
D2.3.3.v2 SemVersion –
Versioning RDF and Ontologies

Max Völkel (University of Karlsruhe)

with contributions from:
Sebastian Ryszard Kruk (DERI)

Anna V. Zhdanova (DERI)
Robert Stevens (U Manchester)

A.Artale, E. Franconi, S. Tessaris (Free University of Bolzano)

Abstract. SemVersion is a generic, extendable multi-language ontology versioning
system, that can help research and industry to employ ontology based technologies
in dynamic settings. This deliverable describes the requirements for and design of
SemVersion.

EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.3.3.v2 (WP2.3)

Copyright c© 2006 The contributors

Document Identi-
fier

KWEB/2004/D2.3.3.b/v1.0

Project KWEB EU-IST-2004-507482
Version v1.0
Date January 27th, 2006
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European
Communities as project number IST-2004-507482.

University of Innsbruck (UIBK) -
Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Fax: +43(0)5125079872, Phone:
+43(0)5125076485/88
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

Ècole Polythechnique Fédérale de Lausanne
(EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Fax: +41 21 6935225, Phone: +41 21 6932738
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Fax: +33 2 99124098, Phone: +33 2 99124223
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Fax: +49 30 83875220, Phone: +49 30 83875223
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Fax: +39 0471 315649, Phone: +39 0471 315642
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Fax: +33 4 7661 5207, Phone: +33 4 7661 5366
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas/
Informatics and Telematics Institute
(ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Fax: +30-2310-464164, Phone: +30-2310-464160
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Fax: +49-511-7629779, Phone: +49-511-76219711
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway
(NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Fax: +353 91 526388, Phone: +353 87 6826940
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Fax: +44 1908 653169, Phone: +44 1908 653506
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Fax: +34-913524819, Phone: +34-913367439
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Fax: +49 721 6086580, Phone: +49 721 6083923
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Fax: +44(151)7943715, Phone: +44(151)7943667
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of
Computer Science, University of Manchester,
Oxford Road
Manchester, M13 9PL
United Kingdom
Fax: +44 161 2756204, Phone: +44 161 2756248
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Fax: +44 114 2221810, Phone: +44 114 2221891
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Fax: +39 0461 882093, Phone: +39 0461 881533
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Fax: +31842214294, Phone: +31204447731
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Fax: +32 2 6293308, Phone: +32 2 6293308
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Executive Summary

Change management for ontologies becomes a crucial aspect for any kind of on-
tology management environment, as engineering of ontologies often takes place in
distributed settings where multiple independent users have to interact. There is also
a variety of ontology languages used. Although RDF Schema and OWL are gaining
more and more popularity, a lot of semantic data still resides in other formats, as it
is the case in the biology domain (c. f. Sec. 2.1.3, page 8). Until now, no standard
versioning system or methodology has arisen, that can provide a common way to
handle versioning issues.

This deliverable describes the RDF-centric versioning approach and implementa-
tion SemVersion. It provides structural (purely triple based) and semantic (ontology
language based, like RDFS, OWL, and OBOL) versioning. It separates language-
neutral features for data management from language-specific features like semantic
diffs in design and implementation. This way SemVersion offers a common approach
for already widely used RDF models and a wide range of ontology languages.

Outline This deliverable describes and analyses five use cases (page 4. The main
design goal of SemVersion is a separation of re-usable, language agnostic features
from ontology language specific features.

In the design chapter (page 3) we identify language-neutral features like com-
mit, branch and merge (page 17). Versioning specific metadata like last editor, time
stamp of change, previous version, suggested changes etc. are also available regard-
less of ontology language. As ontology language dependant features we identified
the diff operation. A simple, structural diff on the level of RDF models is always
available, but the more meaningful semantic diff requires an inferencing engine per
ontology language. Blank nodes make diff calculation harder. We discuss issues and
solutions (page 22).

The API for dealing with versioning metadata is quite complex and cumbersome
to program. Thus we developed a tool, RDFReactor1, which generates a Java API
from an RDF Schema.

For storage, SemVersion re-uses existing triple stores. To remain independent of
a particular implementation, we developed a wrapper around common RDF man-
agement APIs: RDF2Go (page A). Both tools are released separately and simpli-

1http://rdfreactor.ontoware.org

fied implementation of SemVersion significantly; they deal with the lower-level data
management parts. The SemVersion code base contains mainly code implementing
versioning processes like commit, merge, branch and diff.

ii January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

Contents

1 Introduction 1
1.1 Term Definitions . 3

2 Requirements 4
2.1 Ontology Versioning Use Cases . 4

2.1.1 Use Case 1: MarcOnt Collaborative Ontology Development . . 4
2.1.2 Use Case 2: The People’s Portal for Community Ontology

Development . 7
2.1.3 Use Case 3: Versioning the Gene Ontology 8
2.1.4 Use Case 4: Versioning in a Semantic Wiki 10
2.1.5 Use Case 5: Analysis of Wikipedia 11

2.2 Requirements Summary . 12

3 Designing a Semantic Versioning System 13
3.1 Architecture . 14
3.2 Storage . 16
3.3 Generic Operations . 17
3.4 Generic Metadata – SemVersion’s Data Model 18
3.5 User Management . 20
3.6 API . 20

4 Comparing Versions (Diff) 21
4.1 Set-Based Diff . 22
4.2 Structural Diff . 22

4.2.1 Computing A Diff Between Models With Blank Nodes 23
4.2.2 Blank Node Enrichment . 27
4.2.3 Generating globally unique URIs 30

4.3 Semantic Diff . 31
4.3.1 A Minimal Semantic Diff of RDFS Graphs 32

5 Using SemVersion 35
5.1 Walk-through . 35

5.1.1 Typical Actions . 37
5.1.2 Administration . 38

iii

CONTENTS

5.1.3 Usage and Implementation Notes 39
5.1.4 SemVersion Usage Examples 39

6 Extending SemVersion 40
6.1 Package and Directory Structure . 40
6.2 Extending SemVersion with RDF Schema Support 41

7 Conclusions and Outlook 42

A RDF2Go 46
A.1 What is RDF2Go? . 46
A.2 Working Example: Simple FOAF via RDF2Go 48
A.3 Architecture . 50
A.4 The API . 51

A.4.1 Queries . 54
A.5 How to get started . 54

B SemVersion Schema 55

iv January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

Chapter 1

Introduction

SemVersion is a generic, extendable multi-language ontology versioning system, that
can help research and industry to employ ontology based technologies in dynamic
settings.

As outlined in the Knowledge Web Deliverable D2.3.1
”
Specification of a method-

ology for syntactic and semantic versioning” [1], there is a clear need for RDF data
and ontology versioning. This deliverable is a follow-up of D2.3.1, which explains
the underlying concepts in detail. Here we focus on the concrete approach and
implementation.

Change management for ontologies becomes a crucial aspect for any kind of
ontology management environment, as engineering of ontologies often takes place
in distributed settings where multiple independent users have to interact. There
is also a variety of ontology languages used. Although RDF Schema and OWL
are gaining more and more popularity, a lot of semantic data still resides in other
formats, as it is the case in the biology domain (c. f. Sec. 2.1.3). Until now, no
standard versioning system or methodology has arisen, that can provide a common
way to handle versioning issues.

This deliverable describes the RDF-centric versioning approach and implementa-
tion SemVersion1. It provides structural (purely triple based) and semantic (ontol-
ogy language based, like RDFS, OWL and OBOL) versioning. It separates language-
neutral features for data management from language-specific features like semantic
diffs in design and implementation. This way SemVersion offers a common approach
for already widely used RDF models and a wide range of ontology languages.

SemVersion is published as an open-source software project on the site OntoWare.
The current version of the project homepage is depicted in Fig. 1.1.

Our approach is inspired by the classical CVS system [2] for version management

1The name resembles the upcoming de-facto standard subversion (subversion.tigris.org)
and is also a short form of ”Semantic Versioning”

1

1. INTRODUCTION

Figure 1.1: Homepage of the SemVersion project

2 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

of textual documents (e.g. Java code). Core element of our approach is the sepa-
ration of language-specific features (the semantic diff) from general features (such
as structural diff, branch and merge, management of projects and metadata). A
speciality of RDF is the usage of so-called blank nodes. As part of our approach we
present a method for blank node enrichment which helps in versioning of such blank
nodes.

1.1 Term Definitions

RDF – RDF is a data model with the types URI, blank node, plain literal,
language tagged literal and data typed literal. It consists of triples
(also called statements).

model – A set of triples is called model (or triple set). SemVersion versions models.

ontology – An ontology is a model, in which semantics have been assigned to
certain URIs and/or triple constructs, according to an ontology language.

concept – We use the term concept to denote things ontologies talk about: classes,
properties and instances. In an RDF context, everything that is addressable
by URI or by blank node is considered a concept.

versioned model – A model under version control is named a versioned model.
A versioned model has a root model, which is a version. Technically, a
versioned model consists of a triple set for the content plus an arbitrary num-
ber of statements about this model. We thus call our approach model based
versioning in contrast to statement based versioning.

version – A version is a model plus versioning metadata. Versions in SemVersion
never change. Instead, every operation that changes the state of a versioned
model (commit, merge, ...) results in the creation of a new version.

More details about SemVersion’s conceptual data model can be found in Sec. 3.4.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 3

Chapter 2

Requirements

In this chapter, we present use cases from within our workpackage. The industrial
use cases stayed too vague to deduce a software architecture from them. We believe,
that the uses cases given in the next section are diverse enough to lead to a system
of general use. In Section 2.2 we sum up the requirements gathered from the use
cases.

2.1 Ontology Versioning Use Cases

We gathered different requirements from Knowledge Web partners in order to cre-
ate a generic design, suitable for a broad range of use cases. We tried to gather
as many concrete usage requirements as possible to obtain a usable (and hence
testable) design and implementation. In this section we present the different usage
requirements.

For each use case, we name the stakeholder and provide a use case description,
characteristics of the data set, and list derived versioning requirements.

2.1.1 Use Case 1: MarcOnt Collaborative Ontology Devel-
opment

Stakeholder: Sebastian Ryszard Kruk (DERI), sebastian.kruk@deri.org

MarcOnt1 is a project to create an ontology for library data exchange [3].

One of the most commonly used bibliographic description format is MARC21.
Though it is capable of describing most of the features of the library resources, its
semantic content is low. It means that while searching for a resource (book, paper),

1http://www.marcont.org/

4

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

one has to look for particular keywords in the resource’s description fields, but one
cannot carry out a search by meaning or concept. Keyword search can often result
in large sets of results. Also the data communication between library systems is
very hard to extend (fixed structure). On of the earliest shared vocabularies is the
Dublin Core Metadata standard for library resource description. Besides the fact
that most of the information covered by MARC21 is lost, the full potential of the
Semantic Web is not being used.

The project aims at creating the MarcOnt ontology, based on a social agreement
that will combine descriptions from MARC21 together with DublinCore and makes
use of the full potential of the Semantic Web technologies. This will include transla-
tions to/from other ontologies, more efficient searching for resources (i.e. users may
have impact on the searching process).

