knowledgeweb

realizing the semantic web

D2.4.10 Architecture and Execution
Semantics for the SWS

Coordinator: Tomas Vitvar
(National University of Ireland, Galway)

with contributions from:
Matthew Moran, Maciej Zaremba (National University of Ireland, Galway),
Adrian Mocan, Mick Kerrigan, and Thomas Hasselwanter (University of

Innsbruck, Austria)

Abstract.
EU-IST Network of Excellence IST-2004-507482 Deliverable D2.4.10 version 1

The goal of this deliverable is to design the Semantic Web Services Architecture and to establish
grounds for joint work on the Semantic Service Oriented Architecture involving various groups.
In this work we define the architecture from several viewpoints allowing to clarify different
architecture aspects, its services, processes and technology.

Keyword list: Web Services, Service Oriented Architecture, Semantic Web

Document Identifier KWEB/2006/D2.4.10/v1
Project KWEB EU-IST-2004-507482
Version v1.0

Date December 30, 2006

State final

Distribution public

Copyright (©) 2007 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science

Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel @uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel

35512 Cesson Sévigné

France. PO Box 91226

Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi @inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
Ist km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi @iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Tomas Vitvar

E-mail address: tomas.vitvar@deri.ie

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department

Swiss Federal Institute of Technology

IN (Ecublens), CH-1015 Lausanne

Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings @epfl.ch

Freie Universitiat Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk @inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I’Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person: Jérome Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asuncién Gémez Pérez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge @csc.liv.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitidt Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer @aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Ecole Polytechnique Fédérale de Lausanne
France Telecom

Freie Universitit Berlin

National University of Ireland Galway
University of Innsbruck

University of Liverpool

University of Manchester

University of Trento

Changes

Version \ Date

\ Author

Changes

0.2
0.3
1.0

20.12.06
10.01.07
08.02.07

Tomas Vitvar
Tomas Vitvar
Tomas Vitvar

First version.
Comments from reviews implemented
Final changes and alignments

Executive Summary

The architecture for the Semantic Web Services is overarching the work done within the
WP2.4 over the duration of the Knowledge Web project. The main goal is to provide a
framework which would allow integration of various functionality required for services
provisioning while at the same time promoting goal-based invocation of web services
which are semantically described. In this deliverable we aim to find the consensus of var-
ious research working on the architecture for the Semantic Web Services and establish the
solid grounds for joint collaboration within the OASIS Semantic Execution Environment
Technical Committee. The work in this deliverable thus reflect the first design stage of the
architecture and contains additional concepts build on the top of architectures for Seman-
tic Web Services or Semantically Oriented Architectures from other EU funded projects.
In this deliverable we define a number of perspectives through which the architecture is
described, namely global view identifying a number of layers from the global viewpoint
on the architecture, service view identifying various types of services and describing these
services in detail, process view describing processes which are both provided as well as
facilitated by the architecture, and technology view revealing details of the technology
used for implementation of the architecture and its middleware system in particular. The
work on the architecture is the continuous and incremental process which involves vari-
ous aspects specific for each group and project where the architecture is being developed.
The work in this deliverable aims to establish grounds which will allows to add additional
concepts and functionality to the architecture in the future.

Contents

1 Introduction

1.1 Goal of the Deliverable

1.2 Overview of the Deliverable

1.3 Semantic Web Services e

1.3.1 Web Service Modeling Ontology

2.1 Governing Principles
22 Global View
23 Service View e e

2.3.2 Business Serviceso e e e
2.4 Process VIEW e
2.4.1 Business Processeso

2 Architecture: Concepts and Technology
2.3.1 Middleware Services
2.4.2 Middleware Processes

2.5 Technology View
2.6 Middleware Core e
2.6.1 Management

2.6.2 Communication and Coordination

2.6.3 Execution Semantics

3 Conclusion and Future Work

1l

Chapter 1

Introduction

With regard to new emerging trends in enterprise computing, the adoption of Service
Oriented Architectures (SOA) is starting to be of interest to industry. With the goal of en-
abling dynamics and adaptivity of business processes, SOA builds a service-level view on
organizations conforming to principles of well-defined and loosely coupled services ser-
vices which are reusable, discoverable and composable. Although the idea of SOA targets
the need for integration that is more adaptive to changes in business requirements, existing
SOA solutions will prove difficult to scale without a proper degree of automation. In addi-
tion, todays SOA technologies only provide partial solution to interoperability, mainly by
means of unified technological environments. A major characteristic of Web service tech-
nology, such as WSDL, SOAP, UDDI, and BPEL, is to provide interoperable solutions at
the technological level, while a generic and scalable solution for content and process level
interoperability is still in its infancy. Where content-level interoperability is to be solved,
ad-hoc solutions are often hard-wired in business processes using traditional XSLT ap-
proaches. Process level interoperability is often maintained through manual configuration
of workflows which makes interoperability a manual task. In order to address these draw-
backs, the extension of SOA with semantics offers a scalable integration, more adaptive to
changes that might occur over a software systems lifetime. Semantics for SOA allow the
definition of semantically rich and formal service models and ontologies and, by means
of logical reasoning, promotes a total or partial automation of service discovery, contract-
ing, negotiation, mediation, composition and invocation. Rather than replacing existing
approaches, semantic SOA must build on existing industry standards and technologies
being used in industry within existing enterprise infrastructures.

1.1 Goal of the Deliverable

The goal of this deliverables is to provide a conceptual and logical/detail design of the
architecture for the semantic web services forming Semantic Service Oriented Architec-
ture (SESOA). This work is compliant with requirements for web service description as
described in deliverable D2.4.1 while at the same time it is in line with the conceptual

1

1. INTRODUCTION

and formal framework for the Semantic Web Services as described in deliverable D2.4.5.
The design of the architecture also integrates some work done in WP2.4, i.e. discovery,
interoperation, invocation and mediation of web services (deliverables D2.4.2, D2.4.7,
D2.4.12). This work has also been done with respect to selected use case of the WP2.4
from the SWS Challenge (deliverable D2.4.13) (Data and Process Mediation of Services
in Enterprise Application Integration).

For the design of the architecture in the context of the Knowledge Web project we fol-
low the standard software engineering approach to development of computer-based and
information systems. Thus, we conform to phases of conceptual analysis and design, log-
ical/detail design, implementation, testing, and deployment. The work on the architecture
in this deliverable falls into the phases of conceptual and logical/detail design which fol-
lows a conceptual analysis from deliverables D2.4.1 and D2.4.5 (i.e. requirements anal-
ysis, conceptual framework for Semantic Web Services). Additional phases are partially
covered within the SWS challenge efforts of WP2.4.

1.2 Overview of the Deliverable

The architecture is described in the next section 2. We describe the architecture from sev-
eral perspectives, namely global view, service view, process view and technology view,
within each we elaborate on particular details of services, processes, and technology used
for implementation of the architecture and its middleware system. In section 3 we sum-
marize the work and outline our future work.

1.3 Semantic Web Services

Web services add a new level of functionality to the Web, stepping towards an open envi-
ronment of distributed and heterogeneous applications. While current Web service tech-
nologies around SOAP, WSDL and UDDI have established the potential of a Web of
services, they are hindered by dependence on XML-only descriptions. Although flexible
and extensible, XML can only define the structure and syntax of data. Without machine-
understandable semantics, services must be located and bound to service requesters at
design-time, limiting possibilities for automation. In order to address this drawback, sev-
eral initiatives exist (WSMO, OWL-S, WSDL-S)[9, 6, 10] to define a new layer on top of
the current Web service stack based on semantic mark-up for functional, non-functional
and behavioral aspects of service descriptions. The ultimate goal is to enable total or
partial automation of service discovery, composition, mediation, invocation, etc.

