
D2.1.2 Methods for Approximate

Reasoning

Perry Groot (Vrije Universiteit Amsterdam)
Pascal Hitzler (Universität Karlsruhe)

Ian Horrocks (University of Manchester)
Boris Motik (FZI Karlsruhe)

Jeff Z. Pan (University of Manchester)
Heiner Stuckenschmidt (Vrije Universiteit Amsterdam)

Daniele Turi (University of Manchester)
Holger Wache (Vrije Universiteit Amsterdam)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.1.2 (WP2.1)

This deliverable shows examples about approximating symbolic inference engines in a Semantic
Web environment. Approaches of language weakening, knowledge compilation, and approxi-
mated deduction are presented. The last one is evaluated in practical applications with mixed
results.
Keyword list: state-of-the-art, scalability, approximation, modularisation, distribution, symbolic
reasoning

Copyright c© 2005 The contributors

Document Identifier KWEB/2004/D2.1.2/v1.2
Project KWEB EU-IST-2004-507482
Version v1.2
Date January 30th, 2005
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Śevigńe
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Ṕerez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universiẗat Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
École Polytechnique F́ed́erale de Lausanne
Free University of Bozen-Bolzano
Institut National de Recherche en Informatique et en Automatique
Learning Lab Lower Saxony
Universidad Polit́ecnica de Madrid
University of Karlsruhe
University of Manchester
University of Sheffield
University of Trento
Vrije Universiteit Amsterdam
Vrije Universiteit Brussel

Changes

Version Date Author Changes

0.0 06.10.04 Holger Wache creation
0.1 02.11.04 Pascal Hitzler input chapter 3
0.2 10.11.04 Holger Wache input chapter 2
0.4 13.11.04 Jeff Pan input chapter 4
0.5 20.12.04 Pascal Hitzler revised chapter 3
0.6 21.12.04 Holger Wache Introduction and revised chapter 2
1.0 22.12.04 Holger Wache Abstract and Executive Summary
1.1 10.01.05 Holger Wache Implementing comments from WP leader
1.2 30.01.05 Holger Wache Implementing comments from Quality as-

sors

Executive Summary
In general approximating Semantic Web inferences can be achieved by language weaken-
ing, knowledge compilation, and approximate deduction. This deliverable discusses three
approaches of approximating which all fall into this singlecoherent framework and are
representative examples for the three classes.

An example for language weakening is InstanceStore which only allows instances
without any relations to other instances. But the instances can be asserted to concepts
which have relations to other concepts. The ability of representing relations is shifted
from the instances to the concepts. This restriction seems to be reasonable in practical
applications and allows falling back on database technology which is known for efficient
and scalable inferences.

For approximated deduction only a few approaches are available for the inferences in
the context of Semantic Web. A promising approach is proposed by Cadoli and Schaerf
who also apply their method for description logic reasoning. In a simplified view their
method replaces the∃-quantifier in concept expressions with⊤ resp.⊥. Their replace-
ment leads to simplified concept expressions with hopefullyfaster reasoning. However,
an evaluation of their method in practical scenarios of the Semantic Web shows mixed
results. First, the proposed method is not applicable for all ontologies but only for ontolo-
gies with a reasonable amount of∃-quantifier in their concept definitions. Second, only
few successful applications of the approximation method can be observed. Both points
indicate that the wrong constructor is replaced. Third, thefew successful approximations
come with high amounts of unnecessary reasoning which ruinsthe benefit of approxi-
mated reasoning. It seems that the last point is the consequence of the replacement with
⊤ or⊥ which “over-simplifies” the concept expressions to meaningless statements. Sum-
marising, in practical situations the proposed method seems to approximate the wrong
constructor and seems to replace the constructor with the wrong term. However, more
adapted approximation methods which prevent the “over-simplification” have the poten-
tial for better results.

OWL ontologies which are based on description logics (i.e., the species OWL-DL and
OWL Lite) can also be translated to disjunctive Datalog programs. During the transla-
tion the implicit knowledge can be derived and directly added to the translated knowledge
base. Furthermore the inference engine for disjunctive Datalog programs can be replaced
by an approximated SLD-Resolution which ignores the disjunctions in the heads of the
clauses. This reasoning is not sound but complete. The approach is representative for a
combination of several approximation methods, i.e., knowledge compilation and approx-
imate deduction.

Contents

1 Introduction and Motivation 1
1.1 Approximation Approaches .2

2 S-1- and S-3-Approximation 4
2.1 Approximating Classification .. 6
2.2 Experiments . 9

2.2.1 Analysis ofC⊥

i -/C⊤

i -Approximation 11
2.2.2 Further experiments . 13

2.3 Conclusions . 15

3 Approximation in ABox Reasoning 17
3.1 Instance Store . 18
3.2 An Optimised Instance Store .19
3.3 Implementation . 20
3.4 Discussion . 21

4 Towards Resolution-Based Approximate Reasoning for OWL-DL 23
4.1 Introduction and Motivation .. 23
4.2 Preliminaries . 24

4.2.1 OWL-DL Syntax and Semantics 24
4.2.2 Datalog and SLD-Resolution . 26

4.3 Reducing OWL-DL Knowledge Bases to Disjunctive Datalog Programs . 28
4.4 Approximate Resolution . 30

4.4.1 Approximate SLD-Resolution 30
4.4.2 Approximate Resolution for OWL-DL 32

4.5 Conclusions . 33

5 Conclusion 34

iii

Chapter 1

Introduction and Motivation

by PERRY GROOT, HEINER STUCKENSCHMIDT & HOLGER WACHE

A strength of the current proposals for the foundational languages of the Semantic
Web is that they are all based on formal logic. This makes it possible to formally reason
about information and derive implicit knowledge. However,this reliance on logics is not
only a strength but also a weakness. Traditionally, logic has always aimed at modeling
idealised forms of reasoning under idealised circumstances. Clearly, this is not what is
required under the practical circumstances of the SemanticWeb. Instead, the following
are all needed:

• reasoning under time-pressure

• reasoning with other limited resources besides time

• reasoning that is not ‘perfect’ but instead ‘good enough’ for given tasks under given
circumstances

It is tempting to conclude that symbolic, formal logic failson all these counts, and
to abandon that paradigm. Our aim is to keep the advantages offormal logic in terms of
definitional rigour and reasoning possibilities, but at thesame time address the needs of
the Semantic Web.

Research in the past few years has developed methods with the above properties while
staying within the framework of symbolic, formal logic. However, many of those previ-
ously developed methods have never been been considered in the context of the Semantic
Web. Some of them have only been considered for some very simple underlying de-
scription languages [Schaerf and Cadoli, 1995]. As the languages proposed for modeling
ontologies in the Semantic Web are becoming more and more complex, it is an open ques-
tion whether those approximation methods are able to meet the practical demands of the
Semantic Web. In this deliverable, we look at approximationmethods for Description
Logics (DLs), which are closely related to some of the currently proposed Semantic Web

1

1. INTRODUCTION AND MOTIVATION

languages, e.g., OWL. To be more precise, during the whole deliverable we consider only
OWL DL and in some way OWL Lite but not OWL Full.

1.1 Approximation Approaches

KB
Weakening
Language

Compilation
Knowledge

Deduction
Approximate

Language
Description

ABox

TBox

Reasoning

Figure 1.1: Architecture of a KR
system based on Description Logic
together with possible approxima-
tion approaches.

A typical architecture for a KR system based
on DLs can be sketched as in Figure 1.1
[Baaderet al., 2003b], which contains three com-
ponents that can be approximated to obtain a sim-
plified system that is more robust and more scal-
able. These components are: (1) the underlying de-
scription language, (2) the knowledge base, and (3)
the reasoner. The knowledge base itself comprises
two components (TBox and ABox), which can also
be approximated as a whole or separately. Some
general approximation techniques that can be ap-
plied to one or more of these components are the
following:

Language Weakening: The idea of language weakening is based on the well-
known trade-off between the expressiveness and the reasoning complexity of a log-
ical language. By weakening the logical language in which a theory is encoded,
we are able to trade the completeness of reasoning against run-time. For example,
[Borgida and Etherington, 1989] shows how hierarchical knowledge bases can be used
to reason approximately with disjunctive information. Thelogic that underlies OWL Full
for example is known to be intractable, reasoners can use a slightly weaker logic (e.g.
OWL Lite) that still allows to compute some consequences. This idea can be further
extended by starting with a very simple language and iterating over logics of increasing
strength supplementing previously derived facts.

Knowledge Compilation: In order to avoid complexity at run-time, knowledge compi-
lation aims at pre-processing the ontology off-line such that on-line reasoning becomes
faster. For example, this can be achieved by explicating hidden knowledge. Derived facts
are added to the original theory as axioms, avoiding the needto deduce them again. In the
case of ontological reasoning, implicit subsumption and membership relations are good
candidates for compilation. For example, implicit subsumption relations in an OWL on-
tology could be identified using a DL reasoner, the resultingmore complete hierarchy
could be encoded e.g. in RDF schema and used by systems that do not have the ability
to perform complex reasoning. This example can be considered to be a transformation
of the DL language. When one transforms an ontology into a lessexpressive DL lan-
guage [Baaderet al., 2000, Brandtet al., 2002], this often results in an approximation of
the original ontology.

2 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Approximate Deduction: Instead of modifying the logical language, approx-
imations can also be achieved by weakening the notion of logical consequence
[Schaerf and Cadoli, 1995, McAllester, 1990]. The approximated consequences are
usually characterised as sound but incomplete, or completebut unsound. Only
[Schaerf and Cadoli, 1995] have made some effort in the context of DLs.

Note that there is not always a clear classification of one method to the three categories
defined above.

In the following chapters we discuss some approximation methods in more detail.
Chapter 2 gives an example of approximate deduction. A concrete and already pro-
posed approximation method — the S-1- and S-3-approximation by Cadoli and Schaerf
[Schaerf and Cadoli, 1995] — is investigated in practical applications. The approach in
Chapter 3 is based on language weakening. The expressivenessof the ABox is reduced
in order to fall back on database technology. A combination of several approximation
methods is illustrated in Chapter 4. First the knowledge baseis compiled into disjunctive
Datalog programs explicating the implicit knowledge directly. Then the standard reso-
lution principle is replaced by an approximated variant. Therefore this approach can be
seen as a combination of language weakening and approximatededuction.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 3

Chapter 2

S-1- and S-3-Approximation

by PERRY GROOT, HEINER STUCKENSCHMIDT & HOLGER WACHE

The elements of a DL are concept expressions and determiningtheir satisfiabil-
ity is the most basic task. The most of the other reasoning services (e.g., subsump-
tion, classification, instance retrieval) can be restated in terms of satisfiability checking
[Baaderet al., 2003b]. With approximation in DLs, we mean determining thesatisfiabil-
ity of a concept expression through some other means than computing the satisfiability of
the concept expression itself. This use of approximation differs with other work on ap-
proximating DLs [Baaderet al., 2000, Brandtet al., 2002] in which a concept expression
is translated to another concept expression, defined in a second typically less expressive
DL.

In our approach (originally proposed by Cadoli and Schaerf in
[Schaerf and Cadoli, 1995]), in a DL only other, somehow ‘related’, concept expressions
can be used that are in some way ‘simpler’ when determining their satisfiability. For
example, a concept expression can be related to another concept expression through its
subsumption relation, and a concept expression can be made simpler by either forgetting
some of its sub concepts or by replacing some of its sub concepts with simpler concepts.
In particular, there are two ways that a concept expressionC can be approximated by a
related simpler concept expressionD. Either the concept expressionC is approximated
by a weaker concept expressionD (i.e., less specific,C ⊑ D) or by a stronger concept
expressionD (i.e., more specific,D ⊑ C). WhenC ⊑ D, unsatisfiability ofD implies
unsatisfiability ofC. WhenD ⊑ C, satisfiability ofD implies satisfiability ofC. Note
that this is similar to set theory. For two setsC,D, whenC ⊆ D holds, emptiness
of D implies emptiness ofC, and whenD ⊆ C holds, non-emptiness ofD implies
non-emptiness ofC.

