knowledgeweb

realizing the semantic web

D2.3.3.vl SemVersion —
Versioning RDF and Ontologies

Max Volkel (University of Karlsruhe)

with contributions from:
Carlos F. Enguix (National University of Ireland, Galway, Ireland)
Sebastian Ryszard Kruk (DERI)
Anna V. Zhdanova (DERI)
Robert Stevens (U Manchester)

York Sure (AIFB)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.3.3.v1 (WP2.3)

This papers describes the requirements for a semantic versioning system. The
design, implementation and usage of SemVersion are described.

Document Identi- | KWEB/2004/D2.3.3.a/v1.0
fier

Project KWEB EU-IST-2004-507482
Version v1.0

Date June 6th, 2005

State final

Distribution internal

Copyright (© 2005 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European

Communities as project number IST-2004-507482.

University of Innsbruck (UIBK) -
Coordinator

Institute of Computer Science
Technikerstrasse 13

A-6020 Innsbruck

Austria

Fax: +43(0)5125079872, Phone:
+43(0)5125076485/88

Contact person: Dieter Fensel

E-mail address: dieter.fensel@Quibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel

35512 Cesson Sévigné

France. PO Box 91226

Fax: +33 2 99124098, Phone: +33 2 99124223
Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Ttaly

Fax: 439 0471 315649, Phone: +39 0471 315642
Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas/
Informatics and Telematics Institute
(ITI-CERTH)

1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Fax: 4+30-2310-464164, Phone: +30-2310-464160
Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway
(NUIG)

National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Fax: +353 91 526388, Phone: +353 87 6826940
Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polythechnique Fédérale de Lausanne
(EPFL)

Computer Science Department

Swiss Federal Institute of Technology

IN (Ecublens), CH-1015 Lausanne

Switzerland

Fax: 4+41 21 6935225, Phone: +41 21 6932738
Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitéit Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Fax: +49 30 83875220, Phone: +49 30 83875223
Contact person: Robert Tolksdorf

E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I’Europe -

Montbonnot Saint Martin

38334 Saint-Ismier

France

Fax: +33 4 7661 5207, Phone: 433 4 7661 5366
Contact person: Jérome FEuzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)

Expo Plaza 1

30539 Hannover

Germany

Fax: 4+49-511-7629779, Phone: +49-511-76219711
Contact person: Wolfgang Nejdl

E-mail address: nejdl@learninglab.de

The Open University (OU)

Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Fax: +44 1908 653169, Phone: +44 1908 653506
Contact person: Enrico Motta

E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Fax: +34-913524819, Phone: +34-913367439
Contact person: Asunciéon Gémez Pérez

E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Fax: +44(151)7943715, Phone: +44(151)7943667
Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Sheffield (USFD)

Regent Court, 211 Portobello street

S14DP Sheffield

United Kingdom

Fax: +44 114 2221810, Phone: +44 114 2221891
Contact person: Hamish Cunningham

E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Fax: 431842214294, Phone: +31204447731
Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitdt Karlsruhe

D-76128 Karlsruhe

Germany

Fax: +49 721 6086580, Phone: +49 721 6083923
Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of
Computer Science, University of Manchester,
Oxford Road

Manchester, M13 9PL

United Kingdom

Fax: +44 161 2756204, Phone: +44 161 2756248
Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Fax: +39 0461 882093, Phone: +39 0461 881533
Contact person: Fausto Giunchiglia

E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10

1050 Brussels

Belgium

Fax: +32 2 6293308, Phone: 432 2 6293308
Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be

Executive Summary

Change management for ontologies becomes a crucial aspect for any kind of on-
tology management environment, as engineering of ontologies often takes place in
distributed settings where multiple independent users have to interact. There is also
a variety of ontology languages used. Although RDF Schema and OWL are gaining
more and more popularity, a lot of semantic data still resides in other formats, as it
is the case in the biology domain (c.f. Sec. 1.2.3). Until now, no standard version-
ing system or methodology has arisen, that can provide a common way to handle
versioning issues.

This deliverable describes the RDF-centric versioning approach and implementa-
tion Sem Version. It provides structural (purely triple based) and semantic (ontology
language based, like RDFS, OWL and OBOL) versioning. It separates language-
neutral features for data management from language-specific features like semantic
diffs in design and implementation. This way SemVersion offers a common approach
for already widely used RDF models and a wide range of ontology languages.

The requirements for our system are derived from a set of practical scenarios,
which are documented in detail in this deliverable.

The project experienced a shift in requirements, when Robert Stevens from Uni-
versity of Manchester joined the group in May 2005. WP 2.3 decided to tackle the
problem of versioning the Gene Ontology.

In [1] we suggested reification for data storage. As we now face the large volume
of the Gene Ontology data (see 1.2.3), we need more powerful storage solutions than
for the other use cases. Addressing triple sets (models) is another challenge. In [1]
we argued to use reification, which would make models four times as large. To avoid
this, we now use native quad stores, which provide a context URI for each triple.
We use the context URI to address models more efficiently.

A sub-project, RDF2G0, has been created to deal with various model abstrac-
tions and serves as a unifying triple (and quad) store entry point. RDF2GO is
described in Chapter 2.

A second sub-project of SemVersion, RDFREACTOR, facilitates the usage of RDF
Schema based data in Java significantly. It’s latest version is based on RDF2Go0. In
fact, RDFReactor has been designed for SemVersion in the first place. RDFReactor
is described in Sec. 1.5.4.

Contents

1

2

SemVersion — An RDF Versioning System
1.1 Introduction
1.1.1 Term Definitions
1.2 Requirements for an ontology versioning system
1.2.1 Use Case 1: MarcOnt Collaborative Ontology Development . .
1.2.2 Use Case 2: The People’s Portal for Community Ontology
Development
1.2.3 Use Case 3: Versioning the Gene Ontology
1.2.4 Use Case 4: Versioning in a Semantic Wiki
1.2.5 Use Case 5: Analysis of Wikipedia
1.2.6 Requirements Summary
1.3 Data Management Design
1.3.1 RDF as the structural core of ontology languages
1.3.2 Version Data Management
1.4 Versioning Functionality Design
1.4.1 Structural Diff oo
1.4.2 Semantic Diff
1.4.3 Blank Nodes and the Dift
1.4.4 Branch and Merge
1.4.5 Conflict Detection
1.4.6 Query Language Extension
1.5 TImplementation
1.5.1 Storage Layer Access
1.5.2 Handling Commits
1.5.3 Generating globally unique URIs
1.5.4 RDFReactor.

RDF2Go

2.1 What is RDF2Go?

2.2 Working Example: Simple FOAF via RDF2Go

2.3 Architecture

2.4 The API
2.4.1 Model and ContextModel

i

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

2.4.2 Queries 29

2.5 How to get started oo 30

3 Using and Extending SemVersion 31
3.1 Using SemVersion 31
3.1.1 Typical Actions 32

3.1.2 Administration L 33

3.1.3 Usage and Implementation Notes 34

3.1.4 SemVersion Usage Examples 34

3.2 Extending SemVersion L 0. 34

4 Conclusions and Outlook 36

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 iii

Chapter 1

SemVersion — An RDF Versioning
System

1.1 Introduction

As outlined in the Knowledge Web Deliverable D2.3.1 ,,Specification of a method-
ology for syntactic and semantic versioning” [1], there is a clear need for RDF data
and ontology versioning. This deliverable is a follow-up of D2.3.1, which explains
the underlying concepts in detail. Here we focus on the concrete approach and
implementation.

Change management for ontologies becomes a crucial aspect for any kind of
ontology management environment, as engineering of ontologies often takes place in
distributed settings where multiple independent users have to interact. There is also
a variety of ontology languages used. Although RDF Schema and OWL are gaining
more and more popularity, a lot of semantic data still resides in other formats, as
it is the case in the biology domain (c.f. Sec. 1.2.3). Until now, no standard
versioning system or methodology has arisen, that can provide a common way to
handle versioning issues.