The MarcOnt initiative is strongly connected to the Jerome Digital Library [4]
project (e-library with semantics, formerly ElvisDL) - which implements a simple
library ontology and can be used as a starting point for further work. MarcOnt also
assumes that JeromeDL will be a testing platform for an experimental results from
the MarcOnt initiative.

Data Set Currently there exists only one version of the MarcOnt ontology, which
can be downloaded at http://www.marcont.org/index.php?option=com_content\
&task=view\&id=13\&Itemid=27.

Versioning Requirements As the MarcOnt project aims to collaboratively cre-
ate the ontology for digital libraries, they are a prototypical use case for collaborative
ontology engineering in general. They intend to use the ontology at a certain point
in time but continue to evolve it collaboratively at the same time. To conclude, they
need ontology versioning.

The MarcOnt project has a clear view on the process of ontology evolution.
It starts with a current main version. People can suggest (multiple, independent)
changes to a version. Then the community discusses about the proposed changes
and selects some. The changes are applied and a new main version is created and
released. The process is illustrated in Fig. 2.1.

The ontology builder of the MarcOnt portal requires not only a GUI for building
the ontology through submitting changes. It also needs the ability to:

• Manage a main trunk of the ontology (R1.1)2

• Manage versions of suggestions (R1.2)

• Generate snapshots of the main ontology with some suggestions applied (R1.3)

2Requirements are numbered by ”use case number” / ”.” / running number

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 5

2. REQUIREMENTS

Figure 2.1: Versions and suggestions in the MarcOnt use case

6 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

• Detect and resolve conflicts (R1.4)

• Allow to add suggestions to the main trunk (R1.5)

2.1.2 Use Case 2: The People’s Portal for Community On-
tology Development

Stakeholder: Anna V. Zhdanova (DERI), anna.zhdanova@deri.at

People’s portal [5] is an implementation of a human-Semantic Web interactive
environment. The environment is named The People’s Portal and it is implemented
employing Java, Jena and Tomcat. The basic idea of the People’s portal is to
combine a community Semantic Web portal technology with collaborative ontol-
ogy management functionalities in order to bring the Semantic Web to masses and
overcome limitations of the existing community web portals.

Use cases: The People’s portal environment is applied to DERI and used to
produce part of the DERI web site. DERI members can login here to enter the
environment. DERI web site managers can login here to manage the data in a
centralized fashion.

Versioning Requirements The system uses a subset of RDF Schema. Users
of the portal can introduce new classes and properties on the fly. Consensus is
partly reached by usage. Properties that are often used and classes that have many
instances are considered useful for the community. Hence it is necessary to ask the
versioning system:

• How many instance does this class have now? Last week? Generalised: How
many instances does a concept (rdfs:Class or rdfs:Property) has at a specific
point in time? (R2.1)

• When has this class first been instantiated? (R2.2)

• How many properties are attached to this class? Since when? (R2.3) number
of instances of class, properties NOW (specific point in time also)

• Who added this ontology item? (R2.4)

• Store new versions and return diffs between arbitrary points in time. (R2.5)

• Return predecessor of an ontology item (class, property) in time (R2.6)

• Support the evolution primitives:
”
add”,

”
remove” and

”
replace” on concept

definitions. (R2.7)

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 7

2. REQUIREMENTS

• Return number of changed instance items (also properties, classes) and show
which items changed. (R2.8)

• Which concepts appeared within a given time interval? (R2.9)

• Queries across change log/activity log: For each attribute, when was it instan-
tiated and when have instances been created? (R2.10)

• What are “hot” attributes? Those instantiated or changed often recently.
Which are these? (R2.11)

2.1.3 Use Case 3: Versioning the Gene Ontology

Stakeholder: Robert Stevens (U Manchester), robert.stevens@manchester.ac.uk

Use case description The gene ontology3 community is where collaborative on-
tology construction is practiced a long time comparing to other communities. The
GO community showed that involvement of multiple parties is a must for a compre-
hensive ontology as a result. The GO community is one of the communities with
the most practical experiences in collaborative ontology engineering [6], since they
started already in 1999. Hence they are the ideal subject to study real-world change
operations.

”
The goal of the Gene Ontology (GO) consortium is to produce a controlled

vocabulary that can be applied to all organisms even as knowledge of gene and
protein roles in cells is accumulating and changing. GO provides three structured
networks of defined terms to describe gene product attributes.”4

Current Gene Ontology versions are maintained by CVS repositories which han-
dle only syntactic differences among ontologies. In other words CVS is not able
to differentiate class versions for instance, being able only to differentiate text/file
differences.

Data Set The Gene Ontology
”
per se” is not an Ontology in the formal sense,

it is rather a cross-species controlled biological vocabulary as indicated above. The
Gene Ontology is divided in three disjoint sub-ontologies, currently stored in big flat
files or also stored in persistent repositories such as a relational database (MySQL
database). The three sub-ontologies are divided into vocabularies that describe
gene products in terms of: Molecular functions, associated biological processes and
cellular components.

3http://www.geneontology.org
4Extracted from the OBO site http://obo.sourceforge.net/

8 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

The GO ontology permits to associate biological relationships among molecular
functions, the involvement of molecular functions in biological processes and the
occurrence of biological processes at a given time and space in cells [7]. Whereas the
molecular function defines what a gene product does at the biochemical level, the bi-
ological process normally indicates a transformation process triggered or contributed
by a gene product involving multiple molecular functions. Finally the cellular com-
ponent indicates the cell structure a gene product is part of. The Gene Ontology
contains around 19.000 concepts. The latest statistics about the GO can be found
at the GO site 5:

Current term counts (as of June 20, 2005 at 6:00 Pacific time):

• 17946 terms, 94.2% with definitions.

• 6984 (38.9%) Molecular functions

• 9410 (52.4%) Biological processes

• 1552 (8.6%) Cellular components

• There are 998 obsolete terms not included in the above statistics
(Total Terms=18944)

Further complexity assessments can be found at http://www.fruitfly.org/~cjm/
obol/doc/go-complexity.html.

According to [8] the GO is a handcrafted ontology accepting only
”
is-a”and

”
part-

of” relationships. The hierarchical organization is represented via a directed-acyclic-
graph (DAG) structure similar to the representation of Web pages or hypertext
systems. Members of the Consortium group contribute to updates and revisions
of the GO. The Go is maintained by editors and scientific curators who notify GO
users of ontology changes via email, or at the GO site by monthly reports6. Please
note that ontology creation and annotation of GO terms in databases (association
of GO terms with gene products) are two different operations. Each annotation
should include its data provenance or source(a cross database reference, a literature
reference, etc).

Technically, there are two different data sets, available via public CVS stores.
Set I ranges from 1999 to 2001 and has a snapshot of the GO for each month in GO
syntax. The second set runs from 2001 up to now and contains for each month a
GO snapshot in OBO syntax. As OBO is the newer syntax, we assume the existence
of a converter from GO syntax to OBO syntax available from the GO community
(they must have converted their data, too). In order to use the data sets, one has to
decide for an RDF-based format, as SemVersion can only handle RDF, as explained

5http://www.geneontology.org/GO.downloads.shtml#ont
6http://www.geneontology.org/MonthlyReports/

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 9

2. REQUIREMENTS

in Sec. 3.1. There are three options: (a) custom RDF, (b) OWL generated from
DAG-Edit7 or (c) nice OWL generated by Protégé-Plugin.

Whatever choice is made, the exported data should contain the provenance in-
formation of the source file and the conversion process used. SemVersion offers ways
to store such provenance information.

Versioning Requirements Essentially, here SemVersion is used for data analysis.
In order to study ontology change operations, SemVersion must cope with multiple
versions of the Gene Ontology (GO). The GO is authored in Open Biology Language8

(OBOL), for which usable OWL exports exist. The GO has about 19.000 concepts.
Assuming about 10 statements per concept we estimate a size of roughly 190.000
statements – per version.

The researchers who study the ontology change patterns (Robert Stevens and his
team) would like to use a monthly snapshot for a period of 6 years. This amounts
to 6 years × 12 month = 72 versions. Thus the underlying triple store must be able
to search (maybe even reason) over them.

The requirements in short form are thus

• Store 72 versions of an ontology consisting of 190000 statements (R3.1)

• Allow meta-data queries concerning individual versions and relations among
them (e. g. “List all versions in which concept X is present, together with
the last editor and a timestamp!”, ‘What is the last version edited by user
Y ?”)(R3.2)

• Allow data queries over over the content of the 72 versions (R3.3)

• Compute a semantic diff for models in OBOL language (R3.4)

• OBOL to RDF mapping and converter (R3.5)

• A Java interface (R3.6) (this requirements stems from personal communication
with Robert Stevens, who does not need a full-blown CVS-like protocol for his
research)

2.1.4 Use Case 4: Versioning in a Semantic Wiki

Stakeholder: Max Völkel (U Karl), mvo@aifb.uni-karlsruhe.de

A wiki is a browser-based environment to author networked, structured notes,
often in a collaborative way. The project SemWiki9 aims at creating a semantic

7http://www.godatabase.org/dev/java/dagedit/docs/index.html
8http://obo.sourceforge.net/
9http://semwiki.ontoware.org

10 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

wiki for personal note management. SemWiki extends the wiki syntax with means
to enter statements about resources, much like in RDF. In a traditional wiki, users
are accustomed to see and compare different versions of a page. In the semantic
wiki

”
SemWiki” pages are stored as RDF resources, according to a wiki ontology.

Data Set A typical personal wiki has up to 3000 pages with approximately 10
versions per page. Each page consists roughly of 50 statements. This leads to
approximately 1.5 million triples for a snapshot-based versioning system.

Versioning Requirements We can identify to levels off diff requirements. First,
as the data is stored as RDFS models, the difference between two models can be
computed via an RDFS diff. Second, the user would most likely prefer a diff suited
for the domain of wiki pages. Such a domain-specific diff should be layered on top
of SemVersion/RDFS. Conceptually this would be a post-processing of SemVersions
output.

SemWiki users need ways to request a semantic diff between two page-versions.
As SemWiki pages partly consist of RDF statements, which do not belong to a
particular page, SemWiki needs a model-based (c. f. Sec. 3.4) versioning approach
(R4.1). Sometimes users want to roll-back page changes, thus we need the ability to
revert to old states (R4.2). Additionally, users want to track each statement: Who
authored it, when has it been introduced, etc. (R4.3).

2.1.5 Use Case 5: Analysis of Wikipedia

Stakeholder: Denny Vrandecic (U Karl), Markus Kroetzsch (U Karl), Max Völkel
(U Karl) {dvr,mkr,mvo}@aifb.uni-karlsruhe.de

An emerging research topic at AIFB is the analysis of changes in the Wikipedia10.
Especially, the extension of Wikipedia with typed links, known as Semantic Wiki-
pedia [9] is expected to generate a huge amount of fine-granular semantic data.
Typed links allow users to give links to other pages a freely chosen type. The URL
of the wiki page, the type, and the target page are interpreted as a triple. Another
syntax allows users also to link to attribute values, which result in a literal object
in the generated triple. This use case is mostly similar to

”
Versioning the Gene

Ontology”, except that RDF content is already available and no converters need to
be written.