In [Schaerf and Cadoli, 1995] Cadoli and Schaerf propose a syntactic manipulation of
concept expressions that simplifies the task of checking their satisfiability. The method
generates two sequences of approximations, one sequence containing weaker concepts
and one sequence containing stronger concepts. The sequences of approximations are
obtained by substituting a substringD in a concept expressionC by a simpler concept.

4

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

More precisely, for every substringD they define the depth ofD to be
“the number of universal quantifiers occurring inC and havingD in its scope”
[Schaerf and Cadoli, 1995]. The scope of∀R.φ is φ which can be any concept term con-
taining D. Using the definition of depth a sequence of weaker approximated concepts
can be defined, denoted byC⊤

i , by replacing every existentially quantified sub concept1

of depth greater or equal thani by⊤. Analogously, a sequence of stronger approximated
concepts can be defined, denoted byC⊥

i , by replacing every existentially quantified sub
concept of depth greater or equal thani by ⊥. Please note that before replacement the
concept expression is transformed into the negated normal form which allows negation
only for concept names. These definitions lead to the following result:

Theorem 1 For eachi, if C⊤

i is unsatisfiable thenC⊤

j is unsatisfiable for allj ≥ i, hence
C is unsatisfiable. For eachi, if C⊥

i is satisfiable thenC⊥

j is satisfiable for allj ≥ i, hence
C is satisfiable.

These definitions are illustrated by the following concept expression taken from the
Wine ontology2

Merlot ≡ Wine ⊓ ≤1 madeFromGrape.⊤ ⊓ ∃madeFromGrape.{MerlotGrape},

which states that a Merlot wine is a wine that is made from the Merlot grape and no
other grape. This concept expression contains no∀-quantifiers. Therefore the depth of
the only existentially quantified sub concept ‘∃madeFromGrape.{MerlotGrape}’ is 0.
Substituting either⊤ or⊥ leads to the following approximations for level 0:

Merlot⊤

0 ≡ Wine ⊓ (≤1 madeFromGrape.⊤) ⊓ ⊤,

Merlot⊥

0 ≡ Wine ⊓ (≤1 madeFromGrape.⊤) ⊓ ⊥.

No sub concepts of level 1 appear in the concept expression for Merlot. There-
fore,Merlot⊤

1 andMerlot⊥

1 are equivalent toMerlot. The nesting of existential and
universal quantifiers is an important measure of the complexity of satisfiability checking
when considered from a worst case complexity perspective [Donini et al., 1992]. These
are motivations for Cadoli and Schaef to make their specific substitution choices. Fur-
thermore, they are able to show a relation betweenC⊤

i - andC⊥

i -approximation and their
multi-valued logic based onS-1- and S-3-interpretations [Schaerf and Cadoli, 1995].
Therefore, properties obtained forS-1- andS-3-approximation also hold forC⊤

i - andC⊥

i -
approximation. These properties include the following: (1) Semantically well founded,
i.e., there is a relation with a logic that can be used to give meaning to approximate an-
swers; (2) Computationally attractive, i.e., approximate answers are cheaper to compute
than the original problem; (3) Duality, i.e., both sound butincomplete and complete but
unsound approximations can be constructed; (4) Improvable, i.e., approximate answers

1i.e.,∃R.φ whereφ is any concept term
2A wine and food ontology which forms part of the OWL test suite [OWL, a].

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 5

2. S-1- AND S-3-APPROXIMATION

can be improved while reusing previous computations; (5) Flexible, i.e., the method can
be applied to various problem domains. These properties were identified by Cadoli and
Schaerf to be necessary for any approximation method.

Although the proposed method by Cadoli and Schaerf [Schaerf and Cadoli, 1995]
satisfies the needs of the Semantic Web identified in Section 1in theory, lit-
tle is known about the applicability of their method to practical problem solv-
ing. Few results have been obtained forS-1- and S-3-approximation when
applied to propositional logic [Grootet al., 2004, ten Teije and van Harmelen, 1997,
ten Teije and van Harmelen, 1996], but no results are currently known to the authors when
their proposed method is applied to DLs. Current work focuseson empirical validation of
their proposed method. Furthermore, DLs have changed considerably in the last decade.
Cadoli and Schaerf proposed their method for approximating the languageALE (they also
give an extension forALC), butALE has a much weaker expressivity then the languages
that are currently proposed for ontology modeling on the Semantic Web such as OWL.
The applicability of their method to a more expressive language like OWL is an open
question. Current work takes the method of Cadoli and Schaerf as a basis and focuses on
extending it to more expressive DLs.

2.1 Approximating Classification

The problem of classification is to arrange a complex conceptexpression into the sub-
sumption hierarchy of a given TBox. We choose this task for tworeasons. First, the
worst-case complexity of classification algorithm even forexpressive representation lan-
guages like OWL-DL is known to be worse. Efficient alternatives have only been pro-
posed e.g. for subsets of DLs [Grosofet al., 2003].

Second, classification is a very important part of many otherreasoning services and
applications. For example, classification is used to generate the subsumption hierarchy
of the concept descriptions in an ontology. Furthermore, classification is used in the task
of retrieving instances. From a theoretical point of view, checking whether an instancei
is member of a conceptQ can be done by proving the unsatisfiability of¬Q(i). Doing
this for all existing instances, however, is intractable. Therefore, most DL systems use
a process that reduces the number of instance checks. It is assumed that the ontology is
classified and all instances are assigned to the most specificconcept they belong to. In-
stance retrieval is then done by first classifying the query conceptQ in the subsumption
hierarchy and then selecting the instances of all successors ofQ and of all direct predeces-
sors ofQ that pass the membership test inQ. We conclude that there is a lot of potential
for approximating the classification task.

In the following, we first describe the process of classification in DL systems. After-
wards we explain how the approximation technique introduced in Section 2 can be used
to approximate (part of) this problem.

6 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Algorithm 1 classification
Require: A classified concept hierarchy with rootRoot

Require: A query conceptQ
V ISITED := ∅

RESULT := ∅

GOALS := {⊤}
while Goals6= ∅ do

C ∈ Goalswhere{direct parents ofC} ⊆ Visited
GOALS := Goals\ {C}
V ISITED := Visited∪ {C}
if subsumed-by(Q,C)then

GOALS := Goals∪ {direct children ofC}
RESULT := (Result∪ {C}) \ {all ancestors ofC}

end if
end while
if |Result| = 1∧ subsumed-by(C,Q)then

EQUAL := ‘yes’
else

EQUAL := ‘no’
end if
return Equal, Result

For classifying a concept expressionQ into the concept hierarchy (Algorithm 1) a
number of subsumption tests are required for comparing the query concept with other
conceptsCi in the hierarchy. As the classification hierarchy is assumedto be known,
the number of subsumption tests can be reduced by starting atthe highest level of the
hierarchy and to move down to the children of a concept only ifthe subsumption test is
positive. The most specific concepts w.r.t. the subsumptionhierarchy which passed the
subsumption test are collected for the results. At the end ofthe algorithm, we check if the
result is subsumed byQ as this implies that both are equal.

Algorithm 1 contains more than one step that can be approximated. For example,
the subsumption tests, represented bysubsumed-by(X,Y) in the algorithm, can be
approximated using the method of Cadoli and Schaerf. The necessary subsumption
testsQ ⊑ C can be reformulated to test the unsatisfiability ofQ ⊓ ¬C (Algorithm

Algorithm 2 subsumption
Require: A complex concept expressionC
Require: A QueryQ

CURRENT := Q ⊓ ¬C

RESULT := unsatisfiable(Current)
return Result

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 7

2. S-1- AND S-3-APPROXIMATION

Algorithm 3 approx-C⊤-subsumption
Require: A complex concept expressionC
Require: A QueryQ

I := 0
repeat

CURRENT := (Q ⊓ ¬C)⊤I
RESULT := unsatisfiable(Current)
if Result = ‘true’then

break
end if
I := I+1

until Current = C
return Result

Algorithm 4 approx-C⊥-subsumption
Require: A complex concept expressionC
Require: A QueryQ

I := 0
repeat

CURRENT := (Q ⊓ ¬C)⊥I
RESULT := unsatisfiable(Current)
if Result = ‘false’then

break
end if
I := I+1

until Current = C
return Result

2). The idea is to replace standard subsumption checks by a series of approximate
checks of increasing exactness. In particular, we use weaker approximationsC⊤

i for
the approx-C⊤-subsumption algorithm (see Algorithm 3) and stronger approxi-
mationsC⊥

i for theapprox-C⊥-subsumption algorithm (see Algorithm 4). Using
Theorem 1 we can conclude that we are done whenever the test succeeds. If the test
does not succeed, we move to a more precise approximation (byincreasingI). This is
repeated until we reach the original concept expression andperform the exact subsump-
tion test. Algorithm 5 integrates both approximations in one procedure. The approxi-
mate versions, i.e.,approx-C⊤-subsumption, approx-C⊥-subsumption, and
approx-C⊥

I -C⊤

I -subsumption will replace the methodsubsumed-by in Algo-
rithm 1.

While these approximate versions can in principle be appliedto all occurrences of
subsumption tests, we restricted the use of approximationsto the first part of the algorithm
where the query concept is classified into the hierarchy.

8 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Algorithm 5 approx-C⊥

I -C⊤

I -subsumption
Require: A complex concept expressionC
Require: A QueryQ

I := 0
repeat

CURRENT := (Q ⊓ ¬C)⊥I
RESULT := unsatisfiable(Current)
if Result = ‘false’then

break
end if
CURRENT := (Q ⊓ ¬C)⊤I
RESULT := unsatisfiable(Current)
if Result = ‘true’then

break
end if
I := I+1

until Current = C
return Result

Each DL reasoner (e.g., Fact [Horrocks, 1998a], Racer [Haarslev and M̈oller, 1999,
Haarslev and M̈oller, 2001b]) implements the classification functionality internally. In
order to obtain comparable statements about approximate classification, independently
from the implementation of a particular DL reasoner, which may use highly optimised
heuristics, we implement our own and independent classification method. The classifi-
cation procedure was built on top of an arbitrary DL reasoneraccording to Algorithm
1. The satisfiability tests are propagated to the DL reasonerthrough the DIG interface
[Bechhoferet al., 2003] as depicted in Figure 2.1.

2.2 Experiments

The main question focused on in the experiments is which formof approximation, i.e.,
C⊤

i , C⊥

i , or their combination, can be used to reduce the complexity of reasoning tasks.
The focus of the experiments will not be on the overall computation time, but on the
number of operations needed. The goal of approximation is toreplace costly reason-
ing operations by a (small) number of cheaper approximate reasoning operations. The
suitability of the method of Cadoli and Schaerf therefore depends on the number of clas-
sical reasoning operations that can be replaced by their approximate counterparts without
changing the result of the computation.

In the experiments queries are generated automatically. The system randomly selects
a number of concept descriptions from the loaded ontology. These definitions are used as

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 9

2. S-1- AND S-3-APPROXIMATION

Fact

Subsumes/Satisfy

DIG Interface

Query

Racer

Taxonomy

Classify

Approximate

Figure 2.1: Architecture of the ex-
perimental setup.

queries and are reclassified into the subsumption hi-
erarchy. Note that the queries are first randomly se-
lected, then they are used in the experiments with
all forms of approximation.

The first experiments were made with the
TAMBIS ontology in which we (re)classified 16
concept definitions.3 Only the approximation
method originally suggested by Cadoli and Schaerf
[Schaerf and Cadoli, 1995] forALE (described in
Section 2) was used.

The results of the first experiments are shown
in Table 2.1, which is divided into four columns.
Each column reports the number of subsumption
tests when using a certain form of approximation.
The first column reports results for the experiment
with normal classification (i.e., without approxima-
tion), the second column forC⊥

i -approximation,
the third column forC⊤

i -approximation, and the
fourth column for a combination ofC⊥

i - andC⊤

i -
approximation.

