

D 1.6.1 Portal Requirements and System Design

Coordinator: Ángel López-Cima (UPM)

Asunción Gómez-Pérez (UPM), Miguel Rodríguez Hernández (UPM)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 Knowledge WebEB
Deliverable D1.6.1 (WP1.6)
The Knowledge Web Portal is a software infrastructure underpinning the integration of the
activities of the Knowledge Web partners. It serves as portal for information access and a
dissemination point for ontology researchers, engineers, application and content developers in
both academic and industrial institutions. It will provide a common medium of presentation
where the partners' development work is deployed, publicized and promoted, along with work
on technology promotion, research and e-learning. The KW portal is a semantic web portal
available at http://knowledgeweb.semanticweb.org

Document Identifier: Knowledge WebEB/2004/D1.6.1/v1.0
Class Deliverable: Knowledge WebEB EU-IST-2004-

507482
Version: V1.0
Date: December 14, 2004
State: Final
Distribution: Public

Copyright © 2004 The contributors

http://knowledgeweb.semanticweb.org/

Introduction D1.6.1: Portal Requirements and System Design

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of

the European Communities as project number IST-2004-507482.

University of Innsbruck (UIBK) – Coordinator
Institute of Computer Science,
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polythechnique Fédérale de Lausanne
(EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne.
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse, 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST - 655 avenue de l'Europe - Montbonnot
Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-
CERTH)
1st km Thermi – Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom.
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of
Computer Science, University of Manchester,

Introduction D1.6.1: Portal Requirements and System Design

United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Introduction D1.6.1: Portal Requirements and System Design

Workpackage participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed writing parts of this document:

• Universidad Politécnica de Madrid.
• France Telecom & RD.

Introduction D1.6.1: Portal Requirements and System Design

Changes

Version Date Author Changes

0.1 01-03-2004 A. López-Cima Table of Content

0.2 02-06-2004 A. Gómez-Pérez Software methodology to be used

0.3 01-07-2004 A. López-Cima Business Model Definition

0.4 15-07-2004 A. López-Cima
M. Rodríguez

Section 4.1 - Ontology Repository Functionality

0.5 03-08-2004 A. López-Cima
M. Rodríguez

Section 4.2 - Administration Definition

0.6 08-08-2004 A. López-Cima
M. Rodríguez

Section 4.3 - Logging Definition

0.7 20-08-2004 A. López-Cima
M. Rodríguez

Section 4.4 - Semantic Editing Definition

0.8 10-09-2004 A. López-Cima
M. Rodríguez

Section 4.5 - Semantic Browsing

0.9 21-09-2004 A. López-Cima
M. Rodríguez

Section 4.6 - Semantic Searching

0.10 30-09-2004 A. López-Cima Section 5 - Analysis Phase

0.11 02-10-2004 A. López-Cima
M. Rodríguez

Section 4.7 - Semantic Content Visualization

0.12 17-10-2004 A. López-Cima
M. Rodríguez

Section 4.8 - Interoperability

0.13 25-10-2004 A. López-Cima
M. Rodríguez

Section 4.9 - Semantic Navigation Model
Management

0.14 27-10-2004 A. López-Cima
M. Rodríguez

Section 4.10 - Web Design

0.15 30-10-2004 A. López-Cima 1st review of the document

0.16 15-11-2004 A. Gómez-Pérez 2nd review of the document

1.0 10-12-2004 York Sure 3rd review of the document

Introduction D1.6.1: Portal Requirements and System Design

Executive Summary

The Knowledge Web Semantic Portal [Annex I] is a software infrastructure underpinning the
integration of the activities of the Knowledge Web partners. It serves as portal for information
access and a dissemination point for ontology researchers, engineers, application and content
developers in both academic and industrial institutions. It will provide a common medium of
presentation where the partners' development work is deployed, publicized and promoted, along
with work on technology promotion, research and e-learning. Among other things, the portal
will be used with the advanced learning platform to deliver semantically indexed learning units.

In this deliverable we present the specification of the systems to be created in the Knowledge
Web Semantic Portal web site.

First we review the software methodology (Rational Unified Process) that we will follow to
develop it.

Then we will present the results of the business modelling and requirement analysis phases of
development of the Knowledge Web Semantic Portal.

The portal is running under the following URL since March 1st, 2004:

http://knowledgeweb.semanticweb.org

This deliverable only contains the software specification and system design. The ontologies
used by the portal are presented in detail in the deliverable D.1.6.2 “Portal Ontology”, already
delivered by 30/6/2004.

http://knowledgeweb.semanticweb.org/

Introduction D1.6.1: Portal Requirements and System Design

Acknowledgments

Introduction D1.6.1: Portal Requirements and System Design

Table of Contents

1 Introduction ... 1
2 Software methodology for building the KW Semantic Portal: RUP..................................... 2

2.1 Rational Unified Process ... 2
2.1.1 Business modelling ... 2
2.1.2 Requirement analysis .. 3
2.1.3 Analysis... 3
2.1.4 Design ... 4
2.1.5 Implementation and testing ... 4
2.1.6 Deployment and testing... 4

3 Business Model ... 5
3.1 Global view of the KW Semantic Portal domain .. 5
3.2 Actors .. 5
3.3 Business Use Cases ... 7
3.4 Business Object Model.. 9

3.4.1 Ontology Repository Business Object Model ... 9
3.4.2 ODESeW Business Object Model... 10

4 Requirement Analysis Model.. 11
4.1 Ontology Repository ... 13
4.2 Administration... 13

4.2.1 User Management ... 14
4.2.2 Permission Management ... 19
4.2.3 Ontology Publish Management ... 28
4.2.4 Attribute Ordering ... 31
4.2.5 Short Instance Description .. 35

4.3 Logging ... 39
4.4 Semantic Editing ... 40

4.4.1 Instance Creation... 41
4.4.2 Instance Editing... 43
4.4.3 Instance Removal .. 45

4.5 Semantic Browsing ... 46
4.5.1 Semantic Navigation ... 47
4.5.2 Semantic Visualization.. 49

4.6 Semantic Searching ... 51
4.6.1 Search In Term Names.. 51
4.6.2 Search In Instance Values ... 53

4.7 Semantic Content Visualization .. 57
4.7.1 Content Generation in Semantic Web Languages... 57

4.8 Interoperability .. 62
4.8.1 Import Resource .. 63
4.8.2 Export Content .. 64

4.9 Semantic Navigation Model Management .. 65
4.10 Web Designing.. 70

5 Analysis... 71
5.1 Integration environment .. 71

5.1.1 Description of the target integration platform... 71
5.2 Software architecture... 72

6 Conclusions ... 73
7 References ... 74

Introduction D1.6.1: Portal Requirements and System Design

1 Introduction

As stated in the executive summary, this deliverable presents the semantic portal requirements
and system design for the Knowledge Web WoE. The KW Semantic Portal is built reusing and
improving the technology produced in the Esperonto (IST-2001-37343) project.

For this deliverable we study differents platforms of standard portals and semantic portals:

• OntoWebber [Y. Jin et al., 2003]
• OntoWeaver-S [Y. Lei et al., 2004]
• OntoOrganizer [R. Keller et al., 2004]
• SEAL [J. Hartmann, Y. Sure, 2004]
• OIP-Fs [E. Valle, M. Brioschi, 2004]
• IntelliDimension1
• My [F. Bellas et al., 2004]
• Bea WebLogic Portal2

ODESeW [Corcho et al., 2003] is an ontology-based application built inside the WebODE
ontology engineering workbench, that allows managing knowledge-intensive ontology-based
Intranets and Extranets. The first version of ODESeW was developed in the framework of the
Esperonto3 project (IST-2001-34373) for building the Esperonto Semantic Portal.

Given that the KW Semantic Portal is the latest instantiation of ODESeW, seen in Figure 1-1,
the following sections present the ODESeW Business Model and the ODESeW Requirement
Analysis Model, which actually are the same as the Knowledge Web ones.

Figure 1-1 KW Portal as the latest instantiation of ODESeW

As we said before, the portal is running under the following URL since March 1st, 2004:

 http://knowledgeweb.semanticweb.org

1 http://www.intellidimension.com
2 http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/portal
3 http://www.esperonto.net

 1

http://knowledgeweb.semanticweb.org/
http://www.intellidimension.com/
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/portal
http://www.esperonto.net/

Introduction D1.6.1: Portal Requirements and System Design

The deliverable is structured as follows:

� Section 2 explains briefly the Rational Unified Process (RUP), which is the software

engineering methodology followed to develop the KW Semantic Portal.

� Section 3 presents the results of the business model phase. In this section, we provide a
global overview of the problems addressed by the KW Semantic Portal. This overview
contains descriptions of the actors, business use cases and high-level business objects.

� Section 4 contains the results of the requirement analysis model, organized according to

the main subsystems identified in the KW Semantic Portal: Administration, Logging,
Semantic Editing, Semantic Browsing, Semantic Searching, Semantic Content
Visualization, Interoperability and Semantic Navigation Model Management.

Besides, we include the requirement analysis model of the external systems represented
by the web designing and the ontology server.

� Section 5 contains part of the analysis of the KW Semantic Portal, with the Integration

environment, which includes a description of the target integration platform, and the
software architecture.

� Section 6 includes the bibliographic references used through the deliverable.

2 Software methodology for building the
KW Semantic Portal: RUP

This section describes the main aspects of the methodology adopted to develop the KW Portal.

2.1 Rational Unified Process

To build the KW Semantic Portal we have chosen the Rational Unified Process (RUP)
[Kruchten, 99] methodology to aid in their development activities. RUP assumes an iterative
development approach that includes requirement management, the use of component-based
architectures, visual software modelling, its verification and the management and control of
changes to it. It is based on six sets of sequential activities enumerated below and explained
further in the following sections:

1. Business modelling.
2. Requirement analysis.
3. Analysis.
4. Design.
5. Implementation and testing.
6. Deployment and testing.

2.1.1 Business modelling
In this phase of the methodology, a clear understanding of the environment (in which the KW
Semantic Portal is going to be used) is obtained. This phase consists of the following activities:

� High-level domain modelling. The main goal of this activity is to define the most

important concepts related to the domain of interest.
� Identification and refinement of business processes. In this activity, the main use

cases of the system are identified and defined.