Data Set The Wikipedia contains roughly 1.500.000 articles across all language
versions. Each article is expected to generate 10 triples on average, resulting in a
data set of 15 million triples, per version.

10http://www.wikipedia.org

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 11

2. REQUIREMENTS

Versioning Requirements There are no obvious requirements beyond those al-
ready mentioned in use case 3.

2.2 Requirements Summary

The uses cases described bear certain similarities. As a first observation, we can
distinguish data management related requirements from ontology language specific
features. As data management requirements, we identified:

• Store and retrieve versions in a scalable way (e.,g. store up to 15 million
triples). This is possible with current triple stores, c. f. http://esw.w3.org/
topic/LargeTripleStores.

• Uniquely identify versions (e. g. address versions unambiguously via URIs and
user-friendly via labels)

• Manage rich meta data per model (e. g. provenance, author, valid time,
transaction time)

• Model based versioning (and additionally concept-oriented queries for use case
2.1.2)

• Queries across versions concerning meta data

• Each version can have a number of attached
”
suggestions”; ability turn sug-

gestions into official versions

Other requirements can not be dealt with in a language neutral way, as they are
really ontology language-dependant requirements:

• Converter from ontology language to RDF (e. g. OBOL to RDF converter)

• Queries across versions concerning the content. This means query
answering over 15 million triples.

• Ability to return diffs between arbitrary versions

• Ability to return semantic diffs for particular ontology language used (e.,g.
RDF, OWL, OBOL)

• Domain-specific diff (e. g. diff between pages in a Semantic Wiki)

12 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

Chapter 3

Designing a Semantic Versioning
System

We face several questions in the design of SemVersion:

Architecture. How can a single system handle many different ontology languages?
In Sec. 3.1 we describe an architecture that holds up to the requirements.

Storage. Which storage strategy allows to execute queries and avoids vendor lock-
in? In Sec. 3.2 we analyse the requirements and present a triple store abstrac-
tion layer as part of the solution.

Generic Operations. How are generic operations like commit, branch, and merge
handled in SemVersion? What are the data formats of these operations? We
describe them in Sec. 3.3.

Comparing Versions. How can changes between versions be computed? What’s
the right level of abstraction? The ability to handle arbitrary RDF requires
to handle blank nodes as well, which complicates diff computation. Thus we
explain all diff-related issues in its own chapter on page 21.

Generic Metadata. What metadata is needed for each ontology under version
control? What for each version? Relations between versions? We describe
SemVersion’s data model in Sec. 3.4. The RDF Schema is given on page 55.

User Management. Collaborative authoring requires a certain support for user
management. The SemVersion support is described in 3.5.

API. SemVersion allows a rich set of metadata, which is stored in RDF, described
by an RDF Schema. How can such an API be kept consistent with the RDF
Schema that describes it? We introduce a tool called RDFReactor in Sec. 3.6,
which generates a Java API from an RDF Schema.

13

3. DESIGNING A SEMANTIC VERSIONING SYSTEM

3.1 Architecture

Note: Different from the design described in [1], we now aim at creating a pure Java
library. This allows us to concentrate on the core functionality, algorithms and data
structures; additional HTTP-based web services will be added as required.

We distinguish four kinds of data, to be managed in SemVersion:

Versioned model – the content of a model, representing an ontology in a given
ontology language

Versioning metadata per model – metadata managed by SemVersion, described
by an RDF Schema, and exposed via a Java API, e. g. getLastMainBranchVer-
sion(), getLastEditedTime()

User-supplied metadata per model – arbitrary metadata

Management data – relations between versions; user management; projects and
other global data

We generalise from the use cases: A versioning system has generally two main parts.
One deals with general data management issues, the other part with versioning
specific functionality such as calculating the difference between two versions.

The key to separate the two is the intuition that RDF represents the structural
core of ontology languages. By creating a generic RDF data management system,
we can implement the data management parts once and re-use them for all ontology
languages. A more detailed discussion can be found in the Knowledge Web Deliv-
erable D2.3.1 [1]. In SemVersion, we use RDF to represent each of these types of
data. In the next paragraph we give our reasons to use RDF for storing content of
ontologies.

RDF triples as the structural core of ontology languages The most elemen-
tary modelling primitive that is needed to model a shared conceptualisation of some
domain is a way to denote entities and to unambiguously reference them. For this
purpose RDF uses URIs, identifiers for resources, that are supposed to be globally
unique. Every ontology language needs to provide means to denote entities. For
global systems the identifier should be globally unique. Having entities, that can
be referenced, the next step is to describe relations between them. As relations are
semantic core elements, they should also be unambiguously addressable. Properties
in RDF can be seen as binary relations. This is the very basic type of relations
between two entities. More complex types of relations can be modelled by defining
a special vocabulary for this purpose on top of RDF, like it has been done in OWL.

14 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

The two core elements for semantic modelling, mechanisms to identify entities
and to identify and state relationships between them, are provided by RDF. Ontol-
ogy languages that build upon RDF use these mechanisms and define the semantics
of certain relationships, entities, and combinations of relationships and entities. So
RDF provides the structure in which the semantic primitives of the ontology lan-
guages are embedded. That means we can distinguish three layers here: syntactic
layer (e.g. XML), structural layer (RDF), semantic layer (ontology languages). Note
that we consider the two vocabularies of RDF and RDFS to be part of the ontology
layer.

The various ontology languages differ in their vocabulary, their logical founda-
tions, and epistemological elements, but they have in common that they describe
structures of entities and their relations. Therefore RDF is the largest common de-
nominator of all ontology languages. RDF is not only a way to encode the ontology
languages or just an arbitrary data model, but it is a structured data model that
matches exactly the structure of ontology languages.

Layered Architecture The high-level architecture of the implementation consists
of several layers (c. f. Fig. 3.1). Each layer depends on the layer below. To users,
only the SemVersion API and the RDF2Go API (c. f. page 46) are exposed.

• SemVersion API – A facade API for everything form user management, to
committing versions, creating projects, branching and merging the version
tree, retrieving or setting metadata, asking queries, to manipulating models.
Described in greater detail in Chapter 5.

• SemVersion internal data structures (like Branch, Root, User, VersionedModel,
Session and Diff)– these are rich in functionality, but too complex as an ex-
ternal API (mostly generated with RDFReactor).

• RDFReactor – generated glue-code to bridge from object-oriented Java to
triple-centric RDF

• RDF2Go – a wrapper over triple (and quad) stores, prevents vendor lock-in.

• Existing quad store implementations (NG4J, YARS).

All versioned content is stored as separate RDF models. At startup time, a SemVer-
sion server loads its root data model from the same RDF store, but caches this one
in memory. The root model contains only information about projects, versioned
models, their versions, branch labels, last edited time and other metadata about
models. User-defined metadata is stored as separate RDF models in the RDF store.
Diffs are calculated on-the-fly in the SemVersion server, but could be cached.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 15

3. DESIGNING A SEMANTIC VERSIONING SYSTEM

Jena 2.2YARS KAON

rdf2go

NG4J

Semversion-arch

SemVersion API

RDFReactor

SemVersion data objects

Sesame

Figure 3.1: The Layered Architecture of SemVersion

3.2 Storage

The requirements for SemVersion’s storage are:

• Query answering across multiple versions (1)

• Diffs between arbitrary versions (2)

• No vendor lock-in (3)

To be meet requirements (1) and (2), we decided to store all RDF models materi-
alised, e. g. not as diffs. Instead, diffs are computed on demand. More about diffs
can be found in Chapter 4.

SemVersion utilized RDF2Go, a sub-project of SemVersion. RDF2Go1 is a wrap-
per over RDF triple and quad stores. It abstracts away the triple store implemen-
tation and gives the user a simple Java-centric API for model changes. We describe
RDF2Go in depth in the appendix (page 46).

In [1] we suggested reification for data storage, which would make models four
times as large. Facing the large volume of the Gene Ontology data (see 2.1.3),
we need more powerful storage solutions than for the other use cases. To avoid
reification, we now use native quad stores, which provide a context URI for each
triple [15]. We use the context URI to address models more efficiently. RDF2Go
has the ability to access parts of a quad model at runtime as a triple model. This
simplifies RDF handling in SemVersion significantly.

1http://rdf2go.ontoware.org

16 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

Implementation

The storage layer access is implemented in the class TripleStore which offers means
to get models. The TripleStore uses a ContextModel for it’s persistence. The
identification URI for a model is used as the context URI in the quad model. All
models are only proxies for the ContextModel. Currently the data is stored as an
XML file in TriX [16] syntax. We plan to migrate to Sesame 2.0 as soon as it is
released.

3.3 Generic Operations

Most versioning operations can be classified as pure data management operations,
agnostic with respect to the versioned data semantics.

In a commit operation, a user commits a model as an update to a former model.
Each new version is simply stored as is – no incremental storage via diffs is used.
This guarantees that the retrieval will give the user exactly back what she checked
in (syntactic versioning). More importantly, this allows to compute diffs between
arbitrary versions and execute queries across versions. Each new model is send to
the RDF store with a locally generated URI, which is globally unique. Relations to
other models are recorded in the main model.

More sophisticated storage mechanisms could be developed, but the real chal-
lenge in ontology versioning is not storage space, but efficient query answering for
large amounts of (quad) statements.

Branch and merge operations allow ontology engineers to follow multiple de-
velopment paths in parallel. A branch operation works like a commit, but the new
version is considered to be in a new branch, marked by a different branch label.

For merge, we distinguish a merge between two arbitrary versions and the merg-
ing of two branches. It is possible to merge arbitrary versions, no only those at the
end of a branch. A merge of version A and version B is the set union of the triple
sets. If one version is the predecessor of the other one, duplicate blank nodes have
to be detected (via blank node enrichment, see also Sec. 4.2.2 and removed.

Merging two branches is different. First we look at the branch point c, which
is defined as the most recent common version of the two branches. Such a version
always exists, as branches can only be created by committing a version to an existing
version. We also take two versions from the different branches, in most cases the
most recent ones, and call them a and b. Consider the example version tree given in
Fig. 3.2. Here c = A, a = A′′, b = B′′. In order to merge b back into a we compute
the diff(c, b) and apply it to a.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 17

3. DESIGNING A SEMANTIC VERSIONING SYSTEM

3.4 Generic Metadata – SemVersion’s Data Model

The general idea is to re-use data management functionality across ontology lan-
guages. The relations between different versions of an RDF model or ontology are
the same, regardless of the semantics used.

Data management deals with storage and retrieval of chunks of data. In our
case, the smallest unit of data we store and retrieve is a model (also called ’triple
set’). A model is a set of RDF triples. A versioned model consists of a triple set for
the content plus an arbitrary number of statements about this model. We thus call
this model based versioning in contrast to statement based versioning. Note that we
need the more fine-granular structure of RDF to compute diffs.