Each column of Table 2.1 is divided into a number of smaller rows and columns. The
rows represent the level of the approximation used, whereN denotes normal subsumption
testing, i.e., without approximation. The columns represent whether the subsumption test
resulted in true or false.4 This distinction is important, because Theorem 1 tells us that
only one of those two results will immediately lead to a reduction in complexity, while
for the other result approximation has to continue at the next level. This continues until
no more approximation steps can be done.

normal C⊥

i
C⊤

i
C⊥

i
&C⊤

i

true false true false true false true false
C⊥

0
157 32 C⊤

0
8 181 C⊥

0
157 32

Tambis (16) C⊥

1
0 0 C⊤

1
0 0 C⊤

0
8 149

N 24 279 N 24 247 N 16 279 N 16 247

Table 2.1: Subsumption tests for the reclassification of 16 concepts in TAMBIS.

The first column shows that for the reclassification of 16 concepts in the TAMBIS
ontology, 24 true subsumption tests and 279 false subsumption tests were needed.

3A biochemistry ontology developed in the TAMBIS project [Baker et al., 1998].
4We will use the shorthand ‘true subsumption test’ and ‘falsesubsumption test’ to indicate these two

distinct results.

10 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

The second column shows thatC⊥

i -approximation leads to a change in normal sub-
sumption tests. Compared to the normal case, the number of false subsumption tests are
reduced from 279 to 247. However, the 24 true subsumption tests are not reduced. Note
that 32 (279 - 247) false subsumption tests are replaced by 157 trueC⊥

0 -subsumption tests
and 32 falseC⊥

0 -subsumption tests.5

The third column shows thatC⊤

i -approximation also leads to a change in normal
subsumption tests, but quite different when compared toC⊥

i -approximation. WithC⊤

i -
approximation we reduce the true subsumption tests from 24 to 16. However, the 279
false subsumption tests are not reduced. Note that 8 (24 - 16)true subsumption tests are
replaced by 8 trueC⊤

0 -subsumption tests and 181 falseC⊤

0 -subsumption tests. Analo-
gously toC⊥

i -approximation, noC⊤

i -approximation was used when this would not lead
to a change in the subsumption expression.

The fourth column shows the combination ofC⊥

i - andC⊤

i -approximation by using
the approximation sequenceC⊥

0 , C⊤

0 , C⊥

1 , C⊤

1 , ..., C⊥

n−1, C
⊤

n−1, normal. This combina-
tion leads to a reduction of normal subsumption tests, whichis the combination of the
reductions found when usingC⊥

i - or C⊤

i -approximation by itself. The true subsumption
tests are reduced from 24 to 16 and the false subsumption tests are reduced from 279 to
247. Note that the reduction of 8 (24 - 16) true subsumption tests and 32 (279 - 247) are
now replaced by 157 trueC⊥

0 -subsumption tests, 32 falseC⊥

0 -subsumption tests, 8 true
C⊤

0 -subsumption tests, and 149 falseC⊤

0 -subsumption tests.

2.2.1 Analysis ofC⊥i -/C⊤i -Approximation

The approximation of concept classification in the TAMBIS ontology using the method of
Cadoli and Schaerf reveals at least four points of interest. First, Table 2.1 shows that using
C⊥

i -approximation can only lead to a reduction of the false subsumption tests andC⊤

i -
approximation can only lead to a reduction of the true subsumption tests. These results
could be expected as they follow from Theorem 1 and are reflected by Algorithm 3, 4,
and 5. Using Theorem 1 we have the following reasoning steps for C⊥

i -approximation:

Query 6⊑ Concept⇔ (Query ⊓ ¬Concept) is satisfiable

⇐ (Query ⊓ ¬Concept)⊥i is satisfiable.

Hence, when(Query ⊓ ¬Concept)⊥i is not satisfiable, nothing can be concluded and
approximation cannot lead to any gain.

5Note that the numbers do not add up. The reason for this is thatapproximation is not used when there
would not be any change in the subsumption expression, i.e.,whenC⊥

i = C the DL reasoner is not called
and no subsumption check forC⊥

i is performed.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 11

2. S-1- AND S-3-APPROXIMATION

Using Theorem 1 we have the following reasoning steps forC⊤

i -approximation (cf.
Algorithm 3):

Query ⊑ Concept⇔ (Query ⊓ ¬Concept) is not satisfiable

⇐ (Query ⊓ ¬Concept)⊤i is not satisfiable.

Hence, when(Query ⊓ ¬Concept)⊤i is satisfiable, nothing can be concluded and ap-
proximation cannot lead to any gain.

Second, no true approximations are used on a level higher than zero. This is a direct
consequence of the TAMBIS ontology containing no nested concept definitions. Further
on, we show this to be the case for most ontologies found in practice.

Third, bothC⊥

i - andC⊤

i -approximation are not applied in all subsumption tests that
are theoretically possible. With normal classification 303(24 + 279) subsumption tests
are needed. However, withC⊥

i -approximation in only 189 (157 + 32) cases was approxi-
mation actually used. In the remaining 114 (303 - 189) cases approximation had no effect
on the concept definitions, i.e.,C⊥

i = C, and no test was therefore performed. Hence,
in 38% of the subsumption tests, approximation was not used.Similar observations hold
for C⊤

i -approximation. This observation indicates thatC⊥

i -/C⊤

i -approximation is not very
useful (at least for the TAMBIS ontology) for approximating classification in an ontology.

Fourth, apart from the successful reduction of normal subsumption tests, we must
also consider the cost for obtaining the reduction. For example, withC⊥

i -approximation
we obtained a reduction in 32 false subsumption tests, i.e.,32 normal false subsumption
tests could be replaced by 32 cheaper falseC⊥

0 -subsumption tests, however it also cost an
extra 157 trueC⊥

0 -subsumption tests that did not lead to any reduction. As nothing can
be deduced from these 157 trueC⊥

0 -subsumption tests, these computations are wasted
and reduce the gain obtained with the 32 reduced false subsumption tests considerably.
Obviously, these unnecessary trueC⊥

0 -subsumption tests should be minimised. No final
verdict can be made however, because it all depends on the computation time needed to
compute the normal subsumption tests andC⊥

0 -subsumption tests, but 157 seems rather
high. Similar observations hold forC⊤

i -approximation.

Analysing the high amount of unnecessary subsumption tests, we discovered a phe-
nomenon, which we callterm collapsing. We illustrate term collapsing through an ex-
ample taken from the Wine ontology. Suppose that during a classification the sub-
sumption testQuery ⊑ WhiteNonSweetWine is generated. The definition for
WhiteNonSweetWine is:

Wine ⊓ ∃hasColor.{White} ⊓ ∀hasSugar.{OffDry ,Dry}.

The subsumption query is first transformed into a satisfiability test, i.e.,Query ⊑
WhiteNonSweetWine ⇔ Query ⊓ ¬WhiteNonSweetWine is unsatisfiable, be-
causeC⊥

i -/C⊤

i -approximation is defined in terms of satisfiability checking.

12 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

The definition of¬WhiteNonSweetWine is

≡ ¬(Wine ⊓ ∃hasColor.{White} ⊓ ∀hasSugar.{OffDry ,Dry})

≡ ¬Wine ⊔ ∀hasColor.¬{White} ⊔ ∃hasSugar.¬{OffDry ,Dry}.

and therefore the approximation(¬WhiteNonSweetWine)⊤0 is

≡ (¬Wine ⊔ ∀hasColor.¬{White} ⊔ ∃hasSugar.¬{OffDry ,Dry})⊤0

≡ (¬Wine)⊤0 ⊔ (∀hasColor.¬{White})⊤0 ⊔ (∃hasSugar.¬{OffDry ,Dry})⊤0
≡ ¬Wine ⊔ ∀hasColor.¬{White} ⊔ ⊤

≡ ⊤.

Therefore, approximating the expressionQuery ⊓ ¬WhiteNonSweetWine results
in checking unsatisfiability ofQuery⊤

0 , i.e., (Query ⊓ ¬WhiteNonSweetWine)⊤0
⇔ Query⊤

0 ⊓⊤ ⇔ Query⊤

0 is unsatisfiable. This test most likely fails, because in a con-
sistent ontologyQuery will be satisfiable and asQuery is more specific thanQuery⊤

0 ,
the latter will be satisfiable.

Analogously, applyingC⊥

i -approximation may result in a collapse of theQuery to
⊥. This occurs wheneverQuery contains a conjunction with at least one∃-quantifier. In
this case, the entire subsumption test is collapsed into checking the satisfiability of⊥. As
⊥ can never be satisfied, this results in an unnecessary subsumption test.

For the TAMBIS ontology we counted the numbers of occurrencesof term collapsing
in approximated concept expressions. WithC⊤

i -approximation 65 terms out of 181 col-
lapsed. In other words, 35.9% of the approximated false subsumption tests are obviously
not needed and should be avoided. WithC⊥

i -approximation it becomes more drastic: 157
terms out of 157 collapsed. If we can avoid term collapsing 100% of the approximated
true subsumption tests can be reduced leading to a real improvement in this case. With
the combination ofC⊥

i - andC⊤

i -approximation 190 terms out of 306 collapsed or 62.1%
of the approximated subsumption tests are obviously not necessary.

Summarising, using the proposed approximation method by Cadoli and Schaerf
[Schaerf and Cadoli, 1995] on classification queries in the TAMBIS ontology led to many
collapsing terms. Furthermore, in only a few cases are expensive subsumption tests re-
placed by cheaper approximated subsumption test. These results indicate that their ap-
proximation method does not fit in practical situations. A different approximation method
may provide better approximation.

2.2.2 Further experiments

Although practical results ofC⊥

i -/C⊤

i -approximation are somewhat disappointing for the
TAMBIS ontology, similar experiments were made with other ontologies. Table 2.2 sum-
maries the results ofC⊥

i -/C⊤

i -approximation applied to the reclassification of 10 concepts
in five other ontologies.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 13

2. S-1- AND S-3-APPROXIMATION

normal C⊥

i
C⊤

i
C⊥

i
&C⊤

i

true false true false true false true false
C⊥

0
- - 0 0 - - 0 0

Dolce (10) C⊤

0
- - - - 0 0 0 0

N 10 113 10 113 10 113 10 113

C⊥

0
- - 0 0 - - 0 0

Galen (10) C⊤

0
- - - - 0 0 0 0

N 10 12190 10 12190 10 12190 10 12190

C⊥

0
- - 0 0 - - 0 0

Monet (10) C⊤

0
- - - - 0 0 0 0

N 20 656 20 656 20 656 20 656

C⊥

0
- - 145 0 - - 145 0

MadCow (10) C⊤

0
- - - - 5 140 5 140

N 66 152 66 152 61 152 61 152

C⊥

0
- - 228 1 - - 228 1

Wine (10) C⊤

0
- - - - 6 223 6 222

N 33 252 33 251 27 252 27 251

Table 2.2: Number of subsumption tests for reclassificationin five ontologies.

For the first three ontologies of Table 2.2, the DOLCE6, Galen7, and Monet on-
tology8, C⊥

i - or C⊤

i -approximation has no effect. In these three ontologies,C⊥

i -/C⊤

i -
approximation does not change any concept expression and therefore no reduction in
normal subsumption tests can be obtained. An analysis of these three ontologies shows
that the ontologies use some roles and/or attributes, but the ∃- and/or∀-quantifiers are
very rarely used. For example, the Monet ontology contains 2037 concepts, 34 roles, and
10 attributes. The∃-constructor is only used in 13 definitions (0.64% of all concept de-
finitions). The∀-constructor is only used in 11 cases (0.54% of all concept definitions).
Therefore in the ten queries, which are randomly selected, none of the checked concept
definitions contains any quantifiers. TheC⊥

i -/C⊤

i -approximation seems to be useless for
those ontologies.

The next two ontologies of Table 2.2, MadCow9 and Wine, are somewhat artificial
because they are developed for demonstrating the expressive power of DLs rather than
for being used in practice.C⊥

i -/C⊤

i -approximation was applied to classification in both
ontologies, but this leads to almost no reduction of normal subsumption tests. In the
Madcow ontology only 5 true subsumption tests are reduced and in the Wine ontology
only 7 subsumption tests are reduced (6 true subsumption tests + 1 false subsumption test).

