actual end date. (The expected duration is also modified accordingly.)
This rule assumes a pessimistic view for disjunctive activities, i.e. they always take
the longest time possible.

February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

Rules to Check Component Activities

1. If a component activity is part of a composite activity which has an enables or con-
ditionally feeds interdependency with another activity then actual start date of the
component activity should not be earlier than the actual start date of its composite
activity.

2. If a composite activity has status ’failed’, ’succeeded’ or ‘redundant’ then all sub-
activities should have the status 'redundant’.

3. If the earliest start date of a component activity is before that of the composite
activity then it is set to the latter.

4. If the latest end date of a component activity is after that of the composite activity
then it is set to the latter.

5. If the latest start date of a component activity is after the latest end date of the
composite activity then it is set to the latter.

6. If the latest start date of a component activity is before the earliest start date of the
composite activity then its status is set to *failed’.

7. If the expected duration of a component activity is greater than the difference be-

tween the earliest start date and latest end date of the composite activity then its
status is set to failed’.

Rules to Check Conjunctive Activities

1. If all component activities of a conjunctive activity have status ’succeeded’ then set
the status of the conjunctive activity to ’succeeded’.

2. If any one of the component activities of a conjunctive activity has status ’failed’
then set the status of the conjunctive activity to "failed’.

Rules to Check Disjunctive Activities

1. If any one of the component activities of a disjunctive activity has status ’succeeded’
then set the status of the disjunctive activity to "succeeded’.

2. If all component activities of a disjunctive activity have status ’failed’ then set the
status of the disjunctive activity to *failed’.

KWEB/2007/D2.4.14 February 02, 2008 33

3. COORDINATION OF SERVICES

(AtomicActivity A, (requires resource,, actualStartDate SD,, actualEndDate ED,))
(AtomicActivity A, (requires resource,, actualStartDate SD., actualEndDate ED,))
(resource, (shareable false))
(SD; > SDy)
(ED;, > EDy)

(ED; > SD,)
then

(MutuallyExcludes {(hasSource A, hasTarget A,, hasDuration (ED-SD,)))

Figure 3.2: Example rule to find an interdependency

3.3.2 Rules to Detect Interdependencies Between Activities

These rules examine activities and infer new instances of interdependencies from them.
Similar to the rules above, this entails that whenever a new type of activity is added to the
ontology new rules may need to be added to this set. If a new type of interdependency is
added to the ontology then new detection rules will certainly be required.

The rules themselves are divided into two categories: those that detect positive interde-
pendencies and those that detect negative interdependencies. Negative interdependencies
tend to be more general and as such the rules to find them are readily applicable to a wide
range of domains. Positive interdependencies on the other hand tend to be more domain-
specific, relying on particular properties of activities, and hence specific rules have to be
written to find such interdependencies. Section 3.5 demonstrates how rules can be created
tailored to a particular domain. The following rules are currently implemented to detect
instances of the negative interdependencies impedes and mutually excludes:

1. If the end of a time slot for an activity overlaps the beginning of the time slot
for another activity, and both activities require access to the same non-shareable
resource, then assert an interdependency stating that the two activities are mutually
exclusive. This rule is illustrated in Figure 3.2.

2. If the time slot for an activity is included in the time slot for another activity, and
both activities require access to the same non-shareable resource, then assert that
the two activities are mutually exclusive.

3. If the end of a time slot for an activity overlaps the beginning of the time slot for
another activity, and both activities require access to the same shareable resource,
then assert an interdependency stating that the two activities impede one another.

4. If the time slot for an activity is included in the time slot for another activity, and

both activities require access to the same shareable resource, then assert that the
two activities impede one another.

34 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

3.3.3 Rules to Manage Interdependencies Between Activities

These rules describe the coordination regime itself. Thus, different sets of rules can be
used to provide different regimes, depending upon requirements.

Each of the rules acts on an interdependency by modifying a coordinable activity
accordingly. This modification consists of changing either the actual start date, the actual
end date or the status of the activity. In the case of the start or end date being modified, the
knowledge base is first queried to find an suitable new slot. Once an interdependency has
been managed, it is removed along with all other unmanaged interdependencies involving
the modified activity. This ensures that the knowledge base is left in a consistent state.