2 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

1.3.1 Web Service Modeling Ontology

A general aim of Semantic Web Services is to define a semantic mark-up for Web services
providing the higher expressivity then traditional XML-based descriptions. One of the
initiatives in the area is the Web Service Modeling Ontology (WSMO)[11]. WSMO pro-
vides a conceptual model describing all relevant aspects of Web services in order to facil-
itate the automation of service discovery, composition and invocation. The description of
WSMO elements is represented using the Web Service Modeling Language (WSML)[11]
a family of ontology languages which consists of a number of variants based on different
logical formalisms and different levels of logical expressiveness. WSMO also defines the
conceptual model for WSMX]8], a Semantic Web Services execution environment. Thus,
WSMO, WSML and WSMX form a coherent framework for modeling, describing and
executing Semantic Web Services.

WSMO Model

The WSMO top-level conceptual model consists of Ontologies, Web Services, Goals, and
Mediators.

Ontologies provide the formal definition of the information model for all aspects of
WSMO. Two key distinguishing features of ontologies are, the principle of a shared con-
ceptualization and, a formal semantics (defined by WSML in this case). A shared con-
ceptualization is one means of enabling information interoperability across independent
Goal and Web service descriptions.

Web Services are defined by the functional capability they offer and one or more
interfaces that enable a client of the service to access that capability. The Capability is
modeled using preconditions and assumptions, to define the state of the information space
and the world outside that space before execution, and postconditions and effects, defining
those states after execution. Interfaces are divided into choreography and orchestration.
The choreography defines how to interact with the service while the orchestration defines
the decomposition of its capability in terms of other services.

Goals provide the description of objectives a service requester (user) wants to achieve.
WSMO goals are described in terms of desired information as well as “state of the world”
which must result from the execution of a given service. The WSMO goal is characterized
by a requested capability and a requested interface.

Mediators describe elements that aim to overcome structural, semantic or conceptual
mismatches that appear between different components within a WSMO environment. Al-
though WSMO Mediators are essential for addressing the requirement of loosely coupled
and heterogeneous services, they are out of the scope of our work at this point.

KWEB/2006/D2.4.10/v1 December 30, 2006 3

Chapter 2

Architecture: Concepts and Technology

The architecture for the Semantic Web Services is designed to operate on semantic de-
scriptions of various elements of the conceptual model provided by the Web Services
Modeling Ontology (WSMO) and described using Web Service Modeling Language (WSML).
The design of the architecture is governed by several principles which underpin various
components of the architecture . In this section we identify these governing principles and
define the architecture from several perspectives, namely global, services, processes and
technology. Within these views, we identify and describe in detail service and process
types which are provided and facilitated by the architecture as well as technology used

for building the architecture, its middleware and service infrastructure.

The information provided in this section is relevant to the first phase of the architecture
design. The design of the architecture for the Semantic Web Services is done incremen-
tally and within the first phase our aim is to establish the framework for the architecture,
its basic services, their interfaces and processes. We discuss this functionality within the
following sub sections.

2.1 Governing Principles

Following principles are the main drivers for the overall architecture design. They reflect
fundamental requirements for user-centric, service oriented and distributed environment
which all together facilitate seamless provisioning of business services.

Service Oriented Principle. Service-orientation represents a distinct approach for anal-
ysis, design, and implementation which further introduces particular principles that gov-
ern aspects of communication, architecture, and processing logic. This includes service
reusability, loose coupling, abstraction, composability, autonomy, statelessness, and dis-
coverability. With respect to the service orientation which enables a service level view on
the organization we further distinguish services from several views.

First, we distinguish two types of services from the point of the functionality they pro-

4

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

vide within the architecture, namely (1) Business Services and (2) Middleware Services.
Business services are services provided by various service providers, their back-end sys-
tems — business services are subject of integration and interoperation within the architec-
ture and can provide a certain value for users (e.g. purchasing a flight). On the other
hand, middleware services are the main facilitators for integration and interoperation of
business services (e.g. discovery, interoperability, etc.).

Second, we distinguish two types of services from the point of their abstraction in the
architecture, namely (1) Web Services, and (2) Services. The Web Service is a general
service which might take several forms when it is instantiated (e.g. purchase a flight)
whereas the Service is actual instance of the Web Service which is consumed by a user
and which provides a concrete value for a user (e.g. purchase a flight from Prague to
Bratislava). We use this distinction for Business Services in the architecture.

Semantic Principle. Semantics in general is considered as a rich and formal description
of information and behavioral models enabling automation of certain tasks by means of
logical reasoning. Combined with service oriented principle, semantics allows to define
scalable, semantically rich and formal service models and ontologies allowing to promote
total or partial automation of tasks such as service discovery, contracting, negotiation,
mediation, composition, invocation, etc. Semantic service oriented approach to model-
ing and implementation of the organization enables scalable and seamless interoperation,
reusability, discovery, composition, etc. of various Business Services.

Distributed Principle. Distributed principle is the process of aggregating the power of
several computing entities to collaboratively run a single computational task in a trans-
parent and coherent way, so that they can appear as a single and centralized system.
Distributed principle is applied to the architecture middleware system which allows to
distribute its components over the network in a transparent way so that the execution pro-
cess run in the middleware could be scaled across a number of physical servers over the
network. Distributed principle is also applied to the Business Services allowing to run a
process spanning across several Business Services distributed over the network.

User-centric Principle. The user-centric principle puts the user in the center of the archi-
tecture. It refers to concepts like personalizing of Business Services, facilitating service
usability, promoting multi-channel access and service delivery, building trust, achieving
efficiency, accountability and responsiveness according to users’ requirements, enabling
seamless implementation of Business Processes across organizational boundaries, etc.
The architecture establishes the infrastructure which by means of its services and pro-
cesses promotes the user centric principle in service provisioning.

2.2 Global View

The global view on the architecture, depicted in figure 2.1, comprises of several layers,
namely (1) Stakeholders forming several groups of users of the architecture, (2) Service

KWEB/2006/D2.4.10/v1 December 30, 2006 5

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

Requesters as client systems of the architecture, (3) Middleware providing the intelligence
for the integration and interoperation of Business Services, and (4) Service Providers
exposing the functionality of back-end systems as Business Services.

Ve System Domain
User X User Y Administrator Expert

Stakeholders

Network
(internet, intranet, extranet)
Back-end
System X
Service -
Requestors Business N CCes PO tal Management Tools
Service S1 (monitoring, ontology management, ...)
> A
Y
Middleware Node X .
Middleware
Shared Message Space » Node Y
Server 1 ld
< A
Execution Orchestrator -
A
Middleware Discovery 1 Parser y'y
Composer i Reasoner v
Data Mediator Communication
i Middleware
Process Mediator o Component X H Node Z

Service
Providers

Business
Service S3

Business
Service S4

Business
Service S2

Back-end
System Y

Back-end
System Z

Figure 2.1: Global View

Stakeholders form the group of various users which use the functionality of the archi-
tecture for various purposes. Two basic groups of stakeholders are identified: (1) users,
and (2) administrators. Users form the group of those stakeholders to which the architec-
ture provides end-user functionality through access portals or through back-end systems.
For example, users can perform electronic exchange of information to acquire or pro-
vide products or services, to place or receive orders or to perform financial transactions.
Such operations can be performed through back-end systems, e.g. Enterprise Resource
Planning (ERP) integrated with external suppliers (B2B integration), or through various
access portals such as e-marketplaces. In general, the goal is to allow users to interact
with business processes on-line while at the same time reduce their physical interac-
tions with back-office administrations. On the other hand, the group of administrators
form those stakeholders which perform administrative tasks in the architecture. These
tasks should support the whole SOA lifecycle including service modeling, creation (as-
sembling), deployment (publishing), and management. Different types of administrators
could be involved in this process ranging from domain experts (modeling, creation) to
system administrators (deployment, management). In general, all groups perform certain

6 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

activities by triggering various middleware processes provided by the architecture.