This deliverable describes the RDF-centric versioning approach and implementa-
tion Sem Version®. It provides structural (purely triple based) and semantic (ontol-
ogy language based, like RDFS, OWL and OBOL) versioning. It separates language-
neutral features for data management from language-specific features like semantic
diffs in design and implementation. This way SemVersion offers a common approach
for already widely used RDF models and a wide range of ontology languages.

SemVersion is published as an open-source software project on the site OntoWare.
The current version of the project homepage is depicted in Fig. 1.1.

!The name resembles the upcoming de-facto standard subversion (subversion. tigris. org)
and is also a short form of ,Semantic Versioning”

1. SEMVERSION - AN RDF VERSIONING SYSTEM

AIFBO

T @k 7 | httpefsemversion.onkoware . orgf - 4 -

q ._?SemVersion

Semyersion versions your RDF data.

Seedlso: Ontoware Project Page | JavaDocs | RDFSchemaloc

Features

« VYersion your Models

« Support for commit and merge operations on models
« Rich metadata support

« 2ach Yersion has an Author, a provenance URI, a label, a URI
« RDF commitment

« All data stored internally as RDF

« Thanks to Jena it reads: RDFE/XML, N3 or NT syntax

Download

SemVyersion files are available at http:/fontoware, org/projects/semversion

Semversion builds on;

« Java 5.0

« Jena: antlr.jar, , commons-logging.jar, concurrent.jar, icudq.jar, jakarta-oro-
2.0.5.1ar, jena.jar, xercesImpl.jar, xml-apis.jar, logdi-1.2.7. jar, JUnit (Junit.ja
needed only for runnign the test cases)

« ROFReactor

o MNamedGraphsdlena (NG41)

License

Semyersion is released under the GNU Lesser General Public License, Yersion 2.1,

Feb. 1999,

Figure 1.1: Homepage of the SemVersion project

June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

Our approach is inspired by the classical CVS system for version management
of textual documents (e.g. Java code). Core element of our approach is the sepa-
ration of language-specific features (the semantic diff) from general features (such
as structural diff, branch and merge, management of projects and metadata). A
speciality of RDF is the usage of so-called blank nodes. As part of our approach we
present a method for blank node enrichment which helps in versioning of such blank
nodes.

1.1.1 Term Definitions

RDF is a data model with the types URI, blank node, plain literal, language
tagged literal and data typed literal. It consists of triples (also called state-
ments). A set of triples is called model (or triple set). An ontology is a model,
in which semantics have been assigned to certain URIs and/or triple constructs,
according to an ontology language. We use the term concept to denote things
ontologies talk about: classes, properties and instances. In an RDF context, every-
thing that is addressable by URI or by blank node is considered a concept.

SemVersion versions models. A model under version control is named a ver-
sioned model. A versioned model has a root model, which is a version. A
version is a model plus versioning metadata. Versions in SemVersion never change.
Instead, every operation that changes the state of a versioned model (commit, merge,
...) results in the creation of a new version. More details about SemVersion’s con-
ceptual data model can be found in Sec. 1.3.2.

1.2 Requirements for an ontology versioning sys-
tem

We gathered different requirements from Knowledge Web partners in order to create
a more general design. We tried to gather as concrete usage requirements as possible
to obtain a usable (and hence testable) design and implementation. In this section
we present the different usage requirements.

For each use case we name the stakeholder and provide a use case description,
characteristics of the data set, and derived versioning requirements.

1.2.1 Use Case 1: MarcOnt Collaborative Ontology Devel-
opment

Stakeholder: Sebastian Ryszard Kruk (DERI), sebastian.kruk@deri.org

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 3

1. SEMVERSION - AN RDF VERSIONING SYSTEM

The MarcOnt? scenario served as the first source of inspiration for SemVersion.
MarcOnt is a project to create an ontology for library data exchange.

One of the most commonly used bibliographic description format is MARC21.
Though it is capable of describing most of the features of the library resources,
its semantic content is low. It means that while searching for a resource, one has
to look for particular keywords in the resource’s description fields, but one cannot
carry out a search be meaning or concept. This can often result in large sets of
results. Also the data communication between library systems is very hard to extend.
On of the earliest shared vocabularies is the Dublin Core Metadata standard for
library resource description. Besides the fact that most of the information covered
by MARC21 is lost, the full potential of the Semantic Web is not being used.

The project aims at creating the MarcOnt ontology, based on a social agreement
that will combine descriptions from MARC21 together with DublinCore and makes
use of the full potential of the Semantic Web technologies. This will include transla-
tions to/from other ontologies, more efficient searching for resources (i.e. users may
have impact on the searching process).

The MarcOnt initiative is strongly connected to the Jerome Digital Library
project (e-library with semantics, formerly ElvisDL) - which implements a simple
library ontology and can be used as a starting point for further work. MarcOnt also
assumed that JeromeDL will be a testing platform for an experimental results from
the MarcOnt initiative.

Data Set Currently there exists only one version of the MarcOnt ontology, which
can be downloaded at http://www.marcont.org/index.php?
option=com_content&task=view&id=13&Itemid=27.

Versioning Requirements The MarcOnt project has a clear view on the process
of ontology evolution. It starts with a current main version. Now people can suggest
(multiple, independent) changes. Then the community discusses about the proposed
changes and selects some. The changes are applied and a new main version is created.
The process is illustrated in Fig. 1.2.

The ontology builder of the MarcOnt portal requires not only a GUI for building
the ontology through submitting changes. It also needs the ability to:

e Manage a main trunk of the ontology (R1.1)?
e Manage versions of suggestions (R1.2)

e Generate snapshots of the main ontology with some suggestions applied (R1.3)

2http://www.marcont.org/
3Requirements are numbered by “use case number” / ”.” / running number

4 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

@arcOnt ontology V.D

(Suggestion A) (Suggestion @ (Suggestion C)

ver 0.1

Main trunk

work-in-progress view | .-
ont[v.1] A[v0.2] + B[v0.1] + C[v0.1]

ver 0.2

|
C /conflict found !)

e e Greating e
revision on
main trunk

<

(MarcOnt ontology v.2

Figure 1.2: Versions and suggestions in the MarcOnt use case

KWEB,/2004/D2.3.3.a/v1.0 June 6th, 2005

1. SEMVERSION - AN RDF VERSIONING SYSTEM

Detect and resolve conflicts (R1.4)

Add suggestions to the main trunk (R1.5)

Attach mapping/translation rules (R1.6)

Be able to check out arbitrary versions by HI'TP GET with a specific URL
(R1.7)

1.2.2 Use Case 2: The People’s Portal for Community On-
tology Development

Stakeholder: Anna V. Zhdanova (DERI), anna.zhdanova@deri.at

People’s portal [2] is an implementation of a human-Semantic Web interactive
environment. The environment is named The People’s Portal and it is implemented
employing Java, Jena and Tomcat. The basic idea of the People’s portal is to marry
a community Semantic Web portal technology with collaborative ontology manage-
ment functionalities in order to bring the Semantic Web to masses and overcome
limitations of the existing community web portals.

Use cases: The People’s portal environment is applied to DERI and used to
produce part of the DERI web site. DERI members can login here to enter the
environment. DERI web site managers can login here to manage the data in a
centralized fashion.

