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Executive Summary

We present a report on several theoretical issues undgriigontology dynamics and
ontology maintenance process. Ontology evolution topagehieen widely discussed
within the Semantic Web community recently, both from picdtand theoretical points
of view. Our motivation is to give an overview of selected mnjant theoretical problems
related to ontology dynamics and discuss possible appesatththeir solutions, stem-
ming from state of the art research. Though not directlyteelathis report complements
the dynamic ontology lifecycle methodology and partial lementation, as described in
deliverables D2.3.8v1 [NHLO6] and D2.3.8v2 [NLHZ07].
In this report, we address namely the following areas:

1. Logical Groundwork for Changes in Ontologies— study on ontology change op-
erations well-founded using belief-change theory

2. Semantics of Ontology Diffs— formal definition of an ontology diff, study on the
relations between syntactic and semantic level of ontotbfiy in RDFS

3. Reasoning with Versioned Ontologies- study on realisations of inference among
multiple versions of an ontology; two possible approachesysed:

e multi-version inference using linear temporal logics ageequence of on-
tology versions (the reasoning about particular ontolegiethe version se-
guence is realised using a “classical”’ ontology inferenugiree, whereas the
reasoning across the whole sequence is done by model chggckin

e multi-version inference using the C-OWL formalism amonga&eontology
versions connected by so called bridge rules (inferencasgd on the Dis-
tributed Description Logics formalism, utilising locadid Description Logics
reasoning for particular ontology versions and global gy mappings, i.e.
the bridge rules, for the whole version sequence)

Building on the theoretical study of the enumerated tomesalso discuss basic prac-
tical consequences concerning the dynamic ontology nmeaniee process. We also dis-
cuss possible combination of the two presented alterreatvenulti-version reasoning
and provide general suggestions on implementation andcagiph of the combined ap-
proach. The main expected contribution consists of theopirod and coherent analysis of
the above theoretical issues, complemented by identificati several important general
connections to practical implementations tackling orgglaynamics. In this respect,
we also give basic suggestions on incorporation of the #tmal results into practical
scenarios.
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Chapter 1

Introduction

The purpose of this deliverable is to introduce several rigtezal aspects relevant for
dynamics in the ontology lifecycle. We focus mainly on twsuss arising when dealing
with ontologies dynamically changing in timefermalisations of ontology changeand
reasoning across multiple versiongof a changing ontology).

The presented content is meant to complement the practiaalres of dynamic on-
tology lifecycle described in [NHL06, NLHZ07], where we concentrate on certain prac-
tical parts of the ontology evolution process. More spedlifyc the delivered analysis
of theoretical aspects provides a support for efficient aali-Hfwunded maintenance and
exploitation of changing ontologies

1.1 High-Level Overview and Motivation

We do not give exhaustive analysis of every imaginable &temal issue related to on-
tology dynamics. More specifically, we omit a more detailedlgsis of inconsistency
handling and resolution issues (see for instance [HVB5] HVHtTO5]), which we con-

sider to be out of scope here, though definitely related tology lifecycle. We pay

attention to the two general problems mentioned above. Hneyelaborated in more
detail according to the following:

1. formalisation of ontology change:

e Chapter 2 — proper elaboration of the relation between isistency and nega-
tion, building on the AGM theory [AGM85], and consecutiverfauilation of
formal postulates for ontology change (contraction andsiem operations)

e Chapter 3 — formalisation of the ontology diff notion, sgeation of its se-
mantic properties, study of the relation between the syictand semantic
levels of RDFS ontology diffs

2. multi-version reasoning:
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e Chapter 4 — study on a temporal logics inference (i.e., mobetking) on
the top of “classical” ontology reasoning, definition of apective query lan-
guage for multi-version reasoning

e Chapter 5 — adaptation of C-OWL [BGVH83] formalism for modelling of
and reasoning with contextualised ontologies in OWL [BvHH] in order
to allow inference across sequences of ontology versiorked by so called
bridge rules

Thus, the report provides information on: (1), how to foripgrasp ontology change;
(2), how to benefit from this formalisation in order to fatgte dynamic ontology main-
tenance; (3), how to exploit the versioned changing oniekgith multi-version reason-
ing. Some basic guidelines in this respect are elaboratédeitoncluding Chapter 6,
where we relate the rather theoretical content to the malatnplementation of the dy-
namic ontology lifecycle features.

The first motivation and aim is to provide the implementerd asers of dynamic
ontology lifecycle applications with principles of con®ist, efficient and well-founded
ontology maintenance. The second aim is to present posgiblaatives of multi-version
inference in order to offer means for reasoning with chaggintologies. Fulfilment of
both these general aims forms also the main contributiohisfréport.

Note that our overall motivations are supported by the comtyuemands analysed
in a survey aimed at several features of ontology dynamessi(ts reported in [NLHZ07])).
More detailed motivations relevant to the particular tgpace given in the introductory
parts of the respective chapters.

1.2 Related Work

The general topic of ontology evolution and change has heelnes! for instance in [NK04,
Sto04]. These approaches cover the changing ontology emginte mostly from the
practical point of view, supporting appropriate applioas dealing with changing on-
tologies. In our report, we aim to provide a better undeditam of what the change
actually is and what the consequences of its introductiorbea

Ontology versioning theory, methodology and implementaisupporting ontology
change are covered by [KFKO02, KF01, VG06]. These works idewmeans for man-
agement of changing ontologies, building on the well-kngmciples from software
and database schema maintenance. However, the suppatual @xploitation of result-
ing ontology version repositories is lacking. In this do@nt) we offer solutions how to
tackle this exploitation, namely by means of multi-versiaierence.

A framework for changing ontologies, specifically for handlpossible inconsisten-
cies is given in [HvHH 05]. [HvHtTO5] analyses possibilities of reasoning withiacon-
sistent ontology. These approaches can be seen as compdeyerthe work presented
here, since we deliberately disregard analysis of inctersty detection and resolution in

2 November 14, 2007 KWEB/2007/D2.3.9
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favour of presentation of formalisms that can possibly mise inconsistency introduc-
tion to large extent.

Furthermore, relatively representative sample of the mastnt research trends in
the theoretical support of ontology dynamics can be foumdudph the web-site of the
IWOD’07 workhop (sedt t p: // km . open. ac. uk/ event s/ i wod/ ). The NEON
project has focused on a special issues of dynamics ametwgprkedontologies, how-
ever, the state of the respective research has been stérnatits initial stage by the date
of publication of this report, largely in line with the disans of the works cited above.

Similarly to the motivations, more detailed overview of &sific related work is given
in the particular chapters.

1.3 Position within the Project

Concerning the dynamics Knowledge Web work-package (WF &8 work presented
here has direct relation to dynamic ontology lifecycle [NHI6, NLHZ07]. This rela-
tion holds namely for Chapters 2 and 3 that present theatetitalysis underlying well-
founded, optimal and efficient dynamic ontology maintemarichapters 4 and 5, dealing
with reasoning across multiple versions of an ontologypaimarily related to the ontol-
ogy versioning topics [VEKO5, VKZ05].

There is no direct relation to other work-packages in thewladge Web project,
since the presented content is very explicitly focused er#sic theoretical issues closely
associated with the ontology dynamics only. Indirectlye groposal of C-OWL based
multi-version reasoning in Chapter 5 can be related to therbgeneity Knowledge Web
work-package (WP 2.2), since C-OWL may be used as an ontet@pping language,
too (among other things).

KWEB/2007/D2.3.9 November 14, 2007 3



Chapter 2

Logical Groundwork for Changes in
Ontologies

by GIORGOS FLOURIS, ZHISHENG HUANG, JEFF Z. PAN, DIMITRIS
PLEXOUSAKIS, AND HOLGER WACHE

This chapter introduces a logic-based framework for omfplkchange. The change man-
agement plays its role in the essential parts of the ontoldggycle scenario (mainly
versioningandcreation), as presented in [NHLO6]. Such a framework is therefore no
doubt very relevant in this respect, however it is relatigfficult to directly apply its the-
oretical conclusions in practice. The logical frameworka@ed in this chapter formally
underpins general changes in DL-based ontologies in tefoysavators ofevision(addi-
tion of new statements) arabntraction(removal of current statements). These operators
should desirably preserve the consistency of an ontologyantical application. Thus,
requirements on the operators and the very notions relatdtetconsistency interpreta-
tions (mainly negation) must be rigorously specified beforplementing the respective
operations within practical realisation of an ontologgdiycle. We present such an anal-
ysis here.

The ability to deal with inconsistency and to accommodatengke is of utmost im-
portance in real-world applications of Description Logaskd ontological reasoning and
management [BCM03b, HST00]. For example, one of the typical scenarios inajeul
Semantic Web applications is ontology reuse, where usddstheir own ontologies from
existing ones, rather than starting from scratch. Aftelrrgldew axioms into an existing
ontology, users may find that revised ontologies becomesistent. A remedy for such
a situation would require the removal of a minimal part of dm¢ology in order to make
the resulting ontology consistent [HvHIA5]. This type of change is usually required to
meet some rationality postulates, similar to those in theVABeory in the belief revi-
sion [AGM85]. Another example is reasoning with inconsistentologies [HVHtTO5],
where querying systems should return meaningful answeggddes on inconsistent on-
tologies. The latter suffers from "entailment explosios’any formula is a consequence
of an inconsistent logical theory.

1Based on [FHP06], with minor modifications by Vit Novacek.
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Addressing effectively the issues raised in these examplgsires precise, formal
definitions of inconsistency and negation. UnfortunatBly;based ontology languages,
such as OWL DL [PSHHO04], do not provide enough expressivegodw represent ax-
iom negations. Furthermore, there is no single, well-amszepotion of inconsistency and
negation in the Semantic Web community, due to the lack ofrangon and solid foun-
dational framework. [SCO03] proposed an approach to debcgnsistent ontologies, in
which inconsistency is identified with the existence of diséable concepts. [HvHtTO5]
developed a framework of reasoning with inconsistent agfiels, in which inconsistency
is given a classical first-order logic interpretation. InvftH*05], the definition of axiom
negation is merely mentioned in an example at a footnotdyowitproper discussion in
the paper.

We propose a general framework accounting for inconsigteregation and change
by which we aim at providing a unique foundation of incoremgty and change processing
for DL-based ontologies. We distinguish different levelsngonsistency and negation in
DL-based ontologies, and investigate the relationshipregrtbe different notions. Ac-
cordingly, we lay the foundations of a formal theory of oot} change, based on a set
of rationality postulates inspired by the AGM theory of eélchange. Furthermore, we
discuss how this proposed framework can provide a founadbiothe tasks of ontology
management and reasoning. Specifically, we show how a bddgeecting two main
ontology change operations — revision and contraction -besluilt under the proposed
framework.

2.1 Preliminaries

Ontologies An ontology[UG96] typically consists of a hierarchical descriptionimi-
portant concepts in a domain, along with descriptions ofpitogperties of each concept,
and constraints on these concepts and properties. In thpet following the W3C Web
Ontology language OWL [PSHHO04], we consider Descriptiogice (DLs) based ontolo-
gies. Description Logics are a family of class-based (cptibased) knowledge represen-
tation formalisms, equipped with well-defined model-tleimr semantics [BCMO03Db].
The SHOZN (D*) DL underpins OWL DL, the key sub-language of OWL. The rela-
tion betweenSHOZN (D*) DL and OWL DL — mainly concerning reduction of OWL
entailment to DL satisfiability — is described in detail inf803].