Service Requesters are client systems in the architecture. On one side they provide in-
terface for stakeholders and on the other they are integrated with the middleware through
various specialized API. Service requesters include access portals, i.e. client applications
through which users directly interact with the architecture in order to achieve certain
goal, back-end systems, i.e. organizational systems, such as Enterprise Resource Plan-
ning (ERP) allowing integration of organizational systems through the architecture, and
administration tools through which administrators model, create, deploy and manage the
architecture, its services and processes.

Administration tools provide a specific functionality for domain experts and system
administrators. This functionality cover the whole SOA lifecycle including service mod-
eling, creation (assembling), deployment (publishing), and management. In our Semantic
Web Services settings based on the WSMO model and WSML language, this functionality
is provided as part of the Web Service Modeling Toolkit (WSMT)!. WSMT includes the
ontology management tools for service and ontology modeling, creation and deployment
(e.g. ontology and service editor, ontology and service visualizer, and ontology mapping
tool). For management, WSMT allows configuration of the middleware and monitoring
of processes run in the middleware.

On the other hand, access portals and back-end systems provide a specialized func-
tionality for architecture stakeholders, namely end-users. They provide a specialized do-
main specific user interfaces and application functionality through which stakeholders
interact with the architecture and its processes. According to some particular deploy-
ment of the architecture to the particular environment, this functionality can guide user
in providing and getting input and output data respectively during processing as well as
provide interactions with the middleware at various levels. From end-user perspectives,
such functionality however hides back-end distributed processing within the architecture,
its middleware and services. A specialized end-user functionality is subject to design
and development in application oriented projects, such as SemanticGov2. In this project
we develop a specialized functionality for clients to interact with public administration
processes facilitated by the middleware system.

Middleware is the core of the architecture providing the main intelligence to integration
and interoperation of Business Services. The middleware system consists of a number
of components (middleware services) where each component provides a certain func-
tionality within an execution process. Each component exposes its functionality through
a number of interfaces, thus the functionality of the component could be consumed by
other components through these interfaces. Components could form this way a number
of processes called middleware processes which could be executed in the middleware.
These processes facilitate the business service provisioning and are defined by so called
execution semantics of the middleware system. A number of execution semantics can

Thttp://wsmt.sourceforge.net
Zhttp://www.semantic-gov.org

KWEB/2006/D2.4.10/v1 December 30, 2006 7

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

exist in the middleware system which form the overall behavior of the architecture. Al-
though the design of the middleware system is open, in section 2.3 we define a number
execution semantics which specifically target the need for integration and interoperation
of the Semantic Web Services.

The components represent middleware services including services for managing the
execution (execution semantics, messaging), discovery, selection, data and process me-
diation, resource management through repositories etc. In addition, the middleware can
operate in distributed manner on a number of physical servers connected using a shared
message space. Shared spaces provide a messaging abstraction for distributed architec-
ture which reflects requirements of distributed principle and in addition empowers the
scalability of the integration process. Moreover, middleware systems can be connected in
a way where each instance of the middleware represents a node in a network of middle-
ware systems. Each node of the middleware system in the architecture can provide certain
functionality for certain purpose. For example, nodes operating only repository services
can build up a distributed repository system connected over P2P network with other nodes
on the network. Another example is the interoperability gateway for various “regions” op-
erating on domain semantics which need to interoperate. Interoperability gateway, run as
a node in the architecture, can be configured to provide interoperability services for all
peers on the network. Such approach can be applied for example to implementation of so
called Interoperability Clearinghouse which in the European Union facilitates the inter-
operation of so called Pan-European E-government Services (PEGS) — services which are
defined and executed across a number of EU Member State Administrations. The design
of the architecture for interoperation of various Public Administrations in the EU based
on the semantic technologies is the subject of our other work in the European Project
SemanticGov°.

Service Providers are various back-end systems. Unlike back-end systems in service
requesters layer which act as clients in client-server setting of the architecture, the back-
end systems in service providers layer act as servers which provide certain functionality
for certain purpose exposed as a business service to the architecture. Depending on par-
ticular architecture deployment and integration scenarios, the back-end systems could
originate from one organization (one service provider) or multiple organizations (more
service providers) interconnected over the network (internet, intranet or extranet). The
architecture thus can serve various requirements for Business to Business (B2B), Enter-
prise Application Integration (EAI) or Application to Application (A2A) integration. In
all cases, functionality of back-end systems is exposed as business services which in ad-
dition are semantically described.

3http://www.semantic-gov.org

8 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

2.3 Service View

Services provide certain functionality for certain purpose. In the architecture and with
respect to service oriented principle, we distinguish two types of services, namely (1)
Middleware Services, and (2) Business Services. The middleware and business services
are the main enablers of a processing logic at both middleware and business levels. In our
Semantic Web Services settings, the business services are modeled using WSMO model
and WSML language and their descriptions together with the middleware services are
deployed to the Web Services Execution Environment (WSMX)*.

2.3.1 Middleware Services

As described in the architecture global view in section 2.2, middleware services are rep-
resented as components in the middleware system. Although our approach to design of
the middleware system is open, we define a number of components built specifically to
enact semantic web services. In figure 2.2, these components are depicted together with
their interfaces. We further define two major groups of the middleware services, namely
(1) Basic Services, and (2) Application Services. Basic services provide the fundamen-
tal functionality of the middleware such as reasoning, communication and control of the
execution process. Application services are services providing particular specific func-
tionality for particular middleware process such as discovery, selection, choreography,
mediation, etc. In this section we define the middleware services relevant to the first
phase of the architecture design. In this phase we do not consider composition and or-
chestration of composite services as it adds additional complexity to execution semantics
of the middleware. Composition and orchestration is the subject of future design of the
architecture and will be built on top of the functionality available from the first phase of
the architecture design.

Basic Services

e Communication. The Communication facilitates inbound and outbound commu-
nication with the middleware system. In other words, any message sent to or sent
from the middleware system is passed through this component. The Communica-
tion thus implements a number of external interfaces through which the functional-
ity of the whole middleware system can be consumed. Through invocation of such
external interface, the execution process is triggered in the middleware system or
it is possible to step into the already running execution process in the middleware
system (which facilitates asynchronous interactions with the middleware system).

Since the middleware system is meant to support the integration of semantic web
services, messages which are being handled within execution processes at the mid-

*http://www.wsmx.org/

KWEB/2006/D2.4.10/v1 December 30, 2006 9

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

data mediator

!

R
<<component>> czsoner] <<component>>
Reasoner)‘ Data Mediation

Bl <<component>> [
Process Mediation

T

process
mediator

web service
discovery

<<component>>
B Web Service pgm
Discovery]

T

parser
<<component>>
Parser

<<component>>
Execution
Semantics X

<<comp0nent>> -
[] Service
Discovery

<<component>>
M Communication

|

service
discovery

B <<component>> [
Selection

I\
aleniul

selection

sender
receiver

choreography

<<component>>

Choreography =

:

<<component>>
Repository

repository

Figure 2.2: Service View — Middleware

dleware system are messages conveying semantic descriptions of data (according
to the WSMO model). On the other hand, the mechanism used for invocation of
services 1s based on SOAP and WSDL specifications. Thus, the communication
component also implements mechanisms for grounding of semantic WSMO level
and physical invocation level (see next section 2.3.2).