The coordination rules themselves are based upon operational relationships first and
foremost. So, for example, if two agents related by a legal authority relationship request
to carry out conflicting activities then the activity of the agent with the lower precedence
is modified. A similar rule exists for when there is a contractual authority relationship.
If the two agents are peers or the same agent requests two conflicting activities then the
shortest activity is moved. This is one example of a coordination regime though it could
be readily substituted for another.

Additionally, it was determined that it would be appropriate to distinguish between
hard and soft interdependencies so that hard interdependencies, which determine the suc-
cessful execution of the system, are always handled before soft interdependencies, which
only affect efficiency. For this reason, each rule is effectively replicated with the only dif-
ference occuring in the type of interdependency encountered. It is then possible to specify
that the rules dealing with hard interdependencies have priority over those dealing with
soft interdependencies.

The following rules have been implemented to provide a working example of a coor-
dination regime:

1. If two activities are mutually exclusive and they were requested by different agents,
one of which has a legal authority over the other, then move the activity of the agent
with lower precedence.

2. If two activities are mutually exclusive and they were requested by different agents,
one of which has a contractual authority over the other, then move the activity of
the agent with lower precedence.

3. If two activities are mutually exclusive and they were both requested by the same
agent or they were requested by different agents, neither of which has authority over
the other (i.e. they are peers or no relationship between the two has been explicitly
stated), then move the activity with the smallest expected duration. If they are both
of equal expected duration then move the activity that was requested last.

4. If two activities impede one another and they were requested by different agents,

KWEB/2007/D2.4.14 February 02, 2008 35

3. COORDINATION OF SERVICES

one of which has a legal authority over the other, then move the activity of the agent
with lower precedence.?

5. If two activities impede one another and they were requested by different agents,
one of which has a contractual authority over the other, then move the activity of
the agent with lower precedence.

6. If two activities impede one another and they were both requested by the same agent
or they were requested by different agents, neither of which has authority over the
other (i.e. they are peers or no relationship between the two has been explicitly
stated), then move the activity with the smallest expected duration. If they are both
of equal expected duration then move the activity that was requested last.

7. If an activity enables another activity then modify the latter activity so that it occurs
after the activity that enables it.

8. If an activity conditionally feeds another activity then modify the latter activity so
that it occurs after the activity that conditionally feeds it.

9. If an activity subsumes another activity then set the status of the subsumed activity
to “superfluous’.

10. If an activity that subsumes another activity succeeds then set the status of the sub-
sumed activity to ’succeeded’. This only occurs if the subsumed activity still has
the status "superfluous’ as it may have become redundant or be part of a composite
activity that is redundant, failed or succeeded.

11. If an activity that subsumes another activity fails then set the status of the subsumed
activity to ‘requested’, i.e. attempt to reschedule the subsumed activity. Again, this
only occurs if the subsumed activity still has the status ’superfluous’.

12. If an activity that subsumes another activity becomes redundant then set the status
of the subsumed activity to ‘requested’, i.e. attempt to reschedule the subsumed
activity. Once more, this only occurs if the subsumed activity still has the status
“superfluous’.

3.4 Implementation

The coordination ontology was implemented in the Web Ontology Language (OWL) [14]
using Protégé 3.0 [35] and all of the rules were implemented in Jess [23]. The JessTab [22]
plug-in for Protégé was used to enable the ontology to be loaded into a Jess rule engine

Note that it is possible to simply allow both activities to proceed as scheduled, but with their durations
increased by a particular factor. This would be an example of an alternative coordination regime.

36 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11

IST Project IST-2004-507482

GT4
Container

Coordination

Service

Coordination Resource

ﬁoordination Engine

d

A

N

ﬁntology

Instances

Rules

register resource
deregister resource
request activity
withdraw activity

set status

check entire schedule

notify

Figure 3.3: Architecture of the coordination service

as a Protégé knowledge base. This effectively encapsulates the coordination engine (on-
tology, instances, rules and rule engine) into a Java object.