6An ontology for linguistic and cognitive engineering [Masolo et al., 20003].
7A medical terminology developed in the Galen project [Rector et al., 1993].
8An ontology for mathematical web services [Caprottiet al., 2004].
9Ontology about mad cows, part of the OWL Reasoning Examples [OWL, b].

14 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Many more subsumption tests are not reduced. In many cases approximating subsumption
tests led to term collapsing and useless subsumption tests.

2.3 Conclusions

We argued that the idea of approximate logical reasoning matches the requirements of
the Semantic Web in terms of robustness against errors and the ability to cope with lim-
ited resources better than conventional reasoning methods. At the same time, approximate
logical inference avoids the problems of many numerical approaches for approximate rea-
soning that lack a proper interpretation of the numeric value assigned to statements and
the problem of acquiring these numbers. We tested a concretemethod for approximate
logical reasoning in DLs against these claims by applying itto the classification problem
on a number of real ontologies. In particular, we used the method to replace subsumption
tests by a series of presumably easier tests. We investigated the use of weaker approx-
imations to approximate negative and stronger approximations to approximate positive
tests. We showed that in principle both approximations can contribute to a replacement
of subsumption tests (compare Section 2.2).

The main result is that the use of the approximation method for DLs proposed by
Cadoli and Schaerf is problematic for two reasons:

• A problematic side effect of using the approximation methodis the collapsing of
concept expression that produce meaningless results. Thishappens either when
terms of a disjunction are replaced by⊤ or terms of a conjunction are replaced by
⊥. The former case appears when using the weaker approximation C⊤

i on a concept
that contains a universal quantifier at the top level of the definition. The latter is an
effect of using the stronger approximationC⊥

i for a query concept with existential
quantifiers at the top level of the definition. This feature ofthe approach is quite
problematic as it excludes an important class of query concepts from the method,
namely translations of conjunctive queries which are mostly translated using nested
existential quantifications.

• The experiments showed that only in some cases was the methodable to replace
subsumption tests. In the other cases like DOLCE, Galen, and Monet no test could
be substituted. This observation can be explained by the fact that the approximation
method only works on nested expressions that are existentially quantified. Many ex-
isting ontologies, however, do not contain concept expressions with nested expres-
sions. The average ontology on the Semantic Web rather uses quite simple concept
expressions that, if at all, are of depth one. The approximation method by Cadoli
and Schaerf was designed based on theoretical considerations and the approxima-
tion strategy was chosen in such a way that it reduces the worst case complexity
of the subsumption problem and it does not take practical considerations like the
nature of definitions that are likely to be found in ontologies into account.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 15

2. S-1- AND S-3-APPROXIMATION

We conclude that the use of this specific way of approximatingsubsumption is often
not suited for Semantic Web reasoning. Nevertheless, we believe in the general idea of
approximate logical reasoning. The goal is to find an approximation strategy that takes
the specifics of ontologies into account. A particular problem with the current approach
is the reliance on nested definitions. A straightforward wayto modify this approach is to
find alternative strategies for selecting subexpressions that are to be replaced by⊤ or⊥,
or other simpler sub concepts. A good candidate, that will beexplored in future work,
can use domain knowledge to determine the subset of the vocabulary to be replaced. We
could for example first exclude very specific terms and then gradually add more specific
ones. This and other options for approximating Semantic Webreasoning will be studied
in future research.

16 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

Chapter 3

Approximation in ABox Reasoning

by IAN HORROCKS, DANIELE TURI & JEFF Z. PAN

The W3C recommendation OWL is a recently emerged standard for expressing on-
tologies in the Semantic Web. One of the main features of OWL isthat there is a direct
correspondence between (two of the three “species” of) OWL and Description Logics
(DLs) [Horrocks and Patel-Schneider, 2003].

Unfortunately, while existing techniques forTBox reasoning (i.e., reasoning
about concepts) seem able to cope with real world ontologies[Horrocks, 1998b,
Haarslev and M̈oller, 2001a], it is not clear if existing techniques forABoxreasoning (i.e.,
reasoning about individuals) will be able to cope with realistic sets of instance data. This
difficulty arises not so much from the computational complexity of ABox reasoning, but
from the fact that the number of individuals (e.g., annotations) might be extremely large.

In this section, we describe an approach to ABox reasoning that deals withrole-free
ABoxes, i.e., ABoxes that do not contain any axioms asserting role relationships between
pairs of individuals. The result, which we call anInstance Store, is a system that can deal
with very large ABoxes, and is able to provide sound and complete answers to instance
retrieval queries (i.e., computing all the instances of a given query concept) over such
ABoxes.

Although this approximation may seem a rather severe restriction, the functionality
provided by the Instance Store is precisely what is requiredby many applications, and in
particular by applications where ontology based terms are used to describe/annotate and
retrieve large numbers of objects. Examples include the useof ontology based vocabulary
to describe documents in “publish and subscribe” applications [Uscholdet al., 2003], to
annotate data in bioinformatics applications [GO,] and to annotate web resources such
as web pages [Dillet al., 2003] or web service descriptions [Li and Horrocks, 2003] in
Semantic Web applications.

17

3. APPROXIMATION IN ABOX REASONING

3.1 Instance Store

An ABox A is role-free if it contains only axioms of the formx : C. We can assume
without loss of generality that there is exactly one such axiom for each individual as
x : C ⊔¬C holds in all interpretations, and two axiomsx : C andx : D are equivalent to
a single axiomx : (C⊓D). It is well known that for a role-free ABox, instantiation canbe
reduced to TBox subsumption [Hollunder, 1996, Tessaris, 2001]; i.e., ifK = 〈T ,A〉, and
A is role-free, thenK |= x : D iff x : C ∈ A andT |= C ⊑ D. Similarly, if K = 〈T ,A〉
andA is a role-free ABox, then the instances of a conceptD could be retrieved simply
by testing for each individualx in A if K |= x : D. This would, however, clearly be very
inefficient ifA contained a large number of individuals.

An alternative approach is to add a new axiomCx ⊑ D to T for each axiomx : D

in A, whereCx is a new atomic concept; we will call such conceptspseudo-individuals.
Classifying the resulting TBox is equivalent to performing a complete realisation of the
ABox: the most specific atomic concepts that an individualx is an instance of are the most
specific atomic concepts that subsumeCx and that are not themselves pseudo-individuals.
Moreover, the instances of a conceptD can be retrieved by computing the set of pseudo-
individuals that are subsumed byD.

The problem with this latter approach is that the number of pseudo-individuals added
to the TBox is equal to the number of individuals in the ABox, andif this number is
very large, then TBox reasoning may become inefficient or evenbreak down completely
(e.g., due to resource limits). The basic idea behind the Instance Store is to overcome
this problem by using a DL reasoner to classify the TBox and a database to store the
ABox, with the database also being used to store a complete realisation of the ABox,
i.e., for each individualx, the concepts thatx realises (the most specific atomic concepts
thatx instantiates). The realisation of each individual is computed using the DL (TBox)
reasoner when an axiom of the formx : C is added to the Instance Store ABox.

A retrieval query to the Instance Store (i.e., computing theset of individuals that
instantiate a query concept) can be answered using a combination of database queries and
TBox reasoning. Given an Instance Store containing a KB〈T ,A〉 and a query concept
Q, the instances ofQ can be computed using the following steps:

1. use the DL reasoner to computeC, the set of most specific atomic concepts inT
that subsumeQ, andD, the set of all atomic concepts inT that are subsumed by
Q;

2. use the database to computeAQ, the set of individuals inA that realisesomeconcept
in D, andAC , the set of individuals inA that realiseeveryconcept inC;

3. use the DL reasoner to computeA′

Q, the set of individualsx ∈ AC such thatx : B

is an axiom inA andB is subsumed byQ;

4. return the answerAQ ∪ A′

Q.

18 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Theorem 2 The above procedure is sound and complete for retrieval, i.e., given a concept
Q, it returns all and only individuals inA that are instances ofQ.

Proof: For soundness, ifx is in AQ ∪ A′

Q, then it must be an instance of some concept
C ⊑ Q s.t.C ∈ D, or x : B is an axiom inA andB is subsumed byQ. In either case,x
is an instance ofQ.

For completeness, suppose thatx is an instance ofQ andx is not in the answer. As
x is an instance ofQ, there must be an axiomx : B in A such thatB is subsumed byQ.
Moreover,x is an instance of every concept that subsumesQ, and in particular of every
concept inC, but does not realise any concept inD, so it must realise every concept in
C. This means thatx is in the answer, contradicting our initial assumption.

Note that ifQ is equivalent to an atomic conceptX, then{X} ⊆ C ⊆ D, and the
answerAQ can be returned without computingA′

Q.

3.2 An Optimised Instance Store

In practice, several refinements to the above procedure are used to improve the perfor-
mance of the Instance Store. In the first place, as it is potentially costly, we should try to
minimise the DL reasoning required in order to compute realisations (when instance ax-
ioms are added to the ABox) and to check if individuals inAC are instances of the query
concept (when answering a query).

One way to (possibly) reduce the need for DL reasoning is to avoid repeating com-
putations for “equivalent” individuals, e.g., individuals x1, x2 wherex1 : C1 andx2 : C2

are ABox axioms, andC1 is equivalent toC2 (conceptsC andD are equivalent, written
C ≡ D, iff C ⊑ D andD ⊑ C). As checking for semantic equivalence between two con-
cepts would require DL reasoning (which we are trying to avoid), the optimised Instance
Store only checks for syntactic equality using a database lookup.1 Individuals are grouped
into equivalence sets, where each individual in the set is asserted to be an instance of a
syntactically identical concept, and only one representative of the set is added to the In-
stance Store ABox as an instance of the relevant concept. When answering queries, each
individual in the answer is replaced by its equivalence set.

Similarly, we can avoid repeated computations of sub and super-concepts for the same
concept (e.g., when repeating a query) by caching the results of such computations in the
database.

Finally, the number and complexity of database queries alsohas a significant impact
on the performance of the Instance Store. In particular, thecomputation ofAQ can be

1The chances of detecting equivalence via syntactic checks could be increased by transforming concepts
into a syntactic normal form, as is done by optimised DL reasoners [Horrocks, 2003], but this additional
refinement has not yet been implemented in the Instance Store.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 19

3. APPROXIMATION IN ABOX REASONING

costly asD (the set of concepts subsumed by the query conceptQ) may be very large. One
way to reduce this complexity is to store not only the most specific concepts instantiated
by each individual, but to storeeveryconcept instantiated by each individual. As most
concept hierarchies are relatively shallow, this does not increase the storage requirement
too much, and it greatly simplifies the computation ofAQ: it is only necessary to compute
the (normally) much smaller setD

′ of most general concepts subsumed byQ, and to query
the database for individuals that instantiate some member of D

′. On the other hand, the
computation ofAC is slightly more complicated asAQ must be subtracted from the set
of individuals that instantiate every concept inC. Empirically, however, the saving when
computingAQ seems to far outweigh the extra cost of computingAC .

3.3 Implementation

We have implemented the Instance Store using a component based architecture that is able
to exploit existing DL reasoners and databases. The core component is a Java application
that implements an API and, for test purposes, a simple user interface. The Instance Store
connects to a DL reasoner via the DIG interface [Bechhofer, 2003], and can therefore use
one of several DIG compliant reasoners, including FaCT [Horrocks, 1998b] and RACER

[Haarslev and M̈oller, 2001c]. It also connects to a DB via standard interfaces, and has
been tested with HSQL2, MySQL3 and Oracle4.

initialise(Reasoner reasoner, Database db, TBox t)
assert(Individual i, Description D)
remove(Individual i)
retrieve(Description Q): Set〈Individual〉

Figure 3.1: Instance Store basic functionality

The basic functionality of the Instance Store is illustrated by Figure 3.1. The four
basic operations areinitialise, which loads a TBox into the DL reasoner, classifies
the TBox and establishes a connection to the database;assert, which adds an axiom
i : D to the Instance Store;remove, which removes any axiom of the formi : C

(for some conceptC) from the Instance Store; andretrieve, which returns the set
of individuals that instantiate a query conceptQ. As the Instance Store ABox can only
contain one axiom for each individual, assertingi : D wheni : C is already in the ABox
is equivalent to first removingi and then assertingi : (C ⊓D).