Let K be a Description Logic(', D K-concepts,R, S K-roles, anda, b individuals.
An interpretation(written asZ) of an ontology consists ofdomainAZ (a nonempty set),
and arinterpretation functiorfwritten as%), which maps each individual namago an el-
ementa’ € AZ, each concept namg@N to a subse€’ N C A? of the domain and each
role nameRN to a binary relationRN? C A’ x A’. The interpretation function can
be extended to give semanticskconcepts andC-roles, which are concepts and role
descriptions built bycC-constructors. Example concept constructorsSafOZN (D)
are-C,C11D,CUD,3R.C,VR.C,>2nR,<nR and{a} (wheren is a natural number).

KWEB/2007/D2.3.9 November 14, 2007 5



2. LOGICAL GROUNDWORK FOR CHANGES IN ONTOLOGIES

A K-ontology (or simply ontology)) is a finite set of axioms of the following fornfs:
concept inclusion axiom&' C D, transitivity (abstract) role axiom$rans(R), role in-
clusion axiomsRk C S, concept assertionS(a), role assertiong(a, b) and individual
(in)equalitiesa ~ b (a # b, respectively). In an ontology, we u3&ox(RBox AB0X

to refer to the set of concept (role, individual, respedyivaxioms. An interpretatiod
satisfies the concept inclusion axiathC D if CZ C D”. Due to the limitation of space,
the reader is referred to [BCM3b] for more details of the semantics of DL constructors
and axioms. An interpretatidh satisfies an ontologg iff Z satisfies all its axioms. An
ontologyO is consistentff it has an interpretation. A concept is satisfiablew.r.t. O iff
there exists an interpretatianof O s.t. CZ # (). A conceptC is subsumed by a concept
D w.r.t. O iff, for every interpretatiorZ of O, we haveC? C DZ. Given an axiomp,
an ontologyO entailsy, written asO = ¢, iff, for all interpretationsZ of O, we have
7 satisfiesp. An ontologyO; entails an ontology),, written asO; = O, iff, for all
interpretationg of O, we haveZ satisfie0,.

Given a (monotonic) Description Logic, we consider a paifL, Cn), whereL is the
set of possibléC-axioms and”n is a consequence operator such that, givEaa@ntology
0, Cn(0) = {p | O | ¢}. Inthe rest of the chapter, we will ugé, Cn) (or (L*, Cn)
when necessary) to refer to the Description Loljic (L, Cn) is a very general model
introduced by Tarski in 1928; to guarantee rationality,skarequired that’n satisfies
iteration, inclusionandmonotonysee [Fuh91].

AGM Theory and its Variations  The theory of Alchourron, Gardenfors and Makinson
[AGM85] — the AGM theory— is probably the most influential work in the area of belief
change. This theory sets the foundations for future rekemrdelief change, by defining
a set of widely accepted properties that any rational opesahould satisfy.

More specifically, AGM studied 3 different operators, nayretpansionrevisionand
contraction Expansion is the addition of a sentence to a knowledge K&k (ithout
taking any special provisions for maintaining consisteneyision is similar, with the
important difference that the result should be a considenof beliefs; contraction is
required when one wishes to consistently remove a sentenicethieir beliefs instead of
adding one. AGM introduced a set of postulates for revisimh@ntraction that formally
describe the properties that such an operator shouldysédigbansion was skipped, as it
is trivial).

The AGM theory is based on tlemherence modeln practice, this model states that
both the explicitly represented knowledge and the implieovidedge are of equal value
and should be considered when deciding the changes to be upadethe KB. In the
context of ontologies, however, it seems more natural téthefeundational modelunder
which there is a clear distinction between the explicitlpressented knowledge (i.e., the
one contained in the KB) and the implicit one (i.e., knowledplied by the explicitly
represented one). Under this model, changes can be made exghicit knowledge
only; implicit knowledge can only be indirectly affecteddlngh changes in the explicit

2The kinds of role axioms that can appeatirdepend on the expressivenessof

6 November 14, 2007 KWEB/2007/D2.3.9
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knowledge.

The foundational model greatly restricts our options fopeoper” modification of
knowledge. This fact was verified in [Fuh91], in which an atpe to define a foundational
version of the AGM theory was made. There it was shown thatenogics originally
considered by AGM, no contraction operator can be definddttasfies the foundational
version of the AGM postulates.

A second problem related to the application of the AGM thaaryhe DL context
is caused by the assumptions made by AGM in the formulatiothef theory: even
though the intuition behind the AGM postulates is indepenaé the logic used for the
representation of the KB, the formulation of the postul#itesnselves is based on certain
assumptions, disallowing their direct use in logics sucibas [FPA04]. For example,
well known DLs do not provide enough expressive power togeg@nt negations of all the
axioms. This fact is both a curse and a blessing. On the ora; hamplies that the AGM
theory cannot be directly applied to DLs; on the other hahagi could reformulate the
AGM theory in a more general context, then the result of [AJmlight not be applicable
in DLs, as they do not satisfy the AGM assumptions.

This problem was originally addressed in [FPA04], whereAfM theory (and pos-
tulates) were recast so as to be applicable in a wider clasgiot, which includes DLs.
That work studied the AGM theory under both the coherencdlamtbundational model,
but was restricted to the operation of contraction only.dswhown that there are certain
conditions under which a logic admits a contraction opersatisfying the AGM postu-
lates in each of the two paradigms (coherence, foundajio&aich logics were termed
AGM-complianandbase-AGM-compliantespectively.

In this chapter, we focus on the foundational model; we withws that the condi-
tions introduced in [FPAO4] for a base-AGM-compliant logi@ too restrictive, overrul-
ing practically all interesting DLs. Following this obsation, we propose a weakening
of the AGM postulates which is applicable in our context (Dlreder the foundational
model) and present some ideas on the operation (and pesuddirevision and its inter-
relationship with contraction.

2.2 Inconsistency and Negation

Different notions of inconsistency in DLs have been usedh&é$emantic Web commu-
nity, as we have discussed them in the introduction of thiap@dr. We define different
notions of inconsistency and examine their relations théfe start from the most primi-
tive inconsistency, i.e., the unsatisfiability of a singb&cept.

Definition 1 (Unsatisfiable Concept) A named concept' in the ontologyO is unsatisfi-
able iff, for each interpretatio of O, C* = 0.

That would lead us to consider the kinds of ontologies witkatisfiable concepts.

KWEB/2007/D2.3.9 November 14, 2007 7
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a
3 @

Figure 2.1: Examples of variant inconsistency and incaieze

Definition 2 (Incoherent Ontology) An ontologyO is incoherent iff there exists an un-
satisfiable named concept @

The incoherence can be considered as a kind of the incomsyste the TBox, i.e. the
terminology part, of an ontology. An incoherent ontology laa incoherent TBox. How-
ever, the incoherence does not provide the classical sdrtke oconsistency because
there might exist a model for an incoherent ontology. Thusneed the classical incon-
sistency for ontologies.

Definition 3 (Inconsistent Ontology) An ontology is inconsistent iff it has no interpre-
tation.

We now briefly discuss the relationships of the two kinds obimsistencies of ontolo-
gies. Firstly, an ontology is inconsistent does not necégsaply that it is incoherent,
and vice versa. There exist different combinations of tlemsistency and the incoher-
ence. Figures 2.1 presents several examples to show trentgadf inconsistency and
incoherence. Figure2.1(1) is an example of inconsisteintdoerent ontology, in which
the two disjoint concept€’'l andC2 share an instance Figure2.1(2) is an example of
consistent but incoherent ontology, in which the two disieoncepts’l andC2 share a
sub-concepC3. Figure2.1(3) is an example of an inconsistent and incattenetology,
in which the two disjoint conceptS1 and(C2 share a sub-concept3, which has an in-
stanceu. Figure2.1(4) is an example of inconsistent but cohereraxT B which the two
disjoint concept€’'l andC2 share a sub-concept which is a nomifia}.

Secondly, coherence and consistency are somehow relatedamintroduce a fresh
individual i for each named concept in an ontologyO. Accordingly, an enhanced
ontologyOt = O U {C(i¢) | for all named concept§'in O} can be constructed by
adding these individual axioms about these fresh indivglumo the ontology. It is easy
to see that the following propositions hold:
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Proposition 2.2.1 (a) Given an ontology), if its enhanced ontolog@ ™ is consistent,
thenO is coherent.

(b) Given a consistent ontology, if O is coherent, then its enhanced ontola@y is
consistent.

2.2.1 Axiom Negation in Ontologies

Negated axioms are closely related to inconsistencieslatbes in ontologies. They are
one of the main sources of ontology inconsistencies. Fanel& an ontology containing
the mutually negated axionts(a), =C'(a) is inconsistent. Furthermore, negated axioms
are one of the keystones connecting the contraction andioevoperators in the AGM
theory, although unfortunately well known DL-based ongyitanguages do not provide
enough expressive power to represent negations of all tleengx Similar to the notion
of inconsistency, the definition of the negation is différéom an approach to another
approach in the Semantic Web community [HvHM, HVHtTO5], as we have briefly
discussed in the introduction of this chapter.

Based on the distinction between ontology consistency ahdrence, in the follow-
ing we propose two corresponding axiom negations.

Definition 4 (Consistency-Negation)An axiomy is said to be a consistency-negation of
an axiome, writtenvy = —¢, iff

(D(Inconsistency)

{#,1} is inconsistent,

(i) (Minimality)

There exist no othet’ such that)’ satisfies the condition (i) an@n({¢'}) C Cn({v}).

The inconsistency condition states the relationship betvaxiom negation and on-
tology inconsistency, which is based on the classical natimegation. We introduce the
minimality condition to make the negation minimal so thawduld not include any un-
necessary additional part. Note that this does not enforogcue consistency-negation
though. Similarly we have the following axiom negation whimorresponds with inco-
herence.

Definition 5 (Coherence-Negation)An axiomy is said to be a coherence-negation of
an axiome, written) =~¢, iff (i)(Incoherence){ ¢, ¢} is incoherent,
(i) (Minimality) There exist no other)’ such thaty’ satisfies the condition (i), and

Cn({y'}) € Cn({}).

Note that it is possible to extend our notion of negated agifmam a single axiom to
a set of axioms, where a set of axioms represent the negdtimmother set of axioms.
This extension goes beyond the scope of this chapter.
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Example 1 Let us consider the consistency negation and the coherezgation of an
axiomC' C D, whereC' and D are named concepts.

~(CCD)=3(Cn=-D), ~(CCD)=CLC=D
where3(C'M—D) is an existence axiom [HPS03], which states there existe sostance

of the concep’ M1 —D. Note that, in any ontologies containidgC D andC' C —D, the
concept’' is unsatisfiable.

