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Abstract.
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École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
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Executive Summary

We present a report on several theoretical issues underlying the ontology dynamics and
ontology maintenance process. Ontology evolution topics have been widely discussed
within the Semantic Web community recently, both from practical and theoretical points
of view. Our motivation is to give an overview of selected important theoretical problems
related to ontology dynamics and discuss possible approaches to their solutions, stem-
ming from state of the art research. Though not directly related, this report complements
the dynamic ontology lifecycle methodology and partial implementation, as described in
deliverables D2.3.8v1 [NHL+06] and D2.3.8v2 [NLHZ07].

In this report, we address namely the following areas:

1. Logical Groundwork for Changes in Ontologies– study on ontology change op-
erations well-founded using belief-change theory

2. Semantics of Ontology Diffs– formal definition of an ontology diff, study on the
relations between syntactic and semantic level of ontologydiffs in RDFS

3. Reasoning with Versioned Ontologies– study on realisations of inference among
multiple versions of an ontology; two possible approaches analysed:

• multi-version inference using linear temporal logics among sequence of on-
tology versions (the reasoning about particular ontologies in the version se-
quence is realised using a “classical” ontology inference engine, whereas the
reasoning across the whole sequence is done by model checking)

• multi-version inference using the C-OWL formalism among set of ontology
versions connected by so called bridge rules (inference is based on the Dis-
tributed Description Logics formalism, utilising localised Description Logics
reasoning for particular ontology versions and global ontology mappings, i.e.
the bridge rules, for the whole version sequence)

Building on the theoretical study of the enumerated topics,we also discuss basic prac-
tical consequences concerning the dynamic ontology maintenance process. We also dis-
cuss possible combination of the two presented alternatives of multi-version reasoning
and provide general suggestions on implementation and application of the combined ap-
proach. The main expected contribution consists of the profound and coherent analysis of
the above theoretical issues, complemented by identification of several important general
connections to practical implementations tackling ontology dynamics. In this respect,
we also give basic suggestions on incorporation of the theoretical results into practical
scenarios.
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Chapter 1

Introduction

The purpose of this deliverable is to introduce several theoretical aspects relevant for
dynamics in the ontology lifecycle. We focus mainly on two issues arising when dealing
with ontologies dynamically changing in time –formalisations of ontology changeand
reasoning across multiple versions(of a changing ontology).

The presented content is meant to complement the practical features of dynamic on-
tology lifecycle described in [NHL+06, NLHZ07], where we concentrate on certain prac-
tical parts of the ontology evolution process. More specifically, the delivered analysis
of theoretical aspects provides a support for efficient and well-founded maintenance and
exploitation of changing ontologies

1.1 High-Level Overview and Motivation

We do not give exhaustive analysis of every imaginable theoretical issue related to on-
tology dynamics. More specifically, we omit a more detailed analysis of inconsistency
handling and resolution issues (see for instance [HvHH+05, HvHtT05]), which we con-
sider to be out of scope here, though definitely related to ontology lifecycle. We pay
attention to the two general problems mentioned above. Theyare elaborated in more
detail according to the following:

1. formalisation of ontology change:

• Chapter 2 – proper elaboration of the relation between inconsistency and nega-
tion, building on the AGM theory [AGM85], and consecutive formulation of
formal postulates for ontology change (contraction and revision operations)

• Chapter 3 – formalisation of the ontology diff notion, specification of its se-
mantic properties, study of the relation between the syntactic and semantic
levels of RDFS ontology diffs

2. multi-version reasoning:

1



1. INTRODUCTION

• Chapter 4 – study on a temporal logics inference (i.e., modelchecking) on
the top of “classical” ontology reasoning, definition of a respective query lan-
guage for multi-version reasoning

• Chapter 5 – adaptation of C-OWL [BGvH+03] formalism for modelling of
and reasoning with contextualised ontologies in OWL [BvHH+04] in order
to allow inference across sequences of ontology versions, linked by so called
bridge rules

Thus, the report provides information on: (1), how to formally grasp ontology change;
(2), how to benefit from this formalisation in order to facilitate dynamic ontology main-
tenance; (3), how to exploit the versioned changing ontologies with multi-version reason-
ing. Some basic guidelines in this respect are elaborated inthe concluding Chapter 6,
where we relate the rather theoretical content to the practical implementation of the dy-
namic ontology lifecycle features.

The first motivation and aim is to provide the implementers and users of dynamic
ontology lifecycle applications with principles of consistent, efficient and well-founded
ontology maintenance. The second aim is to present possiblealternatives of multi-version
inference in order to offer means for reasoning with changing ontologies. Fulfilment of
both these general aims forms also the main contribution of this report.

Note that our overall motivations are supported by the community demands analysed
in a survey aimed at several features of ontology dynamics (results reported in [NLHZ07])).
More detailed motivations relevant to the particular topics are given in the introductory
parts of the respective chapters.

1.2 Related Work

The general topic of ontology evolution and change has been studied for instance in [NK04,
Sto04]. These approaches cover the changing ontology maintenance mostly from the
practical point of view, supporting appropriate applications dealing with changing on-
tologies. In our report, we aim to provide a better understanding of what the change
actually is and what the consequences of its introduction can be.

Ontology versioning theory, methodology and implementations supporting ontology
change are covered by [KFKO02, KF01, VG06]. These works provide means for man-
agement of changing ontologies, building on the well-knownprinciples from software
and database schema maintenance. However, the support for actual exploitation of result-
ing ontology version repositories is lacking. In this document, we offer solutions how to
tackle this exploitation, namely by means of multi-versioninference.

A framework for changing ontologies, specifically for handling possible inconsisten-
cies is given in [HvHH+05]. [HvHtT05] analyses possibilities of reasoning with anincon-
sistent ontology. These approaches can be seen as complementary to the work presented
here, since we deliberately disregard analysis of inconsistency detection and resolution in

2 November 14, 2007 KWEB/2007/D2.3.9
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favour of presentation of formalisms that can possibly minimise inconsistency introduc-
tion to large extent.

Furthermore, relatively representative sample of the mostrecent research trends in
the theoretical support of ontology dynamics can be found through the web-site of the
IWOD’07 workhop (seehttp://kmi.open.ac.uk/events/iwod/). The NEON

project has focused on a special issues of dynamics amongnetworkedontologies, how-
ever, the state of the respective research has been still rather in its initial stage by the date
of publication of this report, largely in line with the directions of the works cited above.

Similarly to the motivations, more detailed overview of a specific related work is given
in the particular chapters.

1.3 Position within the Project

Concerning the dynamics Knowledge Web work-package (WP 2.3), the work presented
here has direct relation to dynamic ontology lifecycle [NHL+06, NLHZ07]. This rela-
tion holds namely for Chapters 2 and 3 that present theoretical analysis underlying well-
founded, optimal and efficient dynamic ontology maintenance. Chapters 4 and 5, dealing
with reasoning across multiple versions of an ontology, areprimarily related to the ontol-
ogy versioning topics [VEK+05, VKZ+05].

There is no direct relation to other work-packages in the Knowledge Web project,
since the presented content is very explicitly focused on the basic theoretical issues closely
associated with the ontology dynamics only. Indirectly, the proposal of C-OWL based
multi-version reasoning in Chapter 5 can be related to the heterogeneity Knowledge Web
work-package (WP 2.2), since C-OWL may be used as an ontologymapping language,
too (among other things).

KWEB/2007/D2.3.9 November 14, 2007 3



Chapter 2

Logical Groundwork for Changes in
Ontologies

by GIORGOS FLOURIS, ZHISHENG HUANG, JEFF Z. PAN, DIMITRIS
PLEXOUSAKIS, AND HOLGER WACHE1

This chapter introduces a logic-based framework for ontology change. The change man-
agement plays its role in the essential parts of the ontologylifecycle scenario (mainly
versioningandcreation), as presented in [NHL+06]. Such a framework is therefore no
doubt very relevant in this respect, however it is relatively difficult to directly apply its the-
oretical conclusions in practice. The logical framework described in this chapter formally
underpins general changes in DL-based ontologies in terms of operators ofrevision(addi-
tion of new statements) andcontraction(removal of current statements). These operators
should desirably preserve the consistency of an ontology inpractical application. Thus,
requirements on the operators and the very notions related to the consistency interpreta-
tions (mainly negation) must be rigorously specified beforeimplementing the respective
operations within practical realisation of an ontology lifecycle. We present such an anal-
ysis here.

The ability to deal with inconsistency and to accommodate change is of utmost im-
portance in real-world applications of Description Logic based ontological reasoning and
management [BCM+03b, HST00]. For example, one of the typical scenarios in deployed
Semantic Web applications is ontology reuse, where users build their own ontologies from
existing ones, rather than starting from scratch. After adding new axioms into an existing
ontology, users may find that revised ontologies become inconsistent. A remedy for such
a situation would require the removal of a minimal part of theontology in order to make
the resulting ontology consistent [HvHH+05]. This type of change is usually required to
meet some rationality postulates, similar to those in the AGM theory in the belief revi-
sion [AGM85]. Another example is reasoning with inconsistent ontologies [HvHtT05],
where querying systems should return meaningful answers toqueries on inconsistent on-
tologies. The latter suffers from ”entailment explosion” as any formula is a consequence
of an inconsistent logical theory.

1Based on [FHP+06], with minor modifications by Vı́t Nováček.
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Addressing effectively the issues raised in these examplesrequires precise, formal
definitions of inconsistency and negation. Unfortunately,DL-based ontology languages,
such as OWL DL [PSHH04], do not provide enough expressive power to represent ax-
iom negations. Furthermore, there is no single, well-accepted notion of inconsistency and
negation in the Semantic Web community, due to the lack of a common and solid foun-
dational framework. [SC03] proposed an approach to debug inconsistent ontologies, in
which inconsistency is identified with the existence of unsatisfiable concepts. [HvHtT05]
developed a framework of reasoning with inconsistent ontologies, in which inconsistency
is given a classical first-order logic interpretation. In [HvHH+05], the definition of axiom
negation is merely mentioned in an example at a footnote, without proper discussion in
the paper.

We propose a general framework accounting for inconsistency, negation and change
by which we aim at providing a unique foundation of inconsistency and change processing
for DL-based ontologies. We distinguish different levels of inconsistency and negation in
DL-based ontologies, and investigate the relationship among the different notions. Ac-
cordingly, we lay the foundations of a formal theory of ontology change, based on a set
of rationality postulates inspired by the AGM theory of belief change. Furthermore, we
discuss how this proposed framework can provide a foundation for the tasks of ontology
management and reasoning. Specifically, we show how a bridgeconnecting two main
ontology change operations – revision and contraction – canbe built under the proposed
framework.

2.1 Preliminaries

Ontologies An ontology[UG96] typically consists of a hierarchical description ofim-
portant concepts in a domain, along with descriptions of theproperties of each concept,
and constraints on these concepts and properties. In this chapter, following the W3C Web
Ontology language OWL [PSHH04], we consider Description Logics (DLs) based ontolo-
gies. Description Logics are a family of class-based (concept-based) knowledge represen-
tation formalisms, equipped with well-defined model-theoretic semantics [BCM+03b].
TheSHOIN (D+) DL underpins OWL DL, the key sub-language of OWL. The rela-
tion betweenSHOIN (D+) DL and OWL DL – mainly concerning reduction of OWL
entailment to DL satisfiability – is described in detail in [HPS03].