Versioning Requirements The system uses a subset of RDF Schema. Users
of the portal can introduce new classes and properties on the fly. Consensus is
partly reached by usage. Properties that are often used and classes that have many
instances are considered useful for the community. Hence it is necessary to ask the
versioning system:

e How many instance does this class have now? Last week? Generalised: How
many instances does a concept (rdfs:Class or rdfs:Property) has at a specific
point in time? (R2.1)

e When has this class first been instantiated? (R2.2)

e How many properties are attached to this class? Since when? (R2.3) number
of instances of class, properties NOW (specific point in time also)

e Who added this ontology item? (R2.4)
e Store new versions and return diffs between arbitrary points in time. (R2.5)

e Return predecessor of an ontology item (class, property) in time (R2.6)

6 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

e Support the evolution primitives: ,,add”, ,remove” and ,replace” on concept
definitions. (R2.7)

e Return number of changed instance items (also properties, classes) and show
which items changed. (R2.8)

e Which concepts appeared within a given time interval? (R2.9)

e Queries across change log/activity log: For each attribute, when was it instan-
tiated and when have instances been created? (R2.10)

e What are hot attributes? Those instantiated or changed often recently. Which
are these? (R2.11)

1.2.3 Use Case 3: Versioning the Gene Ontology

Stakeholder: Robert Stevens (U Manchester), robert.stevens@manchester.ac.uk

Background An important step was the phone conference on 12.07.2005, in which
common goals were identified?. Robert Stevens from Manchester University has be-
come an active member of the work package. Robert is a biologist who is also a
doctor in Computer Science. Robert is a Bioinformatics Lecturer in the BioHealth
Informatics Group at the University of Manchester. He has around 80 publications
in international conferences, workshops, journals and so on. He was involved in the
TAMBIS project for transparent access and integration of biological databases. Now
one of his main interests is in the definition of formal biological ontologies. He is
involved in the transformation of the Gene Ontology controlled vocabulary into a
description-logics OWL based ontology. He is interested in contributing to the devel-
opment of an ontology-based versioning system to the Gene Ontology which is part
of the Open Biological Ontologies. Also he want’s to study how conceptualisations
change over time, hence the need for data analysis.

Use case description The gene ontology® community is where collaborative on-
tology construction is practiced a long time comparing to other communities. The
GO community showed that involvement of multiple parties is a must for a compre-
hensive ontology as a result. The GO community is far ahead of other communities
constructing ontologies [3]. Hence they are the ideal subject to study real-world
change operations.

»The goal of the Gene Ontology (GO) consortium is to produce a controlled
vocabulary that can be applied to all organisms even as knowledge of gene and

‘http://sw.deri.org/wiki/KnowledgeWeb/WP23/MeetingAgenda12July2005
Shttp://www.geneontology.org

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 7

1. SEMVERSION - AN RDF VERSIONING SYSTEM

protein roles in cells is accumulating and changing. GO provides three structured
networks of defined terms to describe gene product attributes.”

Current Gene Ontology versions are maintained by CVS repositories which han-
dle only syntactic differences among ontologies. In other words CVS is not able
to differentiate class versions for instance, being able only to differentiate text/file
differences.

Versioning Requirements Essentially, here SemVersion is used for data analysis.
In order to study ontology change operations, SemVersion must cope with multiple
versions of the Gene Ontology (GO). The GO is authored in Open Biology Language”
(OBOL), for which usable OWL exports exist. The GO has about 19.000 concepts.
Assuming about 10 statements per concept we estimate a size of roughly 100.000
statements — per version. The researchers who study the ontology change patterns
(Robert Stevens and his team) would like to use a monthly snapshot for a period of
6 years. This amounts to 6 years x 12 month = 72 versions. Thus the underlying
triple store must be able to handle up to 7 million triples and search (maybe even
reason) over them.

The requirements in short form are thus

Store up to 7 million triples (R3.1)

Allow meta-data queries over the 72 versions (R3.2)

Allow data queries over all versions (7 million triples) (R3.3)

e OBOL semantic diff (R3.4)

OBOL to RDF converter (R3.5)

A Java interface (R3.6)

Data Set The Gene Ontology ,per se” is not an Ontology in the formal sense,
it is rather a cross-species controlled biological vocabulary as previously indicated
above. The Gene Ontology is divided in three disjoint sub-ontologies, currently
stored in big flat files or also stored in persistent repositories such as a relational
database (MySQL database). The three sub-ontologies are divided into vocabularies
that describe gene products in terms of: Molecular functions, associated biological
processes and cellular components.

The GO ontology permits to associate biological relationships among molecular
functions, the involvement of molecular functions in biological processes and the

6Extracted from the OBO site http://obo.sourceforge.net/
"http://obo.sourceforge.net/

8 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

occurrence of biological processes at a given time and space in cells [4]. Whereas the
molecular function defines what a gene product does at the biochemical level, the bi-
ological process normally indicates a transformation process triggered or contributed
by a gene product involving multiple molecular functions. Finally the cellular com-
ponent indicates the cell structure a gene product is part of. The Gene Ontology
contains around 20.000 concepts which are convertible to OWL. The latest statistics
about the GO could be found at the GO site ®:

Current term counts (as of June 20, 2005 at 6:00 Pacific time):

17946 terms, 94.2% with definitions.

6984 (38.9%) Molecular functions

9410 (52.4%) Biological processes

1552 (8.6%) Cellular components

There are 998 obsolete terms not included in the above statistics
(Total Terms=18944)

Further complexity assessments can be found at http://www.fruitfly.org/~cjm/
obol/doc/go-complexity.html.

According to [5] the GO is a handcrafted ontology accepting only ,is-a” and ,,part-
of” relationships. The hierarchical organization is represented via a directed-acyclic-
graph (DAG) structure similar to the representation of Web pages or hypertext
systems. Members of the Consortium group contribute to updates and revisions
of the GO. The Go is maintained by editors and scientific curators who notify GO
users of ontology changes via email, or at the GO site by monthly reports®. Please
note that ontology creation and annotation of GO terms in databases (association
of GO terms with gene products) are two different operations. Each annotation
should include its data provenance or source(a cross database reference, a literature
reference, etc).

Technically, there are two different data sets, available via public CVS stores.
Set I ranges from 1999 to 2001 and has a snapshot of the GO for each month in GO
syntax. The second set runs from 2001 up to now and contains for each month a Go
snapshot in OBO syntax. As OBO is the newer syntax, we assume the existence of
a converter from GO syntax to OBO syntax available from the GO community. In
order to use the data sets, one has to decide for a format. There are three options: (a)
RDF, (b) OWL generated from DAG-Edit' or (c¢) nice OWL generated by Protégé-
Plugin. Whatever choice is made, the exported data should contain the provenance

8http://www.geneontology.org/G0.downloads . shtml#ont
Yhttp://www.geneontology.org/MonthlyReports/
Ohttp: //www.godatabase.org/dev/java/dagedit/docs/index.html

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 9

1. SEMVERSION - AN RDF VERSIONING SYSTEM

information of the source file and the conversion process used. SemVersion offers
ways to store such provenance information.

1.2.4 Use Case 4: Versioning in a Semantic Wiki

Stakeholder: Max Volkel (U Karl), mvo@aifb.uni-karlsruhe.de

A wiki is a browser-based environment to author networked, structured notes,
often in a collaborative way. The project SemWikill aims at creating a semantic
wiki for personal note management. SemWiki extends the wiki syntax with means
to enter statements about resources, much like in RDF'. In a traditional wiki, users
are accustomed to see and compare different versions of a page. In the semantic wiki
,SemWiki™? pages are just a special kind of resource and some attached properties.
Hence, a semantic diff has to be calculated ,by hand”.

Data Set A typical personal wiki has up to 3000 pages with approximately 10
versions per page. Each page consists roughly of 50 statements. This leads to
approximately 1.5 million triples for a snapshot-based versioning system.

Versioning Requirements SemWiki users need ways to request a semantic diff
between two page-versions. As pages partly consist of ,,background statements”,
which do not belong to a particular page, SemWiki needs a model-based versioning
approach (R4.1). Sometimes users want to roll-back page changes, thus we need
the ability to revert to old states (R4.2). Additionally, users want to track each
statement: Who authored it, when has it been introduced, etc. (R4.3).

1.2.5 Use Case 5: Analysis of Wikipedia

Stakeholder: Denny Vrandecic, Markus Krotzsch, Max Volkel (U Karl)
{dvr ,mkr ,mvo}@aifb.uni-karlsruhe.de

An emerging research topic at AIFB is the analysis of changes in the Wikipedia'3.
This use case is mostly similar to ,Versioning the Gene Ontology”.