 2

Software methodology for building D1.6.1: Portal Requirements
the KW Semantic Portal: RUP and System Design

The results obtained in this phase are the following ones:

� Domain model document for the high-level domain modelling activity.
� UML use case diagrams. The uses cases needed to model the system functionalities

from the user’s point of view.
� Business object model. A UML object diagram that identifies and models the entities

needed for the actual realisation of the previously identified use cases.

2.1.2 Requirement analysis
The main goal of this activity is to obtain the system functional specification. This phase is
composed of the following activities:

� Vision development which includes high-level description of what the system is going

to do.
� Use cases refinement which includes a detailed decomposition of the use cases

described in the business modelling activity, which are going to be taken into account
by the system to be developed.

� Requirement Specification which includes a detailed description of what the system
should provide in each use case.

� User-Interface modelling and prototyping, which includes a first approach to what
the users of the system should perceive when using it.

The results obtained in this phase are the following ones:
� Vision document with the high-level description of the system’s functionality.
� UML use case diagrams and documents describing them. These UML use case

diagrams are obtained from the refinement of the use case diagrams from the previous
phase.

� Requirements specification, use case association and requirement characterisation.
These documents include who is responsible for their fulfilment, who defined those
requirements, etc.

� Sketches of how the user-interface should look like.
� UML interfaces and sequence diagrams. The UML interfaces characterise the

interactions of the user-interface with the rest of the system. The sequence diagrams
show the dynamic aspects of the interactions of the user-interface with the rest of the
system.

2.1.3 Analysis
This activity is intended to obtain a high-level system architecture. The main functional blocks
and their interactions are identified on this phase. This phase is comprised of the following
activities:
� Software Architecture, for describing the main elements that comprise the software

architecture system.
� UML class and sequence diagrams, for detailing the sequence diagrams which

includes the identification of classes and their methods.

The results obtained in this phase are the following ones:
� Software architecture document. A document explaining the system decomposition into

subsystems and definition of the main functional blocks.
� Analysis model which includes UML class diagram for the identified functional blocks.
� Use case realization, which includes UML sequence diagrams with the elements of the

analysis model and showing how they interact with each other in the use cases
identified in the requirement analysis phase.

 3

Software methodology for building D1.6.1: Portal Requirements
the KW Semantic Portal: RUP and System Design

2.1.4 Design
This activity aims to obtain a detailed system architecture, which is a refinement of the one
resulting from the analysis phase. This phase is composed of the following activities:
� Refinement of the software architecture. The software architecture obtained in the

analysis phases is refined.
� Refinement of the UML diagrams. The UML diagrams specified are refined by means

of adding, removing or modifying classes or methods.

The results obtained in this phase are the following ones:
� Software architecture document, which includes a refinement of the document

developed during the analysis activity.
� Design model, which provides UML diagrams showing the whole system architecture

and the design of its components.

2.1.5 Implementation and testing
In this activity the system is implemented, integrated and tested. This phase is composed of the
following activities:
� Integration planning. It describes how the different components are going to be

incrementally integrated and tested.
� Component implementation and testing. Each component identified in the previous

phases is implemented. Unitary tests are done in order to ensure the correct operation of
each component.

� Subsystem integration and testing. All components are integrated making integration
test in order to guarantee the proper operation of these elements.

� System integration and testing. All subsystems are integrated making system tests to
verify the correct operations of whole system.

The results obtained in this phase are the following ones:
� An integration plan which provides how the different components are going to be

integrated.
� A change request report, for indicating the failures identified during all kind of tests.

2.1.6 Deployment and testing
This activity is devoted to the preparation of the developed system software in order to be
delivered to its users for testing. This phase is composed of the following activities:
� Generation of user documentation and installation support.
� Beta testing. Testing of the beta version of the system in order to verify its correct and

proper operation.

The results obtained in this phase are the following ones:
� User’s manual. The user’s manual is necessary for the correct use by future users.
� Ready-to-install software package which provides the software package with all the

components necessary to make the installation and distribution of the system.
� A change request report (indicating the failures identified in beta tests). Requests to

modify the detected problems.

In this document we only present the activities 2.1.1 (Section 3), 2.1.2 (Section 4) and part of
the 2.1.3 (Section 5).

 4

Business Model D1.6.1: Portal Requirements and System Design

3 Business Model

In this section we will provide a global view of the domain of the KW Semantic Portal. This
overview will include a general description of the objectives that we want to achieve with its
development, and a description of its business actors and business use cases. We will also
provide a business object model, describing the main subsystems that will be created to give
support to the business use cases. We will not go into too much detail on the interactions among
subsystems, since this will be covered in the analysis phase.

3.1 Global view of the KW Semantic Portal domain

The Knowledge Web Semantic Portal [Annex I] is a software infrastructure underpinning the
integration of the activities of the Knowledge Web partners. It serves as portal for information
access and a dissemination point for ontology researchers, engineers, application and content
developers in both academic and industrial institutions. It will provide a common medium of
presentation where the partners' development work is deployed, publicized and promoted, along
with work on technology promotion, research and e-learning. Among other things, the portal
will be used with the advanced learning platform to deliver semantically indexed learning units.

The KW Semantic Portal will be:

• Semantic driven. The portal uses the five ontologies already presented in deliverable
D1.6.2. These ontologies are: Project, Person, Organization, Documentation and Event.
The ontologies have been developed using METHONTOLOGY [Gómez-Pérez et al.,
2003] and WebODE [Arpirez et al., 2003], and all of them are highly reusable and
publicly available at the portal web site in RDF(S) and OWL..

• User oriented. We distinguish between KW and External users. KW users, which are

also content providers, access public and restricted contents inserted by themselves or
by other members in the portal. Finally, External users, who scarcely include new
content, mainly access public contents.

• Permission-based. Different users will have different permissions either for inserting

content on the KW portal or for browsing the collected assets.

• Interoperable with semantic web based systems. The KW Portal will be capable of
exporting internal content and importing resources from an external semantic
information source.

• Synchronization with the ontologies. There is an automatic synchronization between

the contents of the KW portal and the ontologies in which it is based. So, if an ontology
conceptualization is modified with the WebODE ontology editor, the changes will be
automatically seen in the KW portal.

3.2 Actors

Many types of users have been identified in this phase. We will group them into five main
categories, depending on which part of the system they will work on. These five groups are:
Portal Administrator, Ontology Manager, Web Designer, External User and KW User. Figure
3-1 presents the specification relationships among all these actors.

 5

Business Model D1.6.1: Portal Requirements and System Design

Figure 3-1 ODESeW business actors.

• Portal Administrator. It will be in charge of administrating the Knowledge Web
portal. This involves several tasks, such us user, instance and permission management.

• External User. It can be either a Guest User or a Software Agent. In both cases, it will

be an external user that has not logged in, and therefore, has a restricted access to the
portal contents.

o Guest User. It represents any user in Internet. It will be able to request KW

project information, navigate through hyper-linked information and search for
public KW information, but not to introduce, update it nor access KW restricted
information.

o Software Agent. It represents a software agent that uses the KW portal content.

• KW User. It can be either a KW WP Leader or a KW Organization. In any case, it will

be a corporate user that has logged in the portal. It will be in charge of entering / editing
new information, and requesting restricted information to KW members.

o KW WP Leader. This user represents a KW WP Leader. It will be in charge of

inserting, editing and updating instances from the Documentation, Task and
Event ontologies. KW WP Leaders should also populate the WP they are
leading, their main tasks and deliverables produced.

o KW Organization. Each organization participating in KW will have a user of

this type. These users will have permissions for inserting, editing and updating
instances from the Organization, Person and Event ontologies.

 6

Business Model D1.6.1: Portal Requirements and System Design

• Ontology Manager. It will be in charge of building the ontologies and managing their

evolution.

• Web Designer. It will responsible for designing the web pages for accessing the portal
contents.

3.3 Business Use Cases

The KW semantic portal is built on top of ODESeW [Corcho et al., 2003] and WebODE
platform as ontology server. Figure 3-2 shows the ten business use cases involved in the KW
semantic portal: ontology development and management, administration, logging, semantic
editing, semantic browsing, semantic searching, semantic content visualization, interoperability,
semantic navigation model management and web designing.

Figure 3-2 KW semantic portal business use case diagram.

Although it will be deeply explained below, here is a quick review of the business use cases
depicted in the diagram.

On the top of the figure we can see the Logging use case. It provides the function of logging in
the KW semantic portal, just for the KW Users and the Portal Administrators.

Under the Logging use case, we can see the Semantic Browsing use case. It consists of
showing the list of ontology concepts and their related instances, presenting the details of
ontology instances and their relations with other instances, and allowing the semantic navigation
through these relations and between the different ontologies published in the portal. This
business use case uses functions from other use cases:

• Administration, for retrieving/setting/updating the order of attributes, the instance
definitions, the permissions, and the published ontologies.

 7

Business Model D1.6.1: Portal Requirements and System Design

• Ontology Repository, for importing RDF(S) and OWL ontologies, and for retrieving the
ontologies conceptualization and instances.

• Navigation Model Management, for managing the navigation models.

Next to the Semantic Browsing use case, there is the Semantic Searching use case. It
implements the semantic search engine that allows querying for information in one or in all the
ontologies of the portal. As we can see in the figure, it can be accessed by an External User or a
KW User, and is related to the Ontology Repository (to get the conceptualization and the
instances) and to the Semantic Navigation Model Management (to get the search interfaces).

On the other side, there is the Semantic Navigation Model Management use case, which
allows the Web Designer to manage the navigation models implemented in the KW semantic
portal. It is only related with the Ontology Repository to retrieve the conceptualization and the
instances in order to create those navigation models.

We also have the Administration use case, which refers to the management functions needed to
maintain the KW semantic portal. They are: User Management, Permission Management,
Ontology Publish Management, Instance Description and Attribute Ordering. It is only
connected with the Ontology Repository to retrieve the ontologies needed in each case.