Let K be a Description Logic,C,D K-concepts,R, S K-roles, anda, b individuals.
An interpretation(written asI) of an ontology consists of adomain∆I (a nonempty set),
and aninterpretation function(written as·I), which maps each individual namea to an el-
ementaI ∈ ∆I , each concept nameCN to a subsetCNI ⊆ ∆I of the domain and each
role nameRN to a binary relationRNI ⊆ ∆I × ∆I. The interpretation function can
be extended to give semantics toK-concepts andK-roles, which are concepts and role
descriptions built byK-constructors. Example concept constructors ofSHOIN (D+)
are¬C,C ⊓D,C ⊔D, ∃R.C, ∀R.C,>nR,6nR and{a} (wheren is a natural number).

KWEB/2007/D2.3.9 November 14, 2007 5



2. LOGICAL GROUNDWORK FOR CHANGES IN ONTOLOGIES

A K-ontology (or simply ontology)O is a finite set of axioms of the following forms:2

concept inclusion axiomsC ⊑ D, transitivity (abstract) role axiomsTrans(R), role in-
clusion axiomsR ⊑ S, concept assertionsC(a), role assertionsR(a, b) and individual
(in)equalitiesa ≈ b (a 6≈ b, respectively). In an ontology, we useTBox(RBox, ABox)
to refer to the set of concept (role, individual, respectively) axioms. An interpretationI
satisfies the concept inclusion axiomC ⊑ D if CI ⊆ DI. Due to the limitation of space,
the reader is referred to [BCM+03b] for more details of the semantics of DL constructors
and axioms. An interpretationI satisfies an ontologyO iff I satisfies all its axioms. An
ontologyO is consistentiff it has an interpretation. A conceptC is satisfiablew.r.t.O iff
there exists an interpretationI of O s.t.CI 6= ∅. A conceptC is subsumed by a concept
D w.r.t. O iff, for every interpretationI of O, we haveCI ⊆ DI . Given an axiomϕ,
an ontologyO entailsϕ, written asO |= ϕ, iff, for all interpretationsI of O, we have
I satisfiesϕ. An ontologyO1 entails an ontologyO2, written asO1 |= O2, iff, for all
interpretationsI of O1, we haveI satisfiesO2.

Given a (monotonic) Description LogicK, we consider a pair〈L,Cn〉, whereL is the
set of possibleK-axioms andCn is a consequence operator such that, given aK-ontology
O, Cn(O) = {ϕ | O |= ϕ}. In the rest of the chapter, we will use〈L,Cn〉 (or 〈LK, Cn〉
when necessary) to refer to the Description LogicK. 〈L,Cn〉 is a very general model
introduced by Tarski in 1928; to guarantee rationality, Tarski required thatCn satisfies
iteration, inclusionandmonotony; see [Fuh91].

AGM Theory and its Variations The theory of Alchourrón, Gärdenfors and Makinson
[AGM85] — theAGM theory— is probably the most influential work in the area of belief
change. This theory sets the foundations for future research on belief change, by defining
a set of widely accepted properties that any rational operators should satisfy.

More specifically, AGM studied 3 different operators, namely expansion, revisionand
contraction. Expansion is the addition of a sentence to a knowledge base (KB), without
taking any special provisions for maintaining consistency; revision is similar, with the
important difference that the result should be a consistentset of beliefs; contraction is
required when one wishes to consistently remove a sentence from their beliefs instead of
adding one. AGM introduced a set of postulates for revision and contraction that formally
describe the properties that such an operator should satisfy (expansion was skipped, as it
is trivial).

The AGM theory is based on thecoherence model. In practice, this model states that
both the explicitly represented knowledge and the implied knowledge are of equal value
and should be considered when deciding the changes to be madeupon the KB. In the
context of ontologies, however, it seems more natural to usethefoundational model, under
which there is a clear distinction between the explicitly represented knowledge (i.e., the
one contained in the KB) and the implicit one (i.e., knowledge implied by the explicitly
represented one). Under this model, changes can be made in the explicit knowledge
only; implicit knowledge can only be indirectly affected through changes in the explicit

2The kinds of role axioms that can appear inO depend on the expressiveness ofK.

6 November 14, 2007 KWEB/2007/D2.3.9
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knowledge.

The foundational model greatly restricts our options for a “proper” modification of
knowledge. This fact was verified in [Fuh91], in which an attempt to define a foundational
version of the AGM theory was made. There it was shown that, inthe logics originally
considered by AGM, no contraction operator can be defined that satisfies the foundational
version of the AGM postulates.

A second problem related to the application of the AGM theoryin the DL context
is caused by the assumptions made by AGM in the formulation oftheir theory: even
though the intuition behind the AGM postulates is independent of the logic used for the
representation of the KB, the formulation of the postulatesthemselves is based on certain
assumptions, disallowing their direct use in logics such asDLs [FPA04]. For example,
well known DLs do not provide enough expressive power to represent negations of all the
axioms. This fact is both a curse and a blessing. On the one hand, it implies that the AGM
theory cannot be directly applied to DLs; on the other hand, if we could reformulate the
AGM theory in a more general context, then the result of [Fuh91] might not be applicable
in DLs, as they do not satisfy the AGM assumptions.

This problem was originally addressed in [FPA04], where theAGM theory (and pos-
tulates) were recast so as to be applicable in a wider class oflogics, which includes DLs.
That work studied the AGM theory under both the coherence andthe foundational model,
but was restricted to the operation of contraction only. It was shown that there are certain
conditions under which a logic admits a contraction operator satisfying the AGM postu-
lates in each of the two paradigms (coherence, foundational). Such logics were termed
AGM-compliantandbase-AGM-compliant, respectively.

In this chapter, we focus on the foundational model; we will show that the condi-
tions introduced in [FPA04] for a base-AGM-compliant logicare too restrictive, overrul-
ing practically all interesting DLs. Following this observation, we propose a weakening
of the AGM postulates which is applicable in our context (DLsunder the foundational
model) and present some ideas on the operation (and postulates) of revision and its inter-
relationship with contraction.

2.2 Inconsistency and Negation

Different notions of inconsistency in DLs have been used in the Semantic Web commu-
nity, as we have discussed them in the introduction of this Chapter. We define different
notions of inconsistency and examine their relations there. We start from the most primi-
tive inconsistency, i.e., the unsatisfiability of a single concept.

Definition 1 (Unsatisfiable Concept)A named conceptC in the ontologyO is unsatisfi-
able iff, for each interpretationI ofO, CI = ∅.

That would lead us to consider the kinds of ontologies with unsatisfiable concepts.
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Figure 2.1: Examples of variant inconsistency and incoherence.

Definition 2 (Incoherent Ontology) An ontologyO is incoherent iff there exists an un-
satisfiable named concept inO.

The incoherence can be considered as a kind of the inconsistency in the TBox, i.e. the
terminology part, of an ontology. An incoherent ontology has an incoherent TBox. How-
ever, the incoherence does not provide the classical sense of the inconsistency because
there might exist a model for an incoherent ontology. Thus, we need the classical incon-
sistency for ontologies.

Definition 3 (Inconsistent Ontology) An ontology is inconsistent iff it has no interpre-
tation.

We now briefly discuss the relationships of the two kinds of inconsistencies of ontolo-
gies. Firstly, an ontology is inconsistent does not necessarily imply that it is incoherent,
and vice versa. There exist different combinations of the inconsistency and the incoher-
ence. Figures 2.1 presents several examples to show the variants of inconsistency and
incoherence. Figure2.1(1) is an example of inconsistent but coherent ontology, in which
the two disjoint conceptsC1 andC2 share an instancea. Figure2.1(2) is an example of
consistent but incoherent ontology, in which the two disjoint conceptsC1 andC2 share a
sub-conceptC3. Figure2.1(3) is an example of an inconsistent and incoherent ontology,
in which the two disjoint conceptsC1 andC2 share a sub-conceptC3, which has an in-
stancea. Figure2.1(4) is an example of inconsistent but coherent TBox, in which the two
disjoint conceptsC1 andC2 share a sub-concept which is a nominal{a}.

Secondly, coherence and consistency are somehow related. We can introduce a fresh
individual iC for each named conceptC in an ontologyO. Accordingly, an enhanced
ontologyO+ = O ∪ {C(iC) | for all named conceptsC in O} can be constructed by
adding these individual axioms about these fresh individuals into the ontology. It is easy
to see that the following propositions hold:
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Proposition 2.2.1 (a) Given an ontologyO, if its enhanced ontologyO+ is consistent,
thenO is coherent.
(b) Given a consistent ontologyO, if O is coherent, then its enhanced ontologyO+ is
consistent.

2.2.1 Axiom Negation in Ontologies

Negated axioms are closely related to inconsistencies and changes in ontologies. They are
one of the main sources of ontology inconsistencies. For example, an ontology containing
the mutually negated axiomsC(a),¬C(a) is inconsistent. Furthermore, negated axioms
are one of the keystones connecting the contraction and revision operators in the AGM
theory, although unfortunately well known DL-based ontology languages do not provide
enough expressive power to represent negations of all the axioms. Similar to the notion
of inconsistency, the definition of the negation is different from an approach to another
approach in the Semantic Web community [HvHH+05, HvHtT05], as we have briefly
discussed in the introduction of this chapter.

Based on the distinction between ontology consistency and coherence, in the follow-
ing we propose two corresponding axiom negations.

Definition 4 (Consistency-Negation)An axiomψ is said to be a consistency-negation of
an axiomφ, writtenψ = ¬φ, iff
(i)(Inconsistency)
{φ, ψ} is inconsistent,
(ii) (Minimality)
There exist no otherψ′ such thatψ′ satisfies the condition (i) andCn({ψ′}) ⊂ Cn({ψ}).

The inconsistency condition states the relationship between axiom negation and on-
tology inconsistency, which is based on the classical notion of negation. We introduce the
minimality condition to make the negation minimal so that itwould not include any un-
necessary additional part. Note that this does not enforce aunique consistency-negation
though. Similarly we have the following axiom negation which corresponds with inco-
herence.

Definition 5 (Coherence-Negation)An axiomψ is said to be a coherence-negation of
an axiomφ, writtenψ =∼φ, iff (i)(Incoherence){φ, ψ} is incoherent,
(ii) (Minimality) There exist no otherψ′ such thatψ′ satisfies the condition (i), and
Cn({ψ′}) ⊂ Cn({ψ}).

Note that it is possible to extend our notion of negated axioms from a single axiom to
a set of axioms, where a set of axioms represent the negation of another set of axioms.
This extension goes beyond the scope of this chapter.
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Example 1 Let us consider the consistency negation and the coherence negation of an
axiomC ⊑ D, whereC andD are named concepts.

¬(C ⊑ D) = ∃(C ⊓ ¬D), ∼ (C ⊑ D) = C ⊑ ¬D

where∃(C ⊓¬D) is an existence axiom [HPS03], which states there exists some instance
of the conceptC ⊓¬D. Note that, in any ontologies containingC ⊑ D andC ⊑ ¬D, the
conceptC is unsatisfiable.

It should be noted that the minimality condition of the consistency-negation prevents
the counter-intuitive property that any axiomψ is qualified to be a consistent-negation
of an inconsistent axiomφ (such asC ⊑ ¬C). It is easy to see that its consistency-
negation must be the tautologyT because the tautologyT is implied by any axiomψ,
i.e. Cn(∅) = Cn({T}) ⊆ Cn({ψ}). Thus no other axioms can meet the minimality
condition. For example, we have¬({a} ⊑ ⊥) = T ; similarly, we have∼ (D ⊑ ⊥) = T .