SemVersion’s data model (depicted in Fig. 3.3) was mostly derived from the
requirements of the MarcOnt use case (Sec. 2.1.1) and fulfills also the other use
cases needs. But note that the statement-oriented versioning requirements from use
case 2 seem difficult to integrate.

repository SemVersion has a repository of projects.

project They can be created, listed and removed from the repository. A project
can hold a number of versioned models, i. e. in a project several different
and independent ontologies can be developed and versioned.

versioned model A versioned model is the container for a single RDF model or
ontology under version control. A versioned model has a root version and
also knows all other versions that are direct or indirect descendants of the
root version. Versioned models are quite an important concept and give the
user the ability to retrieve the right version by e. g. listing all branches or
simple getting the most current

”
main” branch version.

version A version is the most central concept. It is a model decorated with all
kinds of metadata. A version knows where it cames from (it parents), has a
branch, a label and optionally even a comment and a provenance URI. The
user can commit a model as the successor of a version; create a new version

A

A
′

A
′′

B

B
′

B
′′

1

Figure 3.2: A sample version tree

18 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

by merging two existing models or commit a diff. Committing diffs is useful, if
the models become really large and change only litte – a use case we are likely
to experience in the Gene Ontology scenario.

Typically a new user starts by creating a new project and then adds a RDF model to
it. This model is then treated as the first version of a

”
versioned model”. The initial

RDF model was probably created on the users desktop with third-party ontology
engineering tools.

A versioned model consists of different versions that have attributes and relations.
Common attributes are time stamp, branch label, status of acceptance. Predecessor
relationships indicate the history path. This meta-information about versions can be
managed independent of the versioned artefacts themselves. Thus this management
layer can be designed very flexible and reusable. As every version can be identified
via an URI, one can make arbitrary statements in RDF about them. The concepts of
branches, acceptance status and version dependencies can then be represented easily
in RDF. SemVersion uses this distinction of stored RDF models and statements
about them. Realised as statements about versions is e. g. the concept of ontology
engineering projects. Such projects are simple sets of versioned models and give the
user a better ability to manage the different ontologies in progress.

Users can store arbitrary RDF encoded metadata objects for each project, ver-
sioned model and most important for each version. This data is stored in the RDF
storage layer and linked by RDF statements to the versioning artefact it belongs
to. Metadata models are also URI-addressable. This metadata strategy enables a

Repository

Project
Project

VersionedModel

VersionedModel

VersionedModel

Version

Version Version

Branchlabel

Content
UserdefinedMetadata

UserdefinedMetadata

Figure 3.3: Data Model for RDF Versioning

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 19

3. DESIGNING A SEMANTIC VERSIONING SYSTEM

good re-use of the SemVersion system, as e. g. the evolution log of an ontology
engineering tool could be assigned to a version with this mechanism.

3.5 User Management

The SemVersion API has means to create users and set login names and passwords
for them. The user management is not optimized for security, but against accidental
misbehavior. All user data is stored in plain RDF in the same backend as all other
data. It’s thus the task of SemVersion clients to ensure that no direct access to the
underlying RDF store is possible – if strong security is needed at all.

3.6 API

The metadata model of SemVersion is rather expressive. Creating a Java API suit-
able for adding, retrieving and changing all metadata requires a great deal of glue
code to translate get-methods in RDF queries, and add-/set-methods in statement
manipulation operations. The same holds for SemVersions internal data manage-
ment (relations between versions, user management, adding projects, setting the
parents of a version or storing the branch label).

Luckily, this error-prone glue-code is generated from an RDF Schema by RDFRe-
actor. RDFReactor2 [17] is released as an independent open-source project. Parallel
to the generated Java API, direct access to the stored RDF data is always possible
via RDF2Go. RDFReactor builds on RDF2Go. Until now, RDFReactor has been
downloaded over 140 times.

2http://RDFReactor.ontoware.org

20 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

Chapter 4

Comparing Versions (Diff)

In this chapter we describe in detail all concepts and issues related to diff calculation
and its role in SemVersion. The biggest challenge is correct handling of blank nodes,
as they cannot be referenced across models.

A semantic versioning system needs the ability to compute a diff, which tells the
user what (conceptually) has changed between two versions. Compare this to the
situation in source code versioning, where changes are reported on the syntactical
level. If a colleague used a different source code formatting tool, a syntactic diff will
report many changes, while semantically nothing has changed in the program code.
Users are thus not really interested in a line-by-line diff, but rather in the semantic
diff.

Diffs serve two purposes: First, SemVersion allows to compute (structural and se-
mantic) diffs between two arbitrary chosen models, to inform the user about changes.
This allows collaborative ontology engineering. Second, diffs can be used in an up-
date command to apply changes to a remotely stored model. When dealing with
very large models, it might not be feasible (nor efficient) to transfer the complete
model, if only a small fraction has changed.

We distinguish three levels of diffs, which are described in detail in the next
sections:

• Set-based Diff which is easy to compute, but may result in large diffs.

• Structural Diff which takes blank node semantics into account.

• Semantic Diff which respects the ontology language semantics. This is the
most concise diff.

Definition. The diff function d(A, B) → 〈a(A, B), r(A, B)〉 is a non commutative
function from two triple sets (A, B) to two triple sets of added (a(A, B)) and removed
(r(A, B)) statements, with

21

4. COMPARING VERSIONS (DIFF)

version A:
a rdfs:type c

b rdfs:type c

c rdfs:subClassOf d

version B:
a rdfs:type d

b rdfs:type d

c rdfs:subClassOf d

e rdfs:type d

added a(A, B):
a rdfs:type d

b rdfs:type d

e rdfs:type d

removed r(A, B):
a rdfs:type c

b rdfs:type c

Figure 4.1: Example for a Set-Based Diff

• a(A, B) = B − A = B\(A ⋂
B) and

• r(A, B) = A−B = A\(A ⋂
B).

Note: We represent a diff as two independent RDF models: One for added
statements (a(A, B)), one for removed statements (r(A, B)).

4.1 Set-Based Diff

For versioning, the set-based diff is simply the set-theoretic difference of two RDF
triple sets. Libraries such as Jena have built-in functions to compute this set-
difference. An example for a set-based diff can be found in Fig. 4.1. Note that
the set-based does not uses any inferencing.

Such diffs can be computed by simple set arithmetics for triple sets that contain
only URIs and literals, as shown in [11].

In the Example 4.2, we have a model consisting of two statements, both involving
the same blank node.1 The exact same model is later stored as an update. As blank
nodes have no identity across model boundaries, a set-based RDF diff concludes that
all triples have been removed from A, while a similar amount of triples has been
added to B.

4.2 Structural Diff

Without the presence of blank nodes, the set-based diff is the same as the structural
diff. With blank nodes, the set-based diff considers all blank nodes to be different
an reports all statements involving blank nodes both as added and as removed.

1Note that we label blank nodes with :1, :2 . . . in our examples.

22 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

version A:
_:1 :hasName "Max"

_:1 :hasPhone "123"

version B:
_:3 :hasName "Max"

_:3 :hasPhone "123"

added a(A, B):
_:6 :hasName "Max"

_:6 :hasPhone "123"

removed r(A, B):
_:7 :hasName "Max"

_:7 :hasPhone "123"

Figure 4.2: A naive set-based “structural” RDF Diff

Unfortunately, blank nodes2 are used in practice. They are e. g. used in OWL for
property restrictions and in FOAF to denote persons. Blank nodes cause some prob-
lems in computing the structural diff, as we have no knowledge about the relation
(equal or not?) between two blank nodes from different models.

Note: Applying a diff faces the same blank node identification problems as for
computing a diff. The RDF semantics [13] dictate to treat blank nodes across
models as different, as long as they are not making exactly the same statements. If
a model contains ten statements about a blank node and we add one statement to
it, a naive diff thus concludes that all ten statements have been removed and eleven
other statements have been added.

In the remainder of this section, we analyse cases in which we can conclude blank
node equality in a versioning context. In Section 4.10, we explain a way to track the
identity of blank nodes across versions.

4.2.1 Computing A Diff Between Models With Blank Nodes

In Example 4.2 it seems obvious to come up with a better diff. In fact, both models
encode exactly the same semantic knowledge: There exists a thing which has a
name (Max) and a phone number (123). So it’s safe to treat the blank nodes as
equal across versions. On the other hand, such equality is not always safe to deduce.
Consider the Example 4.3. Here it would be illegal to consider :1 and :3 to be the

2Sometimes also called ”bnodes” – but they have nothing to do with b-trees.

version A:
_:1 :hasName "Max"

version B:
_:3 :hasPhone "123"

added a(A, B):
_:5 :hasPhone "123"

removed r(A, B):
_:2 :hasName "Max"

Figure 4.3: Blank nodes can not be considered equal

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 23

4. COMPARING VERSIONS (DIFF)

same node. Doing so would say: I know that this it is the same object, that had the
name “Max” in the last version and now has the phone number “123”. It might as
well mean: The object with the name “Max” has been replace by an object with the
phone number “123”. Now we look at different cases of diffs, trying to unify blank
nodes across versions, where appropriate. We can distinguish five cases of blank
node differences across models:

Case 1: Total Similarity.

The blank node appears in exactly the same statements in both versions. Then it
is semantically safe to assume blank node identity (c. f. Ex. 4.4).

Case 2: Single Monotonous Extension.

If only additional statements have been added (the previous version’s statements are
all entailed by this versions statements), one can also conclude blank node equality
without problems (c. f. Ex. 4.5).

Case 3: Multiple Monotonous Extension.

If the blank node has been extended monotously but in multiple and different ways
(c. f. Example 4.6), what does this mean? Are the blank node identifiers

”
:1” and

”
:3” referring to the same object? As we cannot know this, we must treat the blank

nodes as different. However, the blank node in model A could either be identified
with :3 or :5. We discusss this in Section 4.3.1.

Case 4: Extension and Reduction.

Consider the case, where some properties have been removed and others have been
added. Here again, no equality of the blank nodes should be assumed. Example 4.7
shows such a case.

Case 5: Multiple Extensions and Reductions

The original blank node could appear only in reduced and extended models. Here
again, no equality should be assumed. Note that this is the most general case, which
also handles the case of blank nodes completely being dropped from the model. An
example is given in 4.8

24 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

version A:
_:1 :hasName "Max"

_:1 :hasPhone "123"

version B:
_:3 :hasName "Max"

_:3 :hasPhone "123"

added a(A, B):
∅

removed r(A, B):
∅

Figure 4.4: Case 1: Total Similarity

version A:
_:1 :hasName "Max"

_:1 :hasPhone "123"

version B:
_:3 :hasName "Max"

_:3 :hasPhone "123"

_:6 :hasAge "26"

added a(A, B):
_:7 :hasAge "26"

removed r(A, B):
∅

Figure 4.5: Case 2: Single Monotonous Extension

version A:
_:1 :hasName "Max"

version B:
_:3 :hasName "Max"

_:3 :hasPhone "123"

_:5 :hasName "Max"

_:5 :hasPhone "456"

added a(A, B):
_:6 :hasName "Max"

_:6 :hasPhone "123"

_:2 :hasName "Max"

_:2 :hasPhone "456"

removed r(A, B):
_:4 :hasName "Max"

Figure 4.6: Case 3: Multiple Monotonous Extension

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 25

4. COMPARING VERSIONS (DIFF)

version A:
_:1 :hasName "Max"

_:1 :hasPhone "123"

version B:
_:8 :hasName "Max"

_:8 :hasAge "28"

added a(A, B):
_:5 :hasName "Max"

_:5 :hasPhone "456"

removed r(A, B):
_:3 :hasName "Max"

_:3 :hasPhone "123"

Figure 4.7: Case 4: Extension and Reduction

version A:
_:1 :hasName "Max"

_:1 :hasPhone "123"

version B:
_:8 :hasName "Max"

_:8 :hasAge "28"

_:6 :hasPhone "123"

_:6 :hasFax "4711"

added a(A, B):
_:5 :hasName "Max"

_:5 :hasPhone "456"

removed r(A, B):
_:8 :hasName "Max"

_:8 :hasAge "28"

_:6 :hasPhone "123"

_:6 :hasFax "4711"

Figure 4.8: Case 5: Multiple Extensions and Reductions

26 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

4.2.2 Blank Node Enrichment

As a solution, we invented the concept of blank node enrichment.