Data Set The Wikipedia contains roughly 1.500.000 articles across all language
versions.

Uhttp://semwiki.ontoware.org
2http://semwiki.ontoware.org
Bhttp://www.wikipedia.org

10 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

Versioning Requirements There are no obvious requirements beyond those al-
ready mentioned in use case 3.

1.2.6 Requirements Summary
We can distinguish rather data management related requirements and rather ontol-

ogy language specific features.

Data Management Requirements

e Store and retrieve versions; store up to 7 million triples

e Retrieve versions via HT'TP or Java function calls; address versions unambigu-
ously via URIs and user-friendly via labels

e Rich meta data per model/statement: provenance, author, valid time,
transaction time

e Model based versioning and additionally concept-oriented queries
e Queries across versions concerning meta data
e Each version can have a number of attached ,suggestions”; ability turn sug-

gestions into official versions

Ontology Language Requirements

e Queries across versions concerning the content
e return diffs between arbitrary versions

e OBOL semantic diff

e OBOL to RDF converter

e RDFS semantic diff

e OWL semantic diff

e Semantic Wiki semantic diff

e Conflict detection in OWL

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 11

1. SEMVERSION - AN RDF VERSIONING SYSTEM

1.3 Data Management Design

A versioning system has generally two main parts. One deals with general data
management issues, the other part with versioning specific functionality such as cal-
culating the difference between two versions. We first present the data management
parts and then the ontology specific versioning functions.

The data management parts can be used no matter which ontology language is
used — as long as the data model is encoded as RDF. RDF encoding of data is crucial
in order to have a significant re-use of software across ontology languages. We now

present some arguments for this claim. A more detailed discussion can be found in
the Knowledge Web Deliverable D2.3.1 [1].

1.3.1 RDF as the structural core of ontology languages

The most elementary modelling primitive that is needed to model a shared con-
ceptualisation of some domain is a way to denote entities and to unambiguously
reference them. For this purpose RDF uses URIs, identifiers for resources, that are
supposed to be globally unique. Every ontology language needs to provide means
to denote entities. For global systems the identifier should be globally unique. Hav-
ing entities, that can be referenced, the next step is to describe relations between
them. As relations are semantic core elements, they should also be unambiguously
addressable. Properties in RDF can be seen as binary relations. This is the very
basic type of relations between two entities. More complex types of relations can
be modelled by defining a special vocabulary for this purpose on top of RDF, like it
has been done in OWL.

The two core elements for semantic modelling, mechanisms to identify entities
and to identify and state relationships between them, are provided by RDF. Ontol-
ogy languages that build upon RDF use these mechanisms and define the semantics
of certain relationships, entities, and combinations of relationships and entities. So
RDF provides the structure in which the semantic primitives of the ontology lan-
guages are embedded. That means we can distinguish three layers here: syntactic
layer (e.g. XML), structural layer (RDF), semantic layer (ontology languages).

The various ontology languages differ in their vocabulary, their logical founda-
tions, and epistemological elements, but they have in common that they describe
structures of entities and their relations. Therefore RDF is the largest common de-
nominator of all ontology languages. RDF is not only a way to encode the ontology
languages or just an arbitrary data model, but it is a structured data model that
matches exactly the structure of ontology languages.

12 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

1.3.2 Version Data Management

The general idea is the re-use of data management functionality across ontology
languages. The relations between different versions of an RDF model or ontology
are the same, regardless of the semantics used.

Data management deals with storage and retrieval of chunks of data. In our
case, the smallest unit of data we store and retrieve is a model (also called ’triple
set’). A model is a set of RDF triples. A versioned model consists of a triple set for
the content plus an arbitrary number of statements about this model. We thus call
this model based versioning in contrast to statement based versioning.

SemVersion’s data model (depicted in Fig. 1.3) was basically derived from the
requirements of the MarcOnt use case (Sec. 1.2.1) and fulfills also the other use
cases needs. Only the rather statement-oriented versioning requirements from the
use case 2 remains difficult to integrate.

SemVersion has a repository of projects. They can be created, listed and
removed from the repository. A project can hold a number of versioned models.
A versioned model is the container for a single RDF model or ontology under version
control. A versioned model has a root version and also knows all other versions
that are direct or indirect descendants of the root version. Versioned models are
quite an important concept and give the user the ability to retrieve the right version
by e. g. listing all branches or simple getting the most current ,,main” branch version.

A version is the most central concept. It is a model decorated with all kinds
of metadata. A version knows where it cames from (it parents), has a branch, a
label and optionally even a comment and a provenance URI. The user can commit
a model as the successor of a version; create a new version by merging two existing
models or commit a diff. Committing diffs is useful, if the models become really
large and change only litte — a use case we are likely to experience in the Gene
Ontology scenario.

Typically a new user starts by creating a new project and then adds a RDF
model to it. This model is then treated as the first version of a ,,versioned model”.
The initial RDF model was probably created on the users desktop with third-party
ontology engineering tools.

A versioned model consists of different versions that have attributes and relations.
Common attributes are time stamp, branch label, status of acceptance. Predecessor
relationships indicate the history path. This meta-information about versions can be
managed independent of the versioned artefacts themselves. Thus this management
layer can be designed very flexible and reusable. As every version can be identified
via an URI, one can make arbitrary statements in RDF about them. The concepts of
branches, acceptance status and version dependencies can then be represented easily
in RDF. SemVersion uses this distinction of stored RDF models and statements
about them. Realised as statements about versions is e. g. the concept of ontology

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 13

1. SEMVERSION - AN RDF VERSIONING SYSTEM

Repository

v/ Project
Rioject \/{ersionedModel

_ '/ VersionedModel
VersmnedModeI/ J —

! Version
Version
Versiorl

Branchlab%i@éq{\ﬁfetadata

UserdefinedMgtadata

Figure 1.3: Data Model for RDF Versioning

engineering projects. Such projects are simple sets of versioned models and give the
user a better ability to manage the different ontologies in progress.

Users can store arbitrary RDF encoded metadata objects for each project, ver-
sioned model and most important for each version. This data is stored in the RDF
storage layer and linked by RDF statements to the versioning artefact it belongs
to. Metadata models are also URI-addressable. This metadata strategy enables a
good re-use of the SemVersion system, as e. g. the evolution log of an ontology
engineering tool could be assigned to a version with this mechanism.

1.4 Versioning Functionality Design

Versioning functionality deals with ontology language specific functionality such as
the structural diff (ignoring semantics) and the semantic diff (depends on ontology
language; uses structural diff). We also talk about blank nodes, which make the
issue of comparing versions harder, but not impossible.

1.4.1 Structural Diff

Although the structural diff is the same for all ontology languages, we describe it
here for sake of consistency. The structural diff is simply the set-theoretic difference
of two RDF triple sets. Libraries such as Jena have built-in functions to compute

14 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

version A: version B:

a rdfs:type c a rdfs:type d

b rdfs:type c b rdfs:type d

¢ rdfs:subClass0f d ¢ rdfs:subClass0f d
e rdfs:type d

added: removed:

a rdfs:type d a rdfs:type c

b rdfs:type d b rdfs:type c

e rdfs:type d

Figure 1.4: Example for a Structural Diff

this set-difference. RDF2GO also offers a native implementation. An example for a
structural diff can be found in Fig. 1.4.

The diff function d(A, B) — (a(A, B),7(A, B)) is a non commutative func-
tion from two triple sets (A, B) to two triple sets of added (a(A, B)) and removed
(r(A, B)) statements, with a(A,B) = B— A= B\(ANB)and r(A,B)=A—-B =
A\(AN B). Such diffs can be computed by simple set arithmetics for triple sets that
contain only URIs and literals, as shown in [6]. Blank nodes cause some problems
here, as discussed in Sec. 1.4.3.