Parser. The parser component provides the parsing of semantic messages into the
object model as defined by WSMO4J°. Since all messages are semantic messages
captured in WSMO and WSML, the parser component operates on WSMO4]J li-
brary. All messages are then physically handled within the middleware system as
WSMO4]J objects.

Reasoner. The Reasoner component provides the reasoning functionality over se-
mantics in description of messages. Reasoning is important functionality required
during various execution processes and is used by most of the components such as
discovery, data mediation, process mediation, etc. Different requirements apply to
reasoning which is based on the variant of the WSML language used for semantic
descriptions. Description Logic (DL) based reasoner is used when DL-based variant
of WSML is used, Datalog or F-Logic based reasoner is used when WSML-Flight
or WSML-Rule variant is used respectively. In general, various reasoners comply-
ing to the interface of the resoner component can be used. The use of particular

wsmo4j.sourceforge.net

December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

reasoner depends on requirements for semantic descriptions required for descrip-
tion of services and ontologies and can be dependent on particular requirements of

a specific case scenario. Development of reasoners for WSML is ongoing work in
the WSML WGS.

e Execution Semantics. Execution semantics controls the interactions of various
components which servers particular middleware process for specific purpose. Each
execution process is started by invocation of particular external interface (imple-
mented by the communication component) and can be interfaced through other
external interfaces during execution allowing asynchronous communication with
the middleware. A number of execution semantics can exist in the middleware
which can facilitate the design-time processes (modeling, creation, deployment and
management) such as getting/storing entity from/to repository and run-time such
as conversation with data and process mediation applied where necessary. More
details about execution semantics and processes are described in the section 2.4.

e Repository. Repository manages the storages of various entities of the middleware
including goals, services, ontologies and mediators (mapping rules). All these en-
tities are described using WSML semantic language. The storage mechanism used
for storing the entities is the Triple Store mechanism.

Application Services

e Data Mediation. Data mediator facilitates run-time mediation during execution
process when different ontologies are used in service descriptions involved in the
process. Data mediation can be applied during discovery between service requester’s
goal and potential services which satisfy the goal or during conversation between
service requester and service providers when description of services’ interfaces can
use different ontologies. Such data mediation operates on mapping rules between
ontologies which must be published to the architecture before the mediation can
happen. These mapping rules are created using design-time data mediation tool
which is part of the ontology management tools. Detail description of data media-
tion for the semantic web services can be found in [7].

e Process Mediation. Process mediator facilitates the run-time mediation when dif-
ferent choreography interfaces are used in service descriptions involved in the con-
versation. Process mediation is applied together with choreography, data mediation,
and communication components when service requester and service provider com-
municate (exchange messages). In addition, process mediation can be used also
during discovery for evaluation whether conversation between service requester
and potential service provider is possible (in other words if process mediation can
be fulfilled). By analysis of choreography descriptions, process mediator decides

®http://www.wsmo.org/

KWEB/2006/D2.4.10/v1 December 30, 2006 11

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

12

to which party the data in a received message belongs — service requester, ser-
vice providers or both. Through this analysis, the process mediator resolves possi-
ble choreography conflicts including stopping a message when the message is not
needed for any party, swapping the sequence of messages where messages are to
be exchanged in different order by both parties, etc. More information about con-
ceptual definition of process mediator and choreography conflicts can be found in

[1].

Web Service Discovery. Web Service discovery is a process of finding services sat-
isfying requesters needs. At this stage, services are matched at abstract level taking
into account capability descriptions of services. Several set-theoretical relationships
exist between these description such as exact match, plug-in match, subsumption
match, intersection match, and disjnontness [4].

Service Discovery. Service discovery is a process of finding concrete services satis-
fying concreate goals of users. At this stage, services which match at abstract level
are matched at instance-level when additional information might be retrieved from
the service provider. Such information (e.g. price or product availability) usually
has a dynamic character and is not suitable for static capability or ontology descrip-
tions. For this purpose so called meta-interactions within the execution process and
service providers might take place in order to retrieve this information through spe-
cialized service interfaces. More information about interactions between service
providers, service requesters and middleware can be found in the next section 2.4.

Selection. Selection is a process where one service which best satisfies the user
preferences is selected from candidate services returned from the service discov-
ery stage. As a selection criteria, various non-functional properties such as Service
Level Agreements (SLA), Quality of Services (QoS), etc. can be used expressed
as user preferences — non-functional properties of the goal description. Such non-
functional descriptions can capture constraints over the functional and behavioral
service descriptions. Selection can thus restrict the consumption of service func-
tionality by a specific condition, e.g. quality of service preference may restrict the
usage of a service when its satisfiable quality is provided.

Choreography. Choreography is the core component which drives the run-time
conversation between service requester and service providers. This step involves
the interactions with process mediator (together with data mediator) as well as
communication component called each time the message exchange needs to hap-
pen between them. This process is described in a little bit more detail in the next
section 2.4. The requester-provider conversation is the elementary step within the
orchestration of the composite service. At this stage of architecture development,
we however do not deal with composite services and their orchestrations. Such
conversations add additional level of complexity to the middleware processes will
be the subject of design in subsequent versions of the architecture.

December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

2.3.2 Business Services

Business services contain a specific functionality of back-end systems which descriptions
conform to WSMO Service specification. Description of business services is exposed to
the architecture (these descriptions are published to the middleware repositories) and are
handled during execution processes in the middleware in both design-time (service cre-
ation) and run-time processes (conversation). The important aspect of service creation
from the semantic web services architecture point of view is semantic modeling of busi-
ness services. This process can be seen at following levels (see figure 2.3), namely (1)
conceptual, (2) logical, and (3) physical. With respect to the modeling levels, we further
distinguish two modeling approaches to semantic business services, namely fop-down and
bottom-up approach.

Domain Specific Model (Conceptual Level)

Organizational
Business
Processes

Standard Public
Processes

Organizational
Systems
(Legacy

Systems)

Domain-specific
Information
Models

Business
Standards

Message

Standards

~ Business
Process Re-
engineering

Process

Hierarchies Classifications

WSMO Service Model (Logical Level)

Ontology import or use
4 Ontologies -+ WSMO Ontology
| Non-Functional

Capability Grounding Grounding
(concepts to operations (Lifting mapping)
and messages mapping)

%

Grounding
(Lowering mapping)

WSDL Service (Physical Level) v

Top-Down Approach

Messages - XML Schema

=

Figure 2.3: Semantic Business Service Modeling Levels

Bottom-Up Approach

¢

KWEB/2006/D2.4.10/v1 December 30, 2006 13

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

Modeling Levels

e Conceptual Level. Conceptual level contains all domain specific information which
is relevant for modeling of business services. This information covers various
domain-specific information such as database schemata, organizational message
standards, standards such as B2B standards (e.g. RosettaNet Partner Interface
Processes (PIP) messages’), or various classifications such a NAICS® (The North
American Industry Classification System) for classification of a business or indus-
trial units. In addition, the specification of organizational business processes, stan-
dard public process such as RosettaNet PIP processes specifications, and various
organizational process hierarchies are used for modeling of business processes. All
such information is gained from re-engineering of business processes in the organi-
zation, existing standards used by organizational systems or existing specifications
of organizational systems (e.g. Enterprise Resource Planning systems).

e Logical Level. Logical level represents the semantic model for business services
used in various stages of execution process run on middleware. For this purpose we
use WSMO service model together with WSML semantic language. WSMO de-
fines service semantics including non-functional properties, functional properties
and interfaces (behavioral definition) as well as ontologies that define the infor-
mation models on which services operate. In addition, grounding from semantic
descriptions to underlying WSDL and XML Schema definitions must be defined in
order to perform invocation of services. Semantic services described using WSMO
follow the paradigm of service decoupling with strong mediation among them. This
means that services can be described independently allowing the service semantics
to be used for (semi) automated service integration (handling interoperability issues
with data and process mediation as well as discovery, selection, etc.).

e Physical Level. Physical level represents the physical environment used for service
invocation. In our architecture, we use WSDL and SOAP specification. For this
purpose, the grounding must be defined between semantic descriptions and WSDL
descriptions of services. Definition of such grounding can be placed to WSMO
descriptions at the WSMO service interface level or WSDL descriptions using the
recent Semantic Annotations for WSDL (SAWSDL) approach’. The definition of
grounding is dependant on the modeling approach and is discussed in following
paragraph.