A Web Services that acts as a wrapper for the coordination engine and provides meth-

ods the following methods:

e register resource: used to register a new resource

e deregister resource: used to deregister a resource

e request activity: used to request a new activity

e withdraw activity: used to withdraw an activity request should it no longer be re-

quired

e set status: used by the requester of an activity to set the activity’s status

e check entire schedule: used to retrieve the entire list of activities for a particular

resource

Additionally, we made use of WS-Notification [25] in order to implement a publish-
subscribe notification mechanism allowing agents to subscribe to receive messages de-
tailing activity changes or the deregistration of resources. This asynchronous form of
communication is essential for updating resource providers and requesters of changes
which may impact upon them. The service is illustrated in Figure 3.3.

A graphical client application was also developed to allow for intuitive user interaction
with the service when performing testing and evaluation. The client provides access to

KWEB/2007/D2.4.14

February 02, 2008 37

3. COORDINATION OF SERVICES

all of the service’s API methods and automatically subscribes to receive all notification
messages sent by the service. Using these messages, the client is able to build up a
representation of the internal state of the service. The user can then access this information
in the form of a Gantt chart representing either the entire list of resources and activities
known to the service, or the list of activities for a specific resource. With this information
on screen, the user is able to select an activity and view the interdependencies associated
with it.

3.5 Use Case

This section presents a sample scenario, taken from the domin of car insurance fraud, to
which a centralised coordination mechanism could be applied to succesfully coordinate
a number of activities. This scenario was devised for the evaluation of the coordination
services deployed in the EU project Ontogrid project (FP6-511513)

The scenario involves a number of insurance companies who wish to collaborate to
discover whether the claims they receive are fraudulent. As such, a virtual organisation
(VO) is established and member insurance companies make their databases available to
other members (though with many limitations). When one of the members then wishes to
assess a claim it performs checks against a number of known fraud models. For example,
the Berliner fraud model involves stealing a car and then crashing it into an insured car
that is already damaged and claiming the damage from the insurance company of the
stolen car. Other fraud models include the stolen cars model, the Saarland model and
the Autobumser model. To detect whether one of these models is present, the insurance
company will send a number of queries to the other insurance companies in the VO and
then aggregate and analyse the results. Generally, the models should be checked in a
specified order, and if one of the models is detected then the rest need not be checked.

3.5.1 The Ontology

To implement this scenario, the coordination ontology was extended as illustrated in Fig-
ure 3.4. Working from the bottom up, two new types of resource are included in the
ontology:

e CPU: This represents a CPU that will be used to perform some processing task. The
property shareable is set to true as multiple processing tasks may be performed
simultaneously.

o [nsuranceCompanyBQO: This represents a database (back-office) of an insurance
company. The property shareable is set to false as the back-office operations are
intensive and the insurance companies wish to limit the number of operations that
can be performed.

38 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

CoordinableActivity
|
= AtomicActivity

|

|

' "= CarFraudActivity

‘ - Resource
|

| | Query InsuranceCompanyBO =
|
|
| =

requires CPU="

requires

'= Aggregation

= CompositeActivity

1= ConjunctiveActivity
|

isComposedOf

"= FraudDetectionModel

|
;’> StolenCars

|

|

|

|

|

|

| :’> Berliner
| '~ Saarland isComposedOf
| = Autobumser

| =

= DigjunctiveActivity
|

"> FraudDetectionProcess

Figure 3.4: The extended ontology for the car fraud use case

There are then two new sub-classes of AtomicActivity which use these resources
(though an intermediate class CarFraudActivity is introduced for clarity):

e Query: These represent the queries that are performed on the insurance company
databases, and as such the requires property must be an instance of InsuranceCom-
panyBO. They also have an additional slot content which details the content of the

query.

e QueryAggregation: These represent the aggregations of queries that are performed
by insurance companies. As such the requires property must be an instance of
CPU.

These activities are then used to compose FraudDetectionModel activities, which is a
type of composite activity representing a fraud detection model. As such it has subclasses
for each of the detection models (StolenCars, Berliner, Saarland and Autobumser). Fraud-
DetectionModel is itself a sub-class of ConjunctiveActivity, as it is necessary for all of
the queries and query aggregations within a particular model to complete successfully in
order for that activity to complete successfully.