It should be noted that the minimality condition of the cateincy-negation prevents
the counter-intuitive property that any axiomis qualified to be a consistent-negation
of an inconsistent axiom (such asC' C —(C). It is easy to see that its consistency-
negation must be the tautology because the tautolod¥ is implied by any axiomy,

i.e. Cn(0) = Cn({T}) € Cn({¢}). Thus no other axioms can meet the minimality
condition. For example, we havé{a} C L) =T ; similarly, we have~ (DC 1) =T.

In the following we will briefly discuss whether the proposeehations satisfy the
following important properties:

1. Existencelt should exist in (almost) every DL.

2. Classicality If the definition of negation is applied in a classical lagicshould
coincide with the classical negation.

3. Decidability: The problem of checking whether or not an axiom is the negaif
another axiom should be decidable.

Existence Definitions 4 and 5 improve the Existence property by givipghe restriction

on double negations; i.e., an axiofrshould be logically equivalent to the negation of the
negation ofy». Due to the limitation of space, here we only illustrate ooinpwith some
examples. For a DKL, C'n) that does not provide concept existence axioms, we cannot
used(C'1—-D) as a negation of' C D; however, Definition 4 allow§' 11 —D(a) (where

a is a fresh individual) as a consistency-negatio@of. D. For a DL (L, Cn) that does

not provide any role constructors, we cannot H§& 1 —S) as a negation of the role
inclusionR C S; however, Definition 5 allows’ C JR.T rmVS.L (whereC'is a fresh
named concept) as a coherent-negatioR ¢f S.

Classicality The classical negation has the following intuitive projeet

(i) Cn({o}) N Cn({—¢}) C Cn(D) (only the tautology appears in both the consequences
set of an axiom and its negation);

(i) Cn({¢} U {—¢}) = L (the consequence set of the negation is the complement set of
the consequence set of the axiom).

It can be shown that, under standard assumptions [FPAG#pribperties are guaranteed
by the consistency-negation.

Decidability Given a DL (L, Cn), let us first consider the consistency-negation. The
checking of the inconsistency condition is indeed a knogéelolase satisfiability problem
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of (L,Cn). The minimality condition can be checked by trying to replaome sub-
concepts (or sub-roles) with more general ones.

Proposition 2.2.2 Given a DL(L, Cn), if the knowledge base satisfiability problem of
(L,Cn) is decidable, then the consistency-negation checkirig id'n) is decidable.

Proposition 2.2.3 Given a DL(L, C'n), if the problem of concept satisfiability w.r.t. to a
TBox in(L,Cn) is decidable, then the coherent-negation checkingZinCn) is decid-
able.

2.3 Postulates for Ontology Change

In this section we propose certain postulates which deséwb rational change operators
for DL-based ontologies and even the use of the differerd kihnegation for revision.
Our approach will be based on the AGM theory presented in@e2t1. Note that proofs
of the statements in this section can be found in [FIo06, FFPAO

2.3.1 Postulates for Contraction

The main result that motivates our quest for a new set of aotitn postulates is summa-
rized in the next lemma and its corollary. Note that, as noeetil above, we usg., Cn)
(or (L*, Cn) when necessary) to refer to the Description Logic

Lemma 1 Fora DL (L, Cn), if there is an axiomx € L and a set of axiom® C L such
thatCn(0) € Cn(Y) C Cn({z}), then(L, Cn) is not base-AGM-compliant.

Corollary 1 Any DL that is at least as expressive A%, and whose alphabet allows at
least two concept names and one role name is non-base-AGighamt.

Corollary 1 practically overrules the use of the postul#itas appeared in [FPAO4] in
the DL context. The reason for this failure is related to th«ealled base recovery postu-
late (B-6). Here, we will propose a different set of postegathat satisfy the following:

1. Existence For every monotonic DKL, Cn), there is a contraction operator satis-
fying the proposed postulates.

2. AGM Rationality Whenever possible (i.e., for base-AGM-compliant DLsg, pino-
posed postulates allow exactly the same contraction aperas the AGM postu-
lates do.

It turns out that the following set of postulates satisfiethlgwals:

KWEB/2007/D2.3.9 November 14, 2007 11



2. LOGICAL GROUNDWORK FOR CHANGES IN ONTOLOGIES

(0-1) O-X CO.

(0-2) If O £ X, thenO — X = 0.

(O-3) If 0 I~ X, thenO — X |~ X.

(O-4) If X =Y,thenO - X =0 —Y.

(O-5) If Cn((O — X)U X) C Cn(Y UX) for someY C O, thenY = X and( |~ X.

The postulates (O-1)-(O-4) are equivalent reformulatioihe postulates discussed
in [FPAO4], i.e. (B-2)-(B-5), respectively; postulate (Bfrom [FPA04] was ignored be-
cause it is trivial. These postulates follow the AGM intaiti contraction is an operation
that is used to remove knowledge from an ontology, so thdtrelsauld not contain any
new, previously unknown, information (O-1); if the contieat axiom is not part of our
original knowledge, nothing should be removed (O-2); butig, then contraction is sup-
posed to return a new ontology such that the contracted esipreis no longer explicitly
asserted or entailed (O-3); finally, the result should beessymdependent (O-4).

Postulates (O-1)-(0-4) fail to capture tRenciple of Minimal Chang¢Gar92] which
states that a contraction operator should remove as litttgrnation from the ontology
as possible. This principle was originally captured by plade (B-6) in [FPAO4], while
in our case it weakened to form (O-5). (B-6) states that arachbn operation should
only remove axioms which are relevant to the contractedraxithis is guaranteed by
restricting the union of the result of the contractian { X) and the contracted axiom
(X) to entail (or be equivalent to) the original ontology)(

(B-6) O C Cn((O — X)UX)

(O-5) comes very close to that by restrictiog((O — X) U X) to be maximal out
of all the possible selections fé?» — X that satisfy the other postulates: if there is any
Y C O giving a “larger” seCn(Y UX), thenY will necessarily entaiX (soY would not
be a possible subset 6f — X, by (O-3)). The latter implication( /= X) was included
in (O-5) in order to capture a certain limit case.

Now let us see why this set of postulates satisfies the redjpi@perties. The Exis-
tence property is easy to show. As a DL based ontolaggpntains a finite number of
axioms. Thus, there is only a finite number of subset® o$o one can find at least one
Y C O for which Cn(Y U X)) is maximal. Once some technical details and limit cases
are taken care of, the following proposition can be shown:

Proposition 2.3.1 For any logic (L, Cn), there is a contraction operator’ such that
the operatiorD — X satisfies (O-1)-(O-5) for all finit® C L and all X C L.

The second property, AGM Rationality, is more difficult tagh so we will break its
proof in two parts. Firstly, we will show that if (B-1)-(B-@re satisfied by a contraction
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operator, then (O-1)-(O-5) are also satisfied. This isdfifor (O-1)-(0-4), as these are
equivalent reformulations of (B-2)-(B-5) respectivelyo $how that (O-5) is satisfied as
well, notice that (B-6) requires that is entailed byCn((O — X) U X). If O = X, then

O E Cn(YUX), forallY C O. This fact, combined with the requirement imposed
by (B-6), shows that the “if part” of (O-5) cannot be true faryay” C O, so (O-5)
trivially holds. If, on the other hand) }~ X then (B-3) (equivalently, (O-2)) indicates
O — X = O; thus, again, the “if part” of (O-5) cannot be true for ariyC O, so (O-5)
holds. This gives the following result:

Proposition 2.3.2 If a contraction operator satisfies  (B-1)-
(B-6), then it satisfie$O-1)-(0-5)

This result implies that the original set of postulates
(B-1)-(B-6) is stronger than (O-1)-(0O-5); this should bpested, by Proposition 2.3.1, as
the result of this proposition does not hold for (B-1)-(B(¢é¢e Lemma 1 and [FPA04)).

To show AGM Rationality, we should also show that the two sétpostulates are
actually equivalent whenever possible (i.e., in base-AGWipliant DLs). The proof
follows similar steps as the proof of Proposition 2.3.2. Tmdy non-trivial task is to
show that whenever (O-1)-(O-5) are satisfied, (B-6) is atgisBed. This is shown by the
fact that, in base-AGM-compliant logics, there is always & O which does not entail
X, such thaCn(Y U X) entailsO; thus, (O-5) guarantees that— X will be selected in
such a way that'n((O — X) U X)) willimply O, thus satisfying (B-6). Once some limit
cases are taken care of (one of which justifies the use of thication() /- X in (O-5)),
the following can be shown:

Proposition 2.3.3 For a base-AGM-compliant logic, if a contraction operatatisfies
(O-1)-(0O-5) then it satisfies
(B-1)-(B-6).

Finally, it is important to note that the proposed postidates well as Propositions
2.3.1-2.3.3, are applicable not only to DLs, but also to @djits that comply with the
(L,Cn) model.

2.3.2 Postulates for Revision

To the best of our knowledge, there has been no attempt tetrdaAGM postulates for
revision in the context of the foundational model; furthers there has been no attempt
to generalize these postulates in the sense of [FPAO4]. Tdie reason for the latter
shortcoming are postulates which require the definition mégation. The definitions of
negation presented in the previous section allow us to oveechis problem and present
some initial thoughts on these issues for DLs.

The original AGM postulates for revision (K+1)-(K+6) can fmind in [AGMS85].
Postulate (K+1) requires that the result of revision is @athgin our context, this should
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be dropped, as we are working on the foundational model.uRdss (K+2)-(K+5) can
be reformulated as follows:

(O+1) X C O+ X.

(O+2) If Cn(OU X) # L, thenO + X =0 U X.
(O+3) If Cn(X) # L, thenCn(O + X) # L.
(O+4) If X 2Y,thenO+ X 20O +Y.

It can be easily shown that each of (O+1)-(0+4) is equivdertk+2)-(K+5) in the
standard case. Postulate (K+6) poses some extra problecese it requires the def-
inition of negations of DL axioms. A straightforward (anduaglent) reformulation of
(K+6) follows:

(0+5) (O +X)NO =0 — -X.

In (O+5), the =" symbol may be replaced by the standard negation, consigteggation
or coherence negation, depending on our needs and on wipe(s)yof negation exist in
the underlying logic.

In the AGM theory, there is a close connection between rexriand contraction, as
this is expressed by théarper Identity(which is equivalent to (O+5)) andevi Identity
here we present a generalized version of these identities:

Harper: O — X = Cn(O + —=X) N Cn(O).
Levii O+ X =Cn(0—--X)UCn(X).

Again, in place of the symbol’, any of the negations that we proposed could be used.
In the AGM setting, it has been shown that for any given revisasperator that satisfies
the AGM postulates for revision, the contraction operatfirstd by the Harper identity
satisfies the AGM postulates for contraction; moreoverafor given contraction operator
that satisfies the AGM postulates for contraction, the rexisperator defined by the Levi
identity satisfies the AGM postulates for revision. One of st important goals for
future work is the proof that these facts hold for the genmsedlversions of the postulates,
the Levi and the Harper identities.

If the coherence negation is used for (O+5), the Levi and thepér identities, then it
is more appropriate to replace the postulates (O+2) and ) @itB following coherence-
based postulates:

(O+2*) If O U X is coherent, thew + X = 0O U X.
(O+3*) If X is coherent, the® + X is coherent.