In the current implementation, we make the simplifying assumption that the TBox
itself does not change. Extending the implementation to deal with monotonic extensions
of the TBox would be relatively straightforward, but deleting information from the TBox
might require (in the worst case) all realisations to be recomputed.

2http://hsqldb.sourceforge.net/
3http://www.mysql.com/
4http://www.oracle.com/

20 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Our experiments can be found in deliverable D2.5.2 “Report onQuery Language De-
sign and Standardisation”. These show that the Instance Store provides stable and effec-
tive reasoning for role-free ABoxes, even those containing very large numbers of indi-
viduals. In contrast, full ABox reasoning using the RACER system exhibited accelerating
performance degradation with increasing ABox size, and was not able to deal with the
larger ABoxes used in this test.5

3.4 Discussion

Our experiments show that the Instance Store provides stable and effective reasoning for
role-free ABoxes, even those containing very large numbers of individuals. In contrast,
full ABox reasoning using the RACER system exhibited accelerating performance degra-
dation with increasing ABox size, and was not able to deal withthe larger ABoxes used
in this test. (It may be possible to fix this problem by changing system parameters, but
we had no way to investigate this.) The pseudo-individual approach to role-free ABox
reasoning was more promising, and may be worth further investigation. It does not, how-
ever, have the Instance Store’s advantage of ABox persistence, and it appears to be less
likely to scale to even larger ABoxes: it does not cope well with large answer sets, and is
inherently limited by the fact that DL reasoners (at least incurrent implementations) keep
the entire TBox in memory. Moreover, it is not clear how the pseudo-individual approach
could be extended to deal with ABoxes that are not role-free.

The acceptability of the Instance Store’s performance would obviously depend on the
nature of the application and the characteristics of the KB and of typical queries. It is
likely that the performance of the Instance Store can be substantially improved simply
by dealing with constant factors such as communication overheads—in the current im-
plementation, communication overheads between the Instance Store and the DL reasoner
account for nearly half the time taken to answer queries thatrequire significant amounts
of DL reasoning to compute the answer (i.e., whenI2 is large). It may also be possible
to improve the performance of the database, e.g., using techniques such as indexing and
clustering, or by reformulating queries.

As well as dealing with the above mentioned performance bottlenecks, future work
will include the investigation of additional optimisations and enhancements. Possi-
ble optimisations includesemantic indexing feedback—adding new indexing concepts
to the ontology for the purpose of query optimisation;description canonicalisation—
canonicalising the descriptions passed to the Instance Store, so that equivalent descrip-
tions can be more effectively identified;cardinality estimation—estimating the cardi-
nality of the result (and in particular ofI2) before executing a query, and giving users
the chance to refine queries if the cost of answering them is likely to be very high;

5It may be possible to fix this problem by changing system parameters, but we had no way to investigate
this.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 21

3. APPROXIMATION IN ABOX REASONING

and result caching—caching the results of queries and of DL subsumption tests in or-
der to avoid DL reasoning when answering subsequent queries. Possible enhancements
include providing a more sophisticated query interface with support for, e.g., conjunctive
queries [Tessaris, 2001].

As discussed in [Panet al., 2004], we are currently engaged in extending the Instance
Store to deal with ABoxes that are not role-free. The impact that this will have on per-
formance is likely to be heavily dependent on the structure of the given ABox. In par-
ticular, the Instance Store is not likely to perform well with ABoxes that result in highly
non-deterministic precompletions. ABoxes that are highly interconnected and/or contain
many cyclical connections are also likely to have an adverseaffect on performance. An
evaluation of the effectiveness of the extended Instance Store will therefore have to wait
for the completion of the prototype, and on the development of application ontologies
containing large numbers of individuals—currently these are in rather short supply, but
we hope that development of such ontologies will be encouraged by the existence of the
extended Instance Store.

22 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

Chapter 4

Towards Resolution-Based
Approximate Reasoning for OWL-DL

by PASCAL HITZLER & BORIS MOTIK

We propose a new technique for approximate ABox reasoning with OWL-DL on-
tologies. It comes as a side-product of recent research results on the relationship be-
tween OWL-DL and disjunctive Datalog [Hustadtet al., 2004a, Hustadtet al., 2004c,
Hustadtet al., 2004b, Motiket al., 2004]. Essentially, it relies on a new transformation of
OWL-DL ontologies into negation-free disjunctive Datalog,and on the idea of performing
standard resolution over disjunctive rules by treating them as if they were non-disjunctive
ones.

4.1 Introduction and Motivation

Knowledge representation and reasoning on the Semantic Webis done by means of
ontologies. While the quest for suitable ontology languagesis still ongoing, OWL
[Patel-Schneideret al., 2002] has been established as a core standard. It comes in three
flavours, as OWL-Full, OWL-DL and OWL-Lite, where OWL-Full contains OWL-DL,
which in turn contains OWL-Lite. The latter two coincide semantically with certain de-
scription logics [Baaderet al., 2003a] and can thus be considered to be fragments of first-
order predicate logic.

OWL ontologies can be understood to consist of two parts, one intensional, the other
extensional. In description logics terminology, the intensional part consists of a TBox
and an RBox, and contains knowledge about concepts (calledclasses), relations between
concepts (calledroles), and information about hierarchical dependencies among classes
and among roles. The extensional part consists of an ABox, andcontains knowledge
about entities and how they relate to the classes and roles from the intensional part. For
the Semantic Web, the ABox corresponds toannotations, i.e. pointers delivered e.g. with
web pages, indicating how items occurring on the web pages relate to the intensional

23

4. TOWARDS RESOLUTION-BASED APPROXIMATE REASONING FOR OWL-DL

knowledge.

With an estimated 25 million active websites today and correspondingly more web-
pages, it is apparent that reasoning on the Semantic Web willhave to deal with very large
ABoxes. Complexity of ABox reasoning — also calleddata complexity— thus measures
complexity in terms of ABox size only, while considering the intensional part of the on-
tology to be of constant size. For the different OWL variants,data complexity is at least
NP-hard, which indicates that it will not scale well in general. Methods are therefore
being sought to cope with large ABoxes in an approximate manner.

The approach which we propose is based on the fact that data complexity is polyno-
mial for non-disjunctive Datalog. We utilise recent research results [Hustadtet al., 2004a,
Hustadtet al., 2004c, Hustadtet al., 2004b, Motiket al., 2004] which allow the transfor-
mation of OWL-DL ontologies into disjunctive Datalog. Ratherthan doing (expensive)
exact reasoning over the resulting disjunctive Datalog knowledge base, we do approxi-
mate reasoning by treating disjunctive rules as if they werenon-disjunctive ones. The
resulting reasoning procedure is complete, but may be unsound in cases. Its data complex-
ity is polynomial. We are also able to give a characterisation of the resulting approximate
inference by means of standard methods from logic programming semantics.

This chapter is structured as follows. We first introduce formal terminology and nota-
tion for OWL-DL, a part of which can safely be skipped by any reader who is famil-
iar with OWL-DL and description logic syntax. We also briefly review Datalog and
SLD-Resolution. Then, in Section 4.3, we explain how OWL ontologies can be trans-
formed into disjunctive Datalog. In Section 4.4 we introduce the new approximate SLD-
resolution procedure which we propose. A short analysis of the new procedure will be
followed by conclusions in Section 4.5.

4.2 Preliminaries

4.2.1 OWL-DL Syntax and Semantics

OWL-DL is a syntactic variant of the SHOIN (D) description logic
[Horrocks and Patel-Schneider, 2004]. Hence, although several XML and RDF
syntaxes for OWL-DL exist, it will be convenient to use the traditional description logic
notation since it is more compact. For the correspondence between this notation and
various OWL-DL syntaxes, see [Horrocks and Patel-Schneider, 2004].

SHOIN (D) supports reasoning with concrete datatypes, such as strings or inte-
gers. For example, it is possible to define a minor as a person whose age is less than
or equal to 18 in the following way:Minor ≡ Person ⊓ ∃age. ≤18. Instead of ax-
iomatising concrete datatypes in logic,SHOIN (D) employs an approach similar to
[Baader and Hanschke, 1991], where the properties of concrete datatypes are encapsu-
lated in so-calledconcrete domains. A concrete domainis a pair(△D, ΦD), where△D is

24 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

an interpretation domain andΦD is a set of concrete domain predicates with a predefined
arity n and an interpretationdD ⊆ △n

D
. An admissibleconcrete domainD is equipped

with a decision procedure for checking satisfiability of finite conjunctions over concrete
predicates. Satisfiability checking of admissible concrete domains can successfully be
combined with logical reasoning for many description logics [Lutz, 2003].

We use a set of concept namesNC , sets of abstract and concrete individualsNIa
and

NIc
, respectively, and sets of abstract and concrete role namesNRa

andNRc
, respectively.

An abstract roleis an abstract role name or the inverseS− of an abstract role nameS
(concrete roles do not have inverses). In the following, we assume thatD is an admissible
concrete domain.

An RBoxR consists of a finite set of transitivity axiomsTrans(R), and role inclusion
axioms of the formR ⊑ S andT ⊑ U , whereR andS are abstract roles, andT and
U are concrete roles. The reflexive-transitive closure of therole inclusion relationship is
denoted with⊑∗. A role not having transitive subroles (w.r.t.⊑∗, for a full definition see
[Horrockset al., 2000]) is called asimplerole.

The set ofSHOIN (D) conceptsis defined by the following syntactic rules, whereA

is an atomic concept,R is an abstract role,S is an abstract simple role,T(i) are concrete
roles,d is a concrete domain predicate,ai andci are abstract and concrete individuals,
respectively, andn is a non-negative integer:

C → A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

A TBoxT consists of a finite set of concept inclusion axiomsC ⊑ D, whereC and
D are concepts; anABoxA consists of a finite set of concept and role assertions and
individual (in)equalitiesC(a), R(a, b), a ≈ b, anda 6≈ b, respectively. ASHOIN (D)
knowledge base(T ,R,A) consists of a TBoxT , an RBoxR, and an ABoxA.

TheSHIQ(D) description logic is obtained fromSHOIN (D) by disallowing nom-
inal concepts of the form{a1, . . . , an} and{c1, . . . , cn}, and by allowing qualified number
restrictions of the form≥ nS.C and≤ nS.C, for C aSHIQ(D) concept andS a simple
role.

Instead of using a direct model-theoretic semantics forSHOIN (D)
[Horrockset al., 2000], we present an equivalent semantics by translation into multi-
sorted first-order logic. We do this because our approach hinges heavily on the results
from [Hustadtet al., 2004a, Hustadtet al., 2004b], where this approach had been taken.
To separate the interpretations of the abstract and the concrete domain, we introduce
the sortsa and c, and use the notationxc andf c to denote thatx andf are of sortc.
We translate each atomic concept into a unary predicate of sort a, eachn-ary concrete
domain predicate into a predicate with arguments of sortc, and each abstract (concrete)

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 25

4. TOWARDS RESOLUTION-BASED APPROXIMATE REASONING FOR OWL-DL

Mapping Concepts to FOL
πy(⊤,X)=⊤ πy(⊥,X)=⊥
πy(A,X)=A(X) πy(¬C,X)=¬πy(C,X)

πy(C ⊓D,X)=πy(C,X) ∧ πy(D,X) πy(C ⊔D,X)=πy(C,X) ∨ πy(D,X)
πy(∀R.C,X)=∀y : R(X, y)→ πx(C, y) πy(∃R.C,X)=∃y : R(X, y) ∧ πx(C, y)

πy({a1 . . . , an},X)= X ≈ a1 ∨ . . . ∨X ≈ an

πy(≤ nR.C,X)= ∀y1, . . . , yn+1 :
∧

R(X, yi) ∧
∧

πx(C, yi)→
∨

yi ≈ yj

πy(≥ nR.C,X)= ∃y1, . . . , yn :
∧

R(X, yi) ∧
∧

πx(C, yi) ∧
∧

yi 6≈ yj

πy(∀T1, . . . , Tm.d,X)= ∀yc

1, . . . , y
c

m :
∧

Ti(X, yc

i)→ d(yc

1, . . . , y
c

m)
πy(∃T1, . . . , Tm.d,X)= ∃yc

1, . . . , y
c

m :
∧

Ti(X, yc

i) ∧ d(yc

1, . . . , y
c

m)
πy(≤ nT ,X)= ∀yc

1, . . . , y
c

n+1 :
∧

T (X, yc

i)→
∨

yc

i ≈ yc

j

πy(≥ nT ,X)= ∃yc

1, . . . , y
c

n :
∧

T (X, yc

i) ∧
∧

yc

i 6≈ yc

j

Mapping Axioms to FOL
π(C(a))=πy(C, a) π(R(a, b))=R(a, b)

π(a ≈ b))=a ≈ b π(a 6≈ b))=a 6≈ b

π(C ⊑ D)= ∀x : πy(C, x)→ πy(D,x)
π(R ⊑ S)= ∀x, y : R(x, y)→ S(x, y)

π(Trans(R))= ∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z)
MappingKB to FOL

π(KB)=
∧

R∈NR
∀x, y : R(x, y)↔ R−(y, x) ∧

∧
α∈KBR∪KBT ∪KBA

π(α)

whereX is a meta variable and is substituted by the actual variable
andπx is defined asπy by substitutingx andxi for all y andyi, respectively.