Finally, FraudDetectionModel activities are used to compose FraudDetectionProcess
activities, which is also a type of composite activity and represents the entire process
undertaken by an insurance company checking for fraud. It is a sub-class of ’Disjunctive-
Activity’, since if any of the component fraud detection model activities succeeds then
the whole fraud detection process succeeds.

KWEB/2007/D2.4.14 February 02, 2008 39

3. COORDINATION OF SERVICES

3.5.2 The Rules

With the new activities defined it was necessary to consider whether any new rules are also
needed. Such rules may be required in any of the three categories and so the following
process was observed.

Firstly, it may be necessary to define new rules to check the consistency and com-
pleteness of newly defined activities. Often, however, this will not be the case, since new
activities will extend existing activities and so the existing rules will also apply to these
new activities.

Next, it is necessary to examine any interdependencies that may involve the new ac-
tivities to determine whether any new rules are required for detecting them. As stated in
Section 3.3.2, the rules to detect negative interdependencies are more generally applicable
than those used to detect positive interdependencies, so it is unlikely that new rules will
be required here, unless new types of negative interdependency have also been defined in
the ontology. It is more likely there will be positive interdependencies which are already
classified in the ontology but which rely on the particular properties of domain specific
activities. In these cases specialised rules must be written to detect such interdependen-
cies. Of course, new types of positive interdependency may be defined as well, in which
case rules will be needed to detect these too.

Finally, it is necessary to determine whether any new rules are required for managing
interdependencies. Generally though, this will not be the case unless a new coordination
regime is required.

Following this process it was found that no new rules were necessary for checking ac-
tivities or for managing interdependencies. Additionally, the following interdependencies
would be detected by the existing detection rules:

e If two Query activities require the same InsuranceCompanyBO at the same time
then they mutually exclude one another, since the InsuranceCompanyBO is non-
shareable.

o If two QueryAggregation activities require the same CPU at the same time then
they impede one another, since the CPU is shareable.

However, several new rules were required for detecting interdependencies:

e If a Query activity and a QueryAggregation activity are part of the same FraudDe-
tectionModel then the Query enables the QueryAggregation.

e If two Query activities require the same InsuranceCompanyBO and have the same
content then the activity with the earliest actual end date subsumes the other.

e If a StolenCars activity is part of the same FraudDetectionProcess as a Berliner or
Saarland or Autobumser activity then the StolenCars activity enables the other.

40 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

e If a Berliner activity is part of the same FraudDetectionProcess as a Saarland or
Autobumser activity then the Berliner activity enables the other.

e [f a Saarland activity is part of the same FraudDetectionProcess as an Autobumser
activity then the StolenCars activity enables the Autobumser activity.

3.6 Evaluation

In initial testing of the system, the coordination service was found to detect and manage
all of the expected interdependencies between activities. Given this, a test harness was
developed based upon the client described in Section 3.4. This harness allows the user to
set a number of variables from which it generates a series of activities to submit to the
coordination service. As the test harness subscribes to all of the notifications sent by the
coordination service, it has a complete view of the status of the coordination engine at
all times. From this it is able to determine if a newly submitted activity should have any
interdependencies with an existing activity. It then checks for each new activity whether
any interdependencies are detected and whether they are managed successfully.

The following factors were varied in the evaluation:

The number of resource providers

The number of resource requesters

The number of resources

The number of activities to submit

The number of interdependencies that should exist between submitted activities

- and the following results were measured:

e The response time of the service
e The number of interdependencies detected/resolved

e The level of communication between the service and its users, i.e. the number of
notifications sent in response to a service call. Typically, such notifications will be
sent when activities are moved as a result of an interdependency being detected and
resolved.

e The number of activities that cannot be scheduled within the bounds of their earliest
and latest start/end dates

KWEB/2007/D2.4.14 February 02, 2008 41

3. COORDINATION OF SERVICES

Response Time

1 1000 5000 10000 15000 20000
Resources

Figure 3.5: Number of Resources vs. Response time

3.6.1 Number of Resources vs. Response Time

The first experiment performed was intended to identify how the system performed with
a varying numbers of resources. A series of runs were performed during which a con-
stant number of activities were submitted to the service, whilst the number of providers,
requesters and interdependencies were also kept constant.