In order to identify blank nodes across models, we must assign a unique identifier
to them. In order not to break existing semantic interpretations of the model, we
cannot simply replace blank nodes with URI nodes. Instead, we add additional
statements to the model that attach URIs as inverse functional properties to blank
nodes, as illustrated in Example 4.10.

Integration in SemVersion Every model stored in SemVersion is blank node
enriched at insertion time. If a user retrieves this model later, he will additonally
find triples attaching random URIs to blank nodes. During his local ontology change
operations, three cases can happen with respect to blank nodes:

Blank node deletion. A blank node is deleted. Either the ontology editor also
deletes all statements about this blank node, or leaves the blank node enrich-
ment statement intact. In either case, when the user commits his model back
as a new version, SemVersion can deduce that this node has been deleted.

Blank node changes. Some (but not all) properties involving the blank node are
added or removed. Upon commit, this blank node can be linked to it’s ancestor
and thus a correct diff can be computed upon request.

Blank node creation. The user introduces a new blank node. This can happen
directly or indirectly, e. g. in OWL when a user adds a new constraint.

Later, when the user commits such an enriched model back to SemVersion, it is
simply stored, enriching only the not-yet-annotated blank nodes. Even later, a
diff between two versions might be requested. Now, SemVersion first computes the
structural diff (c. f. Fig. 4.11). This diff is then minimized by removing blank nodes
which occur both add the added and removed side, but have the same bne:hasID

ID (c. f. Fig. 4.12. The algorithm for blank node enrichment is given in Fig. 4.10.

Most RDF processing tools will leave the extra triples intact. In the MarcOnt
scenario (c. f. Sec. 2.1.1), a dedicated ontology builder is used, so this constraint
can be enforced. In SemVersion, the content of every version is blank node enriched
before it is stored in the RDF storage layer.

To sum up, the idea is to attach artificial inverse functional properties to every
blank node. This changes nothing to the RDF semantics but helps to identify equal
blank nodes across models. The generation of unique identifiers (we use URIs) is
described in the next section.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 27

4. COMPARING VERSIONS (DIFF)

Model A:
_:3 rdf:type foaf:Person

_:5 foaf:name "Max"

Model A′ (blank node enriched):
_:3 rdf:type foaf:Person

_:3 bne:hasID rnd:1130937311/416

_:5 foaf:name "Max"

_:5 bne:hasID rnd:1130937738/417

Figure 4.9: Blank Node Enrichment

Map<BlankNode, URI> knownBnodes = INITIALIZE EMPTY;

for each Statement s in Model m:

if (s.subject is a BlankNode)

// make sure subsequent bnodes get the same URI
URI u = knownBnodes.get(s.subject)

if (u = null) // this bnode has not been seen before

u = randomUniqueURI();

knownBnodes.put(s.subject, u);

// write bnode enrichment into model
model.addStatement(s.subject, bne:hasID, u);

if (s.object is a BlankNode)

URI u = knwonBnodes.get(s.object)

if (u == null) // this bnode has not been seen before

u = randomUniqueURI();

knownBnodes.put(s.object, u);

model.addStatement(s.object, bne:hasID, u);

Figure 4.10: Blank Node Enrichment Algortihm

28 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

version A:
_:3 rdf:type foaf:Person
_:3 bne:hasID rnd:416
_:5 foaf:name "Max"
_:5 bne:hasID rnd:417

version B:
_:4 rdf:type foaf:Person
_:4 bne:hasID rnd:416
_:2 foaf:name "Max"
_:2 bne:hasID rnd:417
_:2 foaf:phone "123"
_:7 foaf:name "Max"
_:7 foaf:phone "456"
_:7 bne:hasID rnd:426

added a(A,B):
_:8 foaf:name "Max"
_:8 bne:hasID rnd:417
_:8 foaf:phone "123"
_:1 foaf:name "Max"
_:1 foaf:phone "456"

removed r(A,B):
_:6 foaf:name "Max"
_:6 bne:hasID rnd:417

Figure 4.11: Simple Structural Diff between blank node enriched models

version A:
_:3 rdf:type foaf:Person
_:3 bne:hasID rnd:416
_:5 foaf:name "Max"
_:5 bne:hasID rnd:417

version B:
_:4 rdf:type foaf:Person
_:4 bne:hasID rnd:416
_:2 foaf:name "Max"
_:2 bne:hasID rnd:417
_:2 foaf:phone "123"
_:7 foaf:name "Max"
_:7 foaf:phone "456"
_:7 bne:hasID rnd:426

added a(A,B):
_:8 foaf:name "Max"
_:8 bne:hasID rnd:417
_:8 foaf:phone "123"
_:1 foaf:name "Max"
_:1 foaf:phone "456"

removed r(A,B):
_:6 foaf:name "Max"
_:6 bne:hasID rnd:417

Figure 4.12: Smart Structural Diff between blank node enriched models

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 29

4. COMPARING VERSIONS (DIFF)

4.2.3 Generating globally unique URIs

The Blank Node Enrichment relies on a way to produce an arbitrary number of
globally unique URIs.

The strategy for generating globally unique URIs in SemVersion is as follows:
(i) The first part of the URI is the URL the SemVersion server is running at. This
reduces the problem of generating globally unique URIs to generating locally unique
URIs, assuming that the same SemVersion server URL will not be used for different
SemVersion server ever. To soften this constraint, (ii) the current system time for the
server, measured in milliseconds since 1970 is also made a part of the generated URL.
Thus the problem is reduced to maintain an accurate server clock and never issue
the same URI again in a given period of time (server clock may be off for minutes,
but not months). To issue different URIs at all times, (iii) an internal counter is
added to the URI string. The URI generator cannot guarantee uniqueness, but the
likelihood for the same URI being generated twice is really low.

Estimating the chance for generating the same URI twice is easy. The same URI
is generated with a likelihood Perror = Pservername∗Ptime∗Pcounter, with the following
definitions:

Pservername the likelihood of using the same base URL on two servers. The base URL
of a SemVersion server is the URL under which SemVersion runs. It has to be
configured in a configuration file and thus can be guaranteed to be unique.

Ptime the likelihood of the server clock reporting the same time twice. We assume
this happens only for one millisecond per year.

Pcounter the likelihood of the server processor malfunctioning. We estimate this to
be really low (roughly 1 : 1.000.000).

An example for such a generated URI is
http://semversion.example.com/1130937311/416 which can be represented lo-
cally as rnd:1130937311/416, assuming correct name space definitions.

30 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

4.3 Semantic Diff

The semantic difference has to take the semantics of the used ontology language into
account. It is not possible to write a generic, semantics-agnostic algorithm for this.

An intuitive way to understand the concept of a sematic diff goes like this: Let’s
assume we use RDF Schema as our ontology language, and have two versions (A and
B) of an RDFS ontology. Now, in order to compute the semantic RDFS diff, we use
RDF Schema entailment on model A and infer all triples we can (Inf(A)). Then
we do the same for model B (Inf(B)). Now we calculate a structural (syntactical,
set-based) diff on Inf(A) and Inf(B). Fig. 4.13 illustrates the semantic diff under
RDF Schema entailment semantics.

Note: This is not the same as the structural diff between model A and B. If the
structural diff of two models is empty, then the semantic diff must also be empty.
The inverse is not necessarily true: There might be two different RDF models which
encode the same semantic model, resulting in an empty semantic diff, but a non-
empty structural diff.

More formally, to calculate the semantic diff dl under the semantic of an on-
tology language l, a system has to know the semantics of that specific language
l. The semantic closure sl(M) of a model M is then defined a the set of all
statements that can be concluded from the statements in M under the seman-
tics of the RDF-based ontology language l. The semantic diff of two models A
and B is dl(A, B) → 〈al(A, B), rl(A, B)〉 with al(A, B) = sl(B)\(sl(A)

⋂
sl(B)) and

rl(A, B) = sl(A)\(sl(A)
⋂

sl(B)).

Briefly, a way to compute a semantic diff is to materialize the complete entail-
ment (transitive closure) and then perform a structural diff. For RDF Schema, the
calculation of the transitive closure can be re-used from the Jena framework. How-
ever, in certain cases this might not be feasible, e. g. some ontology languages infer
infinite amounts of triples from finite models. In these cases, the calculation of a
semantic diff can be accomplished by a language specific reasoner or by a language
specific set of rules. These rules can be formulated in a language like TRIPLE as
demonstrated in [12]. Initially, SemVersion provides support for RDF Schema only.

version A:
a rdfs:type c

b rdfs:type c

c rdfs:subClassOf d

version B:
a rdfs:type d

b rdfs:type d

c rdfs:subClassOf d

e rdfs:type d

added a(A, B):
e rdfs:type d

removed r(A, B):

Figure 4.13: Example for a Semantic Diff under RDFS semantics

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 31

4. COMPARING VERSIONS (DIFF)

4.3.1 A Minimal Semantic Diff of RDFS Graphs

(Contribution from Free University of Bolzano)

In the following we consider RDFS as the ontology language.

The scenario is the one where an ontology engineer generates different versions
of an ontology while those different versions need to be stored and retrieved. The
problem we are interested in is to find the minimal information that must be stored
together with the original ontology to reconstruct the new version. In this scenario,
the notion of semantic diff must be useful both to enlighten the differences between
two different versions (hereafter called the source and the target ontology), and as
the minimal piece of information that we need to store together with the source
ontology to obtain the target ontology.

Note: SemVersion currently stores full versions and generates diffs only on de-
mand.

The main idea is to start from a simple structural diff between the two versions
and then minimizing the result of the structural diff by exploiting the semantics of
the RDFS ontology language. In particular, considering the structural diff as a pair
of sets, a(A, B), r(A, B), we should exploit the semantic of RDFS and in particular
the notion of entailment between two RDFS graphs (as defined in [13]) to eliminate:

• Triples from a(A, B) which are entailed by the source (we call the resulting
set the semantic add, in symbols SEAdd);

• Triples from r(A, B) which are entailed by the target (we call the resulting set
the semantic remove, in symbols SERem).