Thttp://www.rosettanet.org
8http://www.naics.com
dwww.w3.0rg/2002/ws/sawsdl/

14 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

Modeling Approaches and Grounding Definitions

A semantic business service is modeled using WSMO service model and all relevant
domain-specific information. As a result, all WSMO service description according to
the WSMO service model and all relevant ontologies (used by the WSMO service) are
defined. A domain expert can reuse already existing domain ontologies or create the
new ontologies based on the information he/she gets from the domain models (databases,
standards, etc.). Similarly, the WSMO services is modeled based on domain-specific re-
quirements, specifications of back-end systems etc. The important aspect of the modelling
phase is to define grounding from the semantic WSMO service (logical level) to the un-
derlying WSDL description (physical level). This grounding takes two forms in WSMO:
(1) grounding defined at the level of WSMO service interface, and (2) grounding defined
at the level of ontologies and XML Schemata. The former specifies a reference for each
used concept in the interface definition to the input or output messages used in the WSDL.
The latter specifies lifting and lowering schema mapping for XML Schema and ontology
respectively in order to perform instance transformations during invocation.

Top-Down Approach. In the top-down approach, the underlying representation of the
service in WSDL does not exist up-front and thus needs to be created (and service imple-
mented) as part of business service creation/modeling phase. For the first type of ground-
ing, references of used concepts of the service interface are defined to the newly created
WSDL operations, its input and output messages. The definition of the second type of
grounding is then placed to the implementation of the service itself. That means, that
semantic messages passed from the middleware to the service during invocation are seri-
alized to the RDF/XML (WSML can be represented in RDF'?) and passed to the service
where the lowering must be performed. Inversely, the lifting is performed in the service
to the ontology (represented in RDF/XML) and passed to the middleware. In the middle-
ware, RDF/XML is transformed to WSML (in the Communication component) and other
processing follows according to the execution semantics definition. More information
about WSMO grounding as described in this paragraph can be found at [5].

Bottom-Up Approach. In the bottom-up approach, the underlying representation of the
service in WSDL already exist (together with the implementation of the service) and thus
needs to be taken into account during business service modeling. The grounding definition
at the service interface is defined the same way as in the top-down approach. However,
the difference exist for the second type of the grounding definition. Since it is not possi-
ble to modify the implementation of the service, the schema mapping must be performed
and defined externally from the WSDL and service implementation. The schema map-
ping is thus attached to the WSDL descriptions using SAWSDL!! specifications (using
loweringSchemaMapping and liftingSchemaMapping extension attributes). The location
of these mappings is resolved by the Communication component and executed during the
invocation process. On result, the XML schema created from lowering is passed to the

0for details see http://www.wsmo.org/TR/d16
Semantic Annotations for WSDL - see http://www.w3.org/ws/sawsdl

KWEB/2006/D2.4.10/v1 December 30, 2006 15

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

service endpoint according to the grounding definition of the service interface. Inversely,
created instances of the ontology from lifting is used for data for subsequent execution
within the middleware. At the time of writing this article, the WSMO grounding specifi-
cation using SAWSDL for bottom-up modeling approach is the ongoing work within the
WSMO WG.

2.4 Process View

Processes reflect the behavior of the architecture through which stakeholders interact with
the middleware and with business services. Similarly as in section 2.3, we distinguish two
types of processes, namely (1) middleware processes and (2) business processes.

2.4.1 Business Processes

Business processes are actual processes provided by the architecture and facilitated by
the middleware in concrete business settings. The primary aim of the architecture is to
facilitate so called late-binding of business services (which results in business processes)
and provide the functionality for conversation between business services within a particu-
lar business process with data and process mediation applied where necessary. In section
2.4.2, the late-binding and conversation phases is described in detail where only one ser-
vice is involved in a business process (at this stage there is no composition involved during
late-binding phase). As a follow up work when service composition will be included in
the late-binding phase, the business process with more business services will be supported
by the architecture.

2.4.2 Middleware Processes

Middleware processes are designed to facilitate the integration of business services us-
ing middleware services including service discovery, mediation, selection, etc. Middle-
ware processes are described by a set of execution semantics. As described in previous
sections, execution semantics defines interactions of various middleware services which
servers particular middleware process for specific purpose and on the top provides a par-
ticular functionality in a form of business processes to architecture stakeholders. Each
middleware process is started by invocation of particular external interface (implemented
by the communication component) and can be interfaced through other external interfaces
during execution. A number of execution semantics can exist in the middleware which
can facilitate the design-time and run-time processes.

For purposes of describing various forms of Execution Semantics, we distinguish two
phases of the middleware process, namely Late-binding Phase, and Conversation Phase.
Late-binding phase allows to bind service requester (represented by a goal definition) and

16 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

a service provider (represented by a service definition) by means of intelligence of middle-
ware using reasoning mechanisms and with process and data mismatches resolved during
binding. In general, late-binding performs a binding of a goal and a service(s) (which in-
cludes web service and service discovery, mediation, selection, etc.). Conversation phase
allows to perform conversation between previously binded goal and a service by process-
ing of their interfaces and with data and process mediation applied where necessary. Both
late-binding and conversation phases follow strong decoupling principle when services
are described semantically and independently from requester’s goal.

External Integration with the Middleware

From the point of integration of service requesters and service providers with the middle-
ware, we define following aspects for external integration with the middleware.

e Communication. The interactions between service requesters and the middle-
ware or the middleware and service providers and vice-versa can happen (1) syn-
chronously or (2) asynchronously. During synchronous communication, all data is
sent in one session when the result/response is sent within the same session. During
asynchronous communication, the data is sent in one session whereas the response
is sent back in other (newly created) session. Asynchronous communication also
allows multiple interactions with the middleware/service requester or provider can
happen over time for which one session does not need to be allocated.

e Entrypoints. There are two types of entrypoints which can be implemented by
the middleware for external communication, (1) execution entrypoint entrypoint,
and (2) data entrypoint. The execution entrypoint identifies each middleware pro-
cess (execution semantics) which exists in the middleware system. By invoking the
execution entrypoint by a service requester, the relevant process starts in the mid-
dleware system. The data entrypoint is used by service requester for interfacing
the middleware process during its execution in order to provide some data for the
execution asynchronously.

e Interactions. There are two types of interactions between service requester/provider
and the middleware, namely (1) late-binding interactions, and (2) conversation in-
teractions. Late-binding interactions allow service requester or provider to interact
with the middleware in order to get or provide some information for the middleware
process during late-binding phase. Conversation interactions allow to exchange in-
formation between service requester and service provider in order to facilitate con-
versation between them. Conversation interactions happen through the middleware
(which provide the added value of mediation functionality during conversation).