The coherence postulates are useful for the revision onnt@agies which have only
T-boxes, because their incoherence appears much moretiofiertheir inconsistency. It
is more meaningful to avoid their hidden inconsistency,their incoherence.
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2.4 Importance for Dynamics in the Ontology Lifecycle

As has been mentioned in the introduction of this chapteonsistencies, as well as
negations in ontologies are closely related to ontologyhgka In this chapter we have

proposed a general framework accounting for negationnisistency and change for DL-

based ontologies, which aims at providing a foundation éassoning and management
of dynamic ontologies. Such a foundation is of utmost imguace for the deployment of

real-world applications in the context of the Semantic Web.

In our framework, we have shown how to use the proposed regato achieve the
Harper identity and Levi identity for ontology change, byiefhwe can make a close
connection between the ontology revision and contractiperations. The distinction
between incoherence and inconsistency provides us twerelift approaches for devis-
ing rationality postulates for ontology revision, whichveo different needs in different
application scenarios.

The well-founded postulates for ontology change (tramséat according to the needs
of the particular application) are of general importanaegood design practices when
implementing a dynamic ontology lifecycle, e.g. followitige methodology introduced
in [NHL"06]. The postulates can be specifically applied (1) to thegss of dynamic
ontology development (quality assesment of proposed @sangth respect to the co-
herence/consistency), or (2) to the integration of leakremvledge (when selecting the
most appropriate parts to incorporate into the master ggemllaborative ontology; we
elaborate this topic in [NLHZ07]).
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Chapter 3

Semantics of Ontology Diffs

by ALESSANDRO ARTALE, NORMAN FOO, ENRICO FRANCONI AND TOMMIE
MEYER!

We consider in this chapter an abstract notion of semarffitodiarbitrary logic-based
ontology or knowledge representation languages. The gceisahe one where an on-
tology engineer generates different version of an ontolegie those different versions
need to be stored and retrieved. We investigate the notiGemfntic diffas a way to
both enlighten the differences between two different wersi(hereafter called the source
and the target ontology), and as the minimal piece of inféionahat we need to store
together with the source ontology to obtain the target @l

The work presented in this chapter is still preliminary, anshould be considered
primarily as a starting point motivating further deepereaash on the topic, eventually
meant to support well-founded development of practicaliegpons utilising an ontology
diff implementation.

3.1 Semantic Diff

We introduce now théleal definition of semantic diff, that we caditrong as being the
definition that embodies all the characteristics which avaiiant under entailment and
logical equivalence.

Definition 1 (Strong semantic diff)

Let . be a monotonic logic language. Givéh Og, O, A, R as sets of formulas
in .£— beingX a domain theoryDg a source ontology, an@d, a target ontology —
then(A IR) is anontology diff, andA is called its “add’ component andR its “remové
component, if the following holds:

Iwith minor modifications by Vit Novacek.
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1. (target from source with diff)
(05 UA) \ R Hxz OF

2. (duality)
(07 UR)\ A Hkp O

3. (non-redundancy of diff)
Os =ks R
Or Exp A

4. (minimality)
A andR are minimal w.r.t. set inclusion

5. (invariance under equivalent source and target)
0% Hxs Os
(Djf HKB Or

A strong semantic diff is therefore a pair of formulas to bdediand formulas to be
removed from a source ontology in order to get a target ogyo(tiem 1). Moreover, by
adding the “remove” formulas from the target and removirgy‘ddd” formula, the source
ontology will be obtained (item 2); this is the dual use of dli#¢ Note that the introduc-
tion of integeri, j indices as superscripts of the source and target ontolagiksates
invariance of the respective statements across possiltyphelequivalent ontologies.

The “add” and the “remove” components of a strong semanti@ck non redundant,
in the sense that only formulas that are entailed by the soomtology can be removed,
and only formulas that are entailed by the target ontologyiEaadded; it is therefore im-
possible to specify a semantic diff where the “add” comparentains formulas which
are not entailed by the target ontology, and likewise it ipaissible to specify a seman-
tic diff where the “remove” component contains formulas ethare not entailed by the
source ontology (item 3).

A strong semantic diff is always represented in a minimal \iggm 4). The strong
characterisation of this kind of semantic diff is that thensadiff applied to equivalent
source ontologies should give equivalent target ontoko@gtem 5), thus sporting a deep
sense of semantics in its definition.

As the reader can note, the operatiomdflingandremovings based in this definition
on set uniomandset differenceThis has interesting consequences.

Lemma 2 (Interesting facts)

a) (disjointness)
ANR=go
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b) (invariance of order of application)
(05 UA)\ R Hks (0% \ IR) UA
(07, UR)\ A Hkz (O \ A)UR

c) (belief revision operator)

The binary operators” and “ \”, if considered ashelief revisionoperators “®”
and “©”, satisfy the postulates foupdateand erasurerespectively of Katsuno-
Mendelzon, presented in [KM91].

Due to minimality, it is easy to see that a strong semantictdis always disjoint
“add” and “remove” components. Moreover, it is always pbksto swap the set union
and the set difference operators without changing the secsanf the strong semantic
diff.

Example 2 (Transitive graphs)
Giveny, Og, O7 andOl:
. defines transitivity over directed graphs
Os={b— ¢}
Or ={a—bb—c,a— c}
0L ={a—b,b— c} Hxgp Or
there is a unique strong semantic diff:
A = {a — b}
R={}
Non minimal semantic diffs are:
Al ={a—ba— c}
A?={a — bb— c},
A3 ={a—bb—ca—c}

with A\? HKB A3

Example 3 (Propositional logic)
GivenX, Og, andO7:

Y ={a+< b}
Os = {}
Or ={a,b,c}

there are two alternative strong semantic diffs:
Al = {a,c}, A?={bc}
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R = {}
By dropping the minimality requirement, there is a uniquaaatic diff:
A = {a,b,c}

Note thatA ):(KB Al }:‘KB A\

Example 4 (Non-existence of strong semantic diff)
Givenx, Og, 0%, andO7:
Y] defines transitivity over directed graphs
Os={a—0,b—c}
0L ={a—b,b—ca— c} Hgp Os
Or={b—c,a—c}

there is no strong semantic diff.
There is a unique semantic diff for each equivalent sourt¢elogy if the invariance under
equivalence condition is dropped:

R={a— b}
A ={a— c}
A= ()

Alternatively, there is a unique semantic diff if the noduedancy of diff condition is
dropped:

R={a— b}
A={a— c}

The examples above emphasise immediately some problenise one hand we may
not have a unique strong semantic diff, unless we drop thémaiity condition; on the
other hand, we may not have at all a strong semantic diff,asnkee drop the invariance
under equivalent sources and targets condition or the edaadancy of diff condition.

This suggests that we need to study weaker definitions ofsierdiff. In the follow-
ing, we will show how different potential methods to compatdiff between ontologies
may lead to different semantic and computational propertie

3.2 Semantic Diff Based on Normal Forms

Given a set of formula®, we callO its deductive closure under the theaty The deduc-
tive closure of an ontology may be considered as a (uniqypegsentative for the class of
all the logically equivalent ontologies. By considering tkeductive closure, we may hope
that the definition of the semantic diff as the simple seted#hce between the deductive
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closure of the source and target ontologies (which is al$® gasy computationally) is
indeed a strong semantic diff. However, this is not the case.

Theorem 3.2.1 (Inadequacy of deductive closure)
If we defineA and R as follows:

A =07\ Os
R=0s\0r

thenA andR may violate both the minimality condition and the invarianmder equiv-
alent sources and targets condition.

PROOF: Consider the following counterexamples.

e GivenX, Og, Of, andO7:
) defines transitivity over directed graphs
Os={a—0,b— ¢}
0! :(]/)\S:{a—>b,b—>c,a—>c} Hxs Os
Or={b—c,a—c}
then:
A=0r\0s={}
R =05\ 07 = {a— b}

Observe that this violates the invariance under equivaleatces and targets con-
dition:

(0s UA)\ R Hxz O
(Os UA)\ R Akp Or
e Given, Og, andOy:
Y. defines transitivity over directed graphs

®S:{b—>c}
Or ={a—bb—c,a— c}
then:

A=07\0s5={a—ba—c}
R=0s\0r={}

However, the minimal semantic diff is:
A = {a — b}

R={}
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O

Another possibility would be to consider the normal formasbed with thdeanrep-
resentation of an ontology, i.e., with a form of minimal repentation.

Definition 2 (Lean ontology)
An ontologyO is leanif no subsetP C O is entailed by the ontology, i.€D, [~ IP.

The case of lean ontologies has not been studied yet.

3.3 Semantic Diff for RDFS

In the following we consider RDFS as the ontology language.

The main idea is to start from a simpgntactic diff between the two versions and
then minimising the result of the syntactic diff by explogithe semantics of the RDFS
ontology language in order to get a semantic diff. The syialtiff is simply the set
difference between two sets of RDFS triples as defined below.

Definition 3 (Syntactic Diff)

LetOs and O be the source and the target RDFS ontologies of a versionmmcegss.
Thesyntactic diffis composed by the pair:

Agyn= 07\ Og

Rsyn= Os \ Or

To define the semantic diff we take into account the semah®Dd=S and in partic-
ular the notion oentailmentoetween two RDFS graphs as defined in the W3C standard.
An RDFS grapht entails an RDFS graph (S =roe 7)) if there is a total homomorphism
from T to S, the deductive closure or tlommpleted fornof S, i.e. axiomatic triples are
added taS while entailment rules introduce implicit triples

Another relevant notion used in the following is that oneegjuivalencebetween
two RDFS graphs. We say that an RDFS grapis equivalent to an RDFS graph
(S Hror T) if they entail one each other. Obviously, the completednfaf an RDFS
graph is equivalent to the original graplg’: Hror S. Finally, given a grapht and a
homomorphisnt, with S;; we denote the graphi with bnodes renamed by.

Definition 4 (RDF Semantic Diff)

LetOs and O be the source and the target RDFS ontologies of a versionmcegss.
A semantic diffis a pair A, IR such that:
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1. Ris the maximal subset t,, such that none of the subsetdfois entailed byD,
(i.e., no elements entailed by the target ontology are phtthe remove, being that
semantically useless):

(@) R C Ry
(b) for eachlP C R thenO (~Agrpr IP
(c) R is maximal wrt set inclusion

2. A is the maximal subset @y, modulo an arbitrary bnode renaming, such
that none of the subsets Afis entailed byDgs (i.e., no elements entailed by the
source ontology are part of the add, being that semantiaslless) and moreover
a merging ofA\ with the source ontology is not redundant:

(@) A C a(Asyn)

(b) foreachQ C A thenOs (~“rpr Q

(€) (OsUA)\ R Hror (0s UAgyn) \ R
(d) A\is maximal wrt set inclusion

We callweak RDF semantic difthe RDF semantic diff without the condition (2.c)
above.

We now show the most relevant result, i.e. that given an RDkaséic diff as defined
above, we can reconstruct the target ontology starting tteersource ontology and the
semantic diff. Moreover, in general the RDF semantic diffs$ies all the conditions for
a strong semantic diff, but one.

Theorem 3.3.1 (RDF semantic diff)

The RDF semantic diff satisfies the conditions in definitiomith the exception of
the invariance under equivalent sources and targets comitThe weak RDF seman-
tic diff satisfies the conditions in definition 1 with the etoen of the invariance under
equivalent sources and targets condition and of the mintsnabndition.