Table 4.1: Translation ofSHOIN (D) into FOL

role into a binary predicate of sorta × a (a × c). The translation operatorπ is presented
in Table 4.1.

4.2.2 Datalog and SLD-Resolution

A (definiteor negation-free) disjunctive logic programP consists of a finite set ofclauses
or rulesof the form

∀x1 . . . ∀xn.(H1 ∨ · · · ∨Hm ← A1 ∧ · · · ∧ Ak),

commonly written as
H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

wherex1, . . . , xn are exactly all variables occurring inH1 ∨ · · · ∨Hm ← A1 ∧ · · · ∧ Ak,
and allHi andAj are atoms over some given first-order signatureΣ. The disjunction
H1∨ · · · ∨Hm is called therule head, and the conjunctionA1∧ · · · ∧Ak is called therule
body. The set of all ground instances of atoms defined overΣ is called theHerbrand base
of P and is denoted byBP . The set of all ground instances of rules inP is denoted by
ground(P). A rule is said to benon-disjunctiveif m = 1. It is called afact if k = 0. We
abstract from the order of the atoms in the heads respectively bodies; it is not important
for our results. A disjunctive logic program is called aDatalog program if it does not
contain function symbols.

26 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Note that we do not consider a logic program to come with one specific semantics.
Some people for example associate Datalog with the minimal model semantics only. For
our treatment, Datalog and logic programs are defined via syntax only. We do not specify
a specific semantics because in the following we will discussdifferentsemantics for logic
programs in their relation to proof procedures. One of the semantics we will consider is
the semantics coming from interpreting logic programs as a set of first order formulae,
and in this case we use|= to denote entailment in first-order predicate logic.

SLD-resolution(see e.g. [Lloyd, 1988]) is an efficient top-down query-answering
technique for programs consisting of non-disjunctive rules, and has been implemented
and successfully applied in standard Prolog systems (e.g. [SWI-Prolog, 2004]). In this
framework, a ground atom can be derived from a program if and only if it is true in the
least (and thus in all) Herbrand models of the program.

In the following, we mean by aconjunctive querysimply a conjunctionB1 ∧ · · · ∧Bn

of atoms. The query is calledgroundif it does not contain any variables.

Given a conjunctive queryB1 ∧ · · · ∧Bn, anSLD-resolution stepon the atomBi with
a non-disjunctive ruleH ← A1, . . . , Ak produces a conjunctive query

B1θ ∧ · · · ∧Bi−1θ ∧ A1θ ∧ · · · ∧ Akθ ∧Bi+1θ ∧ · · · ∧Bnθ

whereθ is the most general unifier ofBi andH. An SLD-refutationof a conjunctive
queryB1 ∧ · · · ∧ Bn in a non-disjunctive programP is a finite sequence of conjunctive
queriesQ0, . . . , Qn, where (i) Q0 = B1 ∧ · · · ∧ Bn, (ii) eachQi with i > 0 is obtained
from Qi−1 by an SLD-resolution step with some rule fromP on some literalBi, and (iii)
Qn = �, i.e. the conjunctive queryQn does not contain any literals. If an SLD-refutation
of B1 ∧ · · · ∧Bn in P exists, we writeP ⊢ B1 ∧ · · · ∧Bn.

One of the fundamental results in logic programming states that A ∈ BP can be
proven by SLD-resolution if and only ifA is a logical consequence ofP , i.e. if and only
if A is true in the least Herbrand model ofP :

Theorem 3 ([Apt and van Emden, 1982, Lloyd, 1988])For a ground conjunctive query
B1 ∧ · · · ∧ Bn and a non-disjunctive programP , P ⊢ B1 ∧ · · · ∧ Bn if and only if
P |= B1 ∧ · · · ∧ Bn. In other words, entailment of ground conjunctive queries under
SLD-resolution is entailment in predicate logic.

SLD-resolution also allows to derive answers to non-groundqueries: For a conjunc-
tive (and not necessarily ground) queryQ there exist an SLD-refutation if and only if
P |= ∃x1 . . . ∃xn.Q, wherex1, . . . , xn are the variables occurring inQ. By keeping track
of the most general unifiers used in the process, it is also possible to obtain bindings for
(some of) thexi in the form of (answer) substitutionsθ, such thatP |= ∃y1 . . . ∃yk(Qθ),
where theyi are exactly those variables occurring inQθ. In order to keep our exhibition
focused, we will only deal with ground queries.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 27

4. TOWARDS RESOLUTION-BASED APPROXIMATE REASONING FOR OWL-DL

SHIQ(D)

KB

Elimination of

Transitivity

Axioms

Translation

into Clauses

Saturation

by Basic

Superposition

Elimination of

Function

Symbols

Conversion to

Disjunctive

Datalog

Disjunctive

Program

DD(KB)

Figure 4.1: Algorithm for ReducingSHIQ(D) to Datalog Programs

4.3 Reducing OWL-DL Knowledge Bases to Disjunctive
Datalog Programs

Our approach is based on reducing the description logic knowledge base to a disjunctive
logic program which entails the same set of ground facts as the original knowledge base.
The full presentation of the translation with corresponding proofs of its correctness are
technically involved and lengthy. Here, we just provide an overview of the procedure,
without going into details. For a complete presentation we direct the interested reader to
[Hustadtet al., 2004a, Hustadtet al., 2004b].

Our approach does not support all ofSHOIN (D) since it does not support nom-
inals: to the best of our knowledge, no decision procedure has yet been implemented
for SHOIN (D): The combination of nominals, inverse roles, and number restriction is
known to be difficult to handle, which is confirmed by the increase in complexity from
EXPTIME to NEXPTIME [Tobies, 2001]. Complexity, in this case, iscombined complex-
ity, measured in the overall size of the knowledge base.

Let KB be aSHIQ(D) knowledge base. The reduction ofKB to a disjunctive Data-
log programDD(KB) can be computed by an algorithm schematically presented in Figure
4.1. We next explain each step of the algorithm.

Elimination of Transitivity Axioms. Our core algorithms cannot handle transitivity
axioms, basically because in their first-order logic formulation they involve three vari-
ables. However, we can eliminate transitivity axioms by encoding KB into an equi-
satisfiable knowledge baseΩ(KB). Roughly speaking, for each transitive roleS, each
role S ⊑∗ R, and each concept∀R.C occurring inKB , it is sufficient to add an axiom
∀R.C ⊑ ∀S.(∀S.C). Intuitively, this axiom propagates all relevant concept constraints
through transitive roles.

Translation into Clauses. The next step is to translateΩ(KB) into clausal first-
order logic. We first useπ as defined in Table 4.1 and then transform the result
π(Ω(KB)) into clausal form usingstructural transformationto avoid exponential blow-
up [Nonnengart and Weidenbach, 2001]. We call the resultΞ(KB).

28 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Saturation by Basic Superposition. We next saturate the RBox and TBox clauses of
Ξ(KB) by basic superposition [Bachmairet al., 1995] — a clausal calculus optimised
for theorem proving with equality. In this key step of the reduction, we compute all non-
ground consequences ofKB . We can prove that saturation terminates because application
of each rule of basic superposition produces a clause with atmost one variable and with
functional terms of depth at most two. This yields an exponential bound on the num-
ber of clauses we can compute, and thus an exponential time complexity bound for our
translation algorithm so far.

Elimination of Function Symbols. Saturation of RBox and TBox ofΞ(KB) computes
all non-ground consequences ofKB . If we add ABox assertions to this saturated clause
set, all “further” inferences by basic superposition will produce only ground clauses.
Moreover, the resulting ground clauses contain only groundfunctional terms of depth
one. Hence, it is possible to simulate each functional termf(a) with a new constantaf .
For each function symbolf , we introduce a binary predicateSf , and for each individual
a, we add an assertionSf (a, af). Finally, if a clause contains the termf(x), we replace it
with a new variablexf and add the literal¬Sf (x, xf), as in the following example:

¬C(x) ∨D(f(x))⇒ ¬Sf (x, xf) ∨ ¬C(x) ∨D(xf)

We denote the resulting function-free set of clauses withFF(KB). In
[Hustadtet al., 2004a], we show that each inference step of basic superposition in Ξ(KB)
can be simulated by an inference step inFF(KB), and vice versa. Hence,KB and
FF(KB) are equisatisfiable.

Conversion to Disjunctive Datalog. SinceFF(KB) does not contain functional terms
and all its clauses are safe, we can rewrite each clause into anegation- and function-free
disjunctive rule. We useDD(KB) for the result of this rewriting.

The following theorem summaries the properties of our algorithm (we use|=c for
cautious entailment in disjunctive Datalog, which coincides on ground facts with first-
order entailment for negation-free Datalog programs [Eiter et al., 1997a]):

Theorem 4 ([Hustadt et al., 2004a]) LetKB be anSHIQ(D) knowledge base, defined
over an admissible concrete domainD, such that satisfiability of finite conjunctions over
ΦD can be decided in deterministic exponential time. Then the following claims hold:

1. KB is unsatisfiable if and only ifDD(KB) is unsatisfiable.

2. KB |= α if and only if DD(KB) |=c α, for α of the formA(a) or S(a, b), A an
atomic concept, andS a simple role.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 29

4. TOWARDS RESOLUTION-BASED APPROXIMATE REASONING FOR OWL-DL

3. KB |= C(a) if and only if DD(KB ∪ {C ⊑ Q}) |=c Q(a), for C a non-atomic
concept, andQ a new atomic concept.

4. Let |KB | be the length ofKB with numbers in number restrictions coded in unary.
The number of rules inDD(KB) is at most exponential in|KB |, the number of
literals in each rule is at most polynomial in|KB |, andDD(KB) can be computed
in time exponential in|KB |.

For our approximate reasoning approach, the first two steps of the translation may
suffice in many cases. This would avoid the worst-case exponential complexity of subse-
quent steps, but comes at a price: The resulting program would contain function symbols,
which may cause proof-search to fail to terminate in some cases. Hence the procedure
would be incomplete in general.

4.4 Approximate Resolution

In the previous section we have shown howSHIQ(D) ontologies can be translated to
(negation- and function-free) disjunctive Datalog. In Section 4.2.2 we have reviewed
SLD-resolution as deduction procedure for non-disjunctive Datalog. In this section, we
will show how to deal with disjunctive rules in a non-disjunctive fashion.