In the following we will briefly discuss whether the proposednegations satisfy the
following important properties:

1. Existence: It should exist in (almost) every DL.

2. Classicality: If the definition of negation is applied in a classical logic, it should
coincide with the classical negation.

3. Decidability: The problem of checking whether or not an axiom is the negation of
another axiom should be decidable.

Existence Definitions 4 and 5 improve the Existence property by giving up the restriction
on double negations; i.e., an axiomψ should be logically equivalent to the negation of the
negation ofψ. Due to the limitation of space, here we only illustrate our point with some
examples. For a DL〈L,Cn〉 that does not provide concept existence axioms, we cannot
use∃(C ⊓¬D) as a negation ofC ⊑ D; however, Definition 4 allowsC ⊓¬D(a) (where
a is a fresh individual) as a consistency-negation ofC ⊑ D. For a DL〈L,Cn〉 that does
not provide any role constructors, we cannot use∃(R ⊓ ¬S) as a negation of the role
inclusionR ⊑ S; however, Definition 5 allowsC ⊑ ∃R.⊤ ⊓ ∀S.⊥ (whereC is a fresh
named concept) as a coherent-negation ofR ⊑ S.

Classicality The classical negation has the following intuitive properties:

(i) Cn({φ})∩Cn({¬φ}) ⊆ Cn(∅) (only the tautology appears in both the consequences
set of an axiom and its negation);
(ii) Cn({φ} ∪ {¬φ}) = L (the consequence set of the negation is the complement set of
the consequence set of the axiom).

It can be shown that, under standard assumptions [FPA04], the properties are guaranteed
by the consistency-negation.

Decidability Given a DL 〈L,Cn〉, let us first consider the consistency-negation. The
checking of the inconsistency condition is indeed a knowledge base satisfiability problem
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of 〈L,Cn〉. The minimality condition can be checked by trying to replace some sub-
concepts (or sub-roles) with more general ones.

Proposition 2.2.2 Given a DL〈L,Cn〉, if the knowledge base satisfiability problem of
〈L,Cn〉 is decidable, then the consistency-negation checking in〈L,Cn〉 is decidable.

Proposition 2.2.3 Given a DL〈L,Cn〉, if the problem of concept satisfiability w.r.t. to a
TBox in〈L,Cn〉 is decidable, then the coherent-negation checking in〈L,Cn〉 is decid-
able.

2.3 Postulates for Ontology Change

In this section we propose certain postulates which describe two rational change operators
for DL-based ontologies and even the use of the different kind of negation for revision.
Our approach will be based on the AGM theory presented in Section 2.1. Note that proofs
of the statements in this section can be found in [Flo06, FPA06].

2.3.1 Postulates for Contraction

The main result that motivates our quest for a new set of contraction postulates is summa-
rized in the next lemma and its corollary. Note that, as mentioned above, we use〈L,Cn〉
(or 〈LK, Cn〉 when necessary) to refer to the Description LogicK.

Lemma 1 For a DL 〈L,Cn〉, if there is an axiomx ∈ L and a set of axiomsY ⊆ L such
thatCn(∅) ⊂ Cn(Y ) ⊂ Cn({x}), then〈L,Cn〉 is not base-AGM-compliant.

Corollary 1 Any DL that is at least as expressive asFL0 and whose alphabet allows at
least two concept names and one role name is non-base-AGM-compliant.

Corollary 1 practically overrules the use of the postulatesthat appeared in [FPA04] in
the DL context. The reason for this failure is related to the so-called base recovery postu-
late (B-6). Here, we will propose a different set of postulates that satisfy the following:

1. Existence: For every monotonic DL〈L,Cn〉, there is a contraction operator satis-
fying the proposed postulates.

2. AGM Rationality: Whenever possible (i.e., for base-AGM-compliant DLs), the pro-
posed postulates allow exactly the same contraction operators as the AGM postu-
lates do.

It turns out that the following set of postulates satisfies both goals:
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(O-1) O −X ⊆ O.

(O-2) If O 6|= X, thenO −X = O.

(O-3) If ∅ 6|= X, thenO −X 6|= X.

(O-4) If X ∼= Y , thenO −X = O − Y .

(O-5) If Cn((O −X) ∪X) ⊂ Cn(Y ∪X) for someY ⊆ O, thenY |= X and∅ 6|= X.

The postulates (O-1)-(O-4) are equivalent reformulationsof the postulates discussed
in [FPA04], i.e. (B-2)-(B-5), respectively; postulate (B-1) from [FPA04] was ignored be-
cause it is trivial. These postulates follow the AGM intuition: contraction is an operation
that is used to remove knowledge from an ontology, so the result should not contain any
new, previously unknown, information (O-1); if the contracted axiom is not part of our
original knowledge, nothing should be removed (O-2); but ifit is, then contraction is sup-
posed to return a new ontology such that the contracted expression is no longer explicitly
asserted or entailed (O-3); finally, the result should be syntax-independent (O-4).

Postulates (O-1)-(O-4) fail to capture thePrinciple of Minimal Change[Gär92] which
states that a contraction operator should remove as little information from the ontology
as possible. This principle was originally captured by postulate (B-6) in [FPA04], while
in our case it weakened to form (O-5). (B-6) states that a contraction operation should
only remove axioms which are relevant to the contracted axiom; this is guaranteed by
restricting the union of the result of the contraction (O − X) and the contracted axiom
(X) to entail (or be equivalent to) the original ontology (O):

(B-6) O ⊆ Cn((O −X) ∪X)

(O-5) comes very close to that by restrictingCn((O − X) ∪ X) to be maximal out
of all the possible selections forO − X that satisfy the other postulates: if there is any
Y ⊆ O giving a “larger” setCn(Y ∪X), thenY will necessarily entailX (soY would not
be a possible subset ofO − X, by (O-3)). The latter implication (∅ 6|= X) was included
in (O-5) in order to capture a certain limit case.

Now let us see why this set of postulates satisfies the required properties. The Exis-
tence property is easy to show. As a DL based ontology,O contains a finite number of
axioms. Thus, there is only a finite number of subsets ofO, so one can find at least one
Y ⊆ O for whichCn(Y ∪ X) is maximal. Once some technical details and limit cases
are taken care of, the following proposition can be shown:

Proposition 2.3.1 For any logic〈L,Cn〉, there is a contraction operator ‘−’ such that
the operationO −X satisfies (O-1)-(O-5) for all finiteO ⊆ L and allX ⊆ L.

The second property, AGM Rationality, is more difficult to show, so we will break its
proof in two parts. Firstly, we will show that if (B-1)-(B-6)are satisfied by a contraction
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operator, then (O-1)-(O-5) are also satisfied. This is trivial for (O-1)-(O-4), as these are
equivalent reformulations of (B-2)-(B-5) respectively. To show that (O-5) is satisfied as
well, notice that (B-6) requires thatO is entailed byCn((O −X) ∪X). If O |= X, then
O |= Cn(Y ∪ X), for all Y ⊆ O. This fact, combined with the requirement imposed
by (B-6), shows that the “if part” of (O-5) cannot be true for any Y ⊆ O, so (O-5)
trivially holds. If, on the other hand,O 6|= X then (B-3) (equivalently, (O-2)) indicates
O − X = O; thus, again, the “if part” of (O-5) cannot be true for anyY ⊆ O, so (O-5)
holds. This gives the following result:

Proposition 2.3.2 If a contraction operator satisfies (B-1)-
(B-6), then it satisfies(O-1)-(O-5).

This result implies that the original set of postulates
(B-1)-(B-6) is stronger than (O-1)-(O-5); this should be expected, by Proposition 2.3.1, as
the result of this proposition does not hold for (B-1)-(B-6)(see Lemma 1 and [FPA04]).

To show AGM Rationality, we should also show that the two setsof postulates are
actually equivalent whenever possible (i.e., in base-AGM-compliant DLs). The proof
follows similar steps as the proof of Proposition 2.3.2. Theonly non-trivial task is to
show that whenever (O-1)-(O-5) are satisfied, (B-6) is also satisfied. This is shown by the
fact that, in base-AGM-compliant logics, there is always aY ⊆ O which does not entail
X, such thatCn(Y ∪X) entailsO; thus, (O-5) guarantees thatO−X will be selected in
such a way thatCn((O −X) ∪X) will imply O, thus satisfying (B-6). Once some limit
cases are taken care of (one of which justifies the use of the implication∅ 6|= X in (O-5)),
the following can be shown:

Proposition 2.3.3 For a base-AGM-compliant logic, if a contraction operator satisfies
(O-1)-(O-5), then it satisfies
(B-1)-(B-6).

Finally, it is important to note that the proposed postulates, as well as Propositions
2.3.1-2.3.3, are applicable not only to DLs, but also to all logics that comply with the
〈L,Cn〉 model.

2.3.2 Postulates for Revision

To the best of our knowledge, there has been no attempt to recast the AGM postulates for
revision in the context of the foundational model; furthermore, there has been no attempt
to generalize these postulates in the sense of [FPA04]. The main reason for the latter
shortcoming are postulates which require the definition of anegation. The definitions of
negation presented in the previous section allow us to overcome this problem and present
some initial thoughts on these issues for DLs.

The original AGM postulates for revision (K+1)-(K+6) can befound in [AGM85].
Postulate (K+1) requires that the result of revision is a theory; in our context, this should
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be dropped, as we are working on the foundational model. Postulates (K+2)-(K+5) can
be reformulated as follows:

(O+1) X ⊆ O +X.

(O+2) If Cn(O ∪X) 6= L, thenO +X = O ∪X.

(O+3) If Cn(X) 6= L, thenCn(O +X) 6= L.

(O+4) If X ∼= Y , thenO +X ∼= O + Y .

It can be easily shown that each of (O+1)-(O+4) is equivalentto (K+2)-(K+5) in the
standard case. Postulate (K+6) poses some extra problems, because it requires the def-
inition of negations of DL axioms. A straightforward (and equivalent) reformulation of
(K+6) follows:

(O+5) (O +X) ∩O ∼= O −¬X.

In (O+5), the ‘¬’ symbol may be replaced by the standard negation, consistency negation
or coherence negation, depending on our needs and on which type(s) of negation exist in
the underlying logic.

In the AGM theory, there is a close connection between revision and contraction, as
this is expressed by theHarper Identity(which is equivalent to (O+5)) andLevi Identity;
here we present a generalized version of these identities:

Harper: O −X ∼= Cn(O + ¬X) ∩ Cn(O).
Levi: O +X ∼= Cn(O −¬X) ∪ Cn(X).

Again, in place of the symbol ‘¬’, any of the negations that we proposed could be used.
In the AGM setting, it has been shown that for any given revision operator that satisfies
the AGM postulates for revision, the contraction operator defined by the Harper identity
satisfies the AGM postulates for contraction; moreover, forany given contraction operator
that satisfies the AGM postulates for contraction, the revision operator defined by the Levi
identity satisfies the AGM postulates for revision. One of our most important goals for
future work is the proof that these facts hold for the generalized versions of the postulates,
the Levi and the Harper identities.

If the coherence negation is used for (O+5), the Levi and the Harper identities, then it
is more appropriate to replace the postulates (O+2) and (O+3) with following coherence-
based postulates:

(O+2*) If O ∪X is coherent, thenO +X = O ∪X.

(O+3*) If X is coherent, thenO +X is coherent.