Example 5 (RDF semantic diff)

GivenOg, andO7 (note that — ” correspondstof df s: subcl ass”, and that X, Y
are bnodes):

Os={a—bb—ca—c,c—dd— X}

Or={a—bb—cc—db—dd—Y}
then:

Agn=1{b—d,d—Y}

Reyn={a — ¢,d — X}
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However, the RDF semantic diff is:
A={}
R = {}

In this example, the RDF semantic diff and the weak RDF samdifftcoincide.

Example 6 (RDF semantic diff)

GivenOg4, andO7:
Os={a—X,a—-Y, X —-bY —c}
Or={a—2,Z —b,Z — c}

then:

Asn={a—2Z,Z —b,Z — ¢}
Rsyn=1{a — X,a =Y, X = b,Y — ¢}

There are two alternative RDF semantic diffs:
Al ={X — ¢}

A2 ={Y — b}
R={}

3.4 Diff Formalisation in the Scope of Ontology Evolu-
tion

This chapter presents a rather conceptually differentyyghgstill inherently related view

on the topics studied in Chapter 2. While Chapter 2 investgaotions of negation,

(in)consistency and ontology change postulates and stuldesr formal properties, the
material presented here provides a kind of reverse vievefihds the (semantic) ontology
diff and its structure, consisting from addition and resrssets of formulae of an ontology
language. Initial study on its properties and related jpratcteatures w.r.t. widely used
RDFS ontology language is given.

Even though the study is very preliminary in its presentesttite suggested diff for-
malisation and several important issues that have alreadyg entified (e.g., the more
practical — weaker — diff alternatives) are still very imgamt for practical applications
of ontology maintenance. These make use of an ontologyrdiffementation quite of-
ten [NM04, KFKOO02, VGO06] without a proper and/or common urygiag formalisation.
However, the conformance to a common formalisation can noakelogy maintenance
and handling of the logical consequences of a diff (i.e.,ngex much more transpar-
ent and universal even across different application seanar (logics-based) ontology
languages. Moreover, when combined with conformance tedstulates for ontology
change described in Section 2.3, the formalisation of diffis further facilitate efficient
and well-founded process of consistent and rational ogyaheaintenance with a practical
diff processing involved.

KWEB/2007/D2.3.9 November 14, 2007 23



Chapter 4

Multi-version Ontology Reasoning
Using Temporal Logics

by ZHISHENG HUANG AND HEINER STUCKENSCHMID¥

As has been widely agreed (see for instance [Sto04, KFKOBK)4Y), versioning is the
key to compatibility as it enables each application to useraign of the ontology that best
fits its requirements. This chapter focuses on supportiagrinagement of different
versions of the same ontology on a semantic leveln particular, we want to provide
functionality for answering queries about knowledge dssle from different versions.
The corresponding approach has to provide two kinds of fonatities:

e Ask questions about statements derivable from a certasiorer

e Ask for a version that allows to derive certain statements

While the first kind of functionality can be used to inspectieeg version of the
ontology in order to find out whether important statementsaracannot be derived from
it, the second kinds of functionality helps to find a versioattis compatible with a given
application because important statements can be derigedifr

Another issue is the scope of the approach, in particulasplaee of versions to be
considered. There are several possible scenarios. In glegant cases, we are concerned
with a history of different versions of the same ontology véheach version replaces the
previous one. We call this thetrospective approach. As a result, we have a sequence
of versions. There are also scenarios, in which differemsivas of the ontology co-
evolve. This is mostly the case in scenarios where the dpredat of the ontology is not
controlled by an authority. In the following, we ignore tisenario which is less relevant
for professional ontology development.

In this document, we make a contribution towards a genegai@bus for supporting
multi-version management on the semantic level. We willlds by defining and imple-
menting a query language that is able to answer relevantiquaesbout multiple versions

1Based on [HS05b], with minor modifications by Vit Novacek
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of the same ontology as identified in the usage scenariofhieR#tan trying to directly
support all of these queries, be identify a basic machineay provides the expressive
power needed to provide the required functionality, buitrstieds to be optimized for spe-
cific queries. We base this machinery on a temporal logic statements derivable from
different versions of the ontology. Queries concerningcibrgtent derivable from versions
can be stated in this temporal logic and are evaluated usodghthecking techniques.
In this work we focus on the retrospective approach to nudtsion analysis and only
sketch a possible extension to the prospective analysisc&Zning the representation of
the ontologies being analyzed we restrict ourselves tologites encoded in OWL-DL.
With respect to derivable statements, we mainly consideswmption between named
classes. We want to stress, however, that the approachnpedsis independent from
the representation of the ontologies and can easily be ed&pbther representation lan-
guages.

In the following we first introduce the temporal logic appcbao managing multi-
ple versions. Based on this, we define a minimal query langdagmultiple versions.
Moreover, we briefly describe the basic principles of theseguent reasoning, utilising
the introduced formalism. The approach presented heracsisised in a broader context
of this deliverable in Chapter 6, mostly in Section 6.1.2.

4.1 A Temporal Logic for Multi-version Ontology Rea-
soning

Temporal logics can be classified as two main classes wiffectgo two different time
models: linear time model and branching time model. Thealirteane logics express
properties over a single sequence of states. This viewtaldaifor the retrospective ap-
proach to multi-ontology reasoning where we assume theéesmas of a sequence of ver-
sions. Branching time logics are express properties acliffesent sequences of states.
This feature would be needed for the prospective approaaremhie consider different
possible sequences of changes in the future. The linearai@iipgicLTL is a typical
temporal logic for modeling linear time, whereas the corapah tree logicCTL is a
typical one for modeling branching time [RU71, vB95, CGR99]

Temporal logics are often future-oriented, because th@sragors are designed to be
ones which involve the future states. Typical operatorsthoperatoFuture ¢ which
states that¢ holds sometimes in the future with respect to the currerie’stand the
operatorAlwaysf¢ which states that$ always holds in the future with respect to the
current state’, and the operatpiUntil ) which states that$ always holds in the future
until ¢» holds’. For a discrete time model, the opera¥sxt ¢ is introduced to state that
¢ holds at the next state with respect to the current statethiéaretrospective reasoning,
we only need a temporal logic that only talks about the paatmaly, it is one which can
be used to compare the current state with some previous stafee past. It is natural to
design the following past-oriented operators, which apoad with the counterparts of
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the future oriented temporal operators respectively:

e the previous operator states that a tatilds just one state before the current state.

¢ the the sometimes-in-the past operator states that a faotds sometimes in the
past with respect to the current state.

¢ the always-in-the-past operator states thholds always in the past with respect to
the current state.

In this document, we use a linear temporal logic, denotdd am , which actually is
a restricted linear temporal logidL to past-oriented temporal operators.

4.1.1 \Version Spaces and Temporal Models

In the following, we will define the formal semantics for tlegrtporal operators by intro-
ducing an entailment relation between a semantic mode] fnhelti-version ontologies)
and a temporal formula. We consider a version of an ontologpgeta state in the semantic
model. We do not restrict ontology specifications to a paldiclanguage (although OWL
and its description logics are the languages we have in mindjeneral, an ontology lan-
guage can be considered to be a set of formulas that is geddmat set of syntactic rules
in a logical languag€.

We consider multi-versions of an ontology as a sequence tflagies which are
connected with each other via change operations. Each ¢ thaologies has a unique
name. This is different from the work by [HP04], who consitleat an ontology is one
which contains the set of other ontologies which are bactsvaompatible with it. We
have the following definition.

Definition 5 (Version Space) A version spaceé over an ontology sebs is a set of on-
tology pairs, namelys C Os x Os.

We use version spaces as a semantic model for our temporej tegtricting our
investigation to version spaces that present a linear segus ontologies:

Definition 6 (Linear Version Space) A linear version spacé& on an ontology sebs is
a version space which is a finite sequence of ontologies

S = {<Ol> 02>7 <02, O3>> ) <On71a On>}
Alternatively we write the sequengeas follows:

S:(Ola027'” 7On)
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We useS(i) to refer the ith ontologyO; in the space. For a version spaSe=
(O1,04,---,0,), We call the first ontology5(1) in the space thénitial version of the
version spaceand the last ontology (n) the latest version of the version sparspec-
tively.

We introduce an ordering s with respect to a version spaseas follows:

Definition 7 (Ordering on Version Space) O <g O’ iff O occurs prior toO’ in the se-
quenceS,i.e.,S=(---,0,---,0,--+).

Proposition 4.1.1 (Prior version and Linear Ordering)

the prior version relation<s is a linear ordering, namely< g is
(i) irreflexive, i.e.,(O 4g O),

(i) transitive, i.e.,0 <g O"andO’ <5 0" = O <5 0",

(i) asymmetry, i.e.0 <5 O' = O 45 O,

(iv) comparable, i.e., eithad <5 O" or O’ <5 O,

for any ontologyO, O, O”.

4.1.2 Syntax and Semantics of LTLm

The LanguageC+ for the temporal logid.TLm can be defined as an extension to the
ontology languag& with Boolean operators and the temporal operators as fellow

geL.=qec L+

peL+=¢e L+

O, € L= PN E LA+

¢ € L+ = PreviousVersion ¢ € L+
¢ € L+ = AllPriorVersions ¢ € L+
¢, € L+ = ¢Since) € L+

Where the negation and the conjunctiom must be new symbols that do not appear
in the language’ to avoid the ambiguities (thus they are different also frowm iotions
defined in Chapter 2, most specifically from negation givethascope of DL ontolo-
gies). Define the disjunctiow, the implication—, and the bi-conditionat in terms of
the conjunction and the negation as usual. Defires a contradictory A ¢ and T as a
tautology¢ vV —¢ respectively.

Using these basic operators, we can define some additioredtops useful for rea-
soning about multiple versions. We define 8w @anePrior Version operator in terms of
the AllPriorVersions operator as

SomePriorVersion¢ =4 —AllPriorVersions —¢
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The always-in-the-pasillPriorVersions operator is one which does not consider the
current state. We can define a strong always-in-thep#3fersions operator as

AllVersions¢ =4 ¢ A AllPriorVersions ¢,

which states thats always holds in the past including the current state’.

Let S be a version space on an ontology &t ando be an ontology in the sébs,
we extend the entailment relation for the extended langdages follows:

S,0 Eq iff OFEgq,forqel

S,0 E - iff  S,0 [~ ¢.

S,O}:gzﬁ/\w iff S,0F ¢,.

S,0 [= PreviousVersion¢ iff (O’,0) € S such thatS, 0" = ¢.

S,0 E AllPriorVersions ¢ iff forany O’ such thatD’ <5 O, S, 0" = ¢.

S, O ): ¢Sll’lCew iff 3(01 R Ol)(Ol <5 0. .. 01;1 <5 0; = O) such that

S,0; =¢forl <j<iandS,O; = ).

For a linear version spacg we are in particular interested in the entailment relation
with respect to its latest version of the ontolo§yn) in the version spacé. We use
S = ¢ to denote that5, S(n) = ¢. Model checking has been proved to be an efficient
approach for the evaluation of temporal logic formulas[@8P In the implementation
of MORE, we are going to use the standard model checking ihgoifor evaluation a
query in the temporal logicTLm . Therefore, we do not need a complete axiomatization
for the logicLTLm in this document.