The only variable was the number of resources being managed by the coordination
service. The time taken for the coordination service to respond to requests for new activ-
ities was recorded. The results are detailed in Figure 3.5.

As can be seen from these results, the number of resources being managed by the co-
ordination service had no discernible effect on the time taken to respond to service calls to
add new activities. Only a difference of 2ms (around 7.5%) existed between the response
times of the service with 1 resource and that with 20,000 resources. Furthermore, the
service managing 20,000 resources responded more rapidly than that managing a single
resource.

The explanation for this is that for the service managing a single resource, all activi-
ties were specified as using that one resource, whereas for the service managing 20,000
resources the activities were distributed over all of these resources. Hence when a new ac-
tivity is added to the service managing one resource, it takes longer to check that activity
against the list of other activities already using that resource.

3.6.2 Number of Activities vs. Response Time

The next experiment performed was intended to identify how the system performed with
a varying numbers of activities. A series of runs were performed during which a constant

42 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

50

45

40

35

30

Response Time

1000 5000 10000 15000 20000
Activities

Figure 3.6: Number of Activities vs. Response time

number of resources were managed by the service, whilst the number of providers, re-
questers and interdependencies were also kept constant. For this experiment, the number
of interdependencies was set to zero.

The only variable was the number of activities to add to the coordination service.
The time taken for the coordination service to respond to requests for new activities was
recorded. The results are detailed in Figure 3.6.

As can be seen from these results, the greater the number of activities being managed
by the coordination service, the longer the service took to respond to service calls to add
new activities. This relationship was found to be linear, i.e. as the number of activities
added was increased, the response time increased proportionately.

This result was as expected and has a similar explanation as the result found in the
previous experiment, i.e. with a larger number of activities there are more activities per
resource and hence when a new activity is added to the service managing a resource, it
takes longer to check that activity against the list of other activities already using that
resource.

3.6.3 Number of Interdependencies vs. Response Time

Another experiment was carried out to identify how the system performed with a varying
numbers of interdependencies. A series of runs were performed during which a con-
stant number of resources were managed by the service and a constant number of ac-
tivities were requested using these resources. Additionally the number of providers and
requesters were also kept constant. The only variable was the number of interdependen-
cies that should be detected.

The time taken for the coordination service to respond to requests for new activities

KWEB/2007/D2.4.14 February 02, 2008 43

3. COORDINATION OF SERVICES

180

160

140

Response Time
o o
2 E

=
=]

™
=]

o

100 500 1000 1500 2000

Interdependencies

Figure 3.7: Number of Interdependencies vs. Response time

was recorded. This was further divided into the time taken for the service to respond to ac-
tivity requests when an interdependency was detected and the time taken to respond when
no interdependencies were detected. Furthermore, the number of notifications sent by the
service and the number of interdependencies detected and resolved were also measured.
Finally, the number of activities which were moved as a result of an interdependency such
that the start and end dates were now outside the prescribed limits (i.e. that were out of
bounds) was also measured. The results are detailed below:

As can be seen from Figure 3.7, the greater the number of interdependencies between
activities, the longer it takes for the service to respond to new activity requests. What is
more, this relationship appears to be linear. This is to be expected as a call to add a new
activity with an interdependency will take longer than one without, since it takes time to
manage the interdependency and move any activities appropriately.

However, as illustrated in Figures 3.8 and 3.9, the time taken to respond to activity
requests which do not involve an interdependency increases at a much slower rate than
the time taken to respond to activity requests with an interdependency. The explanation
for this is that as the number of interdependencies increases, and hence the proportion of
interdependencies to activities increases, the greater the number of activities that need to
be moved around and accommodated when managing the interdependencies. Similarly,
this results in a greater proportion of activities which are moved outside of the start and
end date limits, as illustrated in in Figure 3.10.

The most significant result of this experiment was that in each run the expected num-
ber of interdependencies was detected and resolved. Hence the coordination service con-
sistently identified and resolved all of the different types of interdependency with a 100%
success rate.