On the other side, we can see the Semantic Editing business use case, which consists of
providing content to the KW semantic portal by allowing the KW Users to edit concept
instances and the values of their attributes, and to connect such instances by means of relations,
even if they belong to different ontologies. This business use case uses functions from the
Semantic Navigation Model Management (to get the form interfaces) and the Ontology
Repository (to create, edit and remove instances and relations).

On the bottom-right corner of our system, we have the Semantic Content Visualization use
case, only accessed by Software Agents. This use case allows the agent to obtain the semantic
visualization of a concept or instance in a certain semantic web language (OWL or RDF), for
what it is connected with the Ontology Repository.

On the bottom-left corner, we have the Interoperability use case, which provides functions for
exporting the portal content and importing resources into the portal (i.e, Ontoweb deliverables,
FOAF, etc…). It is only connected with the Ontology Repository to update content while
exporting or to retrieve resources while importing. Both the KW User and the Guest User are
allowed to export content but only the Portal Administrator has permission for importing
resources to the portal.

The Web Designer also communicates with the Web Designing use case. It allows him to
manage the views of the portal. This is an external business use case, and therefore, it is not
implemented in the ODESeW technology.

Finally, we have the Ontology Server system. This external system will provide functions to
maintain and manage the ontologies needed by the KW semantic portal. The Ontology Manager
will access the Ontology Development use case in order to manage the Ontology Repository.

 8

Business Model D1.6.1: Portal Requirements and System Design

3.4 Business Object Model

A Business Object Model is an object model that describes the realization of the project
business use cases. It includes business use-case realizations, which show how the business use
cases are "performed" in terms of interacting business workers and business entities.

Part of the business objects used by ODESeW proceeds from the Ontology Repository.

Here we will first describe the Ontology Repository business objects (concepts, attributes,
instance attributes, instance value sets, instances, relatins and formulas) and then, those from the
ODESeW portal (users profiles, permissions, navigation models, views and links).

Figure 3-3 KW Semantic Portal Business Object Model

3.4.1 Ontology Repository Business Object Model
The Ontology Repository extern system is represented by the WebODE ontology development
platform, so its business object model will be WebODE’s.

WebODE’s knowledge model [Arpirez et al., 2001] is extracted from the set of intermediate
representations of METHONTOLOGY. AS we can see in Figure 3-3, it allows the
representation of concepts and their attributes (both class and instance attributes), taxonomies of
concepts, disjoint and exhaustive class partitions, ad-hoc binary relations between concepts,
properties of relations, constants, axioms and instances. It also allows the inclusion of
bibliographic references for any of them and the importation of terms from other ontologies.

 9

Business Model D1.6.1: Portal Requirements and System Design

Here is the description of all the objects depicted in this diagram:

• Concept. In short, a concept (also known as a class) can be anything about which
something is said, and, therefore, can also be the description of a task, function, action,
strategy, reasoning process, etc.

Concepts are identified by their name. A natural language (NL) description can be also
included. The same applies to formulas, which will be described later in this section.

• Relation. ODESeW allows just binary ad-hoc relations to be created between concepts. The
creation of relations of higher arity must be made by reification (creating a concept for the
relation itself and n binary relations between the concepts that appear in the relation and the
concept that is used for representing the relation).

Ad-hoc relations are characterized by their name and its cardinality, which establishes the
number of facts (instances of the relation) that can hold between the origin and the
destination term. Their cardinality can be restricted to 1 (only one fact) or N (any number of
facts). Additionally, there is some optional information that can be provided for an ad-hoc
relation, such as its description.

• Instance attributes are attributes whose value may be different for each instance of the

concept. They have the same properties than class attributes and two additional properties,
minimum value and maximum value, which are used in attributes with numeric value
types.

• Attribute. This object represents a concept attribute whose value must be the same for all

instances of the concept. They are not components themselves in ODESeW’s knowledge
model, as they are always attached to a concept (and to its subclasses, because of the
inheritance mechanism).

The information stored for an attribute is the following: its name (which must be different
from the rest of attribute names of the same concept) and its minimum and maximum
cardinality, which constrains the number of values that the class attribute may have.

• Instance. This object represent an element of a given concept. They have their own name
and an optional description.

� Instance Value Set. This object represents a set of instance values.

Additionally, WebODE improves the reusability of ontologies defining sets of instances, which
allow the instantiation of the same conceptual model for different scenarios it may be used for.

3.4.2 ODESeW Business Object Model
In this section we will see the business objects that compose the ODESeW Business Object
Model. Figure 3-3 depicts the diagram that describes them, including those objects provided by
WebODE:

Here is the description of all the objects depicted in this diagram:

� Permission. Represents a permission of a certain user. There are four types of permissions.

Therefore, this object has four different attributes: read, write, administration and execution.
All of them are Booleans, so a true value will mean that the user has the permission and a
false value will mean that the user does not have it.

 10

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

� User Profile. Represents a user of the KW semantic portal. Each user has a name and a
password to log in the portal, so this object will have these two attributes. This object is
related to Permission because every user has 0 to 4 permissions.

• Formula. There are three types of formulas that can be created in ODESeW: axioms, rules

and procedures. All of them are represented by their name, an optional NL description, a
formal expression in first order logic, using a syntax provided by ODESeW, and finally, a
prolog expression..

• View. This object represents a view of the portal, and it is contained in a navigation model.

A view has two attributes: the URL associated with the view and the precondition needed
to display it.

• Navigation Model. This object represents a navigation model of the ODESeW portal. Each

navigation model is identified by a name, and this will be its only attribute. It is related with
the View object because a navigation model is composed of a set of views.

• Link. This object represents the action that should execute in order to pass from a view to

another. It has only one attribute, a string that identifies this action.

4 Requirement Analysis Model

In this section we will provide the detailed requirement specification of the ODESeW
technology, according to the main groups of functions identified before. As we will see, each
one of the business use cases identified in section 3.3 will be decomposed in several use cases.

Instead of providing separated sections for the system’s functionality vision, we will integrate in
this section the UML use case diagrams, the requirement specification, and the UML interfaces
and sequence diagrams. For each main function (that is, for each subsystem) we will show a
general use case diagram and its description. Each use case appearing in that general use case
diagram will be described with more detail, decomposed in more use cases if proceeds,
including its flow of events, its architectural implications and its contracts.

These are the sections that will describe the ODESeW business use cases: Ontology Repository
(section 4.1), Administration (section 4.2), Logging (section 4.3), Semantic Editing (section
4.4), Semantic Browsing (section 4.5), Semantic Searching (section 4.6), Semantic Content
Visualization (section 4.7), Interoperability (section 4.8), Semantic Navigation Model
Management (section 4.9) and Web Designing (section 4.10). Although the Ontology
Repository and Web Designing use cases do not belong to the KW semantic portal, we present
here their structure in order to understand the rational for using some of their functionalities.

 11

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Here we present the structure followed in this section to describe all these use cases:

•
•

•
•

•

•

•

•

•
•

For each

¾ D
¾ F
¾ A
¾ U

d

Ontology Repository
Administration

o User Management
� Insert User
� Remove User
� Modify User

o Permission Management
� Reading Permission Management

• Modify Instance Reading Permission
• Modify Concept Reading Permission

� Modify Instance Writing Permission
o Ontology Publish Management

� Add Ontology Publication
� Remove Ontology Publication

o Atribute Ordering
� Set Order Of Attributes

o Instance Description
� Set Instance Description

Logging
Semantic Editing

o Instance Creation
o Instance Editing
o Instance Removal

Semantic Browsing
o Semantic Navigation
o Semantic Visualization

Semantic Searching
o Search In Term Names
o Search In Instance Values

Semantic Content Visualization
o Content Generation in Semantic Web Languages

� OWL Translation
• OWL Ontology Translation
• OWL Instance Translation

� RDF(S) Translation
• RDFS Ontology Translation
• RDF Instance Translation

Interoperability
o Import Resource
o Export Content

Semantic Navigation Model Management
Web Designing
 one of the use cases contained in a business use case, we will structure as follows:

escription of the use case, its functionalities and the actors involved in it.
low of events of the use case and Sequence Diagram.
rchitectural Implications of the use case.
se case contracts. There will be one contract for each operation of the sequence
iagram.

12

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.1 Ontology Repository

Description
The Ontology Repository represents the external system that will maintain all the ontologies
managed by ODESeW and all its instantiations. Figure 4-1 shows the decomposition of the
Ontology Repository business use case.

Figure 4-1 Use case diagram of the Ontology Repository use case.

We can see that the Ontology Repository provides four different functions. First, there is the
Import Ontology use case, which breaks down in two: Import RDF(S) and Import OWL. In a
similar way, we have the Export Ontology use case, which breaks down in another two: Export
RDF(S) and Export OWL.

Then, we have the Retrieve Ontologies use case, which allows our system to get the ontologies
implemented in the Ontology Repository.

Finally, Ontology Management, which breaks down in two more use cases: Conceptualization
Management and Instance Management. The first one is divided into: Conceptualization
Retrieval and Update Conceptualization. The Instance Management, at the same time, breaks
down into two more use cases: Instance Retrieval and Update Instance.

4.2 Administration

Description
The Administration use cases refer to the management functions needed to maintain a semantic
portal built with ODESeW. Figure 4-2 describes all the actors interacting with the
Administration business use case, as well as the use cases involved in it. The only actor is the
Portal Administrator. The six functions related to the Administration system are: User
Management, Permission Management, Ontology Publish Management, Attribute Ordering and
Instance Description. They are explained in sections 4.2.1 to 4.2.5, respectively.

 13

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-2 Use case diagram of the Administration use case.

4.2.1 User Management
Description
With the User Management use case, the Administrator can insert, remove or modify different
types of users. Figure 4-3 shows its decomposition. As we can see, there are three operations
related with this use case: Insert User, Remove User and Modify User.

 14

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-3 Use case diagram of the User Management use case.

4.2.1.1 Insert User
Description
With this use case, the Portal Administrator can insert a new user in the KW semantic portal
using ODESeW technology.
Flow of events
The flow of events of this use case is shown in Figure 4-4. The Portal Administrator requests to
insert a new user and the KW portal shows him the corresponding form. Now, what (s)he has to
do is fill it with the data of the new user.