4.1.3 Formal Properties

The validity of a temporal formula in the logicTLm is defined as a property which
is independent of any particulafLm model and any state in the model. Namely, the
property is true in every state of ahyLm model. We have the following definition:
Definition 8 (Validity) | ¢ iff S,0 = ¢ foranyS, o.

Here is a list of formal properties in the logiI' Lm:

Proposition 4.1.2 (Formal Properties of Temporal Operatos)

(@) E AllPriorVersionsp — SomePriorVersiong.

(the always-in-the-past implies the sometimes-in-th&-pa

(b) E PreviousVersionp — SomePriorVersiong.
(the previous implies the sometimes-in-the-past.)
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(¢) | PreviousVersionSomePriorVersionp — SomePriorVersiong.
(the previous of the sometimes-in-the-past implies theesoras-in-the-past.)

(d) E SomePriorVersionSomePriorVersionp — SomePriorVersiong.
(idempotent of the sometimes-in-the-past.)

(e) E AllPriorVersionsAllPriorVersionsp/APreviousVersiony — AllPriorVersionso.
(quasi-idempotent of the always-in-the-past.)

(f) E PreviousVersionPreviousVersiony — SomePriorVersiong.
(the previous of the previous implies the sometimes-irptst.)

(9) E ¢Sinceyy — SomePriorVersiony V 1.
(relation bewteen the since operator and the sometimekdrpast.)

(h) = ¢Sincey) — ¢.

(¢ sincey implies thatp holds in the current version.)

() E ¢ AN — ¢Since).

(trivial case for the since operator.)

4.2 LTLm as a Query Language

There are two types of queries: reasoning queries andvatqeeries. The former con-
cerns with an answer either ‘yes’ or ‘no’, and the latter @nes an answer with a particu-
lar value, like a set of individuals which satisfy the quesyniula. Namely, the evaluation
of a a reasoning query is a decision problem, whereas thaati@h of a retrieval query
is a search problem. In this section, we are going to discossse can use the proposed
temporal logic to support both reasoning queries and xetrgueries.

Reasoning queries

Using theLTLm logic we can formulate reasoning queries over a sequencetoliogies
that correspond to the typical questions mentioned in ttreduiction of this chapter.

Are all facts still derivable? This question can be answered for individual facts using
reasoning queries. In particular, we can use the queryPreviousVersion ¢ to deter-
mine for factsp derivable from the previous version whether they still hiolthe current
version. The same can be done for older versions by chaih@ef’teviousVersion
operator or by using the operatAilVersions to ask whether formulas were always true
in past versions and are still true in the current cAdl Versions ¢).
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What facts are not derivable any more? In a similar way, we can ask whether certain
facts are not true in the new version any more. This is of paldr use for making sure
that unwanted consequences have been excluded in the nearverhe corresponding
query is—¢ APreviousVersion ¢. Using theAllPrior Versions operator, we can also
ask whether a fact that was always true in previous versgnetitrue anymore.

Are the facts are newly derivable from the new version? Reasoning queries can also
be used to determine whether a fact is new in the currentorersh\s this is true if it

iS not true in the previous version, we can use the followingry for checking this

¢ A =PreviousVersion ¢. We can also check whether a new fact never held in previous
versions using the following query A =SomePrior Version ¢.

What is the last version that can be used to derive certain fas? Using reasoning
gueries we can check whether a fact holds in a particularorerés versions are arranged
in a linear order, we can move to a particular version usiegtteviousVersion oper-
ator. The querPreviousVersion PreviousVersion ¢ for instance checks whether
was true in the version before the previous one. The quBiyicey states thap always
holds since) holds in a prior version.

A drawback of reasoning queries lies in the fact, that theyaay check a property
for a certain specific fact. When managing a different versiof a large ontology, the
user will often not be interested in a particular fact, blt@sout changes in general. This
specific functionality is provided by retrieval queries.

Retrieval Queries
Many Description Logic Reasoners support so-called netligueries that return a set of
concept names that satisfy a certain condition. For exanaptdildren concept’ of a

concepte, written child(c, ¢’), is defined as one which is subsumed by the concegtd
there exists no other concepts between them. Namely,

child(c,d) =g ¢ T en A" TN Tend" #£end £).

Thus, the set of new/obsolete/invariant children concepésconcept on an ontology
o in the version spac# is defined as follows:

NeWehitgren (S, 0, ¢) =ar {C'|S, 0 |= child(c, ') N “PreviousVersion child(c, ) }.

obsoletechiiaren(S, 0, ¢) =ar {C'|S, 0 = —child(c, ') A PreviousVersion child(c, ')}

invariant ciigren (S, 0, ¢) =g {c'|S, 0 |= child(c, ¢') A PreviousVersion child(c, ') }.
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The same definitions can be extended into the cases like tpawanepts, ancestor
concepts, descendant concept and equivalent conceptse Thery supports are suffi-
cient to evaluate the consequences of the ontology chamgktha differences among
multi-version ontologies.

4.2.1 Making version-numbers explicit

Temporal logics allow us to talk about the temporal aspedtsout reference to a partic-
ular time point. For reasoning with multi-version ontolegj we can also talk about the
temporal aspects without mentioning a particular versism@. We know that each state
in the temporal logic actually corresponds with a versiothefontology. It is not difficult
to translate the temporal statements into a statement whfehs to an explicit version
number. Here are two approaches for it: relative versionberng and absolute version
numbering.

Relative version numbering

The proposed temporal logic is designed to be one for pastted. Therefore, itis quite
natural to design a version numbering which is relative ® ¢hrrent ontology in the
version space. We use the formla to denote that the property holds in the current
version. Namely, we refer to the current version as the oafsin the version space, and
other states are used to refer to a version relative to themuversion, written as-i as
follows:

00 =g ¢.
(—i)¢ =4 PreviousVersion((1 —1i)¢).

The formula—i¢ can be read as “the properyholds in the previousth version”.

Absolute version numbering

Given a version spacg with n ontologies on it, i.e.|S| = n — 1. For the latest version
o = S(n), it is well reasonable to call theth ontologyS(i) in the version space the
version; of S, denoted as, S. Namely, we can use the formulaS¢ to denote that the
property¢ holds in the version in the version spacg. Thus, we can define the absolute
version statement in terms of a relative version statenefalws:

(iv S)¢ =df (Z - n)¢

Explicit version numbering provides the basis for more ceteretrieval queries. In
particular, we now have the opportunity to compare the chidf a concept in two
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specific ontologies andj in the version spac8. The corresponding definitions are the
following:

newChildren(S, ¢);j =4 {¢|S | (i, ) child(c, ) A =(34,S) child(c, ')}

obsoleteChildren(S, c); j =4 {'|S = —(4,S) child(c, ) A (4, 5) child(c, ')}
invariantChildren(S, ¢); ; =q4r {|S |= (4, S) child(c, ') A (4, 5) child(c, ')}

Again, the same can be done for other predicates like pasamtestor or descendant
concepts.

4.3 Basic Principles of the Inference Implementation

There is a prototype implementation based on the approastrided above. The sys-
tem is implemented as an intelligent interface between ahcgtion and state-of-the art
description logic reasoners (which support the DIG inssflBMCO03]). The prototype
provides server-side functionality in terms of an XML-baseterface for uploading dif-
ferent versions of an ontology and posing queries to thestores. Requests to the server
are analyzed by the main control component that also tramsfqueries into the under-
lying temporal logic queries if necessary. The main conttement also interacts with
the ontology repository and ensures that the reasoning eoemts are provided with the
necessary information and coordinates the information Between the reasoning com-
ponents.

The actual reasoning is done by model checking componentes$ting temporal
logic formulas that uses the results of an external desonjbgic reasoner for answering
gueries about derivable facts in a certain version. Moréherréference implementation,
some experiments and their evaluation can be found in [HI9SaHKO06].

32 November 14, 2007 KWEB/2007/D2.3.9



Chapter 5

C-OWL Potential for Reasoning with
Versioned Ontologies

by VIT NOVACEK, MATHIEU D’AQUIN, JEAN LIEBER AND AMEDEO NAPOLI

In this chapter we present an initial proposal of an altéveaapproach to multi-
version ontology reasoning, based on re-casting a solémiocontextualised knowledge
representation and reasoning into the ontology dynamiosadio

Context and its representation has been relatively intehysstudied by the researchers
in Al during the last two decades [McC93, Akm02]. Quite natly; the importance of
context has been recently recognised even within the Sémmaleb and related knowl-
edge representation paradigms [GG01, BGOH].

Contextual knowledge representation aims at developni@fticient formalisms and
reasoning principles that would allow for dealing with setsonstructs (axioms, facts,
rules, etc.) restricted to a particular domain (i.e., cet)fevhile not being necessarily
globally consistent or meaningful. Another important teatof the context-dependent
knowledge representation is relating the particular cdetamong themselves (e.g. by
the so called lifting mechanism [McC93] or by bridge rule®f&z02, BGvH 03]).

Considering an evolving ontology, we can very naturallyises a sequence of con-
texts changing in time (elaborated in Section 5.1). Whenrigimog mappings between the
evolving versions of particular concepts, we can directiyse the semantics and reason-
ing services originally meant to support contextual orgas (covered by Section 5.2.1).

More specifically, we build on the similarities of notionswgfrsion and context spaces
(of ontologies). We do so primarily in the scope of the C-OWipaach proposed
in [BGvVH*03], since it presents an extension of a standard and widsdg vntology
language — OWL [BvHH04]. Note that rather than giving an exhaustive descriptibn
the original C-OWL features here, we reference to the pap@wH* 03] for the relevant
detailed analysis, syntax and semantics of the extensiorathother issues that are not
directly related to the application of C-OWL to the multirg®n ontology reasoning.
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5.1 Version and Context Spaces — Essential Similarities

There is no explicit definition of context in [BGvHD3]. However, it is implicitly assumed
that a context is an ontology, interpreted locally (basycdduilding on the local model

semantics [GGO01]). The local interpretation is based on@pgate modification of the
standard OWL semantics [PSHHO4]. Here we describe, how af gerticular ontology

versions can be treated as a set of local contexts (Sectioh)5.The mechanism of
mapping between particular ontology versions is present&action 5.1.2 then.

5.1.1 \ersions as Contexts

In the following, we use the notation for (a sequence of) ieeesd ontologies as intro-
duced in Section 4.1.1 of Chapter 4. We employ the concepineat version space
S = (01,04,...,0,), with ontology versions referenced I8i), i € {1,...,n},
and with the linear ordering s defined on it. This notation is convenient for expressing
the actual precedence of ontology versions from the initidhe current one (not taking
version branches into account, since the sequence is layadefinition).