44 February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

100
90
a0
70
B0

&0
40

30

Response Time

20

100 500 1000 1500 2000

Interdependencies

Figure 3.8: Response time for activities without interdependencies

200

180

180

Response Time

120

kil

100

100 500 1000 1500 2000

Interdependencies

Figure 3.9: Response time for activities with interdependencies

KWEB/2007/D2.4.14 February 02, 2008 45

3. COORDINATION OF SERVICES

700

600

w = @
<] & 3
=] 3 s

Qut of Bounds Activities

w
<]
=]

100

100 500 1000 1500 2000

Interdependencies

Figure 3.10: Number of Interdependencies vs. Number of *outOfBounds’ activities

3.6.4 Discussion

The experiments demonstrate that the coordination service successfully detects and re-
solves all of the interdependencies. Furthermore, it is largely unaffected by the number of
resources that it has to manage, whilst the response times increase linearly with the num-
ber of activities and interdependencies. Also, the proportion of activities that are moved
outside of their limits is fairly low until the number of interdependencies approaches the
number of activities. Of course, this assumes that activities are randomly added to each
resource, as they were in these experiments, and that the flexibility of activities is about 10
times the duration of the average activity (i.e. for an activity of duration 10 time units the
flexibility will be 100 time units, or 45 each side of the start and end date). With greater
flexibility this proportion will decrease further to a minimum of 0 when no bounds are set
for activities.

Several other improvements could be made to increase the efficiency of the coordi-
nation mechanism. For example, when an interdependency is detected and an activity is
to be moved, the function to find a new slot for that activity currently performs a linear
sort and search of all activities using the same resource (within a specified time range).
This could be improved by implementing a binary search or interpolation search so as to
improve the response time of the system. A number of other rules and functions could
also be re-factored for greater efficiency should an industrial strength implementation of
the system be required.

46 February 02, 2008 KWEB/2007/D2.4.14

Chapter 4

Conclusion

In this deliverable we looked at the integration of independent services, and in particular
to the problem of decentralised orchestration of services and we presented some initial
work on the provision of run-time coordination mechanisms to manage possible conflicts,
or optimize the usage of independent services making use of resources that are scarce or
bounded, typical of certain environments such as grids.

In Chapter 2 we described a novel mechanism for orchestration based on service invo-
cation triggers. If a composite web service is executed in a centralized way, intermediary
results are forwarded through the site that coordinates the execution. E.g., if a client ex-
ecutes a composite web service on a mobile device with limited network connectivity,
the transmission of the intermediary results may significantly slow down the overall ex-
ecution of the composite web service, it may be expensive (costs for the caused network
traffic), or it may be simply impossible if the intermediary results are too large.

In order to overcome these problems, we developed a novel infrastructure with service
invocation triggers that are able to route intermediary results from their origin directly to
the sites where they are consumed. Triggers act as proxies for individual web service in-
vocations. They aggregate the input data, trigger the service execution when all required
input parameters are available (synchronization), and route the service results, supporting
multicast. Based on triggers, composite web services can be executed in a completely de-
centralized way. Evaluation results confirm that our decentralized orchestration scheme
allows to significantly reduce network traffic in comparison with centralized orchestra-
tion.

The aim of the work presented in Chapter 3 is to provide coordination at run-time
rather than being hard-wired at design-time. The solution presented and its implementa-
tion demonstrates that the approach developed is a viable means of detecting and resolving
interdependencies. In the simplest case the approach can be used in place of a queue-based
or prioritized scheduler. When the system becomes more complex, however, and there is
a need to dynamically recognize and resolve interdependencies between activities, then
traditional queue-based approaches will fail, whereas the approach developed herein will

47

4. CONCLUSION

still manage the resources effectively.

The main point of future is to apply the approach to a decentralized environment. To
this end, it would be beneficial to implement the rules in a language such as the Seman-
tic Web Rule Language (SWRL) [2], which would enable them to be encapsulated in
the ontology thereby enabling the coordination mechanism to be more portable and ex-
changeable. However, SWRL currently has a number of limitations which prevent many
of the rules being directly translated. For example, it only supports the conjunction of
atoms, there is no support for negation and there are no explicit quantifiers but instead im-
plicit universal quantification for all variables. Rule engines for SWRL also suffer from
limitations. For example, Bossam citebossam has no built-in support for math functions
and string handling, has facility to retract facts (when they are no longer true) and has no
support for the boolean datatype.