Figure 4-4 Sequence diagram of the Insert User use case.

 15

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Architectural Implications: None

Contracts

Name: requestInsertingNewUser()
Responsibilities: Initiates the use case Insert User.
Crossed
References:

Use case Insert User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Insert User has been initiated.

Name: showInsertUserForm()
Responsibilities: Shows the form in blank to be filled with the information of a new user.
Crossed
References:

Use case Insert User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The form in blank to be filled with the information of a new user has been

shown to the user.

Name: insertNewUser(user)
Responsibilities: Adds a new user of the KW portal with the information given.
Crossed
References:

Use case Insert User.

Notes:
Exceptions: If there is already a user with that name, show a message explaining the

error.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: There is a new user in the KW portal with the information contained in

user.

4.2.1.2 Remove User
Description
This use case allows the Portal Administrator to remove a user from the KW semantic portal.
Flow of events
The flow of events of this use case is quite simple, as we can see in Figure 4-5. After requesting
the removal of a user, the KW portal shows the Administrator the list of users, and (s)he can
now select the one to be removed in the KW portal.

 16

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-5 Sequence diagram of the Remove User use case.

Architectural Implications: None

Contracts

Name: requestUserRemoval()
Responsibilities: Initiates the use case Remove User.
Crossed
References:

Use case Remove User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Remove User has been initiated.

Name: showUserListForm(user[])
Responsibilities: Shows the list of all the KW portal users.
Crossed
References:

Use case Modify User.
Use case Remove User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list containing all the users of the KW portal has been shown to the

user. If the list is empty, a message will be shown explaining that there are
no users registered in the KW portal.

Name: removeUser(userName)
Responsibilities: Removes a user from the KW portal.
Crossed
References:

Use case Remove User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The user called userName is no longer in the KW portal.

 17

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.2.1.3 Modify User
Description
With this use case the user is able to modify the information of any user registered in the KW
semantic portal.
Flow of events
The flow of events of this use case is quite simple, as we see in Figure 4-6. After requesting the
removal of a user, the KW portal shows the Portal Administrator the list of users, and (s)he can
now select the one to be removed.

Figure 4-6 Sequence diagram of the Modify User use case.

Architectural Implications: None

Contracts

Name: requestUserUpdate()
Responsibilities: Initiates the use case Modify User.
Crossed
References:

Use case Modify User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Modify User has been initiated.

 18

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: showUserListForm(user[])
Responsibilities: Shows the list of all the KW portal users.
Crossed
References:

Use case Modify User.
Use case Remove User.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no users

registered in the KW portal.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list containing all the users of the KW portal has been shown to the

user.

Name: retrieveUserData(userName)
Responsibilities: Requests to the KW portal the data of a certain user.
Crossed
References:

Use case Modify User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The data of the user called userName has been requested to the KW portal.

Name: showUserData(user)
Responsibilities: Shows the information of a certain user of the KW portal.
Crossed
References:

Use case Modify User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The information of a certain user has been shown to the user.

Name: updateUser(oldUserName, user)
Responsibilities: Updates the information of a user, according to the data given. The first

argument represents the current name of the user to be modified and the
second contains its new values, which could contain a new name.

Crossed
References:

Use case Modify User.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The information of the user called oldUserName has been modified in the

KW portal according to the values contained in user.

4.2.2 Permission Management
Description
With the Permission Management use case the Portal Administrator can manage the read and
write permissions for each user, including the Guest Users. Figure 4-7 shows the decomposition
of the Permission Management use case.

First of all, we have the Retrieve Permissions use case, which is included in the two other use
cases. Then, there is the Reading Permission Management, which breaks down in two: Modify
Instance Reading Permission and Modify Concept Reading Permission. The first one allows the
Portal Administrator to decide whether a user can visualize an instance or some attributes of the
instance. The second one allows the user to decide whether a user can visualize a concept (and
its instances) or some attributes of the concept.

 19

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Finally, we have the Modify Instance Writing Permission, with which the Portal Administrator
decides the users allowed to insert, modify and remove instances of a concept.

As we can see in Figure 4-2, the Permission Management use case retrieves the instances and
concepts by means of two use cases from the Ontology Repository. These are Instance Retrieval
and Conceptualization Retrieval.

Figure 4-7 Use case diagram of the Permission Management use case.

4.2.2.1 Reading Permission Management

4.2.2.1.1 Modify Instance Reading Permission

Description
With this use case the Portal Administrator can modify the reading permissions of an instance.
Flow of events
The flow of events of this use case is shown in Figure 4-8. When the Portal Administrator
requests to modify the reading permissions of an instance, the KW portal accesses the Ontology
Server, gets the list of instances and shows it to the user. Then, the administrator selects an
instance from the list, and the KW portal gets its attributes from the Ontology Server and shows
them to the administrator. (S)he can now update the reading permissions of that instance on his
own.

It is important to mention here that we have followed a certain nomenclature in all the sequence
diagrams of the document. If a contract does not have any nested calls to other systems, the
answer is implicit. This way, for instance, when the portal requests the list of concepts to the
Ontology Server, the variable concept[] represents the data returned by the Ontology Server to
the KW Portal.

 20

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-8 Sequence diagram of the Modify Instance Reading Permission use case.

Architectural Implications: None

Contracts

Name: modifyInstanceReadingPermission(ontology)
Responsibilities: Initiates the use case Modify Instance Visualization Permission.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Modify Instance Visualization Permission has been initiated.

Name: concept[] := getConceptList(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of the concepts of all the ontologies implemented in the Ontology
Server.

Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable concept[] contains the list of the names of the concepts of all

the ontologies of the KW portal.

 21

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: showConceptListForm(concept[])
Responsibilities: Shows to the user the form containing the list of the concepts appearing in

a list.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no concepts

in the ontology.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list of the concepts contained in the variable has been shown to the

user.

Name: retrieveConceptInstances(concept)
Responsibilities: Requests to the KW portal the instances of a concept.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The instances of concept have been requested to the KW portal.

Name: instance[] := getConceptInstances(concept)
Responsibilities: Obtains (from the Ontology Server) and returns the list of the instances of

a concept.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable returned contains all the instances of the concept concept.

Name: showConceptInstances(instance[])
Responsibilities: Shows the list of the instances of a concept.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions: If the list is empty, show a message explaining that the concept has no

instances.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list of the instances contained in the variable has been shown to the

user.

Name: retrieveInstanceAttributes(instance)
Responsibilities: Requests to the KW portal the attributes of a certain instance.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The attributes of instance have been requested to the KW semantic portal.

 22

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: instanceAtt[] := getInstanceAttributes(concept)
Responsibilities: Obtains (from the Ontology Server) and returns the list of attributes of any

instance of a certain concept.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable instanceAtt[] contains the list of attributes of the concept

concept.

Name: showInstanceReadingPermissionForm(instanceAtt[], permission[])
Responsibilities: Shows the reading permissions of an instance, as well as the list of its

attributes, which can be individually restricted by the user.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The reading permissions of an instance (contained in permission[]) and

the list of its attributes (contained in instanceAtt[]) have been shown to the
user.

Name: updateInstanceReadingPermission(instance, permission[])
Responsibilities: Updates in the KW portal the reading permissions of a certain instance.
Crossed
References:

Use case Modify Instance Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The permissions of the instance has been updated according to the variable

permission[].

4.2.2.1.2 Modify Concept Reading Permission

Description
With this use case the Portal Administrator can modify the reading permissions of a concept.
Flow of events
The flow of events of this use case is shown in Figure 4-9. When the Portal Administrator
requests to modify the reading permissions of a concept, the KW portal accesses the Ontology
Server, gets the list of concepts and shows it to the user. When the Portal Administrator selects
a concept from the list, the KW portal shows its reading permissions to the user. Now, (s)he can
update the reading permissions of that concepts on his own.

 23

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-9 Sequence diagram of the Modify Concept Reading Permission use case.

Architectural Implications: None

Contracts

Name: modifyConceptReadingPermission(ontology)
Responsibilities: Initiates the use case Modify Concept Reading Permission.
Crossed
References:

Use case Modify Concept Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Modify Concept Reading Permission has been initiated.

Name: concept[] := getConceptList(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of the concepts of a certain ontology of the Ontology Server.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable concept[] contains the list of the names of the concepts of all

the ontologies of the KW portal.

Name: showConceptListForm(concept[])
Responsibilities: Shows to the user the form containing the list of the concepts appearing in

a list.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.

 24

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no concepts

in the ontology.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list of the concepts contained in the variable has been shown to the

user.

Name: retrieveReadingPermission(concept)
Responsibilities: Requests to the KW portal the reading permissions of a concept.
Crossed
References:

Use case Modify Concept Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The reading permissions of concept have been requested to the KW portal.

Name: showConceptReadingPermission(permission[])
Responsibilities: Shows the current reading permissions of a concept.
Crossed
References:

Use case Modify Concept Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The reading permissions of a concept, contained in the variable

permission[], have been shown to the user.

Name: updateConceptReadingPermission(concept, permission[])
Responsibilities: Updates in the KW portal the reading permissions of a concept.
Crossed
References:

Use case Modify Concept Reading Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The reading permissions of concept have been updated according to the

variable permission[].

4.2.2.2 Modify Instance Writing Permission
Description
With this use case the Portal Administrator can modify the writing permissions of an instance.
Flow of events
We can see the flow of events of this use case in Figure 4-10. First, the Portal Administrator
requests to modify the writing permissions of the instances of a concept. Then, the KW portal
gets the list of concepts from the Ontology Server, and shows it to the Portal Administrator,
from which (s)he can now select one of them and update its writing permissions on his own.

 25

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-10 Sequence diagram of the Modify Instance Writing Permission use case.

Architectural Implications: None

Contracts

Name: modifyInstanceWritingPermission(ontology)
Responsibilities: Initiates the use case Modify Instance Writing Permission.
Crossed
References:

Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Modify Instance Writing Permission has been initiated.