The version space can be easily embedded into the scopeeotiessotions of con-
textual OWL extension. Without loss of generality, thegsion spacean be treated as the
OWL spacddefined in [BGvH 03]). We only have to assume that:

1. ontology version indice§l, ..., n} correspond to the respective ontology version
URIs

2. the ontologie®),, ..., O, are expressed using OWL (DL)

3. if an ontologyO; references a concept (role, individual) defined in an o0,
it is explicitly annotated by the index and considered as an elementfoffeign
language w.r.tO;; moreover, we can safely restrict such foreign referengebhd
j < i inequality, since an ontology version intuitively wouldtimeference future
concepts (roles, individuals)

Now we can apply the specific semantics for contextual ogiek) as defined and elab-
orated in [BGVH 03], also to version spaces. The next section shows centaatigality
of this approach when it comes to representation of expiatétions between ontology
versions and reasoning across their sequences.

5.1.2 C-OWL Mapping Constructs as Inter-Version Relations

We have adopted the semantics for contextual ontologiesdsis the previous section.
However, we also need an expressive mechanism in orderdte risle versions by ex-
plicit mappings. Only specifying the (previous) foreigrfidgions of ontology elements
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(i.e., concepts, roles or individuals) in an ontology vensmay not be enough for many
practical applications and expressive reasoning acresgtsion space.

The C-OWL formalism presents a definition of so calbehtext spacevhich is build
directly on the top of th©WL spacetogether with appropriate extension of the interpre-
tation function [BGvH 03]. Essentially, a context space consists of the set ofagits
in an OWL space and a family of respective mappings. In thpesod multi-version rea-
soning supported by C-OWL, we will call this structurepped version spacassuming
that the version space described in Section 5.1.1 is embedaetly in the same way as
the OWL space in the original definition in [BGVO3].

The mappings consist of so callbddge rules We adopt these without any modifi-
cation, since they are directly suitable for setting exphelations among the particular
ontology versions The bridge rules between elements (concepts, roles oridhils)

i : x,j : y from ontologiesD;, O;, respectively, can be intuitively described as follows
(with all the relevant formal definitions given in [BGVI3] again):

e i:x —= j:y-—statesthat: x is more specific than : y
e i :x —= j:y—statesthat: yis more specific thap : x
e i:x —= j:y-—statesthat: x andj : y are equivalent

e i:x —1 j:y—statesthat: x and;j : y are incompatible (i.e., their interpreta-
tions are disjunct)

e i :x —* j:y—statesthai: x andj : y are incompatible (i.e., the intersection of
their interpretations is non-empty)

These rules allow us to very naturally model several differelations between elements
of ontology versions in a version space. We describe theiptes of reasoning with such
inter-related versioned ontologies in the next sectioayigled also by simple illustrative
examples.

5.2 Mapped Version Spaces — Inference Issues and an
Example

First, we describe essential features of a reasoning emngiplementation dealing with
bridged ontology (version) spaces in Section 5.2.1. Theilustrate the proposed mod-
elling of versioned ontologies and its exploitation on aaraple in Section 5.2.2.

INote that the bridge rules also explicitly identify the figre concepts for an ontology version, as
demanded by the third requirement in the previous section.
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5.2.1 Realisation of the Reasoning

Inference in C-OWL is based on so called DDL (Distributed ®@gxion Logics) formal-
ism. Distributed DLs are extensions of DLs in which sevepahl ontologies are consid-
ered to be related through semantic mappings [BS02a]. Ddrs vormally investigated
in [BS02b] and are closely related to the multiple viewpdinbwledge representation
and reasoning, as described in [GGO1].

Modeling and formalizing a multiple viewpoint represergatwithin a DDL is ade-
centralizedtask, i.e. there is no need to set up a consensus, but, dimatlystinguish
viewpoints [dLNO7]. Three main steps can be considered:

1. determine the relevant viewpointsthe domain,
2. build a local ontologyfor every viewpoint, and

3. establish mappingbetween local ontologies, reifying correspondences batwe
viewpoints.

In the multi-version ontology reasoning settings, we domte to pay attention to the
first two steps in this process — the viewpoints and respeadntologies are implicitly
given by the ontology versions. We only have to define the nmggpin order to make
use of the contextual inference applied to multi-versiotolmgy reasoning.

Local and Global Reasoning Services

Local reasoning serviceim DDL are the standard DL reasoning services [BOM3a],
performed in a particular context, without taking into ascbthe bridge rules. Alobal
reasoning servicéakes advantage of bridge rules for inferring statements aontext
in using knowledge from other contexts. The paper [STO4$@mnés an extension of the
standard tableau algorithm for the computation of the dlsbhbsumption test in DDLSs.
Global subsumptiorelies on the principle of “subsumption propagation” taits sim-
plest form, can be expressed as:

if the mappingM;; contains 1 : E =, j:C'and“i:F =, j:D"
then “J satisfiesi : E C F” implies that “J satisfiesj : C C D”

Intuitively, this means that subsumption in a particulanteat can be inferred from
subsumption in another context thanks to bridge rules. |&iniglobal instance checking
is based on an instantiation propagation rule:

if M,;includes : ¢ = j:D"and“i:a — j: b
then “J satisfiesi : C(a)” implies that “J satisfiesj : D(b)”
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Instantiation is extended for global instance checkingsdsleon bridge rules, informa-
tion known about an individual in a particular context carcbenpleted using inferences
made in other contexts.

Solving a problem in a multi-viewpoint framework isd@centralizegrocess: infer-
ences occur locally, in each viewpoint represented by aesbmt DDL, taking advantage
of bridge rules for reusing the knowledge and inferencemw ftiee other viewpoints. This
problem-solving approach is similar to a reasoning progesecentralized artificial in-
telligence defined in [DM89] as being concerned by the activity of aotaous intelligent
agents that coexist and collaborate with other agents, &geht having proper goals and
proper knowledge.

Implementation of Reasoning in C-OWL

Recently, a KksIMIR system [dBB 05, dLNO6, dLNO7] has been developed. The sys-
tem is aimed at decision knowledge management in oncoldyy.KRSIMIR system can
be viewed as an intelligent assistant for physicians irr anegryday practice of decision
making. A novel feature of the research on thesmIR system is the use of viewpoints
— one viewpoint per an oncology specialty — based on a diggthDL formalism, namely
C-OWL. The support for C-OWL in the system is quite generagrethough the overall
aim of the system is rather specific to e-health applicatidissuch, the C-OWL reason-
ing services implemented inASIMIR can be very naturally used within the multi-version
reasoning approach introduced in this chapter.

The architecture of the KSIMIR semantic portal relies on a knowledge server, imple-
mented as a set of Web services and embeddingehee® owL reasoner [SP&07], the
JENA API[McB02], and the IRAGO DDL reasoner [STO5]. More details on theKIMIR
system implementation can be found in [dBE5, dLN06, dLNO7].

Querying Version Space Modelled in C-OWL

When modelling the mapped version space using C-OWL as ilesicin this chapter,
we can eventually employ multi-version reasoning usingftilewing query templates
(evaluated by a C-OWL inference engine):

e check the satisfiability of a given set of statements wa.ia fparticular ontology
version

e check the satisfiability of a given set of statements, itegatirough all the versions
in a version space (figuring out which versions entail therstite query)

e determine a version of an ontology eleméntz in an ontology versior); (i.e.,
find respective equivalent concept(s), if present)

Also, certain validation tasks can be performed:
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e determine, whether a given set of statements is compatibékiag use of the
(in)compatibility bridge rules) w.r.t. a particular vessi(and its predecessors)

e determine a version (or a version set), which is compatilité & given set of
statements (dual task to the previous one)

5.2.2 Example

Imagine a user who builds and maintains an ontology of hisesrrhusical collection
(e.g., in order to properly annotate the resources on a a@skA sample of the initial
model (i.e., versiom, ) is given in Figure 5.1,

Let us assume now that the user adds and retracts some stedeaneating another
versionO, from the ontologyO,, as displayed in Figure 5.2.

Two statements related to classical music and one staterakated to rock music
were added. The clagx: MI'VCr ap was removed, considered perhaps too subjectively
motivated now. Moreover, the user may find appropriate ttedtaat punk can also be
considered as mainstream in case of some bands. However,she does not want to
create an explicit sub-class relationship in the currergige of the ontology — so he or
she uses a compatibility bridge rule, relating punk and ste#am concept defined in the
previous version.

Furthermore, the user may want to prevent mixing the sewsofiex: hasPer -
former andex: hasConposer roles (may possible due to common super-class of
the domain classes). However, he or she does not want to evpgasicit disjointness
restriction here (which would only be possible in OWL 1.hyway [HKS05]), since the
definition may be still unstable in the scope of future depglent of the ontology. So
he or she uses an incompatibility rule for the respectiviestants. These rules form the
mapping between the versiots andOy, as displayed in Figure 5.3.

In yet another iteration of the ontology maintenance precse user changes the
classex: Punk into ex: PunkRock, however, with no shift in the actual semantics of
the class intended. He or she also adds a new individual G eenDay, primarily
attributed as a punk playing band. The changes are givemguré&b.4.

The fact that the semantics of th&: Punk andex: PunkRock classes remains the
same can be encoded in a mapping betw@eandO,, as shown in Figure 5.5.

Moreover, the user may want to keep a record of the fact thaeiiGDay is not a
genuine punk rock band in his or her opinion, and attribute theMI'VCr apBand class
in the O; version. Although the class does not exist anymor&inthere may still be
some (possibly shared) annotations of the user’'s musieaah using the old version of

°Note that in order to make the presentation as simple aslpessie abstract from exhaustive names-
pace definitions and additional ontology annotations harkess found absolutely necessary.
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<ow : O ass rdf:
<ow : C ass rdf:
<ow : C ass rdf: "ex: G oupOf Persons"/ >
<ow : O ass rdf: "ex: Rock" >
<rdfs:subd assOf rdf:resource="ex: Genre"/>
</ow : Cl ass>
<ow : Cd ass rdf: |1 D="ex: C assics">
<rdf s: subd assOf rdf:resource="ex: Genre"/>
</ ow : Cl ass>
<ow : O ass rdf: | D="ex: | ndie">
<rdf s: subd assOf rdf:resource="ex: Rock"/>
</ ow : Cl ass>
<ow : O ass rdf: | D="ex: Mai nstreant >
<rdf s: subd assOf rdf:resource="ex: Rock"/>
</ ow : Cl ass>
<ow : O ass rdf: | D="ex: MTVCrap" >
<rdfs:subC assOf rdf:resource="ex: Mai nstreant'/ >
</ow : Cl ass>
<ow : C ass rdf: | D="ex: Neo- Romantic">
<rdfs:subC assOf rdf:resource="ex: d assics"/>
</ow : Cl ass>
<ow : d ass rdf:I1D="ex: M ninalist">
<rdfs:subC assOf rdf:resource="ex: d assics"/>
</ow : Cl ass>
<ow : d ass rdf: | D="ex: Band" >
<rdf s: subd assOf rdf:resource="ex: G oupOf Per sons"/ >
</ ow : Cl ass>
<ow : O ass rdf: | D="ex: Conposer">
<rdf s: subd assOf rdf:resource="ex: Person"/>
</ ow : Cl ass>
<ow : Obj ect Property rdf: | D="ex: hasPerforner">
<rdf s: domai n rdf:resource="ex: Band"/ >
<rdf s: range rdf:resource="ex: Person"/>
</ owl : Obj ect Property>
<ow : Obj ect Property rdf: | D="ex: pl ays">
<rdfs:domai n rdf:resource="ex: Band"/ >
<rdf s:range rdf:resource="ex: Genre"/>
</ ow : Obj ect Property>
<ow : O ass rdf: | D="ex: MI'VCr apBand"
<ow : equi val ent Cl ass>
<owW : Restriction>
<ow :onProperty rdf:resource="ex: plays"/>
<ow : al | Val uesFrom rdf: resour ce="ex: MI'VCr ap"/ >
</ow : Restriction>
</ ow : equi val ent O ass>
</ ow : Cl ass