The coherence postulates are useful for the revision on the ontologies which have only
T-boxes, because their incoherence appears much more oftenthan their inconsistency. It
is more meaningful to avoid their hidden inconsistency, i.e. their incoherence.
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2.4 Importance for Dynamics in the Ontology Lifecycle

As has been mentioned in the introduction of this chapter, inconsistencies, as well as
negations in ontologies are closely related to ontology change. In this chapter we have
proposed a general framework accounting for negation, inconsistency and change for DL-
based ontologies, which aims at providing a foundation for reasoning and management
of dynamic ontologies. Such a foundation is of utmost importance for the deployment of
real-world applications in the context of the Semantic Web.

In our framework, we have shown how to use the proposed negations to achieve the
Harper identity and Levi identity for ontology change, by which we can make a close
connection between the ontology revision and contraction operations. The distinction
between incoherence and inconsistency provides us two different approaches for devis-
ing rationality postulates for ontology revision, which cover different needs in different
application scenarios.

The well-founded postulates for ontology change (transformed according to the needs
of the particular application) are of general importance for good design practices when
implementing a dynamic ontology lifecycle, e.g. followingthe methodology introduced
in [NHL+06]. The postulates can be specifically applied (1) to the process of dynamic
ontology development (quality assesment of proposed changes with respect to the co-
herence/consistency), or (2) to the integration of learnedknowledge (when selecting the
most appropriate parts to incorporate into the master precise collaborative ontology; we
elaborate this topic in [NLHZ07]).
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Chapter 3

Semantics of Ontology Diffs

by ALESSANDRO ARTALE, NORMAN FOO, ENRICO FRANCONI AND TOMMIE
MEYER1

We consider in this chapter an abstract notion of semantic diff for arbitrary logic-based
ontology or knowledge representation languages. The scenario is the one where an on-
tology engineer generates different version of an ontologywhile those different versions
need to be stored and retrieved. We investigate the notion ofsemantic diffas a way to
both enlighten the differences between two different versions (hereafter called the source
and the target ontology), and as the minimal piece of information that we need to store
together with the source ontology to obtain the target ontology.

The work presented in this chapter is still preliminary, andit should be considered
primarily as a starting point motivating further deeper research on the topic, eventually
meant to support well-founded development of practical applications utilising an ontology
diff implementation.

3.1 Semantic Diff

We introduce now theideal definition of semantic diff, that we callstrong, as being the
definition that embodies all the characteristics which are invariant under entailment and
logical equivalence.

Definition 1 (Strong semantic diff)

Let L be a monotonic logic language. GivenΣ, OS, OT , A, R as sets of formulas
in L — beingΣ a domain theory,OS a source ontology, andOT a target ontology —
then〈A,R〉 is anontology diff, andA is called its “add” component andR its “ remove”
component, if the following holds:

1With minor modifications by Vı́t Nováček.
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1. (target from source with diff)

(Oi
S ∪A) \ R |=|KB O

j
T

2. (duality)

(Oj
T ∪ R) \ A |=|KB Oi

S

3. (non-redundancy of diff)

OS |=KB R

OT |=KB A

4. (minimality)

A andR are minimal w.r.t. set inclusion

5. (invariance under equivalent source and target)

Oi
S |=|KB OS

O
j
T |=|KB OT

A strong semantic diff is therefore a pair of formulas to be added and formulas to be
removed from a source ontology in order to get a target ontology (item 1). Moreover, by
adding the “remove” formulas from the target and removing the “add” formula, the source
ontology will be obtained (item 2); this is the dual use of thediff. Note that the introduc-
tion of integeri, j indices as superscripts of the source and target ontologiesindicates
invariance of the respective statements across possibly multiple equivalent ontologies.

The “add” and the “remove” components of a strong semantic diff are non redundant,
in the sense that only formulas that are entailed by the source ontology can be removed,
and only formulas that are entailed by the target ontology can be added; it is therefore im-
possible to specify a semantic diff where the “add” component contains formulas which
are not entailed by the target ontology, and likewise it is impossible to specify a seman-
tic diff where the “remove” component contains formulas which are not entailed by the
source ontology (item 3).

A strong semantic diff is always represented in a minimal way(item 4). The strong
characterisation of this kind of semantic diff is that the same diff applied to equivalent
source ontologies should give equivalent target ontologies (item 5), thus sporting a deep
sense of semantics in its definition.

As the reader can note, the operation ofaddingandremovingis based in this definition
on set unionandset difference. This has interesting consequences.

Lemma 2 (Interesting facts)

a) (disjointness)

A ∩ R = ∅
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b) (invariance of order of application)

(Oi
S ∪A) \ R |=|KB (Oi

S \ R) ∪ A

(Oj
T ∪ R) \ A |=|KB (Oj

T \ A) ∪ R

c) (belief revision operator)

The binary operators “∪” and “ \”, if considered asbelief revisionoperators “⊕”
and “⊖”, satisfy the postulates forupdateand erasurerespectively of Katsuno-
Mendelzon, presented in [KM91].

Due to minimality, it is easy to see that a strong semantic diff has always disjoint
“add” and “remove” components. Moreover, it is always possible to swap the set union
and the set difference operators without changing the semantics of the strong semantic
diff.

Example 2 (Transitive graphs)

GivenΣ, OS, OT andO1
T :

Σ defines transitivity over directed graphs

OS = {b→ c}

OT = {a→ b, b→ c, a→ c}

O1
T = {a→ b, b→ c} |=|KB OT

there is a unique strong semantic diff:

A = {a→ b}

R = {}

Non minimal semantic diffs are:

A1 = {a→ b, a→ c}

A2 = {a→ b, b→ c},

A3 = {a→ b, b→ c, a→ c}

withA2 |=|KB A3

Example 3 (Propositional logic)

GivenΣ, OS, andOT :

Σ = {a↔ b}

OS = {}

OT = {a, b, c}

there are two alternative strong semantic diffs:

A1 = {a, c}, A2 = {b, c}
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R = {}

By dropping the minimality requirement, there is a unique semantic diff:

A = {a, b, c}

Note thatA |=|KB A1 |=|KB A2

Example 4 (Non-existence of strong semantic diff)

GivenΣ, OS, O1
S, andOT :

Σ defines transitivity over directed graphs

OS = {a→ b, b → c}

O1
S = {a→ b, b → c, a→ c} |=|KB OS

OT = {b→ c, a→ c}

there is no strong semantic diff.
There is a unique semantic diff for each equivalent source ontology if the invariance under
equivalence condition is dropped:

R = {a→ b}

A = {a→ c}

A1 = {}

Alternatively, there is a unique semantic diff if the non-redundancy of diff condition is
dropped:

R = {a→ b}

A = {a→ c}

The examples above emphasise immediately some problems: onthe one hand we may
not have a unique strong semantic diff, unless we drop the minimality condition; on the
other hand, we may not have at all a strong semantic diff, unless we drop the invariance
under equivalent sources and targets condition or the non-redundancy of diff condition.

This suggests that we need to study weaker definitions of semantic diff. In the follow-
ing, we will show how different potential methods to computea diff between ontologies
may lead to different semantic and computational properties.

3.2 Semantic Diff Based on Normal Forms

Given a set of formulasO, we callÔ its deductive closure under the theoryΣ. The deduc-
tive closure of an ontology may be considered as a (unique) representative for the class of
all the logically equivalent ontologies. By considering the deductive closure, we may hope
that the definition of the semantic diff as the simple set difference between the deductive
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closure of the source and target ontologies (which is also quite easy computationally) is
indeed a strong semantic diff. However, this is not the case.

Theorem 3.2.1 (Inadequacy of deductive closure)
If we defineA andR as follows:

A
.
= ÔT \ ÔS

R
.
= ÔS \ ÔT

thenA andR may violate both the minimality condition and the invariance under equiv-
alent sources and targets condition.

PROOF: Consider the following counterexamples.

• GivenΣ, OS, O1
S, andOT :

Σ defines transitivity over directed graphs

OS = {a→ b, b→ c}

O1
S = ÔS = {a→ b, b→ c, a→ c} |=|KB OS

OT = {b→ c, a→ c}

then:

A = ÔT \ ÔS = {}

R = ÔS \ ÔT = {a→ b}

Observe that this violates the invariance under equivalentsources and targets con-
dition:

(ÔS ∪A) \ R |=|KB OT

(OS ∪A) \ R 6|=|KB OT

• GivenΣ, OS, andOT :

Σ defines transitivity over directed graphs

OS = {b→ c}

OT = {a→ b, b → c, a→ c}

then:

A = ÔT \ ÔS = {a→ b, a→ c}

R = ÔS \ ÔT = {}

However, the minimal semantic diff is:

A = {a→ b}

R = {}
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�

Another possibility would be to consider the normal form obtained with theleanrep-
resentation of an ontology, i.e., with a form of minimal representation.

Definition 2 (Lean ontology)

An ontologyO is leanif no subsetP ⊆ O is entailed by the ontology, i.e.,O 6|= P.

The case of lean ontologies has not been studied yet.

3.3 Semantic Diff for RDFS

In the following we consider RDFS as the ontology language.

The main idea is to start from a simplesyntactic diffbetween the two versions and
then minimising the result of the syntactic diff by exploiting the semantics of the RDFS
ontology language in order to get a semantic diff. The syntactic diff is simply the set
difference between two sets of RDFS triples as defined below.

Definition 3 (Syntactic Diff)

LetOS andOT be the source and the target RDFS ontologies of a versioning process.
Thesyntactic diffis composed by the pair:

Asyn = OT \ OS

Rsyn = OS \OT

To define the semantic diff we take into account the semantic of RDFS and in partic-
ular the notion ofentailmentbetween two RDFS graphs as defined in the W3C standard.
An RDFS graphS entails an RDFS graphT (S |=RDF T ) if there is a total homomorphism
from T to Ŝ, the deductive closure or thecompleted formof S, i.e. axiomatic triples are
added toS while entailment rules introduce implicit triples inS.

Another relevant notion used in the following is that one ofequivalencebetween
two RDFS graphs. We say that an RDFS graphS is equivalent to an RDFS graphT
(S |=|RDF T ) if they entail one each other. Obviously, the completed form of an RDFS
graph is equivalent to the original graph:̂S |=|RDF S. Finally, given a graphS and a
homomorphismH, with SH we denote the graphS with bnodes renamed byH.

Definition 4 (RDF Semantic Diff)

LetOS andOT be the source and the target RDFS ontologies of a versioning process.
A semantic diffis a pairA, R such that:
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1. R is the maximal subset ofRsyn such that none of the subsets ofR is entailed byOT

(i.e., no elements entailed by the target ontology are part of the remove, being that
semantically useless):

(a) R ⊆ Rsyn

(b) for eachP ⊆ R thenOT 6|=RDF P

(c) R is maximal wrt set inclusion

2. A is the maximal subset ofAsyn, modulo an arbitrary bnode renamingα, such
that none of the subsets ofA is entailed byOS (i.e., no elements entailed by the
source ontology are part of the add, being that semanticallyuseless) and moreover
a merging ofA with the source ontology is not redundant:

(a) A ⊆ α(Asyn)

(b) for eachQ ⊆ A thenOS 6|=RDF Q

(c) (OS ∪A) \ R |=|RDF (OS ∪ Asyn) \ R

(d) A is maximal wrt set inclusion

We callweak RDF semantic diffthe RDF semantic diff without the condition (2.c)
above.

We now show the most relevant result, i.e. that given an RDF semantic diff as defined
above, we can reconstruct the target ontology starting fromthe source ontology and the
semantic diff. Moreover, in general the RDF semantic diff satisfies all the conditions for
a strong semantic diff, but one.