1.4.2 Semantic Diff

The semantic difference has to take the semantics of the used ontology language
into account. It is therefore not possible to write a generic algorithm for this. An
intuitive way to understand the concept of a sematic diff goes like this: Let’s assume
we have RDF Schema as our ontology language. Further we have two models A and
B, which express two versions of an RDF Schema. Now, in order to compute the
semantic diff, we use RDF Schema entailment on model A and infer all triples we
can (Inf(A)). Then we do the same for model B (Inf(B)). Now we calculate a
structural diff on Inf(A) and Inf(B). This not the same as the structural diff
between model A and B. Fig. 1.5 illustrates the semantic diff under RDF Schema
entailment semantics.

A possible way to compute a semantic diff is thus to materialize the complete
entailment (transitive closure) and then perform a structural diff. For RDF Schema
the calculation of the transitive closure can be re-used from the Jena framework.
However, in certain cases this might not be doable, especially when the models grow
really large. The calculation of a semantic diff can be accomplished by a language
specific reasoner or by a language specific set of rules. These rules can be formulated
in a language like TRIPLE as demonstrated in [7]. Initially we provide support for
RDF Schema. An extension to OBOL is planned.

If the structural diff of two models is empty, then the semantic diff must also

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 15

1. SEMVERSION - AN RDF VERSIONING SYSTEM

version A: version B:

a rdfs:type c a rdfs:type d

b rdfs:type c b rdfs:type d

¢ rdfs:subClass0f d ¢ rdfs:subClass0f d
e rdfs:type d

added: removed:

e rdfs:type d

Figure 1.5: Example for a Semantic Diff under RDFS semantics

be empty. The inverse is not necessarily true: There might be two different RDF
models which encode the same semantic model.

1.4.3 Blank Nodes and the Diff

Blank nodes'* cause some problems in computing the structural diff, as we have no
knowledge about the relation (equal or not?) between two blank nodes form different
models. The RDF semantics dictate to treat them as different. In a versioning
context, this leads to the unwanted fact that the diff between a model and itself is
not empty, if it contains blank nodes.

As a work-around we invented the concept of blank node enrichment, which
attaches artificial inverse functional properties to every blank node. This changes
nothing to the RDF semantics but helps to identify equal blank nodes across models.

Most RDF processing tools will leave this information intact. In the MarcOnt
scenario (c.f. Sec. 1.2.1), a dedicated ontology builder is used, so this constraint
can be enforced. In SemVersion, the content of every version is blank node enriched
before it is stored in the RDF storage layer.

However, if no blank node enrichment is present, we still have to offer a good
versioning system. We can distinguish five cases of blank node differences across
models:

e The blank node appears in exactly the same statements in both versions. Then
it is semantically safe to assume blank node identity.

e If only additional statements have been added (the previous version’s state-
ments are all entailed by this versions statements), one can also conclude blank
node equality without problems.

e If the blank node has been extended monotously but in different ways, what
does this mean? Are the blank node identifiers ,,_:1” and ,_:3” referring to the
same object? Has ,Max” know two phone numbers or are there two Maxes

4Sometimes also called ,bnodes” — but they have nothing to do with b-trees.

16 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

Figure 1.6: A sample version tree

know? In general, it seems better to treat the blank nodes as different in this

example. Example:
version B:

_:3 :hasName "Max"
_:3 :hasPhone "123"
_:5 :hasName "Max"
_:5 :hasPhone "456"

version A:
_:1 :hasName "Max"

added: removed:

:3 :hasName "Max" _:1 :hasName "Max"
3 :hasPhone "123"
:5 :hasName "Max"
5 :hasPhone "456"

e Almost as ambiguous is the case when some properties have been removes and
some have been added. Here again, no equality should be assumed.

e The original blank node could appear only in reduced and extended models.
Here again, no equality should be assumed.

Unfortunately, blank nodes are used in practice. They are used in OWL for
property restrictions and in FOAF to denote persons.

1.4.4 Branch and Merge

Branch and merge operations allow ontology engineers to follow multiple develop-
ment paths in parallel. A branch operation works like a commit, but the new version
is considered to be in a new branch, marked by a different branch label.

For merge we distinguish a merge between two arbitrary versions and the merging
of two branches. It is possible to merge arbitrary versions, no only those at the end
of a branch. A merge of version A and version B is simply the set union of the triple
sets.

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 17

1. SEMVERSION - AN RDF VERSIONING SYSTEM

Merging two branches is different. First we look at the branch point ¢, which
is defined as the most recent common version of the two branches. Such a version
always exists, as branches can only be created by committing a version to an existing
version. We also take two versions from the different branches, in most cases the
most recent ones, and call them a and b. Consider the example version tree given in
Fig. 1.6. Here c = A,a = A”,b = B”. In order to merge b back into a we compute
the dif f(c,b) and apply it to a.

1.4.5 Conflict Detection

RDF models themselves are never in a conflict state. But a diff between two models
can indicate a conflict on the ontology layer. SemVersion uses a simple conflict
detection heuristic, that detects if a diff adds statements about a resource that was
present in ¢, but has been removed on its way to a. This means, the URI of a
resource was used in triples from ¢, but no triple in a contains this URI.

1.4.6 Query Language Extension

WP 2.3 proposed an extension to RDQL and SPARQL to enable the querying of ver-
sions through bi-temporal database features such as valid-time and transaction-time
and context information. The proposal was merely practical and did not include
the intended semantics associated to the query language extensions, which in fact
triggered some debate in the room. Our viewpoint was from a database perspec-
tive considering that both RDQL and SPARQL are SQL-like query languages for
semistructured /graph-based data. The point to be discussed is that SPARQL could
simulate or include features available in SQL3 such as nested/correlated queries
with the required closure of query results, include bi-temporal data such as found in
temporal SQL, and possibly include procedural capabilities such as calls to external
functions, use of surrogate methods, use of path expressions as in object oriented or
graph databases and so on.

1.5 Implementation

Note: Different from the approach described in [1], we now aim at creating a pure
Java library. As the java library is the core of such a versioning concentrating out
efforts on the core gives us the opportunity for quicker feedback. Additional HTTP-
based web services will be added as required.

The high-level architecture of the implementation consists of several layers (c.f.
Fig. 1.7). Each layer depends on the layer below. To users only the SemVersion
API and the RDF2G0O API are exposed.

18 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

SemVersion API

|
SemVersion data objects

RDFReactor
|
rdf2go
/ / NG4J
YARS Jena 2.2 KAON

Figure 1.7: The Layered Architecture of SemVersion

SemVersion API — which is described in Chapter 3

SemVersion internal data structures — these are rich in functionality, but too
complex as an external API

RDFReactor — a framework for domain-specific object-oriented RDF access in
Java

RDF2GO — an abstraction over triple (and quad) stores

e YARS — a scalable quad store

At startup time an SemVersion server loads its root data model from a configured
RDF store and caches it in memory. The root model contains information about
projects, versioned models, their versions and other metadata. User-defined meta-
data is stored as separate RDF models in the RDF store. Only time stamps and
branch labels are stored directly in the SemVersion root model. This reduces the
SemVersion data layer to a clean layer with statements about versioning artefacts.
Diffs are calculated on-the-fly in the SemVersion server, but could be cached.

1.5.1 Storage Layer Access

An ontology versioning system should scale in many dimensions. It should allow a
large number and size of ontologies. This implies a scalable storage architecture. If

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 19

1. SEMVERSION - AN RDF VERSIONING SYSTEM

the ontologies become large, it is undesirable to download them first and query or
manipulate them locally. There already exist scalable RDF stores with remote query
and update functionality. SemVersion utilized RDF2G0O, a sub-project of SemVer-
sion which is described on page 22. It abstracts away the triple store implementation
and gives the user a simple Java-centric API for model changes. The storage layer
access is implemented in the class TripleStore which offers means to get models.
The TripleStore uses a ContextModel for it’s persistence. The identification URI for
a model is used as the context URI in the quad model. All models are only proxies
for the ContextModel. Currently, SemVersion uses YARS [8] to store it’s data.