Name: concept[] := getConceptList(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of the concepts of a certain ontology of the Ontology Server.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable concept[] contains the list of the names of the concepts of all

the ontologies of the KW portal.

 26

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: showConceptListForm(concept[])
Responsibilities: Shows to the user the form containing the list of the concepts appearing in

a list.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no concepts

in the ontology.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list of the concepts contained in the variable has been shown to the

user.

Name: retrieveWritingPermission(concept)
Responsibilities: Requests to the KW portal the writing permissions of the instances of a

concept.
Crossed
References:

Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The writing permissions of the instances of concept have been requested

to the KW portal.

Name: showConceptWritingPermissions(allowedUser[], user[])
Responsibilities: Shows the current list of the users with permission to update concepts and

another list containing the rest of the users.
Crossed
References:

Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The two lists of users (allowedUse[] and user[]) have been shown to the

user.

Name: updateInstanceWritingPermissions(concept, user[])
Responsibilities: Updates in the KW portal the list of the users with editing permission on

the instances of a certain concept.
Crossed
References:

Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list of the users with updating permission on the instances of concept

has been updated according to the variable user[].

 27

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.2.3 Ontology Publish Management
Description
With the Ontology Publish Management, the Portal Administrator decides which ontologies are
published in the KW semantic portal. The diagram in Figure 4-11 describes the three operations
related to the Ontology Publish Management: Add Ontology Publication, Remove Ontology
Publication. They are respectively explained in sections 4.2.3.1 and 4.2.3.2.

As we saw in Figure 4-2, the Ontology Publish Management takes the set of ontologies from
the Ontology Repository by means of the Retrieve Ontologies use case.

Figure 4-11 Use case diagram of the Ontology Publish Management use case.

4.2.3.1 Add Ontology Publication
Description
This use case allows the Portal Administrator to publish an ontology in the KW portal.
Flow of events
The flow of events of this use case is shown in Figure 4-12. When the Portal Administrator
requests to publish another ontology, the KW portal must get the list of ontologies from the
Ontology Server, and show it to the user. Then the Administrator may select which ontology
wants to be published on the portal.

 28

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-12 Sequence diagram of the Add Ontology Publication use case.

Architectural Implications: None

Contracts

Name: requestAddingOntologyPublication()
Responsibilities: Initiates the use case Add Ontology Publication.
Crossed
References:

Use case Add Ontology Publication.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Add Ontology Publication has been initiated.

Name: ontology[] := getOntologyList()
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of all the ontologies implemented in the Ontology Server.
Crossed
References:

Use case Add Ontology Publication.
Use case Remove Ontology Publication.
Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable ontology[] contains the list of the names of all the ontologies

of the Ontology Server.

Name: showOntologyPubListForm(publishedOntology[], ontology[])
Responsibilities: Shows the form with the names of the ontologies currently published in

the portal and another list with the names of the rest of the ontologies of
the Ontology Server.

Crossed
References:

Use case Add Ontology Publication.
Use case Remove Ontology Publication.

Notes:
Exceptions: If there are no ontologies in the list, show a message explaining that there

are no ontologies in the Ontology Server.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: Both lists have been shown to the user.

 29

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: addOntologyPublication(ontology)
Responsibilities: Adds the publication of an ontology in the KW portal.
Crossed
References:

Use case Add Ontology Publication.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The ontology ontology has been published in the KW portal.

4.2.3.2 Remove Ontology Publication
Description
This use case allows the Portal Administrator to remove the publication of an ontology from the
KW portal.
Flow of events
Figure 4-13 describes the flow of events of this use case. It is quite similar to the Add Ontology
Publication flow. First, the Portal Administrator request to remove an ontology publication.
Then, the KW portal obtains the list of ontologies from the Ontology Server and shows it to the
user. Finally, this one selects the ontology whose publication is to be removed.

Figure 4-13 Sequence diagram of the Remove Ontology Publication use case.

Architectural Implications: None

Contracts

Name: requestOntologyPublicationRemoval()
Responsibilities: Initiates the use case Remove Ontology Publication.
Crossed
References:

Use case Remove Ontology Publication.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Remove Ontology Publication has been initiated.

 30

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: ontology[] := getOntologyList()
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of all the ontologies implemented in the Ontology Server.
Crossed
References:

Use case Add Ontology Publication.
Use case Remove Ontology Publication.
Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable ontology[] contains the list of the names of all the ontologies

of the Ontology Server.

Name: showOntologyPubListForm(publishedOntology[], ontology[])
Responsibilities: Shows the form with the names of the ontologies currently published in

the portal and another list with the names of the rest of the ontologies of
the Ontology Server.

Crossed
References:

Use case Add Ontology Publication.
Use case Remove Ontology Publication.

Notes:
Exceptions: If there are no ontologies in the list, show a message explaining that there

are no ontologies in the Ontology Server.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: Both lists have been shown to the user.

Name: removePublishedOntology(ontology)
Responsibilities: Removes the publication of an ontology in the KW portal.
Crossed
References:

Use case Remove Ontology Publication.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The ontology ontology is no longer published in the KW portal.

4.2.4 Attribute Ordering
Description
With this use case, the Portal Administrator can set, for each concept, the order in which the
attributes of all its instances will be visualized. Once the Administrator has set the order of the
attributes of a concept, he can impose this order to the subclasses of the concept.

In Figure 4-14 we can see that the Attribute Ordering use case breaks down in two: Set Order
Of Attributes and Retrieve Order Of Attributes. There is also a use case that extends the first
one: Impose Order To Children.

 31

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-14 Use case diagram of the Attribute Ordering use case.

As we can see in Figure 4-2, the Attribute Ordering use case retrieves the instances and
concepts by means of two use cases from the Ontology Repository. These are Instance Retrieval
and Conceptualization Retrieval.

4.2.4.1 Set Order Of Attributes
Flow of events
The flow of events of this use case is represented by Figure 4-15. There we can see that when
the Portal Administrator decides to set an order to the attributes of any concept, the portal has to
get the concept taxonomy from the Ontology Server, and show it to the user. Then, this one
selects the concept, and the KW semantic portal will access again the Ontology Server in order
to obtain the attributes of the concept. Finally, this information will be shown to the user, and
(s)he now may update the order of the attributes on his (her) own.

At the bottom of the diagram we can see another operation, called imposeOrderToChildren. It
represents the use case that extends the Set Order Of Attributes use case, as we saw in Figure 4-
14. The Portal Administrator gives the name of the concept and the ordered list of attributes to
the KW semantic portal, and this one deals with applying that order to the children of the
concept.

 32

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-15 Sequence diagram of the Set Order Of Attributes use case.

Architectural Implications: None

Contracts

Name: requestSettingOrderOfAttributes()
Responsibilities: Initiates the use case Set Order Of Attributes.
Crossed
References:

Use case Set Order Of Attributes.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Set Order Of Attributes has been initiated.

Name: concept[] := getConceptList(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of the concepts of a certain ontology of the Ontology Server.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable concept[] contains the list of the names of the concepts of all

the ontologies of the KW portal.

 33

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: showConceptListForm(concept[])
Responsibilities: Shows to the user the form containing the list of the concepts appearing in

a list.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no concepts

in the ontology.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list of the concepts contained in the variable has been shown to the

user.

Name: retrieveOrderOfAttributes(concept)
Responsibilities: Requests to the KW portal the actual ordering of the attributes of a

concept.
Crossed
References:

Use case Set Order Of Attributes.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The order of the attributes of concept has been requested to the KW portal.

Name: attribute[] := getConceptAttributes(concept)
Responsibilities: Obtains (from the Ontology Server) and returns the list of attributes of a

concept.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable attribute[] contains the list of all the attributes of the concept

concept.

Name: showAttributeOrderForm(attribute[])
Responsibilities: Shows the form with the attributes contained in a list, in a certain order.
Crossed
References:

Use case Set Order Of Attributes.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no attributes

in the concept.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The form with the attributes contained in attribute[] has been shown to the

user in a certain order.

 34

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: updateAttributeOrder(concept, attribute[])
Responsibilities: Updates the order of the attributes of a concept in the KW portal.
Crossed
References:

Use case Set Order Of Attributes.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The concept concept has been updated in the KW portal with the new

order of attributes specified by the list attribute[].

Name: imposeOrderToChildren(concept, attribute[])
Responsibilities: Applies an order of attributes to all the children of a concept.
Crossed
References:

Use case Impose Order To Children.

Notes:
Exceptions: If there is not any concept with that name, show a message explaining the

error.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: All the concepts children of concept have been updated with the new order

of attributes indicated by attribute[].

4.2.5 Short Instance Description
Description
With this use case, the Portal Administrator can define the set of attributes to be used to
describe instances of a concept in the instance list visualization, together with the order in which
these attributes will appear. As in the previous use case, the description and the order can be
imposed to the subclasses of the concept.

As we can see in Figure 4-16, the Instance Description use case breaks down in two: Set
Instance Description and Retrieve Instance Description. There is also another use case that
extends the first one: Impose Description To Children.

We saw in Figure 4-2 that the Short Instance Description use case retrieves the instances and
concepts by means of two use cases from the Ontology Repository. These are Instance Retrieval
and Conceptualization Retrieval.

 35

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-16 Use case diagram of the Short Instance Description use case.

4.2.5.1 Set Instance Description
Flow of events
The flow of events of this use case is represented by Figure 4-17. There we can see that when
the Portal Administrator decides to set a description of an instance, the portal has to get the
concept taxonomy from the Ontology Server, and show it to the user. Then, this one selects the
concept, and the KW portal will access again the Ontology Server in order to obtain the
attributes of the concept. Finally, the portal will show the actual description of the concept to
the user, and now (s)he will update it on his (her) own.

At the bottom of the diagram we can see another operation, called
imposeDescriptionToChildren. It represents the use case that extends the Set Instance
Description use case, as we saw in Figure 4-16. The Portal Administrator gives the name of the
concept and the list of attributes that will describe it, and the KW portal will internally apply it
to the children of the concept.

 36

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-17 Sequence diagram of the Set Instance Description use case.