Theorem 3.3.1 (RDF semantic diff)

The RDF semantic diff satisfies the conditions in definition 1with the exception of
the invariance under equivalent sources and targets condition. The weak RDF seman-
tic diff satisfies the conditions in definition 1 with the exception of the invariance under
equivalent sources and targets condition and of the minimality condition.

Example 5 (RDF semantic diff)

GivenOS, andOT (note that“ → ” corresponds to “rdfs:subclass”, and thatX, Y
are bnodes):

OS = {a→ b, b → c, a→ c, c→ d, d→ X}

OT = {a→ b, b→ c, c→ d, b→ d, d→ Y }

then:

Asyn = {b→ d, d→ Y }

Rsyn = {a→ c, d→ X}
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However, the RDF semantic diff is:

A = {}

R = {}

In this example, the RDF semantic diff and the weak RDF semantic diff coincide.

Example 6 (RDF semantic diff)

GivenOS, andOT :

OS = {a→ X, a→ Y,X → b, Y → c}

OT = {a→ Z,Z → b, Z → c}

then:

Asyn = {a→ Z,Z → b, Z → c}

Rsyn = {a→ X, a→ Y,X → b, Y → c}

There are two alternative RDF semantic diffs:

A1 = {X → c}

A2 = {Y → b}

R = {}

3.4 Diff Formalisation in the Scope of Ontology Evolu-
tion

This chapter presents a rather conceptually different, though still inherently related view
on the topics studied in Chapter 2. While Chapter 2 investigates notions of negation,
(in)consistency and ontology change postulates and studies their formal properties, the
material presented here provides a kind of reverse view. It defines the (semantic) ontology
diff and its structure, consisting from addition and revision sets of formulae of an ontology
language. Initial study on its properties and related practical features w.r.t. widely used
RDFS ontology language is given.

Even though the study is very preliminary in its present state, the suggested diff for-
malisation and several important issues that have already been identified (e.g., the more
practical – weaker – diff alternatives) are still very important for practical applications
of ontology maintenance. These make use of an ontology diff implementation quite of-
ten [NM04, KFKO02, VG06] without a proper and/or common underlying formalisation.
However, the conformance to a common formalisation can makeontology maintenance
and handling of the logical consequences of a diff (i.e., change) much more transpar-
ent and universal even across different application scenarios or (logics-based) ontology
languages. Moreover, when combined with conformance to thepostulates for ontology
change described in Section 2.3, the formalisation of diffscan further facilitate efficient
and well-founded process of consistent and rational ontology maintenance with a practical
diff processing involved.
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Chapter 4

Multi-version Ontology Reasoning
Using Temporal Logics

by ZHISHENG HUANG AND HEINER STUCKENSCHMIDT1

As has been widely agreed (see for instance [Sto04, KFKO02, NM04]), versioning is the
key to compatibility as it enables each application to use a version of the ontology that best
fits its requirements. This chapter focuses on supporting the management of different
versions of the same ontology on a semantic level. In particular, we want to provide
functionality for answering queries about knowledge derivable from different versions.
The corresponding approach has to provide two kinds of functionalities:

• Ask questions about statements derivable from a certain version.

• Ask for a version that allows to derive certain statements

While the first kind of functionality can be used to inspect a given version of the
ontology in order to find out whether important statements can or cannot be derived from
it, the second kinds of functionality helps to find a version that is compatible with a given
application because important statements can be derived from it.

Another issue is the scope of the approach, in particular thespace of versions to be
considered. There are several possible scenarios. In most relevant cases, we are concerned
with a history of different versions of the same ontology where each version replaces the
previous one. We call this theretrospectiveapproach. As a result, we have a sequence
of versions. There are also scenarios, in which different versions of the ontology co-
evolve. This is mostly the case in scenarios where the development of the ontology is not
controlled by an authority. In the following, we ignore thisscenario which is less relevant
for professional ontology development.

In this document, we make a contribution towards a general apparatus for supporting
multi-version management on the semantic level. We will do this by defining and imple-
menting a query language that is able to answer relevant questions about multiple versions

1Based on [HS05b], with minor modifications by Vı́t Nováček.
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of the same ontology as identified in the usage scenarios. Rather than trying to directly
support all of these queries, be identify a basic machinery that provides the expressive
power needed to provide the required functionality, but still needs to be optimized for spe-
cific queries. We base this machinery on a temporal logic overstatements derivable from
different versions of the ontology. Queries concerning thecontent derivable from versions
can be stated in this temporal logic and are evaluated using model-checking techniques.
In this work we focus on the retrospective approach to multi-version analysis and only
sketch a possible extension to the prospective analysis. Concerning the representation of
the ontologies being analyzed we restrict ourselves to ontologies encoded in OWL-DL.
With respect to derivable statements, we mainly consider subsumption between named
classes. We want to stress, however, that the approach presented is independent from
the representation of the ontologies and can easily be adapted to other representation lan-
guages.

In the following we first introduce the temporal logic approach to managing multi-
ple versions. Based on this, we define a minimal query language for multiple versions.
Moreover, we briefly describe the basic principles of the consequent reasoning, utilising
the introduced formalism. The approach presented here is discussed in a broader context
of this deliverable in Chapter 6, mostly in Section 6.1.2.

4.1 A Temporal Logic for Multi-version Ontology Rea-
soning

Temporal logics can be classified as two main classes with respect to two different time
models: linear time model and branching time model. The linear time logics express
properties over a single sequence of states. This view is suitable for the retrospective ap-
proach to multi-ontology reasoning where we assume the existence of a sequence of ver-
sions. Branching time logics are express properties acrossdifferent sequences of states.
This feature would be needed for the prospective approach where we consider different
possible sequences of changes in the future. The linear temporal logicLTL is a typical
temporal logic for modeling linear time, whereas the computation tree logicCTL is a
typical one for modeling branching time [RU71, vB95, CGP99].

Temporal logics are often future-oriented, because their operators are designed to be
ones which involve the future states. Typical operators are: the operatorFutureφ which
states that ’φ holds sometimes in the future with respect to the current state’, and the
operatorAlwaysfφ which states that ’φ always holds in the future with respect to the
current state’, and the operatorφUntilψ which states that ’φ always holds in the future
until ψ holds’. For a discrete time model, the operatorNextφ is introduced to state that
φ holds at the next state with respect to the current state. Forthe retrospective reasoning,
we only need a temporal logic that only talks about the past. Namely, it is one which can
be used to compare the current state with some previous states in the past. It is natural to
design the following past-oriented operators, which correspond with the counterparts of
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the future oriented temporal operators respectively:

• the previous operator states that a factφ holds just one state before the current state.

• the the sometimes-in-the past operator states that a factφ holds sometimes in the
past with respect to the current state.

• the always-in-the-past operator states thatφ holds always in the past with respect to
the current state.

In this document, we use a linear temporal logic, denoted asLTLm , which actually is
a restricted linear temporal logicLTL to past-oriented temporal operators.

4.1.1 Version Spaces and Temporal Models

In the following, we will define the formal semantics for the temporal operators by intro-
ducing an entailment relation between a semantic model (i.e., multi-version ontologies)
and a temporal formula. We consider a version of an ontology to be a state in the semantic
model. We do not restrict ontology specifications to a particular language (although OWL
and its description logics are the languages we have in mind). In general, an ontology lan-
guage can be considered to be a set of formulas that is generated by a set of syntactic rules
in a logical languageL.

We consider multi-versions of an ontology as a sequence of ontologies which are
connected with each other via change operations. Each of these ontologies has a unique
name. This is different from the work by [HP04], who considerthat an ontology is one
which contains the set of other ontologies which are backwards compatible with it. We
have the following definition.

Definition 5 (Version Space)A version spaceS over an ontology setOs is a set of on-
tology pairs, namely,S ⊆ Os×Os.

We use version spaces as a semantic model for our temporal logic, restricting our
investigation to version spaces that present a linear sequence of ontologies:

Definition 6 (Linear Version Space) A linear version spaceS on an ontology setOs is
a version space which is a finite sequence of ontologies

S = {〈O1, O2〉, 〈O2, O3〉, · · · , 〈On−1, On〉}

Alternatively we write the sequenceS as follows:

S = (O1, O2, · · · , On)

26 November 14, 2007 KWEB/2007/D2.3.9



D2.3.9 Theoretical Aspects for Ontology Lifecycle IST Project IST-2004-507482

We useS(i) to refer the ith ontologyOi in the space. For a version spaceS =
(O1, O2, · · · , On), We call the first ontologyS(1) in the space theinitial version of the
version space, and the last ontologyS(n) the latest version of the version spacerespec-
tively.

We introduce an ordering≺S with respect to a version spaceS as follows:

Definition 7 (Ordering on Version Space)O ≺S O′ iff O occurs prior toO′ in the se-
quenceS, i.e.,S = (· · · , O, · · · , O′, · · · ).

Proposition 4.1.1 (Prior version and Linear Ordering)
the prior version relation≺S is a linear ordering, namely,≺S is
(i) irreflexive, i.e.,(O 6≺S O),
(ii) transitive, i.e.,O ≺S O

′ andO′ ≺S O
′′ ⇒ O ≺S O

′′,
(iii) asymmetry, i.e.,O ≺S O

′ ⇒ O′ 6≺S O,
(iv) comparable, i.e., eitherO ≺S O

′ or O′ ≺S O,
for any ontologyO,O′, O′′.

4.1.2 Syntax and Semantics of LTLm

The LanguageL+ for the temporal logicLTLm can be defined as an extension to the
ontology languageL with Boolean operators and the temporal operators as follows:

q ∈ L ⇒ q ∈ L+
φ ∈ L+ ⇒ ¬φ ∈ L+
φ, ψ ∈ L+ ⇒ φ ∧ ψ ∈ L+
φ ∈ L+ ⇒ PreviousVersionφ ∈ L+
φ ∈ L+ ⇒ AllPriorVersionsφ ∈ L+
φ, ψ ∈ L+ ⇒ φSinceψ ∈ L+

Where the negation¬ and the conjunction∧ must be new symbols that do not appear
in the languageL to avoid the ambiguities (thus they are different also from the notions
defined in Chapter 2, most specifically from negation given inthe scope of DL ontolo-
gies). Define the disjunction∨, the implication→, and the bi-conditional↔ in terms of
the conjunction and the negation as usual. Define⊥ as a contradictoryφ∧¬φ and⊤ as a
tautologyφ ∨ ¬φ respectively.

Using these basic operators, we can define some additional operators useful for rea-
soning about multiple versions. We define theSomePriorVersion operator in terms of
theAllPriorVersions operator as

SomePriorVersionφ =df ¬AllPriorVersions¬φ
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The always-in-the-pastAllPriorVersions operator is one which does not consider the
current state. We can define a strong always-in-the-pastAllVersions operator as

AllVersionsφ =df φ ∧AllPriorVersionsφ,

which states that ’φ always holds in the past including the current state’.

Let S be a version space on an ontology setOs, ando be an ontology in the setOs,
we extend the entailment relation for the extended languageL+ as follows:

S,O |= q iff O |= q, for q ∈ L.
S, O |= ¬φ iff S,O 6|= φ.

S,O |= φ ∧ ψ iff S,O |= φ, ψ.

S,O |= PreviousVersionφ iff 〈O′, O〉 ∈ S such thatS,O′ |= φ.

S,O |= AllPriorVersionsφ iff for any O′ such thatO′ ≺S O, S,O
′ |= φ.