1.5.2 Handling Commits

The new version will simply be stored — this guarantees that the retrieval will give
the user back what she checked in. More sophisticated storage mechanisms could
be developed, but the real challenge in ontology versioning is not storage space but
the management of the distributed engineering processes within a heterogenous tool
environment. The new model is send to the RDF store with a locally generated
URI, which is globally unique.

1.5.3 Generating globally unique URIs

The strategy for generating globally unique URIs is as follows: (i) The first part of
the URI is the URL the SemVersion server is running at. This reduces the problem
of generating globally unique URIs to generating locally unique URIs, assuming that
the same SemVersion server URL will not be used for different SemVersion server
ever. To soften this constraint, (i)) the current system time for the server, measured
in milliseconds is also made a part of the generated URL. Thus the problem is
reduced to maintain an accurate server clock and never issue the same URI again
in a given period of time (server clock may be off for minutes, but not months). To
issue different URIs at all times, (iii) an internal counter is added to the URI string.
The URI generator cannot guarantee uniqueness, but the likelihood for the same
URI being generated twice is really low.

1.5.4 RDFReactor

The general trade-off between the power of a strongly typed, object-oriented API
and the flexibility of having direct access to the underlying data exists as well in
the RDF and Java world. The open-source project RDFReactor!®, which generates
data manipulation classes from an RDF Schemal®, is used to give the user an object-

5http://RDFReactor.ontoware.org
http://SemVersion.ontoware.org/2004/12/datamodel

20 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

oriented access for many common functions like adding projects, setting the parents
of a version or storing the branch label. Parallel access to the stored RDF data is
always possible.

RDFReactor builds on RDF2GO. A longer paper about RDFReactor can be
found at http://xam.de/2005/05/rdfreactor.pdf.

Until now, RDFReactor has been downloaded over 70 times.

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 21

Chapter 2

RDF2Go

This chapter exclusively describes RDF2Go0. RDF2Go0! is an abstraction over RDF
triple and quad stores. It provides a software layer to connect a Java application with
some of the most popular Java frameworks for the Resource Description Framework
(RDF)2. The basic idea is depicted in Figure 2.1.

The current version 1.0 offers support for the triple store Jena ? 2.2 and the quad
stores YARS 4 ref. 1217 and NG4J 5 V0.4 (which builds on Jena).

2.1 What is RDF2Go?

RDF2GO is a lightweight adapter framework between existing RDF triple and quad
stores and Java Applications. While there are many implementations of the Resource
Description Framework in Java, each of them has it’s pros and cons and it’s difficult
to choose the right one for your purposes among them. Using RDF2GO it’s easy to
change the underlying triple or quad store without major effects for your application.
Java applications may use the RDF2G0O API to remove compile-time and run-time
dependencies on any particular RDF implementation.

A similar project has been created by the Apache Software Foundation and is

known as ,, jakarta commons logging®”.

RDF2GO is so easy to use, that it might even be used in courses like ,,Semantic
Web for Java Developers”. It’s main goals though, have been flexibility and ease-of-
use.

"http://rdf2go.ontoware.org
’http://www.w3.org/RDF/
3http://jena.sourceforge.net
‘http://sw.deri.org/wiki/YARS
Shttp://www.wiwiss.fu-berlin.de/suhl/bizer/ngdj/
Shttp://jakarta.apache.org/commons/logging/

22

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

Java application

rdf2go
// NG4J
YARS Jena 2.2 KAON

Figure 2.1: RDF2GO and existing RDF triple (and quad) stores

StatementImpllena22

Model Statement | —
com.hp.hpl.jena.graph
1 Triple
java.net.
ModelAdapter URI
W Bl N
1 —{BlankNode +— rappedBlankNode
H com.hp.hpl.jena.graph

Node_Blank

ModelImpllena22

com.hp.hpl.jena.graph
Model

java.lang.

String

LanguageTagLiteral [~

i..{ DatatypelLiteral /

Figure 2.2: RDF2G0 Type System and the Jena adapter classes as an example

RDFLiteral

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 23

2. RDF2GO

2.2 Working Example: Simple FOAF via RDF2Go

Imagine you want to write your own FOAF file using RDF2G0. Here we provide a
simple example how to do this.

Because all RDF frameworks use different configuration settings when construct-
ing a model, it’s necessary for RDF2GO to use different constructors. In each of the
impl-Packages for the RDF stores you can find a Model implementation.

When we want to instantiate a new RDF2G0 model using Jena as the underlying
RDF framework, we have to start with the following line of code. Right now we don’t
want any inferencing, so we put it off.

// no inferencing
Model model = new ModelImplJena22(false);

We want to state something about persons and relationships between them using
the FOAF vocabulary. The next step is creating some URIs from this vocabulary,
so building statements with them later is much easier.

URI foafName

URI foafPerson
URI foafTitle
URI foafKnows
URI foafHomepage

URIUtils.createURI("http://xmlns.com/foaf/0.1/name");
URIUtils.createURI("http://xmlns.com/foaf/0.1/Person");
URIUtils.createURI("http://xmlns.com/foaf/0.1/title");
URIUtils.createURI("http://xmlns.com/foaf/0.1/knows");
URIUtils.createURI("http://xmlns.com/foaf/0.1/homepage");

With those URIs we now can start to state something about a person. While we
don’t have an URI for a person, we use a blank node (this is always done this way
in FOAF).

BlankNode werner = model.getNewBlankNode();

First we say some things about Werner - where his homepage can be found, what
his full name is and that he is a foaf:Person.

// N-TRIPLES Syntax:

// _:blankNodeWerner
// <http://xmlns.com/foaf/0.1/homepage>
// <http://www.blue-agents.com> .
model.addStatement (
werner,
foafHomepage,

URIUtils.createURI("http://www.blue-agents.com"));

"http://www.foaf-project.org/

24 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

model .addStatement (werner, foafTitle, "Mr");
model .addStatement (werner, foafName, "Werner Thiemann");
model .addStatement (werner, RDF.type, foafPerson);

Then we do similar things with Max.

BlankNode max = model.getNewBlankNode();

model.addStatement (max, RDF.type, foafPerson);

model .addStatement (max, foafName, "Max Volkel");

model .addStatement (max, RDFS.seeAlso,
URIUtils.createURI("http://www.xam.de/foaf.rdf.xml"));

Now that we have introduced two persons, we can state that they know each
other. We do this by using the foaf:knows property.

model .addStatement (werner, foafKnows, max);

While we added a lot of statement to the model by now, we yet don’t know how
we get this information back from the model. We will show a simple query methods
to do so here. We want to list all persons. Therefore we use a wildcard for the
subject (i.e. Variable. ANY).

Iterator<Statement> it =
model.getStatement (Variable.ANY, RDF.type, foafPerson);

We get back an Iterator over Statements. Finally we iterate over the query
results and print the persons URI (i.e. a blank node) and the name of the person
to standard out. To do this we have to do another query. This time we want any
object for the found person that have the property foaf:name. Subject, predicate
and object of a statement provided by the iterator can be accessed via get-methods.

while (it.hasNext()) {
Object person = it.next().getSubject();
System.out.println(person + " is a person");

// get foaf:name
Iterator<Statement> it2 = model.getStatement (person, foafName,
Variable.ANY);
while (it2.hasNext()) {
System.out.println(person + " has the foaf:name "
+ it2.next () .getObject());

The full example can also be found in the package org.ontoware.rdf2go.example.

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 25

2. RDF2GO

2.3 Architecture

Figure 2.1 shows how RDF2GO interacts with common Semantic Frameworks and
RDF stores like Yars, Jena , NG4J or KAONS®. Those underlying frameworks be-
come transparent for the application, which only communicates with the interfaces
provided by RDF2GoO.