In order to further illustrate the above described aspects of integration between service
requesters/providers and the middleware, following figure shows entrypoints, communi-
cation and interactions together with a sample execution semantics. In this figure, the

KWEB/2006/D2.4.10/v1 December 30, 2006 17

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

synchronous or asynchronous

Goal/Service synchronous or asynchronous e e Service
communication (late-binding communication (late-binding
R . interactions) interactions))) AN
implementation implementation description

Execution Semantics

description Capability
PR SR || .». Discovery
O‘ ____________________________ Y S Late-binding
execution Interaction Interface
entrypoint o< """"""""""""""" > —
» Execution
Capability @ Interface
£ [) Component X E
.g s Vi
Execution & =
Interface 5] 0
g data =
entrypoint
\ . Conversation
- > - -
[N P |
- > - >
Service Requester Service Provider
Middleware synchronous or asynchronous

asynchronous communication

o " communication (conversation
(conversation interactions)

interactions)

Figure 2.4: Integration Styles on the Middleware

service requester invokes the execution entrypoint of the middleware through which the
requester’s goal is sent and the execution semantics is started (these interactions are late-
binding interactions run in synchronous or asynchronous way). In the middleware, the
discovery component tries to find appropriate services from the repository where services
have been registered. During the discovery-time, the middleware might interact with po-
tential services in order to retrieve additional information needed to decide on match be-
tween requester’s goal and the service. Through these interactions, concrete instance data
can be be retrieved from the service requester in order to complete the discovery process.
Such data could convey information about price or product availability which cannot be
directly included in service descriptions (usually from practical reasons). Late-binding
interactions may be however used for other purposes than for discovery, such as interac-
tions related to negotiation, contracting or bidding. Such interactions run in synchronous
or asynchronous way and in addition must conform to the protocol defined by a compo-
nent which require or allow such interactions (these interactions are also described using
WSMO service interface). After discovery, some other processing may apply during ex-
ecution in the middleware (such as selection etc. — these are not shown in the figure).
Finally, the conversation between service requester and discovered services is facilitated
by the middleware (these are conversation interactions run in asynchronous way). During
the conversation, other components may apply such as data and process mediation which
maintain the interoperability in case different semantics is used by service requester or
service providers.

18 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

Execution Semantics

In this section we describe a set of execution semantics which allow so called goal-based
invocation of semantic web services. In particular, as depicted in figure 2.5 we define three
basic types of execution semantics, namely AchieveGoal Execution Semantics, Register-
Goal Execution Semantics, and Optimized AchieveGoal Execution Semantics. With re-
spect to the phases of the execution semantics (i.e. late-binding and conversation phases),
it also makes sense to break down the execution semantics into the design-time and run-
time stages. The late-binding could be then performed during the design-time when ap-
proval of the result business process would be made by the domain expert, and run-time
when the conversation would be executed. Such break down of the execution semantics
is still under development and is not described in this work.

The execution semantics described here are the simplest form for the goal-based in-
vocation which involves both late-binding and conversation phases. However, as already
mentioned earlier these execution semantics do not take into account service composi-
tion. Service composition adds additional level of complexity to the middleware process
which involves all components and will be the subject of work in the next phases of the
architecture design.

AchieveGoal Execution Semantics

AchieveGoal Execution Semantics RegisterGoal Execution Semantics -
(optimized)
11 1.2 21 22 3.1 3.2
Start Start Start Start Start Start
Concrete Goal Concrete Goal Concrete Goal
Abstract Goal Abstract Goal
Goal Refinement Goal Refinement Goal Refinement
Abstract Goal
Instance Data
Instance Data Web Service Pre r?)zzlssin
Discovery Abstract Goal (wa Serviceg Abstract Goal
E’ (ostiiess) Discovery)
°
£ Candidate Services
aQ Abstract Goal
% Candidate Services
= Instance Data Tuples Candidate Services CEIEIEES
<G, {Wy, ..., Wn}> for Goal
Service
Discovery Candidate Services

(Instance) Instance Data-
Information
Retrieval Candidate Services

Selection

Goal and Selected Service

Goal

i
Conversation (s

Conversation

Figure 2.5: Execution Semantics

KWEB/2006/D2.4.10/v1 December 30, 2006 19

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

Each execution semantics is initiated with the WSMO goal provided as the input. We
further distinguish two basic variants for each execution semantics. For the first vari-
ant, the execution semantics expects the abstract goal and for the second variant the
execution semantics expects the concrete goal. The abstract goal contains no instance
data in its definition (instance data is provided separately from the goal definition either
synchronously or asynchronously) whereas concrete goal contains instance data directly
embedded in its definition (directly as part of WSMO capability definition). For exam-
ple, the WSMO capability of the concrete goal can contain axioms in a form ?z[name
hasValue “HarryPotter”] memberO f book whereas abstract goal contains axioms in
a form 7x memberO f book where instance of the book concept is provided separately
from the goal definition. Since the abstract goal and instance data is required for the pro-
cessing of the goal, the refinement of the goal must be first performed when the concrete
goal is supplied (see 1.2, 2.2, and 3.2 branches in the figure 2.5). During the refinement,
the reasoning about goal definition is performed with result of the new abstract goal and
instance data defined separately which both correspond to the original concrete goal defi-
nition. The algorithm for the goal refinement is the subject of work at the time of writing
this article.

AchieveGoal Execution Semantics. For the execution semantics AchieveGoal (see branches
1.1 and 1.2 in the figure 2.5), (1) web services discovery, (2) service discovery, (3) service
selection, and (4) conversation is performed. During the web service discovery, matching
of the abstract definition of the goal with abstract definitions of potential services (previ-
ously published in repositories) which can fulfill the goal is performed. A number of pos-
sible set-theoretic relationships is evaluated between the goal and web services, namely
exact match, plug-in match, subsumption match, intersection match, and disjnontness [4].
When the match is found'?, the next step is to check whether the goal and its data also
satisfy a concrete form of the abstract service. For this purpose, possible interactions with
the service can happen in order to retrieve additional data to complete the discovery pro-
cess (see late-binding interactions in figure 2.4). Such data cannot be usually included in
static service descriptions and needs to be retrieved during discovery-time (e.g. data about
price or product availability). On result, a set of candidate services which satisfy the goal
is passed to the selection component which, based on additional criteria (e.g. quality of
service), selects the best service which best satisfies user preferences (these preferences
are included as part of the goal definition in non-functional descriptions). Finally, the
conversation is started between the selected service and the goal by processing of goal
and service interfaces.

RegisterGoal Execution Semantics. This execution semantics allows to register a goal
definition in the middleware when pre-processing in terms of abstract discovery of the
goal and potential services is performed off-line separated from the goal-based invocation.
This approach reflects the fact that the matching process, which involves reasoning, is
time consuming and will hardly scale. From this reason, the abstract goal is matched with
possible service candidates from the service repository and the result in a form of tuples

2For the match we consider exact match only; the other cases are subject of composition.

20 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

< G, {Wh,...,W,} > is stored in the repository of the middleware. G represents the
abstract description of the goal and a set {7, ..., W,,} represents a list of candidate web
services where where each web service W, match the goal description G.

Optimized AchieveGoal Execution Semantics. This execution semantics performs goal-
based invocation of service where goal has been previously registered with the Register-
Goal execution semantics. In this case, the goal and its candidate services is first found
in the goal repository. The result is passed to the instance discovery where further pro-
cessing is performed as described in the original AchieveGoal execution semantics. Such
approach can significantly improve the performance of goal-based invocation as the ma-
jor burden of the processing, namely abstract discovery, is performed off-line during goal
registration.