"ex: CGenre"/>

| D=
| D="ex: Person"/>
| D=
| D=

Figure 5.1: Sample of the initial ontolog®()
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Added statements:
<ow : Cl ass rdf: | D="ex: Punk">
<rdfs: subC assOf rdf:resource="ex:|ndie"/>
</ow : Cl ass>
<ow : O ass rdf: | D="ex: Musi cal School ">
<rdf s: subCl assOf rdf:resource="ex: G oupCf Persons"/ >
</ ow : Cl ass>
<ow : Obj ect Property rdf: | D="ex: hasConposer" >
<rdf s: domai n rdf:resource="ex: Musi cal School "/>
<rdf s:range rdf:resource="ex: Person"/>
</ ow : Obj ect Property>

Retracted statements:
<ow : O ass rdf: | D="ex: MIVCrap" >

<rdf s: subd assOf rdf:resource="ex: Mai nstrean'/>
</ ow : Cl ass>

Figure 5.2: Changes transforming into O,

<cow : sourceOntol ogy rdf:resource="ex: O3"/>
<cow :target Ontol ogy rdf:resource="ex: O"/>

<cow : bridgeRul e cow : br-type="conpat">
<cowl : sourceConcept rdf:resource="ex: Punk"/>
<cow :target Concept rdf:resource="ex: Mai nstreant'/>
</ cow : bri dgeRul e>
<cow : bri dgeRul e cow : br-type="i nconpat ">
<cow : sourceConcept rdf:resource="ex: hasConposer"/>
<cow :target Concept rdf:resource="ex: hasPerforner"/>
</ cow : bri dgeRul e>

Figure 5.3: Mapping between, andO,

Added statements:
<ow : d ass rdf: | D="ex: PunkRock" >
<rdfs:subC assOf rdf:resource="ex: I ndie"/>
</ow : Cl ass>
<ex: PunkRock rdf: | D="ex: G eenbay"/>

Retracted statements:
<ow : d ass rdf: | D="ex: Punk">
<rdfs:subC assOf rdf:resource="ex: | ndie"/>
</ ow : Cl ass>
<ow : d ass rdf: | D="ex: Punk"/>

Figure 5.4: Changes transforming into Os

<cow : sourceOntol ogy rdf:resource="ex: O3"/>
<cow :target Ontol ogy rdf:resource="ex: O3"/>

<cow : bridgeRul e cow : br-type="equi v">
<cowl : sour ceConcept rdf:resource="ex: PunkRock"/>

<cowl : target Concept rdf:resource="ex: Punk"/>
</ cow : bri dgeRul e>

Figure 5.5: Mapping between; andO,
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<cow : sourceOntol ogy rdf:resource="ex: O3"/>
<cow :target Ontol ogy rdf:resource="ex: O"/>

<cow : bridgeRul e cow : br-type="into">
<cow : sourceConcept rdf:resource="ex: GeenDay"/>
<cowl :target Concept rdf:resource="ex: MI'VCrapBand"/ >
</ cow : bri dgeRul e>

Figure 5.6: Mapping betwean; andO,

the ontology, therefore this mapping may prove useful (igresource matching). This
relation is established using the mapping displayed inreiéu6.

Having the musical annotation ontology versions model@dgC-OWL in line with
the previous examples, the user can execute for instandelkweing illustrative queries
(using the underlying C-OWL inference engine):

¢ find a representation of clasx: Punk in the versionD; (result:ex: PunkRock
in 03)

e find subclasses of class equivalente: PunkRock in the versionO, (result:
subclasses of thex: Punk class in the), version)

e find all bands playing MTV crap music in the versio®s and higher (result:
ex: G eenDay in the sample of the versian, in our example)

¢ validate all definitions of composer individuals in the vens O, and higher (i.e.,
check, whether the definitions using the: hasConposer role do not interfere
with the definitions using thex: hasPer f or ner role —results in raising an error
iff the sets corresponding to the role interpretations atedrsjoint)

KWEB/2007/D2.3.9 November 14, 2007 41



Chapter 6

Discussion, Conclusions and Future
Work

In this chapter, we give a discussion of the presented tppioside a conclusion and list
the main future tasks that follow from the the content of tiejgort.

6.1 Discussion of the Presented Topics

The content of Chapter 2 and 3 is rather theoretical, howekere are certain conse-
guences for the practice of ontology maintenance, too. Wlpdiscuss some of the
major consequences in rather informal way in Section 6.1.1.

Chapters 4 and 5 present two alternatives of multi-versaseoning. In Section 6.1.2
we show the relation between them, allowing for their pdssdmmbination within a
practical deployment.

6.1.1 Rational Dynamic Ontology Maintenance
Negation and revision in changing ontologies

Since negation is very closely related to inconsistenagshown in Section 2.2, it is very
important to consider this fact within the process of ongglmaintenance. More specifi-
cally, unconsidered introduction of negation can causeliegence or even inconsistency
(see Section 2.2 and 2.3) of the new version of ontology bextgnded.

In case of OWL (DL) ontologies, care should be exhibited whandlingow : com
pl ement O andow : di sj oi nt Wt h statements as a part of the revision. As can be
seen in [BvHH 04], these correspond to negation either directly, or vigiagtion of de
Morgan laws. In an ontology revision implementation, itglide checked whether these
particular types of statements in the revision set do ndateaconsistency, coherency or
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any application-specific restrictions when added to theeturversion of the ontology.

Typically, this would be arranged using an associated @meg engine. When there is
any problem detected, either in the revision set, or in thieect ontology, or in both, the

involved statements should be adapted in order to preverrttblem (possibly in a way

similar to the techniques presented in [HvHB5]).

In [NLHZ07] we describe an implementation of semi-automatitology integration
method as a crucial part of the dynamic ontology lifecyclenscio we have introduced
in [NHL*06]. This integration can be understood as an ontology imvigperator and
thus it forms an example of a concrete application that shbehefit from following the
theoretical notions specified here. In a special sectioiNltHZ07] we show, how the
“integration operator” conforms to the postulates spetifiere in Section 2.3.

Contraction in changing ontologies

Implementation of a statement deletion in DL-based onie®ghould follow the con-
traction postulates defined in Section 2.3. This ensuremality of the behaviour of this
type of change (besides trivial removal of all axioms reldtestatements being removed,
of course).

Maintaining ontologies using diffs

Many ontology maintenance implementations use an ontotifiyiotion and structure
quite often [NM04, KFKO02, VG06], however, without a proerd/or common under-
lying formalisation. The preliminary semantic diff forndtion efforts initiated here in
Chapter 3 can help in order to make the diff implementatiol-defined and universal
even across different application scenarios or (logiceetaontology languages.

Commitment to a particular practical (weak) diff formal aétfion ensures well-de-
fined change introduction into evolving ontologies, witbarly understood and efficiently
predictable consequences. Quite obviously, this comnmtrcan be combined with con-
formance to the ontology change postulates from Chapter &der to adopt a well-
founded practical ontology change policy in an implemeatedf ontology maintenance.

6.1.2 Combined Approach to Multi-Version Reasoning

In the previous section, we presented several notes onorelaétween the introduced
theory and practical applications concerning dynamiclogypmaintenance and develop-
ment. In the following, we comment on the issues related tadyic ontology utilisation
— i.e., multi-version reasoning and possibilities of pi@dtcombination of the presented
approaches.

The C-OWL based reasoning across multiple ontology vesstam be easily trans-
formed to the temporal logics-based approach. This is éafigrdone by omitting the
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bridge rules (i.e., the mappings associated to particultwlogy versions, relating them
to one or more previous versions in the mapped version sgaeeSection 5.1.2 for de-
tails). We end up with a version space (defined in Sectiori¥ithen. The information on
the sequence of versions has not changed, therefore we rliag tite model-checking
based approach in order to evaluate queries specified iroBece.

Note that since both presented approaches to multi-versiasoning build on the
same underlying (description) logics-based inferenaeptsic queries on concept satis-
fiability they are able to evaluate are mutually reducibled@oh other. The only difference
is that the C-OWL based approach provides additional quegyessivity due to the map-
ping rules, which have to be explicitly defined.

When it is not feasible to define and maintain the mappingad@h the versions,
the temporal logics-based approach should be the choicidomparticular application
scenario. When the mappings can be maintained and explaitedbination of both
approaches may be useful. Some types of queries can be adslaemodel-checking
and other types (certainly the ones involving bridge rulestaucts) using the C-OWL
approach. For queries that can be evaluated by both apm®aakers may typically
choose the more efficient approach.

6.2 Conclusions

We presented a report summarising several theoreticatiphgs that can be used for
dealing with changing ontologies. First, formalisatiomaofology change was introduced.
Chapter 2 dealt with uniform groundwork for negation andgjeoperators in ontologies,
adapting the AGM principles [AGM85] in the context of Degtion Logics. Chapter 3

introduced a preliminary formalisation of logics-basedobogy diffs — a feature used in
practical ontology development, but rather under-ingedgéd from the theoretical point
of view.

Second, we presented two alternatives for reasoning wéhgihg (versioned) ontolo-
gies. Chapter 4 and 5 deals with temporal logics-based a®¥\C-inspired approach,
respectively. Both of these approaches build on the topefi8ual Description Logics
ontology reasoning, however, providing additional feasuthat allow to query an ontol-
ogy across a (linearly sorted) sequence of all its versiotisie.

We put these topics into a coherent framework and providedersary in Section 6.1.
This summary pointed out the basic theoretical notionsctlyeapplicable for practical
implementations of dynamic ontology lifecycle, namely tiynamic ontology mainte-
nance and querying of an ontology version repository. Tinersary establishes a “point
of contact” for developers interested in well-founded dyi@ontology maintenance and
inference applications. In [NLHZO07] we show a simple ongplantegration application
that semi-automatically implements ontology revisionrapar according to the principles
discussed here in Section 6.1.1.
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6.3 Future Work

The main amount of future work in the scope of the general gaef this deliverable
consists of bridging the gap between theory and practigalicgtions even more. Con-
cerning ontology change formalisation, the analysis obtagcal principles should be
combined with appropriate user studies and use cases in wrdiefine and document
respective best practices. This would support direct tesirtd the theoretical principles
into practice and also help to identify, which parts of thedity are perhaps still not that
relevant for practical applications.

Regarding the multi-version reasoning, the proposed ampratilising the C-OWL
formalism should be elaborated in more detail and evertuaplemented. The combina-
tion with the temporal logics-based approach should besiyated then, confronting the
resulting application to user experience and demandsnBtance, support for branching
ontology version space can be further analysed and addedviép useful. Support for
non-DL ontology reasoning (e.g., RDFS or rule-based) waildd be beneficial in many
practical applications.
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