Architectural Implications: None

Contracts

Name: requestInstanceDescriptionSetting()
Responsibilities: Initiates the use case Set Instance Description.
Crossed
References:

Use case Set Instance Description.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The use case Set Instance Description has been initiated.

Name: concept[] := getConceptList(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of the concepts of a certain ontology of the Ontology Server.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable concept[] contains the list of the names of the concepts of all

the ontologies of the KW portal.

 37

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: showConceptListForm(concept[])
Responsibilities: Shows to the user the form containing the list of the concepts appearing in

a list.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.
Use case Modify Concept Reading Permission.
Use case Modify Instance Reading Permission.
Use case Modify Instance Writing Permission.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no concepts

in the ontology.
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The list of the concepts contained in the variable has been shown to the

user.

Name: retrieveInstanceDescription(concept)
Responsibilities: Requests to the KW portal the actual description of the instances of a

concept.
Crossed
References:

Use case Set Instance Description.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The description of the instances of concept has been requested to the KW

portal.

Name: attributeList := getConceptAttributes(concept)
Responsibilities: Obtains (from the Ontology Server) and returns the list of attributes of a

concept.
Crossed
References:

Use case Set Order Of Attributes.
Use case Set Instance Description.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable attributeList contains the list of all the attributes of the

concept concept.

Name: showInstanceDescriptionForm(attributeList, description)
Responsibilities: Shows the form with the attributes contained in a list (all the attributes of a

certain concept) and the list of the attributes that represents the current
description of a concept.

Crossed
References:

Use case Set Instance Description.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The form containing the two lists of attributes (attributeList and

description) has been shown to the user.

 38

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: updateInstanceDescription(concept, newDescription)
Responsibilities: Updates the description of a concept in the KW portal.
Crossed
References:

Use case Set Instance Description.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The concept concept has been updated in the KW portal with the new

description specified by the variable newDescription.

4.3 Logging

Description
This business use case provides the function of logging the users in the KW semantic portal. A
user may log in as a KW User (acquiring permissions for entering/editing/modifying
information and also requesting contents stored in the portal that are not available for external
users) or as a Portal Administrator (acquiring permissions for administrating the KW portal).

Flow of events
We can see the flow of events of this use case in Figure 4-18. First, the user (a Portal
Administrator or a KW User) requests logging in the portal by providing a name and a
password. In case these values are correct, the KW portal will show the main view to the user
(the view will depend on the user: an administrator view to the Administrator and a KW view to
the KW User).

Figure 4-18 Sequence diagram of the Logging business use case.

Architectural Implications
The KW semantic portal manages the user session during its life cycle.

 39

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Contracts

Name: requestLogIn(name, password)
Responsibilities: Requests to log in the KW portal, with the name and password given.
Crossed
References:

Use case Logging.

Notes:
Exceptions: If the name and/or password are incorrect, the user will not be

authenticated and a message of error will be shown.
Preconditions:
Postconditions: � If the name and password authenticates the user as a Portal

Administrator, (s)he will be logged in the KW portal as it.
� If the name and password authenticates the user as an KW User, (s)he

will be logged in the KW portal as it.

Name: showAdministratorView(view)
Responsibilities: Shows to the user the main administrator view.
Crossed
References:

Use case Logging.

Notes:
Exceptions:
Preconditions: The user has logged in as a Portal Administrator.
Postconditions: The Portal Administrator’s main view has been shown to the user.

Name: showKWView(view)
Responsibilities: Shows to the user the main KW view.
Crossed
References:

Use case Logging.

Notes:
Exceptions:
Preconditions: The user has logged in as a KW User.
Postconditions: The KW main view has been shown to the user.

4.4 Semantic Editing

Description
The Semantic Editing business use case consists of providing content to the KW semantic portal
by allowing KW users to edit concept instances and the values of their attributes, and to connect
such instances by means of relations, even if they belong to different ontologies.

The diagram represented in Figure 4-19 shows the operations covered by the Semantic Editing
business use case. This diagram depicts the actor that interact with this use case (KW User) and
all the more specific use cases associated with it.

 40

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-19 Use case diagram of the Semantic Editing use case.

The diagram shows that the Semantic Editing subsystem will provide functions for: Instance
Creation, Instance Editing, and Instance Removal. All of them are respectively explained in
sections 4.4.1, 4.4.2 and 4.4.3. The second one, at the same time, breaks down in two more use
cases: Instance Attribute Editing and Relation Instance Editing. There is also another use case
that extends the Instance Editing use case: Move Instance (which moves an instance from one
concept to another of the same ontology).

The Semantic Editing business use case uses the Semantic Navigation Model Management use
case to get the form interfaces, as well as the Instance Management (from the Ontology
Repository business use case in the Ontology Server) to create, edit and remove instances and
relations between instances.

4.4.1 Instance Creation
Description
With this use case, the KW User can create an instance of a certain concept.

Flow of events
The flow of events of this use case is specified by the sequence diagram depicted in Figure 4-
20. When the KW User decides to create a new instance, (s)he must fill a form (provided by the
KW semantic portal under request) with the convenient values of the attributes. Then, the KW
portal formalizes the action by adding the new instance to the Ontology Server.

 41

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-20 Sequence diagram of the Instance Creation use case.

Architectural Implications
The Ontology Server must control concurrent accesses of the information.

Contracts

Name: requestNewInstanceCreation(concept)
Responsibilities: Initiates the use case Instance Creation.
Crossed
References:

Use case Instance Creation.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The use case Instance Creation has been initiated.

Name: showNewInstanceForm()
Responsibilities: Shows the form in blank to be filled with the information of the new

instance.
Crossed
References:

Use case Instance Creation.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The form in blank to be filled with the information of a new instance has

been shown to the user.

Name: fillNewInstanceForm(concept, value[])
Responsibilities: Reports to the KW portal the information of a new instance.
Crossed
References:

Use case Instance Creation.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The information (contained in value[]) of a new instance of the concept

concept has been reported to the KW portal.

 42

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: commitNewInstance(concept, value[])
Responsibilities: Creates a new instanceof the concept concept in the Ontology Server with

the information given.
Crossed
References:

Use case Instance Creation.

Notes:
Exceptions: If there is already an instance with that name in that concept, show a

message explaining the error.
Preconditions: The user is logged in as a KW User.
Postconditions: A new instance of the concept concept has been created in the Ontology

Server, with the data contained in the variable value[].

4.4.2 Instance Editing
Description
With this use case, the KW User is capable of modifying the attributes and relations of a certain
instance.

Flow of events
The flow of events of this use case is depicted in Figure 4-21. When a KW User decides to edit
a particular instance, the KW portal obtains the instance information from the Ontology Server,
and then shows it to the user. This way, he now can make the convenient changes in the values
of the instance attributes and/or relations. Finally, the KW portal stores the new information of
the instance in the Ontology Server.

When the KW User requests the moving of an instance from one concept to another of the same
ontology, the KW portal moves it from the origin to the destination concept.

Figure 4-21 Sequence diagram of the Instance Editing use case.

Architectural Implications: None

 43

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Contracts

Name: editInstance(attribute)
Responsibilities: Initiates the use case Instance Editing.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The use case Instance Editing has been initiated.

Name: attributeValue[] := getInstanceAttributeValues(instance)
Responsibilities: Obtains (from the Ontology Server) and returns the values of the attributes

of an instance.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The variable attributeValue[] contains the values of the attributes of the

instance instance.

Name: relationValue[] := getInstanceRelationValues(instance)
Responsibilities: Obtains (from the Ontology Server) and returns the values of the relations

of an instance.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The variable relationValue[] contains the values of the relations of the

instance instance.

Name: showEditInstanceForm(attributeValues[], relationValues[])
Responsibilities: Shows the form containing the current information of an instance.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The form with the information (the values of the attributes and relations)

of an instance has been shown to the user.

Name: modifyInstance(instance, newAttributeValue[], newRelationValue[])
Responsibilities: Reports to the KW portal the new information of an instance, according to

the data given.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The new values of the attributes and relations of the instance instance has

been reported to the KW portal.

 44

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: updateInstance(instance,newAttributeValue[], newRelationValue[])
Responsibilities: Updates in the Ontology Server the information of an instance, according

to the data given.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The instance instance has been updated in the Ontology Server, according

to newAttributeValue[], and newRelationValue[].

Name: requestMovingInstance(instance, originConcept, destinationConcept)
Responsibilities: Requests to the KW portal the moving of an instance from one concept to

another.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The KW semantic portal has been requested to move instance from the

concept originConcept to destinationConcept.

Name: moveInstance(instance, originConcept, destinationConcept)
Responsibilities: Moves an instance from one concept to another in the Ontology Server.
Crossed
References:

Use case Instance Editing.

Notes:
Exceptions: If there is already an instance with that name in the destination concept,

show a message explaining the error.
Preconditions: The user is logged in as a KW User.
Postconditions: The instance instance has been moved from the concept originConcept to

the concept destinationConcept in the Ontology Server.

4.4.3 Instance Removal
Description
This use case allows the KW user to remove an instance from an ontology.

Flow of events
The flow of events in this use case is quite simple. We can see it in Figure 4-22. First, the KW
User requests to remove certain instance. Then, the KW portal eliminates the instance (specified
by the KW user) from the Ontology Server.

 45

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-22 Sequence diagram of the Instance Removal use case.

Architectural Implications: None

Contracts

Name: requestInstanceRemoval(instance)
Responsibilities: Initiates the use case Instance Removal.
Crossed
References:

Use case Instance Removal.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The use case Instance Removal has been initiated.

Name: removeInstance(instance)
Responsibilities: Removes an instance from the Ontology Server.
Crossed
References:

Use case Instance Removal.

Notes:
Exceptions:
Preconditions: The user is logged in as a KW User.
Postconditions: The instance called instance is no longer in the Ontology Server.

4.5 Semantic Browsing

Description
This business use case allows the user (KW or Guest) to navigate through the KW semantic
portal. At the same time, it provides the appropriate views for each user and for each situation.
The diagram depicted in Figure 4-23 describes the operations carried out in the Semantic
Browsing function. As we said before, there are two actors: the KW User, and the Guest User.