Conversation. The conversation phase follows up the binding of the service and the goal
and enables interchange of messages between requester and provider by processing of
their choreography interfaces. In addition, those interfaces might follow slightly differ-
ent protocols as well as can use different ontologies, thus data and process mediation is
applied during this processing. In figure 2.6 a control state diagram for the conversation
between service requester and service provider is shown. The core functionality for the
conversation is provided by the Choreography component which processes the requester’s
and provider’s choreographies according to the control mechanisms implemented in the
Process Mediator. The choreographies in WSMO are modeled as Abstract State Machines
thus its processing is based on evaluation of rules’ heads in the processing memory of the
Choreography component. When this evaluation holds, the rule body is executed resulting
in adding, updating or removing data in the processing memory. Adding/updating data in
the memory means that the actual data needs to be obtained from the service by invoking
underling operation of the service from the WSDL description (information which WSDL
operation to invoke is part of the grounding definition of the choreography description in
WSMO service).

The conversation is initiated by loading requester’s and provider’s choreography in-
terfaces (these interfaces are taken from goal and service descriptions respectively) (tran-
sitions 1.1, 1.2 and state 2). When the choreographies are loaded, the Choreography gets
to the control state (state 3) managing the whole conversation process. At this stage, it
can wait for the new data, end the conversation or request process mediator to add the
new data to a processing memory of a loaded choreography. Requester or provider, by
following a protocol described by their choreography interfaces, can either send or ex-
pect to receive messages from/to the middleware. Also, there might be already some data
available initially which could have been provided as part of goal definition. When data is
available from either side, the control is passed to the process mediator (transition 3.3 and
state 5). Next, the data is mediated to the provider’s ontology if the data originates from
the requester or vice-versa (transition 5.1, state 6). After the data mediation is finished,
the process mediator decides where to put the new data, either into processing memory
of the requester’s choreography, processing memory of the provider’s choreography or
both. This decision is based on the evaluation of rules’ heads of each choreography, in

KWEB/2006/D2.4.10/v1 December 30, 2006 21

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

; 1.1:load goal
et 4:Receiving Data 2:Choreography choreography

Loading
3.2:new data
3.1:Wait for data

1.2:load service
choreography

9:Sending Data
5.5:End of

9.L:wait for data Conversation 1.3registered

3:Control 1.4:wait for data 1:Start

5.3:data added to provider's

8.1:send data choreography

8:Processing of
Provider's
Choreography 3.3:add data
5:Mediating 7:Reading Mapping
Rules

8.1:send data

- 6.1:read rules
5.1:mediate data

8:Processing of 5.2:data mediated
CiequeSIef'z 5.3:data added to requester’s
oreography choreography 6:Mediating 6.2:rules read

Figure 2.6: Control State Diagram of the Conversation Phase

particular it is evaluated if the data could be potentially used in subsequent processing
of respective choreography. Based on this evaluation, the data is added to the particular
choreography (transitions 5.3). Next, the updated choreographies are processed mean-
ing, that the next rule of each updated choreography is evaluated. In particular, for a
rule which head satisfies the content of the processing memory of the choreography, the
body is executed which means that some data should be either added, updated or removed
from the memory (state 8). In case of add or update, the actual data needs to be obtained
from the service requester or service provider respectively. This is done by processing of
the grounding definition of the concept that needs to be added/updated when invocation
of underlying operation of the WSDL service is performed (transition 8.1 and state 9).
When the new data is added, the conversation gets back to the control state and poten-
tially to receiving data state (transitions 9.1, state 3 or transition 5.5, state 4 respectively).
The Choreography might also evaluate that there is no additional rules to be processed
and may get to the end of conversation state (transition 5.5, state 13). In figure 2.6.3, the
conversation execution semantics described here is depicted from the point of running in
the middleware system.

2.5 Technology View

Technology chosen for the implementation of the architecture is WSMO model and WSDL
for modeling and semantic description of business services, J2SE for implementation of
Web Service Modeling Toolkit, and J2EE for implementation of the middleware as the
WSMX prototype. In this section we concentrate on the design of the technology for

22 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

the middleware system which address requirements of component management, inter-
component messaging and configuration of execution semantics. With this respect, we
take the advantages of existing technologies available for middleware platforms and ap-
plications servers.

2.6 Middleware Core

The core of the middleware takes the role of component coordination, i.e. it manages
interactions between other components through the exchange of messages containing in-
stances of WSMO concepts expressed in WSML and provides the microkernel and mes-
saging infrastructure for the middleware.

The middleware Core is responsible for handling following three main functional re-
quirements. The middleware Core thus implements the middleware kernel utilizing Java
Management Extensions (JMX) as described by Haselwanter in [3].

e A framework for the management and monitoring to start and stop the system and
together with monitoring of its health.

e Enabling communication and coordination between components, i.e. handling mes-
sages, routing messages to a suitable target component, etc.

e Support for the lifecycle of execution semantics. Multiple definitions of execution
semantics are supported and multiple instances of each execution semantics may
run concurrently.

2.6.1 Management

It is common for middleware and distributed computing systems that management of
their components becomes a critical issue. In the design of the middleware, we have
made a clear separation between operational logic and management logic, treating them
as orthogonal concepts. By not separating these two elements, it would become increas-
ingly difficult to maintain the system and keep it flexible. In figure 2.7, an overview
of the infrastructure provided by the middleware Core to its components is depicted.
This infrastructure primarily allows to manage and monitor the system. In the core of
the management lies a management agent which offers several dedicated services. The
most important one is the bootstrap service responsible for loading and configuring ap-
plication components. In here, the management agent plays the role of a driver which is
directly built into the application. The Core in addition employs self-management tech-
niques through scheduled operations, and allows administration through a representation-
independent management and monitoring interface. Through this interface, a number of

KWEB/2006/D2.4.10/v1 December 30, 2006 23

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

management consoles can be interconnected, each serving different management pur-
poses. In particular, terminal, web browser and eclipse management consoles have been

implemented.
.- o

B

Microkernel

JVMm

Figure 2.7: Component Management in the Middleware Core

Similarly as in state-of-the art middleware systems, the Core hosts a number of subsys-
tems that provide services to components and enable inter-component communication. In
addition, the Core provides a number of services including pool management which takes
care of handling component instances, and logging, transport and lifecycle services. The
Core also exploits the underlying (virtual) machine’s instrumentation to monitor perfor-
mance and system health metrics. Although some general metrics can be captured for all
components, the component metric monitoring allows to capture metrics specific to some
components which require custom instrumentation. Such customization can be achieved
by extending the configuration for the instrumentation of a specific component which is
done independently from the implementation of the component itself.

With respect to the distributed principle of the architecture, the Core infrastructure
may act as a facade to distributed components. However, the preferred way to distribution
is to organize the system as federations of agents. Each agent has its own Core component
and a particular subset of functional components. In order to hide the complexity of the
federation for the management application, a single agent view is provided, i.e. single
point of access to the management and administration interfaces. This can be achieved
by propagating requests within the federation via proxies, broadcasts or directories. A
federation thus consists of a number of Cores, each of them operating a kernel per one
machine and hosting a number of functional components.

24 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

2.6.2 Communication and Coordination

The middleware avoids hard-wired bindings between components when the inter-component
communication is based on events. If some functionality is required, an event representing
the request is created and published. A component subscribed to this event type can fetch
and process the event. The event-based approach naturally allows event-based communi-
cation within the middleware. As depicted in 2.8, the exchange of events is performed via
Tuple Space which provides a persistent shared space enabling interaction between com-
ponents without direct exchange of events between them. This interaction is performed
using a publish-subscribe mechanism.