A related point of future work is the implementation of a number of alternative coor-
dination regimes. These could be collected as librariesso that coordination regimes could
be substituted for one another dependent on the environment and requirements. A use-
ful experiment would then be to determine how easily these different regimes could be
swapped.

Another point of future work consists of examining the definition of AtomicActivity
alongside related representations such as those used by BPEL4WS, to see whether it can
be made more precise. The key point here though will be that made by Singh, i.e. the more
detailed the description of tasks becomes, the better the coordination mechanisms that can
be designed but the less widely applicable those mechanisms will be. The mechanism so
far developed has been demonstrated to be widely and readily applicable and it would be
highly desirable to maintain this level of applicability.

48 February 02, 2008 KWEB/2007/D2.4.14

Bibliography

(1]
(2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

PSL, process specification language. http://www.mel.nist.gov/psl/.
Swrl. http://www.w3.0rg/Submission/2004/SUBM-SWRL-20040521/.
Apache Software Foundation. Axis, http://ws.apache.org/axis/.

M. Ben-Ari. Principles of concurrent and distributed programming. Prentice-Hall, Inc.,
1990.

B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment for web services
composition. IEEE Internet Computing, 7(1):40-48, 2003.

W. Binder. Design and implementation of the J-SEAL2 mobile agent kernel. In The 2001
Symposium on Applications and the Internet (SAINT-2001), pages 35-42, San Diego, CA,
USA, Jan. 2001.

W. Binder. Secure and reliable Java-based middleware — Challenges and solutions. In First
International Conference on Availability, Reliability and Security (ARES-2006), pages 662—
669, Vienna, Austria, Apr. 2006. IEEE Computer Society.

W. Binder and J. Hulaas. A portable CPU-management framework for Java. IEEE Internet
Computing, 8(5):74-83, Sep./Oct. 2004.

W. Binder and V. Roth. Secure mobile agent systems using Java: Where are we heading?
In Seventeenth ACM Symposium on Applied Computing (SAC-2002), Madrid, Spain, Mar.
2002.

BPEL4WS. Business process execution language for web services version 1.1,
http://www.ibm.com/developerworks/library/ws-bpel/.

BPWSA4J. A platform for creating and executing BPEL4WS processes,
http://www.alphaworks.ibm.com/tech/bpws4j/.
T. S. Cluster. WSMO: Web Services Modelling Ontology, 2004. See

http://www.wsmo.org/.

T. O. Coalition. OWL-S: OWL-based Web Service Ontology, 2004. See
http://www.daml.org/services/owl-s/.

49

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

50

W. W. W. Consortium. Web site for the specification of OWL, 2004. http://www.w3.
org/2004/0WL/ (accessed 31 March 2005).

I. Constantinescu, W. Binder, and B. Faltings. Flexible and efficient matchmaking and rank-
ing in service directories. In 2005 IEEE International Conference on Web Services (ICWS-
2005), pages 5-12, Florida, USA, July 2005.

I. Constantinescu, B. Faltings, and W. Binder. Large scale testbed for type compatible ser-
vice composition. In ICAPS 04 workshop on planning and scheduling for web and grid
services, 2004.

I. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service com-
position. In IEEE International Conference on Web Services (ICWS-2004), pages 506-513,
San Diego, CA, USA, July 2004.

K. Decker and V. Lesser. Designing a family of coordination algorithms. In Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95), pages 73—80, San
Francisco, CA, June 1995.

K. Decker and V. R. Lesser. Designing a family of coordination algorithms. In Proc. of Ist
Int. Conf. on MultiAgent Systems (ICMAS-95), San Francisco (CA, USA), 1995.

E. Durfee. Organizations, plans, and schedules: An interdisciplinary perspective on coordi-
nating ai systems. In Journal of Intelligent Systems, Special Issue on the Social Context of
Intelligent Systems, 3(2-4), 1993.