S,O |= φSinceψ iff ∃(O1 . . . Oi)(O1 ≺S O2 . . . Oi−1 ≺S Oi = o) such that
S,Oj |= φ for 1 ≤ j ≤ i andS,O1 |= ψ).

For a linear version spaceS, we are in particular interested in the entailment relation
with respect to its latest version of the ontologyS(n) in the version spaceS. We use
S |= φ to denote thatS, S(n) |= φ. Model checking has been proved to be an efficient
approach for the evaluation of temporal logic formulas[CGP99]. In the implementation
of MORE, we are going to use the standard model checking algorithm for evaluation a
query in the temporal logicLTLm . Therefore, we do not need a complete axiomatization
for the logicLTLm in this document.

4.1.3 Formal Properties

The validity of a temporal formula in the logicLTLm is defined as a property which
is independent of any particularLTLm model and any state in the model. Namely, the
property is true in every state of anyLTLm model. We have the following definition:

Definition 8 (Validity) |= φ iff S, o |= φ for anyS, o.

Here is a list of formal properties in the logicLTLm:

Proposition 4.1.2 (Formal Properties of Temporal Operators)
(a) |= AllPriorVersionsφ→ SomePriorVersionφ.
(the always-in-the-past implies the sometimes-in-the-past.)

(b) |= PreviousVersionφ→ SomePriorVersionφ.
(the previous implies the sometimes-in-the-past.)
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(c) |= PreviousVersionSomePriorVersionφ→ SomePriorVersionφ.
(the previous of the sometimes-in-the-past implies the sometimes-in-the-past.)

(d) |= SomePriorVersionSomePriorVersionφ→ SomePriorVersionφ.
(idempotent of the sometimes-in-the-past.)

(e) |= AllPriorVersionsAllPriorVersionsφ∧PreviousVersionφ→ AllPriorVersionsφ.
(quasi-idempotent of the always-in-the-past.)

(f) |= PreviousVersionPreviousVersionφ→ SomePriorVersionφ.

(the previous of the previous implies the sometimes-in-the-past.)

(g) |= φSinceψ → SomePriorVersionψ ∨ ψ.
(relation bewteen the since operator and the sometimes-in-the-past.)

(h) |= φSinceψ → φ.

(φ sinceψ implies thatφ holds in the current version.)

(i) |= φ ∧ ψ → φSinceψ.

(trivial case for the since operator.)

4.2 LTLm as a Query Language

There are two types of queries: reasoning queries and retrieval queries. The former con-
cerns with an answer either ‘yes’ or ‘no’, and the latter concerns an answer with a particu-
lar value, like a set of individuals which satisfy the query formula. Namely, the evaluation
of a a reasoning query is a decision problem, whereas the evaluation of a retrieval query
is a search problem. In this section, we are going to discuss how we can use the proposed
temporal logic to support both reasoning queries and retrieval queries.

Reasoning queries

Using theLTLm logic we can formulate reasoning queries over a sequence of ontologies
that correspond to the typical questions mentioned in the introduction of this chapter.

Are all facts still derivable? This question can be answered for individual facts using
reasoning queries. In particular, we can use the queryφ ∧PreviousVersionφ to deter-
mine for factsφ derivable from the previous version whether they still holdin the current
version. The same can be done for older versions by chaining thePreviousVersion

operator or by using the operatorAllVersions to ask whether formulas were always true
in past versions and are still true in the current one (AllVersionsφ).

KWEB/2007/D2.3.9 November 14, 2007 29



4. MULTI-VERSION ONTOLOGY REASONING USING TEMPORAL LOGICS

What facts are not derivable any more? In a similar way, we can ask whether certain
facts are not true in the new version any more. This is of particular use for making sure
that unwanted consequences have been excluded in the new version. The corresponding
query is¬φ∧PreviousVersion φ. Using theAllPriorVersions operator, we can also
ask whether a fact that was always true in previous versions is not true anymore.

Are the facts are newly derivable from the new version? Reasoning queries can also
be used to determine whether a fact is new in the current version. As this is true if it
is not true in the previous version, we can use the following query for checking this
φ∧¬PreviousVersionφ. We can also check whether a new fact never held in previous
versions using the following queryφ ∧ ¬SomePriorVersionφ.

What is the last version that can be used to derive certain facts? Using reasoning
queries we can check whether a fact holds in a particular version. As versions are arranged
in a linear order, we can move to a particular version using thePreviousVersion oper-
ator. The queryPreviousVersionPreviousVersionφ for instance checks whetherφ
was true in the version before the previous one. The queryφSinceψ states thatφ always
holds sinceψ holds in a prior version.

A drawback of reasoning queries lies in the fact, that they can only check a property
for a certain specific fact. When managing a different versions of a large ontology, the
user will often not be interested in a particular fact, but ask about changes in general. This
specific functionality is provided by retrieval queries.

Retrieval Queries

Many Description Logic Reasoners support so-called retrieval queries that return a set of
concept names that satisfy a certain condition. For example, a children conceptc′ of a
conceptc, writtenchild(c, c′), is defined as one which is subsumed by the conceptc, and
there exists no other concepts between them. Namely,

child(c, c′) =df c
′ ⊑ c∧ 6 ∃c′′(c′ ⊑ c′′ ∧ c′′ ⊑ c ∧ c′′ 6= c ∧ c′′ 6= c′).

Thus, the set of new/obsolete/invariant children conceptsof a concept on an ontology
o in the version spaceS is defined as follows:

newchildren(S, o, c) =df {c′|S, o |= child(c, c′) ∧ ¬PreviousVersion child(c, c′)}.

obsoletechildren(S, o, c) =df {c′|S, o |= ¬child(c, c′) ∧ PreviousVersion child(c, c′)}.

invariantchildren(S, o, c) =df {c′|S, o |= child(c, c′) ∧ PreviousVersion child(c, c′)}.
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The same definitions can be extended into the cases like parent concepts, ancestor
concepts, descendant concept and equivalent concepts. Those query supports are suffi-
cient to evaluate the consequences of the ontology changes and the differences among
multi-version ontologies.

4.2.1 Making version-numbers explicit

Temporal logics allow us to talk about the temporal aspects without reference to a partic-
ular time point. For reasoning with multi-version ontologies, we can also talk about the
temporal aspects without mentioning a particular version name. We know that each state
in the temporal logic actually corresponds with a version ofthe ontology. It is not difficult
to translate the temporal statements into a statement whichrefers to an explicit version
number. Here are two approaches for it: relative version numbering and absolute version
numbering.

Relative version numbering

The proposed temporal logic is designed to be one for past-oriented. Therefore, it is quite
natural to design a version numbering which is relative to the current ontology in the
version space. We use the formula0φ to denote that the property holds in the current
version. Namely, we refer to the current version as the version0 in the version space, and
other states are used to refer to a version relative to the current version, written as−i as
follows:

0φ =df φ.

(−i)φ =df PreviousVersion((1 − i)φ).

The formula−iφ can be read as “the propertyφ holds in the previousi-th version”.

Absolute version numbering

Given a version spaceS with n ontologies on it, i.e.,|S| = n − 1. For the latest version
o = S(n), it is well reasonable to call thei-th ontologyS(i) in the version space the
versioni of S, denoted asi, S. Namely, we can use the formulai, Sφ to denote that the
propertyφ holds in the versioni in the version spaceS. Thus, we can define the absolute
version statement in terms of a relative version statement as follows:

(i, S)φ =df (i− n)φ.

Explicit version numbering provides the basis for more concrete retrieval queries. In
particular, we now have the opportunity to compare the children of a conceptc in two
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specific ontologiesi andj in the version spaceS. The corresponding definitions are the
following:

newChildren(S, c)i,j =df {c′|S |= (i, S) child(c, c′) ∧ ¬(j, S) child(c, c′)}.

obsoleteChildren(S, c)i,j =df {c′|S |= ¬(i, S) child(c, c′) ∧ (j, S) child(c, c′)}.

invariantChildren(S, c)i,j =df {c′|S |= (i, S) child(c, c′) ∧ (j, S) child(c, c′)}.

Again, the same can be done for other predicates like parent-, ancestor or descendant
concepts.

4.3 Basic Principles of the Inference Implementation

There is a prototype implementation based on the approach described above. The sys-
tem is implemented as an intelligent interface between an application and state-of-the art
description logic reasoners (which support the DIG interface [BMC03]). The prototype
provides server-side functionality in terms of an XML-based interface for uploading dif-
ferent versions of an ontology and posing queries to these versions. Requests to the server
are analyzed by the main control component that also transforms queries into the under-
lying temporal logic queries if necessary. The main controlelement also interacts with
the ontology repository and ensures that the reasoning components are provided with the
necessary information and coordinates the information flowbetween the reasoning com-
ponents.

The actual reasoning is done by model checking components for testing temporal
logic formulas that uses the results of an external description logic reasoner for answering
queries about derivable facts in a certain version. More on the reference implementation,
some experiments and their evaluation can be found in [HS05a, HSvHK06].
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Chapter 5

C-OWL Potential for Reasoning with
Versioned Ontologies

by VÍT NOVÁČEK, MATHIEU D’AQUIN, JEAN LIEBER AND AMEDEO NAPOLI

In this chapter we present an initial proposal of an alternative approach to multi-
version ontology reasoning, based on re-casting a solutionfor contextualised knowledge
representation and reasoning into the ontology dynamics domain.

Context and its representation has been relatively intensively studied by the researchers
in AI during the last two decades [McC93, Akm02]. Quite naturally, the importance of
context has been recently recognised even within the Semantic Web and related knowl-
edge representation paradigms [GG01, BGvH+03].

Contextual knowledge representation aims at development of efficient formalisms and
reasoning principles that would allow for dealing with setsof constructs (axioms, facts,
rules, etc.) restricted to a particular domain (i.e., context), while not being necessarily
globally consistent or meaningful. Another important feature of the context-dependent
knowledge representation is relating the particular contexts among themselves (e.g. by
the so called lifting mechanism [McC93] or by bridge rules [BDSZ02, BGvH+03]).

Considering an evolving ontology, we can very naturally seeit as a sequence of con-
texts changing in time (elaborated in Section 5.1). When providing mappings between the
evolving versions of particular concepts, we can directly utilise the semantics and reason-
ing services originally meant to support contextual ontologies (covered by Section 5.2.1).

More specifically, we build on the similarities of notions ofversion and context spaces
(of ontologies). We do so primarily in the scope of the C-OWL approach proposed
in [BGvH+03], since it presents an extension of a standard and widely used ontology
language – OWL [BvHH+04]. Note that rather than giving an exhaustive descriptionof
the original C-OWL features here, we reference to the paper [BGvH+03] for the relevant
detailed analysis, syntax and semantics of the extension and all other issues that are not
directly related to the application of C-OWL to the multi-version ontology reasoning.
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5.1 Version and Context Spaces – Essential Similarities

There is no explicit definition of context in [BGvH+03]. However, it is implicitly assumed
that a context is an ontology, interpreted locally (basically, building on the local model
semantics [GG01]). The local interpretation is based on appropriate modification of the
standard OWL semantics [PSHH04]. Here we describe, how a setof particular ontology
versions can be treated as a set of local contexts (Section 5.1.1). The mechanism of
mapping between particular ontology versions is presentedin Section 5.1.2 then.

5.1.1 Versions as Contexts

In the following, we use the notation for (a sequence of) versioned ontologies as intro-
duced in Section 4.1.1 of Chapter 4. We employ the concept of linear version space
S = (O1, O2, . . . , On), with ontology versions referenced byS(i), i ∈ {1, . . . , n},
and with the linear ordering≺S defined on it. This notation is convenient for expressing
the actual precedence of ontology versions from the initialto the current one (not taking
version branches into account, since the sequence is linearby definition).