The main package org.ontoware.rdf2go provides all those interfaces the appli-
cation developer might need to manipulate and query RDF data.

The org.ontoware.rdf2go.impl provides implementations of RDF specifics,
which don’t exist in Java and are independent of the underlying framework. Classes
herein also implement an adapter between ContextModel and Model and vice versa
and also cope with URI handling. The methods of those classes simplify the imple-
mentations of the adapters for the underlying frameworks

All other packages implement specific adapter classes to communicate with the
underlying RDF store.

While providing adapters for the most widely used triple and quad stores, any
contributors may find it easy to write implementations for the RDF framework of
their choice due to the simple API.

As RDF2GO strives to be a unifying API, it cannot make reasonable assumptions
about the nature of the underlying API’s exceptions. Right now best way to deal
with these exceptions seems to be to throw them as a generic type Exception to the
RDF2GO user. Hence most methods have a throws java.lang.Exception clause.
In future versions RDF2GO might have its own exception hierarchy which catches
the exceptions of the underlying layer and return its own exception objects instead.

2.4 The API

Model and ContextModel are the main interfaces for triple or quad store usage.
They provide access to a RDF model.

The query results have to be in a form which easily can be accessed by Java
applications. Therefore the classes Statement and ContextStatement provide a
simple access to the RDF statements.

2.4.1 Model and ContextModel

We already saw how to create a model in the working example. For the sake of
completeness we list all existing Model creation possibilities here.

8http://kaon.semanticweb.org/

26 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

//Jena without inferencing
Model model = new ModelImplJena22(false);
//Jena with RDFS inferencing

Model model

new ModelImplJena22(true);

//Yars
Model model = new ModelImplYars();
//NG4J
Model model = new ModelImplNG4J();

The methods can be divided into the following groups:

Model Manipulation

addStatement(Object subject, URI predicate, Object object)

addStatement(Object subject, URI predicate, String literal, String language-
Tag)

addStatement(Object subject, URI predicate, String literal, URI datatype-
URI)

addAll(Model other)
removeStatement(Object subject, URI predicate, Object object)

removeStatement(Object subject, URI predicate, String literal, String lan-
guageTag)

removeStatement(Object subject, URI predicate, String literal, URI datatype-
URI)

removeStatement(Statement statement)

getNewBlankNode()

The add and remove statements are straightforward. getNewBlankNode() pro-
vides an overall class for blank node treatment, because the RDF stores cope differ-
ently with those.

Model Querying and Existence Checks

query(String queryString)

getStatement(Object subject, Object predicate, Object object)

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 27

2. RDF2GO

getStatement(Object subject, Object predicate, Object literalValue, Object
literal Attribute)

getStatements()

contains(Object subject, Object predicate, Object object)

contains(Statement statement)

The query and getStatement concepts are explained in depth in 2.4.2). The
contains-methods provide a simple way to check if a statement exists in the current
model.

Debugging Support

RDF2GO uses Apache Jakarta Commons Logging”. The underlying logging im-
plementation used is log4j'®. The configuration for the logging can be found in
/src/log4j.properties.

Additionally the following methods are provided by the Model.
e size()

e dump()

e getUnderlyingModellmplementation()

While size() gives you an idea how many statements can be found in a model,
the dump () method prints the whole content to the logger instance of the imple-
mentation. For some special purposes it might be necessary to get the model of the
underlying layer. This is provided by getUnderlyingModelImplementation().

Another rather unintuitive feature at first sight is the ability to store object
references at runtime in the model. They enable the model to act as a central facade
for all kinds of usage. This feature was introduced to be used in RDFReactor.

e setProperty(URI propertyURI, Object value)

e getProperty(URI propertyURI)

Ynttp://jakarta.apache.org/commons/logging/
Ohttp://logging.apache.org/logdj/docs/

28 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

Type System

One of the central aspects of RDF2GO is to map the RDF type system to the
Java type system. The mapping is simple and should be intuitive for regular Java
developers. It goes as follows:

URI is mapped to java.net.URI.
Plain Literal is mapped to java.lang.String.

Literal with a Language Tag is mapped to
org.ontoware.rdf2go.LanguageTagliteral which has two methods:
public String getValue() and public String getLanguageTag().

Literal with a Datatype URI is mapped to
rdf2go.ontoware.org.DatatypelLiteral which also has two methods:
public String getValue() and public URI getDatatype().

Blank Node has only the semantics of being either the same (equal) or not the
same as another blank node. In RDF2GO this mapped to the marker in-
terface org.ontoware.rdf2go.BlankNode. The equals-method should work
correctly.

Variables are used only in queries. RDF2GO maps wildcards which can be used
in triple (or quad) search patterns to instances of
org.ontoware.rdf2go.Variable. As there exists only one wildcard there is
only one instance: org.ontoware.rdf2go.Variable.ANY.

Figure 2.2 shows the type system and the RDF2G0 adapter classes for Jena.

2.4.2 Queries

RDF2GO offers two ways to query a model. Both return an Iterator<Statement>.
This is a new feature of Java 5.0 called , generics”. It basically ensures that each
object returned by next () is of type Statement. Iterators as query result have the
advantage of low memory consumption®!.

Queries can be plain text, which is interpreted by the underlying triple or quad
store implementation. This offers flexibility, until a standard query language for
RDF emerges.

The second query option has less expressivity but clearly defined semantics. It
uses only triple (or quad) search patterns. A search pattern has for each section of
a triple — namely subject, predicate and object (and context) — either a concrete

1 This idea was provided by Andreas Harth

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 29

2. RDF2GO

value or a wildcard. The iterator returns all elements which fulfill the given search
pattern.

2.5 How to get started

RDF2GO is simple to install and simple to use.

RDF2GO can be downloaded from ontoware.org '2. Right now it comes in 4
flavors. Pure, with Yars, with Jena or with NG4J. There is also a developers CVS,
which can be found at ontoware.org 3

RDF2GO is released under the GNU Lesser General Public License (LGPL),
Version 2.1, Feb. 1999. We reserve the right to release RDF2GO in parallel under
different licenses.

For support, please feel free to post to the forum at ontoware.org * — we will
respond quickly and your feedback is very welcome.

2http://ontoware.org/frs/?group_id=37
13http://ontoware.org/scm/?group_id=37
“http://ontoware.org/forum/forum. php?forum_id=143

30 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

Chapter 3

Using and Extending SemVersion

In this chapter we describe how developers can actually use SemVersion to solve
their versioning tasks. In Sec. 3.2 we explain how SemVersion can be extended to
handle other ontology languages.

3.1 Using SemVersion

Probably the best way to explain how to use the Java library SemVersion is to show
real source code. In this chapter we get practical and show a variety of commented
(1) source code fragments. A possible typical work session with SemVersion involves
the following steps:

e Start SemVersion

Log in with username and password and obtain a session.

Get, list or create a VersionedModel.

Get most recent or list all Version objects.

Read or update a versions metadata

Commit a new model as a child-version

End session

31

3. USING AND EXTENDING SEMVERSION

3.1.1 Typical Actions

Commit initial model

// log in
Session userSession = semVersion.login("tom", "password");

// get VersionedModel by label
VersionedModel vm = userSession.getVersionedModel ("Gene Ontology") ;

// obtain an empty Model
Model myFirstModel = userSession.getModel();

// manipulate the model

URI tool = URIUtils.createURI("http://example.com/#Tool");

myFirstModel.addStatement (
URIUtils.createURI("http://semversion.ontoware.org"),
RDF . type,
tool);

// commit as first version
vm.commitRoot (myFirstModel, "versionl");

// log out
userSession.close();

Commit a suggestion to a version

// log in
userSession = semVersion.login("joe", "password");

// get versionedmodel by name and fetch root
Version root = userSession.getVersionedModel("Gene Ontology") .getRoot();

// get a copy of the content
Model rootModel = root.getContent();

// manipulate the copy

rootModel.addStatement (
URIUtils.createURI("http://semversion.ontoware.org"),
RDFS.1label,
"rdf-based versioning tool");

32 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

// commit the new version as a suggestion to the root verions
root.commit (rootModel, "version2", true);

Calculating Diffs

Version previousMainVersion = recentMainVersion.getFirstParent();

// get real model content of both versions (actually a copy of it)
Model recentMainModel = recentMainVersion.getContent();
Model previousMainModel = previousMainVersion.getContent();

// calculate diff between the models

Diff diff = semVersion.getSemanticDiff (recentMainModel,
previousMainModel) ;

// Print out the number of added and removed Statements

System.out.println("Added: " + diff.getAdded().size());
System.out.println("Removed: " + diff.getRemoved().size());

3.1.2 Administration

Creating a user

// prepare server and create users
SemVersion semVersion = new SemVersion();

semVersion.createUser("admin", "password");
semVersion.createUser("tom", "password");
semVersion.createUser("joe", "password");

Create a versioned model Here an administrator creates a ,VersionedModel”
for the Gene Ontology.