The Semantic Browsing use case includes two more use cases: Semantic Navigation and
Semantic Visualization. Both of them use another two use cases from the Ontology Repository:
Instance Retrieval and Conceptualization Retrieval, in order to get the instances and concepts
from the ontologies implemented in the Ontology Server.

 46

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-23 Use case diagram of the Semantic Browsing use case.

4.5.1 Semantic Navigation
Description
With this use case the user (KW or Guest) is able to navigate semantically through the KW
portal by clicking on the hyperlinks. Hyperlinks represent instances, relations, concepts or
ontologies. This navigation will be restricted by the user’s permissions.

Flow of events
The flow of events of this use case is shown in Figure 4-24. When the user (Guest or KW)
clicks on a hyperlink, (s)he is actually giving to the KW portal the current view and the
requested action. Afterwards, the portal will look up the navigation model (which is a preloaded
ontology, so accessing the Ontology Server is unnecessary) and return to the user the destination
view.

Although we will explain it later in section 4.9, we must mention that the navigation model is
implemented as an ontology inside the Ontology Server. The concepts of this ontology are
views, and the user can go from one to another by means of “actions”. This way, when the KW
portal requests the destination view, all it has to provide are an origin view and a certain action.

 47

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-24 . Sequence diagram of the Semantic Navigation use case.

Architectural Implications
These functionalities will be provided by the KW portal. The navigation model must be loaded
during the KW semantic portal setup.

Contracts

Name: requestNavigation(originView, userAction)
Responsibilities: Requests to the KW portal the destination view, given an origin view and

a certain action.
Crossed
References:

Use case Semantic Navigation.

Notes:
Exceptions:
Preconditions:
Postconditions: The use case Semantic Navigation has been initiated.

Name: showGuestView(view)
Responsibilities: Shows a certain view to the Guest User.
Crossed
References:

Use case Semantic Navigation.

Notes:
Exceptions:
Preconditions:
Postconditions: A certain view has been shown to the Guest User.

Name: showKWView(view)
Responsibilities: Shows a certain view to the KW User.
Crossed
References:

Use case Semantic Navigation.

Notes:
Exceptions:
Preconditions: The user has logged in as a KW User.
Postconditions: A certain view has been shown to the KW User.

 48

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.5.2 Semantic Visualization
Description
This use case provides the appropriate views for each user and for each situation, that is,
depending on the user’s permissions and its situation in the current navigation model.

The diagram depicted in Figure 4-25 describes the Semantic Visualization use case. As we can
see, there are two types of Semantic Visualization: Guest Visualization (for Guest Users) and
KW Visualization (for KW Users).

Figure 4-25 Use case diagram of the Visualization use case.

The Semantic Visualization also uses six use cases: Conceptualization Retrieval and Instance
Retrieval (both from Ontology Repository) to get the visualization models, Retrieve Permissions
(from the Permission Management use case inside the Administration business use case) to get
the user permissions, Retrieve Instance Description (from the Instance Description use case
inside the Administration business use case) to get the instance descriptions, and finally,
Retrieve Order Of Attributes (from the Attribute Ordering use case inside the Administration
business use case) to get the order of the instance attributes.

Flow of events
The flow of events of this use case is depicted in Figure 4-26. In this diagram we can see that
the user requests the semantic visualization of a view. Then, the KW portal access the Ontology
Server in order to obtain the info of all the ontology terms included in the view.
Finally, the portal will show that information to the user depending on its reading permissions.
Although the flow of events is the same for both kind of users, each one of them will use a
different use case: while a Guest User will use the Guest Visualization, a KW User will use the
KW Visualization.

 49

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-26 Sequence diagram of the Semantic Visualization use case.

Architectural Implications: None

Contracts

Name: requestVisualization(view)
Responsibilities: Requests to the KW semantic portal the semantic visualization of a view.
Crossed
References:

Use case Semantic Visualization.

Notes:
Exceptions:
Preconditions:
Postconditions: The semantic visualization of view has been requested to the KW

semantic portal.

Name: info := getTerm(term)
Responsibilities: Obtains (from the Ontology Server) and returns the information of a

certain term.
Crossed
References:

Use case Semantic Visualization.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable info contains the information of the term term.

 50

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: showRendererView(render)
Responsibilities: Shows to the user the semantic visualization of a view.
Crossed
References:

Use case Semantic Visualization.

Notes: � The portal will show the information to the user depending on his
reading permissions.

� Each user will be given a different visualization: Guest Visualization
for the Guest User, and KW Visualization for the KW User.

Exceptions:
Preconditions:
Postconditions: The visualization of a view has been shown to the user.

4.6 Semantic Searching

Description
This business use case implements the search engine that allows querying for information in one
or in all the ontologies of the portal. As we can see in Figure 4-27, the Semantic Searching
function is represented by two use cases: Search In Term Names and Search In Instance Values.
Both of them use another two use cases: Instance Retrieval and Conceptualization Retrieval
(from Ontology Repository in the Ontology Server) in order to get the concepts and instances
from the ontologies implemented in the Ontology Server.

Figure 4-27 Use case diagram of the Semantic Searching use case

4.6.1 Search In Term Names
Description
With this use case, the search engine looks for instances or concept names that contain the
keywords specified in the query.

Flow of events
The flow of events of this use case is depicted in Figure 4-28. First, the user (KW or Guest)
gives a list of terms. Then, the KW portal accesses the Ontology Server in order to get the
instances or concept names that match with the list of terms. Finally, the KW portal shows the
result of the search to the user, and he now can access (KW and Guest Users) or edit that info
(just KW Users).

 51

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-28 Sequence diagram of the Search In Term Names use case.

Architectural Implications: None

Contracts

Name: searchInTermNames(term[])
Responsibilities: Initiates the use case Search In Term Names.
Crossed
References:

Use case Search In Term Names.

Notes:
Exceptions: If no terms have been introduced, show a message explaining the error.
Preconditions:
Postconditions: The use case Search In Term Names has been initiated.

Name: matchingTerm[] := getMatchingTermNames(term[])
Responsibilities: Obtains (from the Ontology Server) and returns the terms that match with

the ones given.
Crossed
References:

Use case Search In Term Names.

Notes:
Exceptions: No results will be returned if terms are missing.
Preconditions:
Postconditions: The variable matchingTerm[] contains the list of terms that match with the

words contained in term[].

 52

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: showInTermsKWResult(view)
Responsibilities: Shows to the KW User the results of a conventional search, according to

the data given.
Crossed
References:

Use case Search In Term Names.

Notes:
Exceptions: If the list of terms is empty, show a message indicating that there has been

no matches.
Preconditions: The user has logged in as a KW User.
Postconditions: The results of the “in terms” search has been shown to the KW User,

giving him the option of accessing or editing them.

Name: showInTermsGuestResult(view)
Responsibilities: Shows to the Guest User the results of a conventional search, according to

the data given.
Crossed
References:

Use case Search In Term Names.

Notes:
Exceptions: If the list of terms is empty, show a message indicating that there has been

no matches.
Preconditions:
Postconditions: The results of the “in terms” search has been shown to the Guest User,

giving him just the option of accessing them.

4.6.2 Search In Instance Values
Description
The KW portal provides an advanced search function by means of a query form. The fields to be
filled in the query form are attributes and relations taken from the ontology we are querying.
Once the user introduces the values he is looking for, the search engine returns the instances that
satisfy the conditions imposed in the attributes values specified in the form.

Flow of events
The flow of events of this use case is depicted in Figure 4-29. First, the KW portal gets the list
of ontologies from the Ontology Server, with which he creates the initial advanced search form,
showing it then to the user (Guest or KW). The user selects the ontology and the KW portal
accesses again the Ontology Server in order to get its general attributes. This info composes the
advanced search form, which now can be filled by the user on his own. Finally, the KW portal
gets the matching terms from the Ontology Server and delivers the results to the user, so he can
access (Guest and KW Users) or edit them (just KW Users).

 53

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-29 Sequence diagram of the Search In Instance Values use case.

Architectural Implications: None

Contracts

Name: searchInInstanceValues()
Responsibilities: Initiates the use case Search In Instance Values.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions:
Postconditions: The use case Search In Instance Values has been initiated.

 54

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: ontology[] := getOntologyList()
Responsibilities: Obtains (from the Ontology Server) and returns the list containing the

names of all the ontologies stored in the Ontology Server.
Crossed
References:

Use case Add Ontology Publication.
Use case Remove Ontology Publication.
Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable ontology[] contains the list of the names of all the ontologies

of the Ontology Server.

Name: showInitialAdvancedSearchForm(ontology[])
Responsibilities: Shows the form with the list of ontologies, from which the user should

select one of them.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions: If the list is empty, show a message explaining that there are no ontologies

stored in the Ontology Server.
Preconditions:
Postconditions: The advanced search form with the list of the ontologies has been shown

to the user.

Name: retrieveOntologyAttributes(ontology)
Responsibilities: Requests to the KW portal the attributes of an ontology.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions:
Postconditions: The attributes of ontology has been requested to the KW portal.

Name: attribute[] := getOntologyAttributes(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the list of the attributes of

an ontology.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable attribute[] contains all the attributes of the ontology

ontology.

Name: showAdvancedSearchForm(attribute[])
Responsibilities: Shows to the user the form containing the fields in blank related to the

attributes of an ontology.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions: If the list is empty, show a message explaining that the ontology has no

attributes.
Preconditions:
Postconditions: The form (with the fields in blank) related to the attributes of an ontology

has been shown to the user.

 55

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: fillAdvancedSearchForm(value[])
Responsibilities: Reports to the KW portal the values of the attributes to be searched in the

Ontology Server.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions:
Postconditions: The advanced search form has been filled and its values has been reported

to the KW portal.

Name: term[] := getAdvancedMatchingTerms(ontology,value[])
Responsibilities: Obtains (from the Ontology Server) and returns the terms of an ontology

that match with the values of the attributes given.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable term[] contains the list of the terms of the ontology ontology

that match with the values of the attributes represented in value[].