The version space can be easily embedded into the scope of essential notions of con-
textual OWL extension. Without loss of generality, theversion spacecan be treated as the
OWL space(defined in [BGvH+03]). We only have to assume that:

1. ontology version indices{1, . . . , n} correspond to the respective ontology version
URIs

2. the ontologiesO1, . . . , On are expressed using OWL (DL)

3. if an ontologyOi references a concept (role, individual) defined in an ontologyOj,
it is explicitly annotated by the indexj and considered as an element offoreign
language w.r.t.Oi; moreover, we can safely restrict such foreign references by the
j < i inequality, since an ontology version intuitively would not reference future
concepts (roles, individuals)

Now we can apply the specific semantics for contextual ontologies, as defined and elab-
orated in [BGvH+03], also to version spaces. The next section shows certain practicality
of this approach when it comes to representation of explicitrelations between ontology
versions and reasoning across their sequences.

5.1.2 C-OWL Mapping Constructs as Inter-Version Relations

We have adopted the semantics for contextual ontologies as such in the previous section.
However, we also need an expressive mechanism in order to relate the versions by ex-
plicit mappings. Only specifying the (previous) foreign definitions of ontology elements
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(i.e., concepts, roles or individuals) in an ontology version may not be enough for many
practical applications and expressive reasoning across the version space.

The C-OWL formalism presents a definition of so calledcontext space, which is build
directly on the top of theOWL space, together with appropriate extension of the interpre-
tation function [BGvH+03]. Essentially, a context space consists of the set of ontologies
in an OWL space and a family of respective mappings. In the scope of multi-version rea-
soning supported by C-OWL, we will call this structuremapped version space, assuming
that the version space described in Section 5.1.1 is embedded exactly in the same way as
the OWL space in the original definition in [BGvH+03].

The mappings consist of so calledbridge rules. We adopt these without any modifi-
cation, since they are directly suitable for setting explicit relations among the particular
ontology versions1. The bridge rules between elements (concepts, roles or individuals)
i : x, j : y from ontologiesOi, Oj, respectively, can be intuitively described as follows
(with all the relevant formal definitions given in [BGvH+03] again):

• i : x →⊑ j : y – states thati : x is more specific thanj : y

• i : x →⊒ j : y – states thati : y is more specific thanj : x

• i : x →≡ j : y – states thati : x andj : y are equivalent

• i : x →⊥ j : y – states thati : x andj : y are incompatible (i.e., their interpreta-
tions are disjunct)

• i : x →∗ j : y – states thati : x andj : y are incompatible (i.e., the intersection of
their interpretations is non-empty)

These rules allow us to very naturally model several different relations between elements
of ontology versions in a version space. We describe the principles of reasoning with such
inter-related versioned ontologies in the next section, provided also by simple illustrative
examples.

5.2 Mapped Version Spaces – Inference Issues and an
Example

First, we describe essential features of a reasoning engineimplementation dealing with
bridged ontology (version) spaces in Section 5.2.1. Then weillustrate the proposed mod-
elling of versioned ontologies and its exploitation on an example in Section 5.2.2.

1Note that the bridge rules also explicitly identify the foreign concepts for an ontology version, as
demanded by the third requirement in the previous section.
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5.2.1 Realisation of the Reasoning

Inference in C-OWL is based on so called DDL (Distributed Description Logics) formal-
ism. Distributed DLs are extensions of DLs in which several local ontologies are consid-
ered to be related through semantic mappings [BS02a]. DDLs were formally investigated
in [BS02b] and are closely related to the multiple viewpointknowledge representation
and reasoning, as described in [GG01].

Modeling and formalizing a multiple viewpoint representation within a DDL is ade-
centralizedtask, i.e. there is no need to set up a consensus, but, dually,to distinguish
viewpoints [dLN07]. Three main steps can be considered:

1. determine the relevant viewpointsin the domain,

2. build a local ontologyfor every viewpoint, and

3. establish mappingsbetween local ontologies, reifying correspondences between
viewpoints.

In the multi-version ontology reasoning settings, we do nothave to pay attention to the
first two steps in this process – the viewpoints and respective ontologies are implicitly
given by the ontology versions. We only have to define the mappings in order to make
use of the contextual inference applied to multi-version ontology reasoning.

Local and Global Reasoning Services

Local reasoning servicesin DDL are the standard DL reasoning services [BCM+03a],
performed in a particular context, without taking into account the bridge rules. Aglobal
reasoning servicetakes advantage of bridge rules for inferring statements ina context
in using knowledge from other contexts. The paper [ST04] presents an extension of the
standard tableau algorithm for the computation of the global subsumption test in DDLs.
Global subsumptionrelies on the principle of “subsumption propagation” that,in its sim-
plest form, can be expressed as:

if the mappingMij contains “i : E
⊒
−−→ j : C” and “i : F

⊑
−−→ j : D”

then “I satisfiesi : E ⊑ F” implies that “I satisfiesj : C ⊑ D”

Intuitively, this means that subsumption in a particular context can be inferred from
subsumption in another context thanks to bridge rules. Similarly, global instance checking
is based on an instantiation propagation rule:

if Mij includes “i : C
⊑
−−→ j : D” and “i : a

≡
−−→ j : b”

then “I satisfiesi : C(a)” implies that “I satisfiesj : D(b)”
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Instantiation is extended for global instance checking. Based on bridge rules, informa-
tion known about an individual in a particular context can becompleted using inferences
made in other contexts.

Solving a problem in a multi-viewpoint framework is adecentralizedprocess: infer-
ences occur locally, in each viewpoint represented by a context in DDL, taking advantage
of bridge rules for reusing the knowledge and inferences from the other viewpoints. This
problem-solving approach is similar to a reasoning processin decentralized artificial in-
telligence, defined in [DM89] as being concerned by the activity of autonomous intelligent
agents that coexist and collaborate with other agents, eachagent having proper goals and
proper knowledge.

Implementation of Reasoning in C-OWL

Recently, a KASIMIR system [dBB+05, dLN06, dLN07] has been developed. The sys-
tem is aimed at decision knowledge management in oncology. The KASIMIR system can
be viewed as an intelligent assistant for physicians in their everyday practice of decision
making. A novel feature of the research on the KASIMIR system is the use of viewpoints
– one viewpoint per an oncology specialty – based on a distributed DL formalism, namely
C-OWL. The support for C-OWL in the system is quite general, even though the overall
aim of the system is rather specific to e-health applications. As such, the C-OWL reason-
ing services implemented in KASIMIR can be very naturally used within the multi-version
reasoning approach introduced in this chapter.

The architecture of the KASIMIR semantic portal relies on a knowledge server, imple-
mented as a set of Web services and embedding the PELLET OWL reasoner [SPG+07], the
JENA API [McB02], and the DRAGO DDL reasoner [ST05]. More details on the KASIMIR

system implementation can be found in [dBB+05, dLN06, dLN07].

Querying Version Space Modelled in C-OWL

When modelling the mapped version space using C-OWL as described in this chapter,
we can eventually employ multi-version reasoning using thefollowing query templates
(evaluated by a C-OWL inference engine):

• check the satisfiability of a given set of statements w.r.t. to a particular ontology
version

• check the satisfiability of a given set of statements, iterating through all the versions
in a version space (figuring out which versions entail the setin the query)

• determine a version of an ontology elementi : x in an ontology versionOj (i.e.,
find respective equivalent concept(s), if present)

Also, certain validation tasks can be performed:
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• determine, whether a given set of statements is compatible (making use of the
(in)compatibility bridge rules) w.r.t. a particular version (and its predecessors)

• determine a version (or a version set), which is compatible with a given set of
statements (dual task to the previous one)

5.2.2 Example

Imagine a user who builds and maintains an ontology of his or her musical collection
(e.g., in order to properly annotate the resources on a desktop). A sample of the initial
model (i.e., versionO1) is given in Figure 5.12.

Let us assume now that the user adds and retracts some statements, creating another
versionO2 from the ontologyO1, as displayed in Figure 5.2.

Two statements related to classical music and one statementrelated to rock music
were added. The classex:MTVCrap was removed, considered perhaps too subjectively
motivated now. Moreover, the user may find appropriate to state that punk can also be
considered as mainstream in case of some bands. However, he or she does not want to
create an explicit sub-class relationship in the current version of the ontology – so he or
she uses a compatibility bridge rule, relating punk and mainstream concept defined in the
previous version.

Furthermore, the user may want to prevent mixing the semantics ofex:hasPer-
former andex:hasComposer roles (may possible due to common super-class of
the domain classes). However, he or she does not want to impose explicit disjointness
restriction here (which would only be possible in OWL 1.1., anyway [HKS05]), since the
definition may be still unstable in the scope of future development of the ontology. So
he or she uses an incompatibility rule for the respective statements. These rules form the
mapping between the versionsO2 andO1, as displayed in Figure 5.3.

In yet another iteration of the ontology maintenance process, the user changes the
classex:Punk into ex:PunkRock, however, with no shift in the actual semantics of
the class intended. He or she also adds a new individual,ex:GreenDay, primarily
attributed as a punk playing band. The changes are given in Figure 5.4.

The fact that the semantics of theex:Punk andex:PunkRock classes remains the
same can be encoded in a mapping betweenO3 andO2, as shown in Figure 5.5.

Moreover, the user may want to keep a record of the fact that Green Day is not a
genuine punk rock band in his or her opinion, and attribute itto theMTVCrapBand class
in theO1 version. Although the class does not exist anymore inO3, there may still be
some (possibly shared) annotations of the user’s music collection using the old version of

2Note that in order to make the presentation as simple as possible, we abstract from exhaustive names-
pace definitions and additional ontology annotations here,unless found absolutely necessary.
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<owl:Class rdf:ID="ex:Genre"/>
<owl:Class rdf:ID="ex:Person"/>
<owl:Class rdf:ID="ex:GroupOfPersons"/>
<owl:Class rdf:ID="ex:Rock">

<rdfs:subClassOf rdf:resource="ex:Genre"/>
</owl:Class>
<owl:Class rdf:ID="ex:Classics">

<rdfs:subClassOf rdf:resource="ex:Genre"/>
</owl:Class>
<owl:Class rdf:ID="ex:Indie">

<rdfs:subClassOf rdf:resource="ex:Rock"/>
</owl:Class>
<owl:Class rdf:ID="ex:Mainstream">

<rdfs:subClassOf rdf:resource="ex:Rock"/>
</owl:Class>
<owl:Class rdf:ID="ex:MTVCrap">

<rdfs:subClassOf rdf:resource="ex:Mainstream"/>
</owl:Class>
<owl:Class rdf:ID="ex:Neo-Romantic">

<rdfs:subClassOf rdf:resource="ex:Classics"/>
</owl:Class>
<owl:Class rdf:ID="ex:Minimalist">

<rdfs:subClassOf rdf:resource="ex:Classics"/>
</owl:Class>
<owl:Class rdf:ID="ex:Band">

<rdfs:subClassOf rdf:resource="ex:GroupOfPersons"/>
</owl:Class>
<owl:Class rdf:ID="ex:Composer">

<rdfs:subClassOf rdf:resource="ex:Person"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="ex:hasPerformer">
<rdfs:domain rdf:resource="ex:Band"/>
<rdfs:range rdf:resource="ex:Person"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="ex:plays">
<rdfs:domain rdf:resource="ex:Band"/>
<rdfs:range rdf:resource="ex:Genre"/>