E. H. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic Publishers:
Boston, MA, 1988.

H. Eriksson. Web site for the plug-in JessTab, 2007. http://www.ida.liu.se/
~her/JessTab/ (accessed February 2, 2007).

E. Friedman-Hill. Jess in Action: Java Rule-Based Systems. Manning Publications Co.,
2003.

K. Haller, H. Schuldt, and H.-J. Schek. Transactional Peer-to-Peer Information Processing:
The AMOR Approach. In Proceedings of the 4" International Conference on Mobile Data
Management (MDM-2003), volume 2547 of Lecture Notes in Computer Science, pages 356—
361, Brisbane, Australia, Jan. 2003. Springer.

IBM. Web site for WS-Notification, 2007. http://www—128.1ibm.com/
developerworks/library/specification/ws—notification/ (accessed
February 3, 2007).

Java Community Process. JSR 121 — Application Isolation API Specification. Web pages at
http://jcp.org/jsr/detail/121. jsp.

T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM Comput-
ing surveys, 26(1):87-119, 1994.

February 02, 2008 KWEB/2007/D2.4.14

D2.4.11 IST Project IST-2004-507482

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Microsoft, IBM, Hitachi, IONA, Arjuna Technologies, and BEA Systems. Web page for
the specification of WS-Coordination, version 1.0 (updated Aug. 2005), 2005. http://

www—128.ibm.com/developerworks/library/specification/ws-tx/
(accessed Oct. 3, 2005).

T. Moyaux, B. Lithgow-Smith, S. Paurobally, V. Tamma, and M. Wooldridge. Towards
service-oriented ontology-based coordination. In Proc. of 4th Int. Conf. on Web Services
(ICWS 2006), Chicago, IL (USA), 2006.

M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing execution of composite web ser-
vices. In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN Conference on
Object-oriented programming, systems, languages, and applications, pages 170-187, New
York, NY, USA, 2004. ACM Press.

M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented computing. Com-
munications of the ACM, 46(10):24-28, Oct. 2003.

M. Schonhoff and H. Stormer. Trading workflows electronically: the ANAISOFT architec-
ture. In Proceedings of Datenbanksysteme in Biiro, Technik und Wissenschaft (BTW’2001),
pages 67-74, Oldenburg, Germany, Mar. 2001.

M. Singh and M. N. Huhns. Service-Oriented Computing - Semantics, Processes, Agents.
John Wiley and sons, Ltd., 2005.

M. P. Singh. A customizable coordination service for autonomous agents. In M. P. Singh,
A. Rao, and M. J. Wooldridge, editors, Intelligent Agents IV (LNAI Volume 1365), pages
93-106. Springer-Verlag: Berlin, Germany, 1998.

Stanford Medical Informatics. Web site for the software Protégé, 2007. http://
protege.stanford.edu/ (accessed February 2, 2007).

I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastruc-
ture. IEEE/ACM Transactions on Networking, 12(2):205-218, Apr. 2004.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable Peer-
To-Peer lookup service for internet applications. In R. Guerin, editor, Proceedings of the
ACM SIGCOMM 2001 Conference (SIGCOMM-01), volume 31, 4 of Computer Communi-
cation Review, pages 149-160, New York, Aug. 27-31 2001. ACM Press.

V. Tamma, C. van Aart, T. Moyaux, S. Paurobally, B. Lithgow-Smith, and M. Wooldridge.
An ontological framework for dynamic coordination. In Proc. of 4th Int. Semantic Web Conf.
(ISWC 2005), Galway (Ireland), 2005.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden. A
survey of active network research. IEEE Communications Magazine, 35(1):80-86, Jan.
1997.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

KWEB/2007/D2.4.14 February 02, 2008 51

BIBLIOGRAPHY

[41] F. von Martial. Interactions among autonomous planning agents. Elsevier Science Publish-
ers B.V.:Amsterdam, The Netherlands, 1990.

[42] F. von Martial. Coordinating Plans of Autonomous Agents. Springer-Verlag New York, Inc.,
1992.

[43] W3C. Simple object access protocol (SOAP), http://www.w3.org/tr/soap/.

52 February 02, 2008 KWEB/2007/D2.4.14