To formally define the notion of semantic diff it is crucial to find a way to eliminate
triples as described above in such a way that:

1. Both sets SEAdd and SERem are minimal;

2. The target ontology can be reconstructed from such semantic diff, i. e.:

Ot ≈ Os ∪ SEAdd − SERem.

Two relevant remarks follows that clarify the importance of having a semantic diff
and the difficulties related with its definition due to the presence of blank nodes and
the removal of information that is implicit in the target graph.

Remark 1. Due to the presence of blank nodes the semantic diff is not unique. For
example, let us consider Example 4.14, with Os = A and Ot = B.

We can consider two different minimal sets as semantic add depending whether
we identify :z to :x and :z to :y, respectively:

32 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

version A:
a :R _:x

_:x rdf:type C

a :R _:y

_:y rdf:type E

version B:
a :R _:x

_:x rdf:type C

a :R _:y

_:y rdf:type E

a :R _:z

_:z rdf:type C

_:z rdf:type E

added a(A, B):
a :R _:z

_:z rdf:type C

_:z rdf:type E

removed r(A, B):

Figure 4.14: Structural Diff

• If we identify the blank node :z with :x, thus
SEAdd = {(:x rdf:type E)}

• If we identify the blank node :z with :y, thus
SEAdd = {(:y rdf:type C)}

Furthermore, if the source and target ontologies do not contain the triple (:y rdf:type
E) then the second mapping (i.e. :z to :y) does not provide a valid semantic diff
since it does not minimize SEAdd.

Remark 2. The notion of semantic remove can be counterintuitive due to triples
that are implied by the target ontology. Let us consider the following versioning case
given in Example 4.15. From the transitivity of subclass relations: Ot entails (A

version A:
A rdfs:subClassOf B

A rdfs:subClassOf C

version B:
A rdfs:subClassOf B

B rdfs:subClassOf C

added a(A, B):
B rdfs:subClassOf C

removed r(A, B):
A rdfs:subClassOf C

Figure 4.15: Structural Diff

rdfs:subClassOf C), thus: SERem = {}. Thus, if we reconstruct the target ontology
by using the semantic diff we obtain:

O′
t = { (A rdfs:subClassOf B) (A rdfs:subClassOf C) (B rdfs:subClassOf C)}

i.e. the resulting graph contains the redundant triple (A rdfs:subClassOf C). In
order to remove this triple we need to process furthermore the target graph that
removes redundant information. Note that the semantic diff as defined in [14] has
the same problem. We envisage various alternative solutions.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 33

4. COMPARING VERSIONS (DIFF)

• To adopt the semantic diff as defined here in conjunction with a graph mini-
mization procedure that removes redundant information (this further step is
not for free).

• To avoid minimization over the remove part, leaving just the syntactic remove.

• To resort to a new notion of update where removing means asserting the
negation of the triples in the structural remove. This also implies that we
should further modify the target graph to obtain a consistent target ontology.
This last solution does not verify anymore the equivalence: Ot ≈ Os∪SEAdd−
SERem.

To actually compute the semantic diff a simple case is the one where the target
ontology does not introduce new blank nodes. In this case we can show that the
semantic diff can be obtained by simply checking entailment between source and
target ontologies and single triples belonging to a(Os, Ot) and r(Os, Ot), respectively.

In this case we can show that the semantic diff can be obtained by simply check-
ing entailment between source and target ontologies and single triples belonging to
a(Os, Ot) and r(Os, Ot), i.e.:

1. SEAdd(Os, Ot) = a(Os, Ot)− {t ∈ a(Os, Ot)|Osentailst}

2. SERem(Os, Ot) = r(Os, Ot)− {t ∈ r(Os, Ot)|Otentailst}

Example. The case of ground ontologies, as showed in Fig. 4.1, can be solved
applying the above mentioned minimization rules. Thus, the semantic diff is:

SEAdd(Os, Ot) = a(Os, Ot)− {(ardfs : typed), (brdfs : typed)}
= {(e rdfs:type d)}

SERem(Os, Ot) = r(Os, Ot)− {}
= {(a rdfs:type c),(b rdfs:type c)}.

version A:
a rdfs:type c

b rdfs:type c

c rdfs:subClassOf d

version B:
a rdfs:type d

b rdfs:type d

c rdfs:subClassOf d

added a(A, B):
a rdfs:type d

b rdfs:type d

e rdfs:type d

removed r(A, B):
a rdfs:type c

b rdfs:type c

Figure 4.16: Structural Diff

34 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

Chapter 5

Using SemVersion

In this chapter we describe how developers can actually use SemVersion to solve their
versioning tasks. In the next chapter, we explain how SemVersion can be extended
to handle other ontology languages.

How to get started

First, download SemVersion from http://semversion.ontoware.org. Second, con-
figure the file semversion.properties to point to a storage directory on your hard
drive. Third, write your Java application, using the SemVersion API.

5.1 Walk-through

Probably the best way to explain how to use the Java library SemVersion is to show
real source code. In this chapter we get practical and show a variety of commented
(!) source code fragments. A possible typical work session with SemVersion involves
the following steps:

• Start SemVersion

• Log in with username and password and obtain a session.

• Get, list or create a VersionedModel.

• Get most recent or list all Version objects.

Read or update a versions metadata

Commit a new model as a child-version

• Request a diff between two Version objects

35

5. USING SEMVERSION

• Query the SemVersion repository

• End session

36 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

5.1.1 Typical Actions

Commit initial model

// log in

Session userSession = semVersion.login("tom", "password");

// get VersionedModel by label

VersionedModel vm = userSession.getVersionedModel("Gene Ontology");

// obtain an empty Model

Model myFirstModel = userSession.getModel();

// manipulate the model

URI tool = URIUtils.createURI("http://example.com/#Tool");

myFirstModel.addStatement(

URIUtils.createURI("http://semversion.ontoware.org"),

RDF.type,

tool);

// commit as first version

vm.commitRoot(myFirstModel, "version1");

// log out

userSession.close();

Commit a suggestion to a version

// log in

userSession = semVersion.login("joe", "password");

// get versionedmodel by name and fetch root

Version root = userSession.getVersionedModel("Gene Ontology").getRoot();

// get a copy of the content

Model rootModel = root.getContent();

// manipulate the copy

rootModel.addStatement(

URIUtils.createURI("http://semversion.ontoware.org"),

RDFS.label,

"rdf-based versioning tool");

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 37

5. USING SEMVERSION

// commit the new version as a suggestion to the root verions

root.commit(rootModel, "version2", true);

Calculating Diffs

Version previousMainVersion = recentMainVersion.getFirstParent();

// get real model content of both versions (actually a copy of it)

Model recentMainModel = recentMainVersion.getContent();

Model previousMainModel = previousMainVersion.getContent();

// calculate diff between the models

Diff diff = semVersion.getSemanticDiff(recentMainModel,

previousMainModel);

// Print out the number of added and removed Statements

System.out.println("Added: " + diff.getAdded().size());

System.out.println("Removed: " + diff.getRemoved().size());

5.1.2 Administration

Creating a user

// prepare server and create users

SemVersion semVersion = new SemVersion();

semVersion.createUser("admin", "password");

semVersion.createUser("tom", "password");

semVersion.createUser("joe", "password");

Create a versioned model Here an administrator creates a
”
VersionedModel”

for the Gene Ontology.

// prepare versioned model

Session adminSession = semVersion.login("admin", "password");

adminSession.createVersionedModel(

URIUtils.createURI("vm://1"), // URI

"Gene Ontology", // label

new Date(), // valid from now on

ValidTime.NOW); // valid forever

adminSession.close();

38 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

5.1.3 Usage and Implementation Notes

URIUtils is a simple helper class that creates a URI without declaring the throwing
of an exception. If the string is not a valid URI, the method createURI will throw
an (undeclared) RuntimeException.

Blank node enrichment is integrated into the model layer. SemVersion wraps all
rdf2go.Model instances in a SessionModel. These perform blank node enrichment
automatically. Note that currently the blank node identifiers are not used in diff
calculation (yet)

5.1.4 SemVersion Usage Examples

How can SemVersion be used to solve he problems outlined in the requirements
chapter 2? We present versioning for the MarcOnt scenario and briefly explain what
can be done with the Gene Ontology.

Versioning for MarcOnt SemVersion can manage different branches of versions.
Suggestions to the main branch are modelled as different branches, which can evolve
separately. Snapshots of the main ontology with suggestions applied are created
realised by merging the different branches and showing the user the merged version.
Mappings between different versions can be stored as metadata of the version for
which the backward-mapping is required. As every version can be identified by an
URL, it is easy to discuss them, e. g. reference them in a forum. As URLs are also
URIs one can also express arbitrary statements about them in RDF.

Versioning the Gene Ontology This will be the most exciting part of SemVer-
sion’s near future. Until now, the exact queries to ask are not known and even
the data set is not prepared. SemVersion now has a solid data storage, which will
hopefully enable us to study the Gene Ontology as we wish.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 39

Chapter 6

Extending SemVersion

In this section we explain how SemVersion can be used to build an ontology version-
ing system for a particular ontology language.

• The first step to take is to choose an RDF encoding for the ontology lan-
guage. This should be possible for all ontology languages. In fact, for many
languages an RDF encoding is already specified (e. g. OWL, OBOL and Topic
Maps).

• We can reuse the complete version data management infrastructure of SemVer-
sion, that includes managing projects, versioned models, versions and meta-
data for each of these concepts. Some basic versioning functions can also be
used out-of-the box such as retrieve, commit and branch. To conclude, no
further effort is needed to reuse this part of the software. However, if the user
needs a Java API for domain specific meta data, such an API can easily be
generated from an RDF Schema with RDFReactor (c. f. 3.6).

• The only ontology language specific function of SemVersion is the semantic
diff.

6.1 Package and Directory Structure

The packages of SemVersion in /src are

org.ontoware.semversion public API. This package contains the main facade
class SemVersion from which the most important class Session can be ob-
tained. Additionally, this package has exceptions (BranchlabelAlreadyUsedException,
CommitConflictException, LoginException), time related helpers (TransactionTime,
ValidTime), data containers (Diff, Change) and core API parts (Version and
VersionedModel which both inherit from VersionedItem).

40

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

org.ontoware.semversion.dev is used only at development time to generate the
RDF access classes.

org.ontoware.semversion.example contains a simple usage example for SemVer-
sion.

org.ontoware.semversion.impl contains generated (and tweaked) RDF data ac-
cessors and manually coded implementations of the public API.

In /test-src you find JUnit1 test cases for automated testing. The test cases
also serve as a very precise documentation for the API.

6.2 Extending SemVersion with RDF Schema Sup-

port

RDF encoding RDF Schema naturally uses an RDF encoding, so this step requires
no additional work. The same would be true for OWL.

Semantic Diff We must create an algorithm which computes the semantic diff of
two data sets under RDFS semantics.

Implementing a new semantic diff in SemVersion requires developers to imple-
ment only one method in the class org.ontoware.semversion.SemanticDiffEngine.
Currently, an implementation for RDFS is available, relying on Jena’s inferencing
abilities.

Furthermore, a specific versioning system could use the ’user defined metadata’
functionality of SemVersion for storing specific metadata like access rights, degree
of agreement, mappings between versions etc.