</owl:ObjectProperty>
<owl:Class rdf:ID="ex:MTVCrapBand"

<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="ex:plays"/>
<owl:allValuesFrom rdf:resource="ex:MTVCrap"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class

Figure 5.1: Sample of the initial ontology (O1)
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Added statements:
<owl:Class rdf:ID="ex:Punk">

<rdfs:subClassOf rdf:resource="ex:Indie"/>
</owl:Class>
<owl:Class rdf:ID="ex:MusicalSchool">

<rdfs:subClassOf rdf:resource="ex:GroupOfPersons"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="ex:hasComposer">
<rdfs:domain rdf:resource="ex:MusicalSchool"/>
<rdfs:range rdf:resource="ex:Person"/>

</owl:ObjectProperty>

Retracted statements:
<owl:Class rdf:ID="ex:MTVCrap">

<rdfs:subClassOf rdf:resource="ex:Mainstream"/>
</owl:Class>

Figure 5.2: Changes transformingO1 intoO2

<cowl:sourceOntology rdf:resource="ex:O2"/>
<cowl:targetOntology rdf:resource="ex:O1"/>

<cowl:bridgeRule cowl:br-type="compat">
<cowl:sourceConcept rdf:resource="ex:Punk"/>
<cowl:targetConcept rdf:resource="ex:Mainstream"/>

</cowl:bridgeRule>
<cowl:bridgeRule cowl:br-type="incompat">
<cowl:sourceConcept rdf:resource="ex:hasComposer"/>
<cowl:targetConcept rdf:resource="ex:hasPerformer"/>

</cowl:bridgeRule>

Figure 5.3: Mapping betweenO2 andO1

Added statements:
<owl:Class rdf:ID="ex:PunkRock">

<rdfs:subClassOf rdf:resource="ex:Indie"/>
</owl:Class>
<ex:PunkRock rdf:ID="ex:GreenDay"/>

Retracted statements:
<owl:Class rdf:ID="ex:Punk">

<rdfs:subClassOf rdf:resource="ex:Indie"/>
</owl:Class>
<owl:Class rdf:ID="ex:Punk"/>

Figure 5.4: Changes transformingO2 intoO3

<cowl:sourceOntology rdf:resource="ex:O3"/>
<cowl:targetOntology rdf:resource="ex:O2"/>

<cowl:bridgeRule cowl:br-type="equiv">
<cowl:sourceConcept rdf:resource="ex:PunkRock"/>
<cowl:targetConcept rdf:resource="ex:Punk"/>

</cowl:bridgeRule>

Figure 5.5: Mapping betweenO3 andO2
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<cowl:sourceOntology rdf:resource="ex:O3"/>
<cowl:targetOntology rdf:resource="ex:O1"/>

<cowl:bridgeRule cowl:br-type="into">
<cowl:sourceConcept rdf:resource="ex:GreenDay"/>
<cowl:targetConcept rdf:resource="ex:MTVCrapBand"/>

</cowl:bridgeRule>

Figure 5.6: Mapping betweenO3 andO1

the ontology, therefore this mapping may prove useful (e.g.for resource matching). This
relation is established using the mapping displayed in Figure 5.6.

Having the musical annotation ontology versions modelled using C-OWL in line with
the previous examples, the user can execute for instance thefollowing illustrative queries
(using the underlying C-OWL inference engine):

• find a representation of classex:Punk in the versionO3 (result:ex:PunkRock
in O3)

• find subclasses of class equivalent toex:PunkRock in the versionO2 (result:
subclasses of theex:Punk class in theO2 version)

• find all bands playing MTV crap music in the versionsO2 and higher (result:
ex:GreenDay in the sample of the versionO2 in our example)

• validate all definitions of composer individuals in the versionsO2 and higher (i.e.,
check, whether the definitions using theex:hasComposer role do not interfere
with the definitions using theex:hasPerformer role – results in raising an error
iff the sets corresponding to the role interpretations are not disjoint)

• . . .
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Chapter 6

Discussion, Conclusions and Future
Work

In this chapter, we give a discussion of the presented topics, provide a conclusion and list
the main future tasks that follow from the the content of thisreport.

6.1 Discussion of the Presented Topics

The content of Chapter 2 and 3 is rather theoretical, however, there are certain conse-
quences for the practice of ontology maintenance, too. We briefly discuss some of the
major consequences in rather informal way in Section 6.1.1.

Chapters 4 and 5 present two alternatives of multi-version reasoning. In Section 6.1.2
we show the relation between them, allowing for their possible combination within a
practical deployment.

6.1.1 Rational Dynamic Ontology Maintenance

Negation and revision in changing ontologies

Since negation is very closely related to inconsistencies,as shown in Section 2.2, it is very
important to consider this fact within the process of ontology maintenance. More specifi-
cally, unconsidered introduction of negation can cause incoherence or even inconsistency
(see Section 2.2 and 2.3) of the new version of ontology beingextended.

In case of OWL (DL) ontologies, care should be exhibited whenhandlingowl:com-
plementOf andowl:disjointWith statements as a part of the revision. As can be
seen in [BvHH+04], these correspond to negation either directly, or via application of de
Morgan laws. In an ontology revision implementation, it should be checked whether these
particular types of statements in the revision set do not violate consistency, coherency or
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any application-specific restrictions when added to the current version of the ontology.
Typically, this would be arranged using an associated inference engine. When there is
any problem detected, either in the revision set, or in the current ontology, or in both, the
involved statements should be adapted in order to prevent the problem (possibly in a way
similar to the techniques presented in [HvHH+05]).

In [NLHZ07] we describe an implementation of semi-automatic ontology integration
method as a crucial part of the dynamic ontology lifecycle scenario we have introduced
in [NHL+06]. This integration can be understood as an ontology revision operator and
thus it forms an example of a concrete application that should benefit from following the
theoretical notions specified here. In a special section in [NLHZ07] we show, how the
“integration operator” conforms to the postulates specified here in Section 2.3.

Contraction in changing ontologies

Implementation of a statement deletion in DL-based ontologies should follow the con-
traction postulates defined in Section 2.3. This ensures rationality of the behaviour of this
type of change (besides trivial removal of all axioms related to statements being removed,
of course).

Maintaining ontologies using diffs

Many ontology maintenance implementations use an ontologydiff notion and structure
quite often [NM04, KFKO02, VG06], however, without a properand/or common under-
lying formalisation. The preliminary semantic diff formalisation efforts initiated here in
Chapter 3 can help in order to make the diff implementation well-defined and universal
even across different application scenarios or (logics-based) ontology languages.

Commitment to a particular practical (weak) diff formal definition ensures well-de-
fined change introduction into evolving ontologies, with clearly understood and efficiently
predictable consequences. Quite obviously, this commitment can be combined with con-
formance to the ontology change postulates from Chapter 2 inorder to adopt a well-
founded practical ontology change policy in an implementation of ontology maintenance.

6.1.2 Combined Approach to Multi-Version Reasoning

In the previous section, we presented several notes on relation between the introduced
theory and practical applications concerning dynamic ontology maintenance and develop-
ment. In the following, we comment on the issues related to dynamic ontology utilisation
– i.e., multi-version reasoning and possibilities of practical combination of the presented
approaches.

The C-OWL based reasoning across multiple ontology versions can be easily trans-
formed to the temporal logics-based approach. This is essentially done by omitting the
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bridge rules (i.e., the mappings associated to particular ontology versions, relating them
to one or more previous versions in the mapped version space;see Section 5.1.2 for de-
tails). We end up with a version space (defined in Section 4.1.1) then. The information on
the sequence of versions has not changed, therefore we may utilise the model-checking
based approach in order to evaluate queries specified in Section 4.2.

Note that since both presented approaches to multi-versionreasoning build on the
same underlying (description) logics-based inference, the basic queries on concept satis-
fiability they are able to evaluate are mutually reducible toeach other. The only difference
is that the C-OWL based approach provides additional query expressivity due to the map-
ping rules, which have to be explicitly defined.

When it is not feasible to define and maintain the mappings between the versions,
the temporal logics-based approach should be the choice forthat particular application
scenario. When the mappings can be maintained and exploited, combination of both
approaches may be useful. Some types of queries can be answered by model-checking
and other types (certainly the ones involving bridge rule constructs) using the C-OWL
approach. For queries that can be evaluated by both approaches, users may typically
choose the more efficient approach.

6.2 Conclusions

We presented a report summarising several theoretical principles that can be used for
dealing with changing ontologies. First, formalisation ofontology change was introduced.
Chapter 2 dealt with uniform groundwork for negation and change operators in ontologies,
adapting the AGM principles [AGM85] in the context of Description Logics. Chapter 3
introduced a preliminary formalisation of logics-based ontology diffs – a feature used in
practical ontology development, but rather under-investigated from the theoretical point
of view.

Second, we presented two alternatives for reasoning with changing (versioned) ontolo-
gies. Chapter 4 and 5 deals with temporal logics-based and C-OWL inspired approach,
respectively. Both of these approaches build on the top of the usual Description Logics
ontology reasoning, however, providing additional features that allow to query an ontol-
ogy across a (linearly sorted) sequence of all its versions in time.

We put these topics into a coherent framework and provided a summary in Section 6.1.
This summary pointed out the basic theoretical notions directly applicable for practical
implementations of dynamic ontology lifecycle, namely fordynamic ontology mainte-
nance and querying of an ontology version repository. The summary establishes a “point
of contact” for developers interested in well-founded dynamic ontology maintenance and
inference applications. In [NLHZ07] we show a simple ontology integration application
that semi-automatically implements ontology revision operator according to the principles
discussed here in Section 6.1.1.
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6.3 Future Work

The main amount of future work in the scope of the general purpose of this deliverable
consists of bridging the gap between theory and practical applications even more. Con-
cerning ontology change formalisation, the analysis of theoretical principles should be
combined with appropriate user studies and use cases in order to define and document
respective best practices. This would support direct transfer of the theoretical principles
into practice and also help to identify, which parts of the theory are perhaps still not that
relevant for practical applications.

Regarding the multi-version reasoning, the proposed approach utilising the C-OWL
formalism should be elaborated in more detail and eventually implemented. The combina-
tion with the temporal logics-based approach should be investigated then, confronting the
resulting application to user experience and demands. For instance, support for branching
ontology version space can be further analysed and added if proven useful. Support for
non-DL ontology reasoning (e.g., RDFS or rule-based) wouldalso be beneficial in many
practical applications.
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Related Deliverables

The work presented here is directly related to the followingdeliverables:

Project Number Title and relationship
KW D2.3.3v1 SemVersion – Versioning RDF and Ontologies

(D2.3.3v1)– ontology versioning methodology
proposal and implementation

KW D2.3.3v2 SemVersion – Versioning RDF and Ontologies
(D2.3.3v2)– ontology versioning methodology
proposal, implementation and evaluation

KW D2.3.8v1 Report and Prototype of Dynamics in the Ontology
Lifecycle (D2.3.8v1)– proposal of dynamic
ontology lifecycle scenario

KW D2.3.8v2 Report and Prototype of Dynamics in the Ontology
Lifecycle (D2.3.8v2)– proposal, implementation
and basic evaluation of a dynamic ontology learning and
integration prototype, designed in line with the
scenario defined in D2.3.8v1 and the principles introduced
here

SEKT D3.5.1 Reasoning with Multi-version Ontologies– a
report dealing with details of temporal logics-based
multi-version reasoning
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