// prepare versioned model

Session adminSession = semVersion.login("admin", "password");

adminSession.createVersionedModel(
URIUtils.createURI("vm://1"), // URI

"Gene Ontology", // label
new Date(), // valid from now on
ValidTime.NOW) ; // valid forever

adminSession.close();

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 33

3. USING AND EXTENDING SEMVERSION

3.1.3 Usage and Implementation Notes

URIUtils is a simple helper class that creates a URI without declaring the throwing
of an exception. If the string is not a valid URI, the method createURI will throw
an (undeclared) RuntimeException.

Blank node enrichment is integrated into the model layer. SemVersion wraps all
rdf2go.Model instances in a SessionModel. These perform blank node enrichment
automatically. Note that currently the blank node identifiers are not used in diff
calculation (yet)

3.1.4 SemVersion Usage Examples

How can SemVersion be used to solve he problems outlined in the requirements
section 1.27 We present versioning for the MarcOnt scenario and briefly explain
what can be done with the Gene Ontology.

Versioning for MarcOnt SemVersion can manage different branches of versions.
Suggestions to the main branch are modelled as different branches, which can evolve
separately. Snapshots of the main ontology with suggestions applied are created
realised by merging the different branches and showing the user the merged version.
Mappings between different versions can be stored as metadata of the version for
which the backward-mapping is required. As every version can be identified by an
URL, it is easy to discuss about them, e. g. reference them in a forum. As URLs
are also URIs one can also express arbitrary statements about them in RDF.

Versioning the Gene Ontology This will be the most exciting part of SemVer-
sion’s near future. Until now, the exact queries to ask are not known and even
the data set is not prepared. SemVersion now has a solid data storage, which will
hopefully enable us to study the Gene Ontology as we wish.

3.2 Extending SemVersion

In this section we explain how SemVersion can be used to build an ontology version-
ing system for a particular ontology language. The first step to take is to choose an
RDF encoding for the ontology language. This should be possible for all ontology
languages. In fact, for many languages an RDF encoding is already specified (e. g.
OWL, OBOL and Topic Maps).

We can reuse the complete version data management infrastructure of SemVer-
sion, that includes managing projects, versioned models, versions and metadata for

34 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.v1 SemVersion — Versioning RDF and Ontologies IST Project IST-2004-507482

each of these concepts. Some basic versioning functions can also be used out-of-the
box such as retrieve, commit and branch.

The only language specific function of SemVersion is the semantic diff. Ontol-
ogy language specific systems built on top of SemVersion have to change one line of
code and provide an appropriate implementation of a SemanticDiffEngine. In the
class SemVersion we have the method

public Diff getSemanticDiff (Model modell, Model model2) {

// TODO Adapt this line to other Ontology Languages
SemanticDiffEngine sde = new RDFS_Diff(); // OBOL_Diff();

TripleStore ts = svi.getTripleStore();
try {

return sde.getSemanticDiff (ts, modell, model2);
} catch (Exception e) {

throw new RuntimeException(e);

¥

The SemanticDiffEngine has only one method and should thus be easy to imple-
ment.

public interface SemanticDiffEngine {

public Diff getSemanticDiff (TripleStore ts, Model a, Model b)
throws Exception;

SemVersion provides RDF Schema semantic diff. The usage of RDFS version-
ing will be further discussed in the deliverable D2.3.5.a ,,Integration of Consensus
Making Environment with RDF versioning system”.

Furthermore, a specific versioning system could use the 'user defined metadata’
functionality of SemVersion for storing specific metadata like access rights, degree
of agreement, mappings between versions etc.

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 35

Chapter 4

Conclusions and Outlook

This deliverable describes the first version of SemVersion, a RDF and ontology
versioning system.

The requirements (Sec. 1.2) changed when the Gene Ontology use case was
integrated. We now face mainly scalability issues which caused quite some changes
in the lower implementation layers. We expect the requirements to change even
more, but we are confident, that the current design can handle most imaginable
requirements without much implementation effort.

SemVersion can handle RDF versioning and allows easy extension for other on-
tology languages. The architecture is based on RDF2G0 and RDFREACTOR. Both
choices helped to keep the programming flexible and fast. We can now e. g. exchange
Yars by NG4J by changing a single line of source code. This offers a cost effective
way to experiment with even more triple (or quad) stores, until a working solution
is found.

The biggest challenge for SemVersion is scalable reasoning and we are looking
forward to upcoming solutions. Luckily, the OBOL ontology language (used in the
Gene Ontology) seems to have much simpler semantics then e.g. OWL.

We will build a general, extendable multi-language ontology versioning system,
that will help research and industry to employ ontology based technologies in dy-
namic settings.

Next Steps The next challenges are:

e integration of use case 2

e using SemVersion for the Gene Ontology

In fact, WP 2.3 puts most energy into the use case 3, as this seems to be the
most interesting use case with the greatest impact.

36

Bibliography

1]

Winkler, W., Volkel, M., Sure, Y., Schickel-Zuber, V., Binder, W., Tzouvaras,
V., Ponte, D., Zini, C., Cruciani, M., Bonifacio, M., Kruk, S.R., Synak, M.:
D2.3.1 specification of a methodology for syntactic and semantic versioning.
Technical report, Knowledge Weg (NoE) (2004)

Zhdanova, A., Krummenacher, R., Henke, J., Fensel, D.: Community-driven
ontology management: Deri case study. In: Proc of the IEEE/WIC/ACM Inter-
national Conference on Web Intelligence, Compiegne, France, IEEE Computer
Society Press (2005)

Bada, M., Stevens, R., Goble, C.A., Gil, Y., Ashburner, M., Blake, J.A., Cherry,
J.M., Harris, M.A., Lewis, S.: A short study on the success of the gene ontology.
J. of Web Sem 1(2) (2004) 235-240

Ashburner, M., Ball, C.A., Blake, J.A., Butler, H., Cherry, J.M., Corradi, J.,
Dolinski, K., Eppig, J.T., Harris, M., Hill, D.P., Lewis, S., Marshall, B., Mungall,
C., Reiser, L., Rhee, S., Richardson, J.E., Richter, J., Ringwald, M., Rubin,
G.M., Sherlock, G., Yoon, J.: Creating the gene ontology resource: design and
implementation. Genome Research 11 (2001) 1425-1433

Stevens, R., Wroe, C., Lord, P., Goble, C. In: Ontologies in bioinformatics.
Springer (2003) 635657

Kiryakov, A., Simov, K., Ognyanov, D.: Ontology middleware: Analysis and
design. Technical report, IST Project IST-1999-10132 On-To-Knowledge (2002)

Sintek, M., Decker, S.: Triple - a query, inference, and transformation language
for the semantic web. In: ISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web, London, UK, Springer-Verlag
(2002) 364-378

Harth, A., Decker, S.: Yet Another RDF Store: Perfect Index Structures for
Storing Semantic Web Data With Contexts. Submitted (2005)

37