4.4.1 Approximate SLD-Resolution

Having to deal with disjunctive heads results in a considerable increase in reasoning com-
plexity. We propose the following approximate reasoning technique to avoid this increase.
Given a conjunctive queryB1∧· · ·∧Bn, anapproximate SLD-resolution stepon the atom
Bi with a disjunctive ruleH1 ∨ · · · ∨Hm ← A1, . . . , Ak is a conjunctive query

B1θ ∧ · · · ∧Bi−1θ ∧ A1θ ∧ · · · ∧ Akθ ∧Bi+1θ ∧ · · · ∧Bnθ

such thatθ is the most general unifier ofBi and someHj. Approximate SLD-refutationis
defined analogously to SLD-refutation, where approximate SLD-resolution steps are used
instead of (usual) SLD-resolution steps.

It is necessary to pursue the question of what notion of entailment underlies the ap-
proximate reasoning technique we propose. For this purpose, we need the following
notion, which is derived from standard notions in logic programming.

Definition 5 (cf. [Apt et al., 1988, Fages, 1994, Hitzler and Wendt, 2005])A model
M of a disjunctive programP is called well-supportedif there exists a function
l : BP → N such that for eachA ∈M there exists a ruleA∨H1∨· · ·∨Hm ← A1, . . . , Ak

in ground(P) with M |= Ai andl(A) > l(Ai) for all i andk.

30 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

Definition 5 is a straightforward adaptation of the notion ofwell-supported model
for non-disjunctive programs, as given in [Fages, 1994]. For non-disjunctive (negation-
free) programs, the well-supported models are exactly the minimal ones, but this is not
in general the case for disjunctive programs: just considerthe program consisting of the
single rulep ∨ q ←. Then{p, q} is a well-supported model, but is not minimal. To our
knowledge, well-supported models have not been studied fordisjunctive programs before.

Lifted appropriately to (non-disjunctive) programs with negation, well-supported
models also provide an alternative means for characterising the well-known stable models.
This was done in [Fages, 1994], but we will not need this for our purposes. Stable mod-
els [Gelfond and Lifschitz, 1991] provide the base for the most popular non-monotonic
reasoning paradigm calledAnswer Set Programming, of which the two most prominent
implementations are DLV and SMODELS [Eiter et al., 1997b, Simonset al., 2002]. Our
results thus stand well within this well-established tradition.

It is apparent thatA ∈ BP follows from a programP by approximate SLD-resolution
if and only if it is true in at least one well-supported model of P . This is calledbrave
reasoning with well-supported models.

Proposition 6 Entailment of ground conjunctive queries under approximate SLD-
resolution is brave reasoning with well-supported models.

As an example, consider the (propositional) program consisting of the two rulesp ∨
q ← andr ← p ∧ q. Its minimal models are{q} and{p} so r is not bravely entailed
by reasoning with minimal models. However all of{q}, {p}, {p, q} and{p, q, r} are
well-supported models, sor is bravely entailed by reasoning with well-supported models.

There is an alternative way of formalising approximate SLD-resolution using a modi-
fied notion ofsplit program[Sakama and Inoue, 1994], as follows. Given a rule

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

define thederived split rulesas the following:

H1 ← A1, . . . , Ak

...

Hm ← A1, . . . , Ak.

For a given disjunctive programP define itssplit programP ′ to be the collection of
all split rules derived from rules inP . Approximate SLD-resolution onP is obviously
identical to SLD-resolution overP ′.

Minimal models are well-supported. This can be seen for example from the fol-
lowing result which was obtained along the lines of researchlaid out in [Hitzler, 2003,
Hitzler and Wendt, 2005].

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 31

4. TOWARDS RESOLUTION-BASED APPROXIMATE REASONING FOR OWL-DL

Theorem 7 ([Knorr, 2003]) Let P be a disjunctive program. Then a modelM of P is a
minimal model ofP if and only if there exists a functionl : BP → N such that for each
A which is true inM there exists a ruleA ∨H1 ∨ · · · ∨Hm ← A1, . . . , Ak in ground(P)
with M |= Ai, M 6|= Hk andl(A) > l(Ai) for all i andk.

We hence have the following result, noting thatP |= Q for any ground conjunctive
queryQ and programP if and only if Q is true in all minimal models ofP .

Proposition 8 Let P be a (possibly disjunctive) program andQ be a ground conjunctive
query withP |= Q. Then there exists an approximate SLD-refutation forQ.

We remark that for negation-free programs minimal models coincide with stable mod-
els oranswer sets[Gelfond and Lifschitz, 1991], as in the currently evolvingAnswer Set
Programming Systems, of which the two most prominent implementations are DLV and
SMODELS [Eiter et al., 1997b, Simonset al., 2002], as already mentioned.

4.4.2 Approximate Resolution for OWL-DL

Our proposal is based on the idea of converting a given OWL-DL knowledge base into a
(possibly function-free) definite disjunctive logic program, and then to apply approximate
resolution for ABox reasoning.

In order to be able to deal with all of OWL-DL, we need to add a preprocessing step to
get rid of nominals. We can do this byLanguage Weakeningas follows: For every occur-
rence of{o1, . . . , on}, wheren ∈ N and theoi are abstract or concrete individuals, replace
{o1, . . . , on} by some new concept nameD, and add ABox assertionsD(o1), . . . , D(on)
to the knowledge base. Note that the transformation just given does in general not yield a
logically equivalent knowledge base, so some information is lost in the process.

Putting all the pieces together, we propose the following subsequent steps for approx-
imate ABox reasoning for OWL-DL.

1. Apply Language Weakening as just mentioned in order to obtain a SHIQ(D)
knowledge base.

2. Apply transformations as in Section 4.3 in order to obtaina negation-free disjunc-
tive Datalog program.

3. Apply approximate SLD-resolution for query-answering.

The first two steps can be considered to be preprocessing steps for setting up the
intensional part of the database. ABox reasoning is then donein the last step. From our
discussions, we can conclude the following properties of approximate ABox reasoning
for SHIQ(D).

32 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

• It is complete with respect to first-order predicate logic semantics.

• It is sound and complete with respect to brave reasoning withwell-supported mod-
els.

• Data complexity of our approach is polynomial.

4.5 Conclusions

In a nutshell, our proposed procedure approximates reasoning by disregarding non-Horn
features of OWL-DL ontologies. We argue that this is a reasonable approach to approx-
imate reasoning with OWL-DL in particular because many — if not most — of the cur-
rently existing ontologies fall in the Horn fragment of OWL-DL anyway. A short survey
in [Volz, 2004] substantiates this claim.

Our approach provides ABox reasoning with polynomial time complexity. While it is
complete, it is also unsound with respect to first-order logic. We have shown, however,
that the inference underlying our approach can be characterised using standard methods
from the area of non-monotonic reasoning.

The checking whether a conjunctive query is a predicate logic consequence of a
(negation-free) disjunctive logic programP amounts to checking whether the query is
valid in all minimal models ofP , i.e. corresponds tocautiousreasoning with minimal
models. Theorem 7 suggests how an anytime algorithm for thismight be obtained: after
performing approximate SLD-resolution, it remains to be checked whether there is any
(ground instance of a) rule used in the refutation of the query, which has an atomA in its
head besides the one used in the refutation and such thatA is (cautiously) entailed by the
program. Such an algorithm might then first find a brave proof of a query, and then sub-
stantiate this proof by subsequent calculations. We note again that this approach does not
cover nominals in full, so the language weakening step described earlier is still necessary.

Further work includes the development of anytime algorithms as just laid out, the
implementation of our procedure, and more detailed semantic analysis, in particular with
respect to the language weakening preprocessing step proposed.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 33

Chapter 5

Conclusion

by HOLGER WACHE

In this deliverable three approaches for approximation arediscussed. In general ap-
proximation methods can be classified into three groups: language weakening, knowledge
compilation, and approximate deduction. The three approaches are examples for these
classes.

In Chapter 2 an approximated deduction approach originally developed by Cadoli and
Schaerf [Schaerf and Cadoli, 1995] is investigated. Their approximation method should
demonstrate its computational improvements in a more real application scenario, i.e., clas-
sification in large and real ontologies. Classification can beregarded as a sequence of sub-
sumption tests. The classification is now approximated withthe help of an approximation
function which simplifies the subsumption queries by replacing sub concepts. Cadoli and
Schaerf discuss two possibilities which sub concepts are replaced but it is fundamental
for their approach that the sub concepts are replaced by⊤ or⊥.

Unfortunately the proposed method shows only mixed resultsin any evaluated ontol-
ogy. A large set of obviously unnecessary subsumption testsis caused by the effect of
term collapsing where the approximated query often is reduced to meaningless queries,
i.e., “over-simplified”. Term collapsing shows that it is not so important which sub con-
cepts are replaced. More important seems to be trough what the sub concepts are replaced.
The experiments suggest that the replacement with⊤ or⊥ is inadequate in more practical
setting. Advanced approximation functions must consider more meaningful replacement
with respect to the ontology.

The second approach is an example for language weakening. The representation lan-
guage for the individuals is reduced in order to allow well-established database methods.
In InstanceStore relationships between individuals can not be represented explicitly in the
ABox. However, an individual can instantiate a concept whichhas some relationships
to other concepts. Relationships can be expressed but only inthe terminological knowl-
edge. As a consequence of the restriction many individuals can be selected with normal
database queries. The expensive description logic reasoning is mainly reduced to classify

34

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

the query and to select a few additional individuals in some situations. The experiments
impressively demonstrate the performance improvements and scalability of this approach.

The third approach in Chapter 4 combines knowledge compilation and approximate
deduction. In a first step, the knowledge compilation, the ontology in OWL-DL is trans-
formed into disjunctive Datalog clauses (DDL) which allowsdisjunction (only) in the
head of a clause. During the transformation the implicit knowledge is determined and
explicitly encoded in (additional) clauses. The resultingDDL-program can be executed
by an appropriate resolution.

For practical ontologies it can be observed that the disjunctions appear only rarely. For
an approximation it is reasonable to omit the disjunction. As a side effect the inference
engine can be reduced to the well-known SLD-resolution. Theresulting approximation is
unsound but complete. However, the effect and the promisingbenefit must be proven in
practical environments.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 35

Bibliography

[Apt and van Emden, 1982] Krzysztof R. Apt and Maarten H. van Emden. Contributions
to the theory of logic programming.J. ACM, 29(3):841–862, 1982.

[Apt et al., 1988] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a
theory of declarative knowledge. In Jack Minker, editor,Foundations of Deductive
Databases and Logic Programming, pages 89–148. Morgan Kaufmann, Los Altos,
CA, 1988.

[Baader and Hanschke, 1991] F. Baader and P. Hanschke. A Schemefor Integrating Con-
crete Domains into Concept Languages. InProc. of the 12th Int’l Joint Conf. on Arti-
ficial Intelligence (IJCAI-91), pages 452–457, Sydney, Australia, 1991.

[Baaderet al., 2000] F. Baader, R. K̈usters, and R. Molitor. Rewriting concepts using
terminologies. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, Proceedings of
the Seventh International Conference on Principles of Knowledge Representation and
Reasoning (KR2000), pages 297–308, San Francisco, 2000. Morgan Kaufman.

[Baaderet al., 2003a] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors.The Description Logic Handbook. Cambridge University Press,
January 2003.

[Baaderet al., 2003b] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P F.
Patel-Schneider.The Description Logic Handbook - Theory, Implementation and Ap-
plications. Cambridge University Press, 2003.

[Bachmairet al., 1995] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic
Paramodulation.Information and Computation, 121(2):172–192, 1995.

[Bakeret al., 1998] P.G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and
R. Stevens. TAMBIS: Transparent Access to Multiple Bioinformatics Information
Sources. An Overview. InProceedings of the Sixth International Conference on Intel-
ligent Systems for Molecular Biology (ISMB’98), pages 25–34, Menlow Park, Califor-
nia, June 28-July 1 1998. AAAI Press.

36

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

[Bechhoferet al., 2003] Sean Bechhofer, Ralf M̈oller, and Peter Crowther. The dig de-
scription logic interface. InProceedings of DL2003 International Workshop on De-
scription Logics, Rome, September 2003.

[Bechhofer, 2003] Sean Bechhofer. The DIG description logic interface: DIG/1.1. In
Proceedings of the 2003 Description Logic Workshop (DL 2003), 2003.