O . RMI Adapter WSDM Adapter O
Microkemel a4 Manager

A

v Ya
RMI Adapter WSDM Adapter
Microkernel Microkernel
s
0 3 .
Scheduler Scheduler Scheduler
—— e =
'h__l A ——————
\ |

Component Component Component

Figure 2.8: Communication and Coordination in the Middleware

The Tuple Space enables communication between distributed components running on
both local as well as remote machines while at the same time the components are un-
aware of this distribution. For this purpose, an additional layer provides components
with a mechanism of communication with other components which shields the actual
mechanism of local or remote communication. The Tuple Space technology used in the
middleware is based on Linda [2] which provides a shared distributed space where com-
ponents can publish and subscribe to tuples. Subscription is based on templates and their
matching with tuples available in the space. The space handles data transfer, synchroniza-
tion and persistence. The Tuple Space can be in addition composed of many distributed
and synchronized Tuple Space repositories. In order to maximize usage of components
available within one machine, instances of distributed Tuple Space are running on each
machine and newly produced entries are published locally. Before synchronization with
other distributed Tuple Spaces, a set of local template rules is executed in order to check
if there are any local components subscribed to the newly published event type. It means
that by default (if not configured otherwise), local components have priority in receiving
locally published entries.

Through the infrastructure provided by the Core, component implementations are sep-

KWEB/2006/D2.4.10/v1 December 30, 2006 25

2. ARCHITECTURE: CONCEPTS AND TECHNOLOGY

arated from communication. This infrastructure is made available to each component im-
plementation during instantiation of the component carried out by the Core during the
bootstrap process (a process that occurs when a component is loaded by the system).
Through the use of JMX and reflection technology, this can occur both at start-up as well
as after the system is up and running. The communication infrastructure has the responsi-
bility to interact with the transport layer (a Tuple Space instance). Through the transport
layer, component subscribe to an event-type template. Similar mechanism applies when
events are published in the Tuple Space. In order to enable a component to request func-
tionality from another component a proxy mechanism is used. When a component need
to invoke other component’s functionality, the proxy creates the event for this purpose and
publishes it on the Tuple Space. At the same time, the proxy subscribes to the response
event and takes care of the correlation. From the perspective of the invoking component,
the proxy appears as the component being invoked. This principle is the same as one used
by Remote Method Invocations (RMI) in object-oriented distributed systems.

2.6.3 Execution Semantics

Execution Semantics enable a combined execution of functional components as illustrated
in figure 2.9. Execution semantics defines the logic of the middleware which realize the
middleware behavior. The Core infrastructure provides the implementation that enables
a general computation strategy by enforcing execution semantics, operating on transport
as well as component interfaces. It takes events from the Tuple Space and invokes the
appropriate components while keeping track of the current state of execution. Additional
data obtained during execution can be preserved in the particular instance of an execution
semantic. The Core provides the framework that allows execution semantics to operate
on a set of components without tying itself to a particular set of implementations. In
particular, Core component takes care of the exectuion semantics lifecycle, management
and monitoring. As described in secion 2.4, the execution semantics form processes run
in the middleware (middleware processes).

O Microkernel

Execution Semantic

A A A A
v v v v
. ® ® ®
Scheduler Scheduler Scheduler Scheduler
e r— - —— e - e——

Component Component Component Component

Figure 2.9: Execution Semantics in the Middleware Core

Figure 2.10 depicts how services are decoupled from the process (described in the
execution semantics) by means of wrappers. Based on an execution semantics definition,

26 December 30, 2006 KWEB/2006/D2.4.10/v1

D2.4.10 Architecture and Execution Semantics for the SWS IST Project IST-2004-507482

these wrappers will only be able to consume and produce particular types of events. In
a running system dynamic execution semantics are achieved by mapping abstract system
behavior into real event infrastructure of the system. The wrappers are generated and
managed by the Core in order to separate components from the transport layer for events.
One wrapper raises an event with some message content and another wrapper can at some
point in time consume this event and react to it. However, component developers do not
need to be aware of this mechanism.

Middleware Core

events events events events
notifications notifications notifications notifications

Choreography Wrapper
(implements communication and
process mediation interface)

Data Mediation Wrapper Process Mediation Wrapper

Communication Wrapper
(implements repository interface) (implements data mediation interface)

Data Mediation Process Mediation Choreography Communication

Figure 2.10: Component’s Wrappers and Event Messaging

Conceptual definition of various execution semantics and their variants is described
in section 2.4.2. In particular, in figure 2.6, the control state diagram of the conversation
is depicted. In figure 2.11, the same conversation process is depicted how it is run in the
middleware.

e

Start (goal, service) ELI

oad chor, O
T R <
Wrapper
timeout terminate PP
Wait for
77777777 — e _receivedata—————————————
receive data O &R
777777777777777 . R new data . Rz
new data Process Mediation
Wrapper
add data
Data Mediation Wrapper
mediate data,
%j mediated
Process choreography Data added —
Send data Send data %
Data sent Data sent
ed Ao «—

<
Asynchronous Synchronous

Figure 2.11: Conversation run in the Middleware

KWEB/2006/D2.4.10/v1 December 30, 2006 27

Chapter 3

Conclusion and Future Work

This work is the first version of the architecture for the Semantic Web Services which
aims at establishing the grounds for joint work on Semantic Service Oriented Architec-
ture (SESOA) and in particular exploited in the OASIS Semantic Execution Environ-
ment Technical Committee (OASIS SEE TC). In this work we defined a number of views
through which the architecture is described, namely global view identifying a number
of layers from the global viewpoint on the architecture, service view identifying various
types of services and describing these services in detail, process view describing pro-
cesses which are both provided as well as facilitated by the architecture, and technology
view revealing details of the technology used for implementation of the architecture and
its middleware system in particular.

In the second version of the architecture we plan to revise this work based on the com-
munication with various groups involved in the architecture within various EU funded
projects and strengthen this way the architecture grounds. In addition, we plan to enhance
the functionality of the architecture and its middleware system by incorporating composi-
tion and orchestration. Such functionality will add additional complexity to the processes
run in the middleware. We also plan to build the overlay network above the nodes of
middleware system, enable the P2P communication within the architecture and promote
the distributed mechanisms of the Semantic Service Oriented Architecture by allowing
semantic routing of requests within the architecture.

28

Bibliography

[1] Emilia Cimpian and Adrian Mocan. D13.7 v0.1 process mediation in wsmx. In
WSMO Working Draft, 2005.

[2] D Gelernter, N. Carriero, and S. Chang. Parallel Programming in Linda. In Pro-
ceedings of the International Conference on Parallel Processing, 1985.

[3] Haselwanter, Thomas. WSMX Core - A JMX Microkernel. PhD thesis, University of
Innsbruck, 2005.

[4] Uwe Keller, Ruben Lara, and Axel Polleres. WSMO Discovery, WSMO Working
Draft D5.1v0.1, Available from http://www.wsmo.org/2004/d5/d5.1/v0.1/. Techni-
cal report, 2004.

[5] Jacek Kopecky, Dumitru Roman, Matthew Moran, and Dieter Fensel. Semantic web
services grounding. In AICT/ICIW, page 127, 2006.

[6] David Martin et al. Owl-s: Semantic markup for web services. Member submission,
W3C, 2004. Available from: http://www.w3.0org/Submission/OWL-S/.

[7] Adrian Mocan, Emilia Cimpian, and Mick Kerrigan. Formal model for ontology
mapping creation. In International Semantic Web Conference, pages 459—472, 2006.

[8] Adrian Mocan, Matthew Moran, Emilia Cimpian, and Michal Zaremba. Filling the
gap - extending service oriented architectures with semantics. In ICEBE, pages
594-601. IEEE Computer Society, 2006.

[9] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-1I: A Framework and Infras-
tructure for Semantic Web Services. In Proc. of the second International Semantic
Web Conference Sanibal Island, FL, USA, pages 306-318, 2003.

[10] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Semantic Web Services: Meteor-S
Web Service Annotation Framework. In 13th International Conference on World
Wide Web, pages 553-562, 2004.

[11] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology. Applied Ontologies, 1(1):77 — 106, 2005.

29