1http://www.junit.org

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 41

Chapter 7

Conclusions and Outlook

In this deliverable, we described the design and implementation of the RDF-based
versioning system SemVersion, which is released under LGPL as an open source
project1. The design of SemVersion emphasises a separation of re-usable, language
agnostic features from ontology language specific features.

Five versioning uses cases (page 4 are described and requirements are deduced.
Storing versions is delegated to existing RDF stores. This allows to pose queries
across all stored versions. SemVersion allows for a rich set of metadata per model,
e. g. provenance, author, valid time, transaction time, last editor, time stamp of last
change, previous version.

SemVersion supports collaborative ontology development with the built-in ability
to manage suggestions for each version. These suggestions can be turned into official
versions.

Different from classical source code versioning, versioning ontologies requires the
computation of a semantic diff, indicating changes on a conceptual, not a syntactic
level. Blank nodes make diff computation harder. A solution, blank node enrich-
ment, is presented. Diffs can be returned between arbitrary versions. We supply
initial support for semantic diffs in the RDF Schema ontology language.

The API for dealing with versioning metadata is quite complex and cumbersome
to program. Thus we developed a tool, RDFReactor2, which generates a Java API
from an RDF Schema.

For storage, SemVersion re-uses existing triple stores. To remain independent of
a particular implementation, we developed a wrapper around common RDF man-
agement APIs: RDF2Go (page A). Both tools are released separately and simpli-
fied implementation of SemVersion significantly; they deal with the lower-level data
management parts. The SemVersion code base contains mainly code implementing

1http://semversion.ontoware.org
2http://rdfreactor.ontoware.org

42

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

versioning processes like commit, merge, branch and diff.

Outlook In the future, we assume specialised RDF stores become more mature
and allow more efficient query answering over large quad models. SemVersion is
ready to change, as all RDF calls are channelled through RDF2Go.

Additionally, we expect further extensions of the metadata managed for each
version. If this is required, we have to manually extend the RDF Schema and then
generate an enhanced API with RDFReactor.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 43

Bibliography

[1] Winkler, W., Völkel, M., Sure, Y., Schickel-Zuber, V., Binder, W., Tzouvaras,
V., Ponte, D., Zini, C., Cruciani, M., Bonifacio, M., Kruk, S.R., Synak, M.:
D2.3.1 specification of a methodology for syntactic and semantic versioning.
Technical report, Knowledge Weg (NoE) (2004)

[2] Berliner, B.: CVS II: Parallelizing software development. In: Proceedings
of the USENIX Winter 1990 Technical Conference, Berkeley, CA, USENIX
Association (1990) 341–352

[3] Kruk, S.R.: Marcont initiative. Technical report, DERI.Galway, Ireland,
http://www.marcont.org/ (2004) Bibliographic description and related tools
utilising Semantic Web technologies.

[4] Kruk, S.R., Synak, M.: Jeromedl - e-library with semantics. Technical
report, DERI.NUIG - Ireland; Gdansk University of Technology - Poland,
http://www.jeromedl.org/ (2004)

[5] Zhdanova, A., Krummenacher, R., Henke, J., Fensel, D.: Community-driven
ontology management: Deri case study. In: Proc of the IEEE/WIC/ACM Inter-
national Conference on Web Intelligence, Compiegne, France, IEEE Computer
Society Press (2005)

[6] Bada, M., Stevens, R., Goble, C.A., Gil, Y., Ashburner, M., Blake, J.A., Cherry,
J.M., Harris, M.A., Lewis, S.: A short study on the success of the gene ontology.
J. of Web Sem 1(2) (2004) 235–240

[7] Ashburner, M., Ball, C.A., Blake, J.A., Butler, H., Cherry, J.M., Corradi,
J., Dolinski, K., Eppig, J.T., Harris, M., Hill, D.P., Lewis, S., Marshall, B.,
Mungall, C., Reiser, L., Rhee, S., Richardson, J.E., Richter, J., Ringwald, M.,
Rubin, G.M., Sherlock, G., Yoon, J.: Creating the gene ontology resource:
design and implementation. Genome Research 11 (2001) 1425–1433

[8] Stevens, R., Wroe, C., Lord, P., Goble, C. In: Ontologies in bioinformatics.
Springer (2003) 635–657

44

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

[9] Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H.: Semantic wikipedia. In:
Proceedings of the 15th international conference on World Wide Web, WWW
2006, Edinburgh, Scotland, May 23-26, 2006. (2006)

[10] Harth, A., Decker, S.: Yet Another RDF Store: Perfect Index Structures for
Storing Semantic Web Data With Contexts. Submitted (2005)

[11] Kiryakov, A., Simov, K., Ognyanov, D.: Ontology middleware: Analysis and
design. Technical report, IST Project IST-1999-10132 On-To-Knowledge (2002)

[12] Sintek, M., Decker, S.: Triple - a query, inference, and transformation language
for the semantic web. In: ISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web, London, UK, Springer-Verlag
(2002) 364–378

[13] Hayes, P.: Rdf semantics. Recommendation, W3C (2004)

[14] Völkel, M., Enguix, C.F., Kruk, S.R., Zhdanova, A.V., Stevens, R., Sure,
Y.: Semversion - versioning rdf and ontologies. KnowledgeWeb Deliverable
D2.3.3.v1, Institute AIFB, University of Karlsruhe (2005)

[15] Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and
trust. Technical report, HP (2004)

[16] Carroll, J., Stickler, P.: Trix: Rdf triples in xml. Technical report, HP, Nokia
(2004)

[17] Völkel, M., Sure, Y.: Rdfreactor - from ontologies to programmatic data access.
Poster and Demo at International Semantic Web Conference (ISWC) 2005,
Galway, Ireland (2005)

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 45

Appendix A

RDF2Go

As RDF2Go is exposed to SemVersion users as the API to manipulate RDF models,
we describe it at some depth here.

RDF2Go1 is a wrapper over RDF triple and quad stores. It provides a software
layer to connect a Java application with some of the most popular Java frameworks
for the Resource Description Framework (RDF)2. The basic idea is depicted in Figure
A.1.

The current version 1.0 offers support for the triple store Jena 3 2.2 and the quad
stores YARS 4 ref. 1217 [10], NG4J 5 V0.4 (which builds on Jena), and Sesame 6.

A.1 What is RDF2Go?

RDF2Go is a lightweight adapter framework between existing RDF triple and quad
stores and Java Applications. While there are many implementations of the Resource
Description Framework in Java, each of them has it’s pros and cons and it’s difficult
to choose the right one for your purposes among them. Using RDF2Go it’s easy to
change the underlying triple or quad store without major effects for your application.
Java applications may use the RDF2Go API to remove compile-time and run-time
dependencies on any particular RDF implementation.

Note: Currently, RDF2Go has not achieved this goal, as the instantiation and
configuration of triple stores has still to be done manually. Full compile-time in-

1http://rdf2go.ontoware.org
2http://www.w3.org/RDF/
3http://jena.sourceforge.net
4http://sw.deri.org/wiki/YARS
5http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/
6http://www.openrdf.org

46

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

Jena 2.2YARS KAON

rdf2go

NG4J

rdf2go-arch

Java application

Figure A.1: RDF2Go and existing RDF triple (and quad) stores

Figure A.2: RDF2Go Type System and the Jena adapter classes as an example

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 47

A. RDF2GO

dependence can only be achieved via reflection. Then configuration would have to
be done through config files. This is not easy, as the set up of triple stores is very
heterogenous, e. g. some need a data base connection, other a storage directory, and
so on.

A similar project has been created by the Apache Software Foundation and is
known as

”
jakarta commons logging7”.

RDF2Go is so easy to use, that it might even be used in courses like
”
Semantic

Web for Java Developers”. It’s main goals though, have been flexibility and ease-of-
use.

A.2 Working Example: Simple FOAF via RDF2Go

Imagine you want to write your own FOAF8 file using RDF2Go. Here we provide a
simple example how to do this.

Because all RDF frameworks use different configuration settings when construct-
ing a model, it’s necessary for RDF2Go to use different constructors. In each of the
impl-Packages for the RDF stores you can find a Model implementation.

When we want to instantiate a new RDF2Go model using Jena as the underlying
RDF framework, we have to start with the following line of code. Right now we don’t
want any inferencing, so we put it off.

// set up underlying triple store
com.hp.hpl.jena.rdf.model.Model jenaModelPlain =
ModelFactory.createDefaultModel();

com.hp.hpl.jena.rdf.model.Model jenaModelRDFS =
ModelFactory.createRDFSModel(jenaModelPlain);

// wrap model as RDF2Go model
Model model = new ModelImplJena22(jenaModelRDFS);

We want to state something about persons and relationships between them using
the FOAF vocabulary. The next step is creating some URIs from this vocabulary,
so building statements with them later is much easier.

URI foafName = URIUtils.createURI("http://xmlns.com/foaf/0.1/name");
URI foafPerson = URIUtils.createURI("http://xmlns.com/foaf/0.1/Person");
URI foafTitle = URIUtils.createURI("http://xmlns.com/foaf/0.1/title");
URI foafKnows = URIUtils.createURI("http://xmlns.com/foaf/0.1/knows");
URI foafHomepage = URIUtils.createURI("http://xmlns.com/foaf/0.1/homepage");

7http://jakarta.apache.org/commons/logging/
8http://www.foaf-project.org/

48 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

With those URIs we now can start to state something about a person. While we
don’t have an URI for a person, we use a blank node (this is always done this way
in FOAF).

BlankNode werner = model.getNewBlankNode();

First we say some things about Werner - where his homepage can be found, what
his full name is and that he is a foaf:Person.

// N-TRIPLES Syntax:
// _:blankNodeWerner
// <http://xmlns.com/foaf/0.1/homepage>
// <http://www.blue-agents.com> .
model.addStatement(

werner,
foafHomepage,

URIUtils.createURI("http://www.blue-agents.com"));

model.addStatement(werner, foafTitle, "Mr");
model.addStatement(werner, foafName, "Werner Thiemann");
model.addStatement(werner, RDF.type, foafPerson);

Then we do similar things with Max.

BlankNode max = model.getNewBlankNode();
model.addStatement(max, RDF.type, foafPerson);
model.addStatement(max, foafName, "Max Völkel");
model.addStatement(max, RDFS.seeAlso,
URIUtils.createURI("http://www.xam.de/foaf.rdf.xml"));

Now that we have introduced two persons, we can state that they know each
other. We do this by using the foaf:knows property.

model.addStatement(werner, foafKnows, max);

While we added a lot of statement to the model by now, we don’t know yet
how we get this information back from the model. Let’s assume, we want to list
all instances of foaf:Person. Therefore we use a wildcard for the subject (i.e.
Variable.ANY).