[Borgida and Etherington, 1989] Alex Borgida and David W. Etherington. Hierarchical
knowledge bases and efficient disjunctive reasoning. In Ronald J. Brachman, Hector J.
Levesque, and Raymond Reiter, editors,KR’89: Principles of Knowledge Representa-
tion and Reasoning, pages 33–43. Morgan Kaufmann, San Mateo, California, 1989.

[Brandtet al., 2002] S. Brandt, R. K̈usters, and A.-Y. Turhan. Approximation and dif-
ference in description logics. In D. Fensel, F. Giunchiglia, D. McGuiness, and M.-A.
Williams, editors,Proceedings of the Eighth International Conference on Principles of
Knowledge Representation and Reasoning (KR2002), pages 203–214, San Francisco,
CA, 2002. Morgan Kaufman.

[Caprottiet al., 2004] O. Caprotti, M. Dewar, and D. Turi. Mathematical service match-
ing using description logic and owl. InTo appear in Proceedings 3rd Int’l Conference
on Mathematical Knowledge Management (MKM’04), volume 3119 ofLecture Notes
in Computer Science. Springer-Verlag, 2004.

[Dill et al., 2003] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha,
Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan, AndrewTomkins, John A.
Tomlin, and Jason Y. Zien. Semtag and seeker: Bootstrapping the semantic web via
automated semantic annotation. InProceedings of the twelfth World Wide Web confer-
ence (WWW12), 2003.

[Donini et al., 1992] F.M. Donini, B. Hollunder, M. Lenzerini, A. MarchettiSpaccamela,
D. Nardi, and W. Nutt. The complexity of existential quantification in concept lan-
guages.Artificial Intelligence, 53:309–327, 1992.

[Eiter et al., 1997a] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM
Transactions on Database Systems, 22(3):364–418, 1997.

[Eiter et al., 1997b] Thomas Eiter, Nicola Leone, Christinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. A deductive system for nonmonotonic reasoning. In J̈urgen Dix,
Ulrich Furbach, and Anil Nerode, editors,Proceedings of the 4th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’97, volume 1265
of Lecture Notes in Artificial Intelligence. Springer, Berlin, 1997.

[Fages, 1994] François Fages. Consistency of Clark’s completion and existence of stable
models.Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 37

BIBLIOGRAPHY

[Gelfond and Lifschitz, 1991] Michael Gelfond and VladimirLifschitz. Classical nega-
tion in logic programs and disjunctive databases.New Generation Computing, 9:365–
385, 1991.

[GO,] GO project. European Bioinformatics Institute.
http://www.ebi.ac.uk/go.

[Grootet al., 2004] P. Groot, A. ten Teije, and F. van Harmelen. Towards a Struc-
tured Analysis of Approximate Problem Solving: a Case Study in Classification. In
D. Dubois, C. Welty, and M. Williams, editors,Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Ninth International Conference (KR 2004),
pages 399–406, Whistler, BC, Canada, June 2004. AAAI Press.

[Grosofet al., 2003] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description
Logic Programs: Combining Logic Programs with Description Logic. InProc. of the
Twelfth Int’l World Wide Web Conf. (WWW 2003), pages 48–57. ACM, 2003.

[Haarslev and M̈oller, 1999] V. Haarslev and R. M̈oller. Race system description. InPro-
ceedings of the 1999 Description Logic Workshop (DL’99), CEUR Electronic Work-
shop Proceedings, pages 130–132, 1999.

[Haarslev and M̈oller, 2001a] V. Haarslev and R. M̈oller. High performance reasoning
with very large knowledge bases: A practical case study. InProc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2001), 2001.

[Haarslev and M̈oller, 2001b] V. Haarslev and R. M̈oller. Racer system description.
In Proceedings of the International Joint Conference on Automated Reasoning (IJ-
CAR 2001), volume 2083 ofLecture Notes in Artificial Intelligence, pages 701–705.
Springer, 2001.

[Haarslev and M̈oller, 2001c] Volker Haarslev and Ralf M̈oller. RACER system descrip-
tion. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), volume
2083 ofLecture Notes in Artificial Intelligence, pages 701–705. Springer, 2001.

[Hitzler and Wendt, 2005] Pascal Hitzler and Matthias Wendt. A uniform approach to
logic rogramming semantics.Theory and Practice of Logic Programming, 5(1–2):123–
159, 2005.

[Hitzler, 2003] Pascal Hitzler. Towards a systematic account of different logic program-
ming semantics. In Andreas Günter, Rudolf Kruse, and Bernd Neumann, editors,Pro-
ceedings of the 26th German Conference on Artificial Intelligence, KI2003, Hamburg,
September 2003, volume 2821 ofLecture Notes in Artificial Intelligence, pages 355–
369. Springer, Berlin, 2003.

[Hollunder, 1996] Bernhard Hollunder. Consistency checkingreduced to satisfiability of
concepts in terminological systems.Ann. of Mathematics and Artificial Intelligence,
18(2–4):133–157, 1996.

38 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

[Horrocks and Patel-Schneider, 2003] Ian Horrocks and Peter F. Patel-Schneider. Reduc-
ing OWL entailment to description logic satisfiability. InProc. of the 2nd International
Semantic Web Conference (ISWC), 2003.

[Horrocks and Patel-Schneider, 2004] I. Horrocks and P. F. Patel-Schneider. A Proposal
for an OWL Rules Language. InProc. of the Thirteenth Int’l World Wide Web
Conf.(WWW 2004). ACM, 2004.

[Horrockset al., 2000] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for
Very Expressive Description Logics.Logic Journal of the IGPL, 8(3):239–263, 2000.

[Horrocks, 1998a] I. Horrocks. The FaCT system. InProceedings of the second Interna-
tional Conference on Analytic Tableaux and Related Methods, volume 1397 ofLecture
Notes in Artificial Intelligence, pages 307–312. Springer, 1998.

[Horrocks, 1998b] Ian Horrocks. Using an expressive description logic: FaCT or fiction?
In Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 636–647, 1998.

[Horrocks, 2003] I. Horrocks. Implementation and optimisation techniques. In Franz
Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,and Peter F. Patel-
Schneider, editors,The Description Logic Handbook: Theory, Implementation, and
Applications, pages 306–346. Cambridge University Press, 2003.

[Hustadtet al., 2004a] U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description
Logics aroundSHIQ in a Resolution Framework. Technical Report 3-8-04/04, FZI,
Karlsruhe, Germany, April 2004. http://www.fzi.de/wim/publikationen.php?id=1172.

[Hustadtet al., 2004b] U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ− De-
scription Logic to Disjunctive Datalog Programs. InProc. of the 9th Conference on
Knowledge Representation and Reasoning (KR2004). AAAI Press, June 2004.

[Hustadtet al., 2004c] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in
description logics with a concrete domain in the framework of resolution. In Ra-
mon López de Ḿantaras and Lorenza Saitta, editors,Proceedings of the 16th Eure-
opean Conference on Artificial Intelligence, ECAI’2004, including Prestigious Appli-
cants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages
353–357. IOS Press, 2004.

[Knorr, 2003] Matthias Knorr. Level mapping characterizations for quantitative and dis-
junctive logic programs. Bachelor’s Thesis, Department of Computer Science, Tech-
nische Universiẗat Dresden, Germany, 2003.

[Li and Horrocks, 2003] Lei Li and Ian Horrocks. A software framework for matchmak-
ing based on semantic web technology. InProceedings of the twelfth World Wide Web
conference (WWW12), pages 331–339. ACM, 2003.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 39

BIBLIOGRAPHY

[Lloyd, 1988] John W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
1988.

[Lutz, 2003] C. Lutz. Description Logics with Concrete Domains—A Survey. InAd-
vances in Modal Logics, volume 4. King’s College Publications, 2003.

[Masoloet al., 20003] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari.
Ontology Library. WonderWeb Deliverable D18. Laboratory For Applied Ontology -
ISTC-CNR, 20003.

[McAllester, 1990] D. McAllester. Truth maintenance. InProceedings of AAAI’90, pages
1109–1116. Morgan Kaufmann, 1990.

[Motik et al., 2004] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for
OWL-DL with rules. InProceedings of the 3rd International Semantic Web Conference
(ISWC2004), Hiroshima, Japan, November 2004, 2004. To appear.

[Nonnengart and Weidenbach, 2001] A. Nonnengart and C. Weidenbach. Computing
Small Clause Normal Forms. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, volume I, chapter 6, pages 335–367. Elsevier Science, 2001.

[OWL, a] OWL test suite.http://www.w3.org/TR/owl-test/.

[OWL, b] Bechhofer, S.: OWL Reasoning Examples. University of
Manchester (2003)
http://owl.man.ac.uk/2003/why/latest/.

[Panet al., 2004] Jeff Z. Pan, Enrico Franconi, Sergio Tessaris, Birte Glimm, Giorgos
Stamou, Vassilis Tzouvaras, Ian Horrocks, Lei Li, and Holger Wache. Report on Query
Language Design and Standardisation. Technical report, The Knowledge Web project,
Dec 2004.

[Patel-Schneideret al., 2002] P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van
Harmelen. OWL Web Ontology Language; Semantics and AbstractSyntax, W3C
Candidate Recommendation. http://www.w3.org/TR/owl-semantics/, November 2002.

[Rectoret al., 1993] A. L. Rector, W. A. Nowlan, and A. Glowinski. Goals for con-
cept representation in the galen project. InProceedings of the Seventeenth Annual
Symposium on Computer Applications in Medical Care (SCAMC-93), pages 414–418,
Washington DC, USA, 1993.

[Sakama and Inoue, 1994] C. Sakama and K. Inoue. An alternative approach to the se-
mantics of disjunctive logic programs and deductive databases.Journal of Automated
Reasoning, 13:145–172, 1994.

[Schaerf and Cadoli, 1995] Marco Schaerf and Marco Cadoli. Tractable reasoning via
approximation.Artificial Intelligence, 74:249–310, 1995.

40 January 30th, 2005 KWEB/2004/D2.1.2/v1.2

D2.1.2 Methods for Approximate Reasoning IST Project IST-2004-507482

[Simonset al., 2002] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and
implementing the stable model semantics.Artificial Intelligence, 138(1–2):181–234,
2002.

[SWI-Prolog, 2004] http://www.swi-prolog.org/, 2004.

[ten Teije and van Harmelen, 1996] A. ten Teije and F. van Harmelen. Computing ap-
proximate diagnoses by using approximate entailment. In G.Aiello and J. Doyle,
editors,Proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR-96), Boston, Massachusetts, November 1996. Mor-
gan Kaufman.

[ten Teije and van Harmelen, 1997] A. ten Teije and F. van Harmelen. Exploiting domain
knowledge for approximate diagnosis. In M.E. Pollack, editor, Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence (IJCAI-97), volume 1,
pages 454–459, Nagoya, Japan, August 1997. Morgan Kaufmann.

[Tessaris, 2001] Sergio Tessaris.Questions and Answers: Reasoning and Querying in
Description Logic. PhD thesis, University of Manchester, Department of Computer
Science, April 2001.

[Tobies, 2001] S. Tobies.Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, Germany, 2001.

[Uscholdet al., 2003] Michael Uschold, Peter Clark, Fred Dickey, Casey Fung,Sonia
Smith, Stephen Uczekaj Michael Wilke, Sean Bechhofer, and Ian Horrocks. A seman-
tic infosphere. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,Proceed-
ings of the Second International Semantic Web Conference (ISWC 2003), number 2870
in Lecture Notes in Computer Science, pages 882–896. Springer, 2003.

[Volz, 2004] Raphael Volz.Web Ontology Reasoning with Logic Databases. PhD thesis,
AIFB, University of Karlsruhe, 2004.

KWEB/2004/D2.1.2/v1.2 January 30th, 2005 41

Related deliverables

A number of Knowledge web deliverable are clearly related tothis one:

Project Number Title and relationship
KW D2.1.1 D2.1.1 Survey of Scalability Techniques for Reasoning with

Ontologiesgives an overview of methods for approximating the
reasoning.

KW D2.5.2 D2.5.2 “Report on Query Language Design and Standardisa-
tion” contains the experiments of InstanceStore

42