Iterator<Statement> it =
model.getStatement(Variable.ANY, RDF.type, foafPerson);

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 49

A. RDF2GO

We get back an Iterator over Statements. Finally we iterate over the query
results and print the persons URI (i.e. a blank node) and the name of the person
to standard out. To do this we have to do another query. This time we want any
object for the found person that have the property foaf:name. Subject, predicate
and object of a statement provided by the iterator can be accessed via get-methods.

while (it.hasNext()) {
Object person = it.next().getSubject();
System.out.println(person + " is a person");

// get foaf:name
Iterator<Statement> it2 = model.getStatement(person, foafName,

Variable.ANY);
while (it2.hasNext()) {

System.out.println(person + " has the foaf:name "
+ it2.next().getObject());

}
}

The full example can also be found in the package org.ontoware.rdf2go.example.

A.3 Architecture

Figure A.1 shows how RDF2Go interacts with common Semantic Frameworks and
RDF stores like Yars, Jena , NG4J or KAON9. Those underlying frameworks be-
come transparent for the application, which only communicates with the interfaces
provided by RDF2Go.

The main package org.ontoware.rdf2go provides all those interfaces the appli-
cation developer might need to manipulate and query RDF data.

The org.ontoware.rdf2go.impl provides implementations of RDF specifics,
which don’t exist in Java and are independent of the underlying framework. Classes
herein also implement an adapter between ContextModel and Model and vice versa
and also cope with URI handling. The methods of those classes simplify the imple-
mentations of the adapters for the underlying frameworks

All other packages implement specific adapter classes to communicate with the
underlying RDF store.

While providing adapters for the most widely used triple and quad stores, any
contributors may find it easy to write implementations for the RDF framework of
their choice due to the simple API.

9http://kaon.semanticweb.org/

50 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

As RDF2Go strives to be a unifying API, it cannot make reasonable assumptions
about the nature of the underlying API’s exceptions. Right now best way to deal
with these exceptions seems to be to throw them as a generic type Exception to the
RDF2Go user. Hence most methods have a throws java.lang.Exception clause.
In future versions RDF2Go might have its own exception hierarchy which catches
the exceptions of the underlying layer and return its own exception objects instead.

A.4 The API

Model and ContextModel are the main interfaces.

Model represent an RDF triple model while a ContextModel represents a quad
model, also sometimes called Named Graphs or Triples with Context (hence the
name).

The query results have to be in a form which easily can be accessed by Java
applications. Therefore the classes Statement and ContextStatement provide a
simple access to the RDF statements.

Model and ContextModel

We already saw how to create a model in the working example. For the sake of
completeness we list all existing Model creation possibilities here.

//Jena without inferencing
Model model = new ModelImplJena22(false);
//Jena with RDFS inferencing
Model model = new ModelImplJena22(true);
//Yars
Model model = new ModelImplYars();
//NG4J
Model model = new ModelImplNG4J();

The methods can be divided into the following groups:

Model Manipulation

• addStatement(Object subject, URI predicate, Object object)

• addStatement(Object subject, URI predicate, String literal, String language-
Tag)

• addStatement(Object subject, URI predicate, String literal, URI datatype-
URI)

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 51

A. RDF2GO

• addAll(Model other)

• removeStatement(Object subject, URI predicate, Object object)

• removeStatement(Object subject, URI predicate, String literal, String lan-
guageTag)

• removeStatement(Object subject, URI predicate, String literal, URI datatype-
URI)

• removeStatement(Statement statement)

• getNewBlankNode()

The add and remove statements are straightforward. getNewBlankNode() pro-
vides an overall class for blank node treatment, because the RDF stores cope differ-
ently with those.

Model Querying and Existence Checks

• query(String queryString)

• getStatement(Object subject, Object predicate, Object object)

• getStatement(Object subject, Object predicate, Object literalValue, Object
literalAttribute)

• getStatements()

• contains(Object subject, Object predicate, Object object)

• contains(Statement statement)

The query and getStatement concepts are explained in depth in A.4.1). The
contains-methods provide a simple way to check if a statement exists in the current
model.

Debugging Support RDF2Go uses Apache Jakarta Commons Logging10. The
underlying logging implementation used is log4j11. The configuration for the logging
can be found in /src/log4j.properties.

Additionally the following methods are provided by the Model.

• size()

10http://jakarta.apache.org/commons/logging/
11http://logging.apache.org/log4j/docs/

52 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

• dump()

• getUnderlyingModelImplementation()

While size() gives you an idea how many statements can be found in a model,
the dump() method prints the whole content to the logger instance of the imple-
mentation. For some special purposes it might be necessary to get the model of the
underlying layer. This is provided by getUnderlyingModelImplementation().

Another rather unintuitive feature at first sight is the ability to store object
references at runtime in the model. They enable the model to act as a central facade
for all kinds of usage. This feature was introduced to be used in RDFReactor.

• setProperty(URI propertyURI, Object value)

• getProperty(URI propertyURI)

Type System One of the central aspects of RDF2Go is to map the RDF type
system to the Java type system. The mapping is simple and should be intuitive for
regular Java developers. It goes as follows:

URI is mapped to java.net.URI.

Plain Literal is mapped to java.lang.String.

Literal with a Language Tag is mapped to
org.ontoware.rdf2go.LanguageTagLiteral which has two methods:
public String getValue() and public String getLanguageTag().

Literal with a Datatype URI is mapped to
rdf2go.ontoware.org.DatatypeLiteral which also has two methods:
public String getValue() and public URI getDatatype().

Blank Node has only the semantics of being either the same (equal) or not the
same as another blank node. In RDF2Go this mapped to the marker in-
terface org.ontoware.rdf2go.BlankNode. The equals-method should work
correctly.

Variables are used only in queries. RDF2Go maps wildcards which can be used in
triple (or quad) search patterns to instances of
org.ontoware.rdf2go.Variable. As there exists only one wildcard there is
only one instance: org.ontoware.rdf2go.Variable.ANY.

Figure A.2 shows the type system and the RDF2Go adapter classes for Jena.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 53

A. RDF2GO

A.4.1 Queries

RDF2Go offers two ways to query a model. Both return an Iterator<Statement>.
This is a new feature of Java 5.0 called

”
generics”. It basically ensures that each

object returned by next() is of type Statement. Iterators as query result have the
advantage of low memory consumption12.

Queries can be plain text, which is interpreted by the underlying triple or quad
store implementation. This offers flexibility, until a standard query language for
RDF emerges.

The second query option has less expressivity but clearly defined semantics. It
uses only triple (or quad) search patterns. A search pattern has for each section of
a triple – namely subject, predicate and object (and context) – either a concrete
value or a wildcard. The iterator returns all elements which fulfill the given search
pattern.

A.5 How to get started

RDF2Go is simple to install and simple to use.

RDF2Go can be downloaded from ontoware.org 13. Right now it comes in 4
flavors. Pure, with Yars, with Jena or with NG4J. There is also a developers CVS,
which can be found at ontoware.org 14

RDF2Go is released under the GNU Lesser General Public License (LGPL),
Version 2.1, Feb. 1999. We reserve the right to release RDF2Go in parallel under
different licenses.

For support, please feel free to post to the forum at ontoware.org 15 – we will
respond quickly and your feedback is very welcome.

12This idea was provided by Andreas Harth
13http://ontoware.org/frs/?group_id=37
14http://ontoware.org/scm/?group_id=37
15http://ontoware.org/forum/forum.php?forum_id=143

54 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

Appendix B

SemVersion Schema

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <http://semversion.ontoware.org/ns/2005#>.

@prefix reactor: <http://rdfreactor.ontoware.org/2005/04#>.

@prefix xsd: <http://www.w3c.org/2001/XMLSchema#>.

:Root a rdfs:Class.

:hasVersionedModel a rdf:Property

; rdfs:domain :Root

; rdfs:range :VersionedModel

.

:VersionedItem a rdfs:Class

; rdfs:comment "valid time, transaction time and core metadata"

.

:Diff a rdfs:Class

; rdfs:comment "contains added and removed statements,

each modeled as ’model’"

.

:hasAdded a rdf:Property

; rdfs:domain : Diff

; rdfs:range :Model

.

:hasRemoved a rdf:Property

55

B. SEMVERSION SCHEMA

; rdfs:domain : Diff

; rdfs:range :Model

.

:hasTag a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range rdfs:Literal

; a reactor:SingleValueProperty

.

:hasAuthor a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range :User

; a reactor:SingleValueProperty

.

:hasCreationTime a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range xsd:long

; a reactor:SingleValueProperty

.

:hasDeletionTime a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range xsd:long

; a reactor:SingleValueProperty

.

:hasValidTimeStart a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range xsd:long

; a reactor:SingleValueProperty

.

:hasValidTimeEnd a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range xsd:long

; a reactor:SingleValueProperty

.

:hasUserdefinedMetadata a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range :TripleSet

56 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

; a reactor:SingleValueProperty

.

:hasProvenance a rdf:Property

; rdfs:domain :VersionedItem

; rdfs:range xsd:anyURI

; a reactor:SingleValueProperty

.

:VersionedModel rdfs:subClassOf :VersionedItem

; rdfs:comment "A tree of Versions"

.

:hasRoot a rdf:Property

; rdfs:comment "has only one root"

; rdfs:domain :VersionedModel

; rdfs:range :Version

; a reactor:SingleValueProperty

.

:hasVersion a rdf:Property

; rdfs:comment "exhaustive list of all versions"

; rdfs:domain :VersionedModel

; rdfs:range :Version

.

:Version rdfs:subClassOf :VersionedItem

; rdfs:comment "A set of triples (content TripleSet)

with a set of metadata"

.

:hasContent a rdf:Property

; rdfs:domain :Version

; rdfs:range :TripleSet

; a reactor:SingleValueProperty

.

:hasFirstParent a rdf:Property

; rdfs:comment "A version has two parents only when merged"

; rdfs:domain :Version

; rdfs:range :Version

; a reactor:SingleValueProperty

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 57

B. SEMVERSION SCHEMA

; reactor:inverseOf :hasChildren

.

:hasChild a rdf:Property

; rdfs:comment "inverse of firstParent and secondParent,

relation maintained manually"

; rdfs:domain :Version

; rdfs:range :Version

.

:hasProvenance a rdf:Property

; rdfs:domain :Version

; rdfs:range rdf:Resource

; a reactor:SingleValueProperty

.

:hasSecondParent a rdf:Property

; rdfs:domain :Version

; rdfs:range :Version

; a reactor:SingleValueProperty

; reactor:inverseOf :hasChildren

.

:hasContainer a rdf:Property

; rdfs:domain :Version

; rdfs:range :VersionedModel

; a reactor:SingleValueProperty

.

:Model a rdfs:Class

; rdfs:comment "models the actual triples in the model.

Probably using rdf2go.ontoware.org"

.

:User a rdfs:Class

; rdfs:subClassOf foaf:Person

; rdfs:comment "@todo"

.

:hasName a rdf:Property

; rdfs:domain :User

58 January 27th, 2006 KWEB/2004/D2.3.3.b/v1.0

D2.3.3.v2 SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

; rdfs:range rdfs:Literal

; a reactor:SingleValueProperty

.

:hasPassword a rdf:Property

; rdfs:domain :User

; rdfs:range rdfs:Literal

; a reactor:SingleValueProperty

.

:branchLabel a rdf:Property

; rdfs:domain :Version

; rdfs:range rdfs:Literal

.

KWEB/2004/D2.3.3.b/v1.0 January 27th, 2006 59