Name: showKWSearchResults(term[])
Responsibilities: Shows to the KW User the results of a search, according to the data given.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions: If the list is empty, show a message indicating that there has been no

matches.
Preconditions: The user has logged in as a KW User.
Postconditions: The results of the search has been shown to the KW User, giving him/her

the option of accessing or editing them.

Name: showGuestSearchResults(term[])
Responsibilities: Shows to the Guest User the results of a search, due to the data given.
Crossed
References:

Use case Search In Instance Values.

Notes:
Exceptions: If the list is empty, show a message indicating that there has been no

matches.
Preconditions:
Postconditions: The results of the search has been shown to the Guest User, giving him

just the option of accessing them.

 56

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.7 Semantic Content Visualization

This business use case allows a Software Agent to obtain the semantic visualization of a concept
or instance in a certain semantic web language (OWL or RDF).

4.7.1 Content Generation in Semantic Web Languages
Description
This use case allows a Software Agent to obtain the semantic visualization of a concept or
instance in a certain semantic web language. At this point, there are two languages supported by
the KW semantic portal: OWL [Dean and Schreiber, 2003] and RDF [Lassila and Swick, 1999].
Therefore, as we can see in Figure 4-30, the Content Generation in Semantic Web Languages
function breaks down in two use cases: OWL Translation and RDF(S) Translation.

Figure 4-30 Use case diagram of the Content Generation in

Semantic Web Languages use case

4.7.1.1 OWL Translation
Description
With this use case, the user can get OWL code of concepts and instances, for what it is divided
in two more use cases: the OWL Ontology Translation and the OWL Instance Translation.
They are clearly explained in sections 4.7.1.1.1 and 4.7.1.1.2 respectively. Both of them use
Export OWL (from the Ontology Repository).

4.7.1.1.1 OWL Ontology Translation

Flow of events
The flow of events for this use case is shown in Figure 4-31. When the Software Agent requests
the OWL visualization of an ontology, the KW portal imports it from the Ontology Server and
returns the code to the Software Agent.

 57

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-31 Sequence diagram of the OWL Ontology Translation use case.

Architectural Implications: None

Contracts

Name: requestOWLOntologyTranslation(ontology)
Responsibilities: Requests the OWL code of an ontology.
Crossed
References:

Use case OWL Ontology Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The OWL code of the ontology ontology has been requested to the KW

portal.

Name: OWLCode := importOWLOntologyTranslation(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the OWL code of an

ontology.
Crossed
References:

Use case OWL Ontology Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable OWLCode contains the OWL code of ontology.

Name: giveOWLTranslation(OWLCode)
Responsibilities: Gives a certain OWL code to the user.
Crossed
References:

Use case OWL Ontology Translation.
Use case OWL Instance Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The OWL code contained in the variable has been shown to the user.

 58

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.7.1.1.2 OWL Instance Translation

Flow of events
The flow of events for this use case is shown in Figure 4-32. When the Software Agent requests
presenting a list of instances in OWL, the KW portal imports them from the Ontology Server
and returns the code to the Software Agent.

Figure 4-32 Sequence diagram of the OWL Instance Translation use case.

Architectural Implications: None

Contracts

Name: requestOWLInstanceTranslation(instance[])
Responsibilities: Requests the RDF code of a list of instances that follows an OWL

ontology.
Crossed
References:

Use case OWL Instance Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The RDF code of the list of instances has been requested to the KW portal.

Name: OWLCode := exportOWLInstanceTranslation(instance[])
Responsibilities: Obtains (from the Ontology Server) and returns the OWL code of a list of

instances.
Crossed
References:

Use case OWL Instance Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable OWLCode contains the OWL code of the list of instances.

Name: giveOWLTranslation(RDFCode)
Responsibilities: Gives a certain RDF code to the user.
Crossed
References:

Use case OWL Ontology Translation.
Use case OWL Instance Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The RDF code contained in the variable has been shown to the user.

 59

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.7.1.2 RDF(S) Translation
Description
With this other use case, users can get the RDF(S) code for ontology concepts and instances.
Therefore, there are two use cases that implement the two functionalities. As we saw in Figure
4-30, both use another use case from the Ontology Repository: Export RDFS.

4.7.1.2.1 RDFS Ontology Visualization

Flow of events
The flow of events of this use case is shown in Figure 4-33. When the Software Agent requests
an RDFS code, the KW portal imports it from the Ontology Server and returns the code to the
Software Agent.

Figure 4-33 Sequence diagram of the RDFS Ontology Translation use case.

Architectural Implications: None

Contracts

Name: requestRDFSOntologyTranslation(ontology)
Responsibilities: Requests the RDF code of an ontology.
Crossed
References:

Use case RDFS Ontology Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The RDFS code of the ontology ontology has been requested to the KW

portal.

Name: RDFSCode := exportRDFSOntologyTranslation(ontology)
Responsibilities: Obtains (from the Ontology Server) and returns the RDFS code of an

ontology.
Crossed
References:

Use case RDFS Ontology Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable RDFSCode contains the RDF code of ontology.

 60

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: giveRDFSTranslation(RDFSCode)
Responsibilities: Gives a certain RDFS code to the user.
Crossed
References:

Use case RDFS Ontology Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The RDFS code contained in the variable has been shown to the user.

4.7.1.2.2 RDF Instance Translation

Flow of events
The flow of events for this use case is shown in Figure 4-34. When the Software Agent requests
the RDF visualization of an instance, the KW portal imports it from the Ontology Server and
returns the code to the Software Agent.

Figure 4-34 Sequence diagram of the RDF Instance Translation use case.

Architectural Implications: None

Contracts

Name: requestRDFInstanceTranslation(instance[])
Responsibilities: Requests the RDF code of a list of instances.
Crossed
References:

Use case RDF Instance Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The RDF code of the list of instances has been requested to the KW portal.

Name: RDFCode := exportRDFInstanceTranslation(instance[])
Responsibilities: Obtains (from the Ontology Server) and returns the RDFS code of a list of

instances.
Crossed
References:

Use case RDF Instance Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The variable RDFCode contains the RDF code of the list of instances.

 61

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: giveRDFTranslation (RDFCode)
Responsibilities: Gives a certain RDF code to the user.
Crossed
References:

Use case RDF Instance Translation.

Notes:
Exceptions:
Preconditions:
Postconditions: The RDF code contained in the variable has been shown to the user.

4.8 Interoperability

Description
The Interoperability use case provides functions for exporting internal content and importing
data from an External Semantic Information Source. Both functionalities have two types of
execution: batch mode and runtime mode. Batch mode executes iteratively at the frequency
indicated by the user. Runtime mode executes just once, at the moment of the request. As we
see in Figure 4-35, there are two use cases that represents the two functionalities, and will be
explained in sections 4.8.1 and 4.8.2.

First, we have the Import Resource use case, which breaks down in three: Import FOAF, Import
Ontoweb, and Import BibTeX . All of them use the External Semantic Information Source (from
where the data should be imported), and the Import Ontology use case from the Ontology
Repository. The only actor with permission for importing resources is the Portal Administrator.

Then, there is the Export Content, which breaks down in three use cases: Export FOAF, Export
Ontoweb and Export BibTeX. It also uses two use cases from the Ontology Repository: Export
OWL and Export RDF(S). Both KW Users and Guest Users are capable of exporting content.

Given that the KW semantic portal can import/export content from/to Ontoweb Portal, FOAF,
and BibTeX Resources, there will be three kinds of wrappers, one for each one of them.

Figure 4-35 Use case diagram of the Interoperability use case.

 62

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.8.1 Import Resource
Description
With this use case, the user is capable of importing an external resource. The Portal
Administrator will provide the location of the external resource and the import mode. If this is
batch mode, the user should also provide the frequency of the import. Then, the appropriate
wrapper will translate the data (from Ontoweb, FOAF or BibTeX) to an ontology that follows
the WebODE Knowledge Representation Model and use the Import Ontology services if needed
(in case of RDF(S) and OWL external resources).As we see in Figure 4-35, it uses the Ontology
Management use case in order to retrieve concepts and instances from the Ontology Server.

Flow of events
The flow of events of this use case is depicted in Figure 4-36. First, the Portal Administrator
initiates the importation by adding an external resource to the KW portal. He provides the
location of that resource, the import mode (batch or runtime) and the wrapper to be used in the
translation. If the user has selected batch mode, the KW Portal will import the data at the
frequency provided. If he has selected runtime mode, the portal will import just once, in the
moment of the request.

The real importation is made by the KW portal, as we see in the second operation, in which it
retrieves the data from the External Semantic Information Source. Then, internally, the wrapper
will translate it into an ontology that follows the WebODE Knowledge Representation Model.

Figure 4-36 Sequence diagram of the Import Resource use case.

Architectural Implications
The importation on batch mode implies to create a scheduler of the tasks to be imported.

Contracts
Name: addExternalResouce(location, [frequency | runtime], wrapper)
Responsibilities: Adds an external resource to the KW portal, providing its location, the

import mode (batch or runtime) and the wrapper to be used in the
translation.

Crossed
References:

Use case Import Resource.

Notes:
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The external resource (from location) has been added to the KW portal, in

batch or runtime mode, and using the wrapper wrapper for the translation.

 63

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: resource := retrieveExternalResource()
Responsibilities: Retrieves the data from an External Semantic Information Source.
Crossed
References:

Use case Import Resource.

Notes: � If batch mode, this operation will execute with the frequency
indicated.

� If runtime mode, this operation will execute just at this moment.
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable resource contains the data of the External Semantic

Information Source.

Name: import(ontology, resource)
Responsibilities: Imports a resource from an ontology of the Ontology Server.
Crossed
References:

Use case Import Resource.

Notes: � If batch mode, this operation will execute with the frequency
indicated.

� If runtime mode, this operation will execute just at this moment.
Exceptions:
Preconditions: The user is logged in as a Portal Administrator.
Postconditions: The variable resource contains the resource imported from the ontology

ontology.

4.8.2 Export Content
Description
With this use case, the Guest User is capable of exporting a certain content to the outside. The
Guest User will provide the location of the internal resource and the export mode. If this is
batch mode, the Guest User should also provide the frequency of the export. Then, the
appropriate wrapper will translate the data (from an ontology that follows the WebODE
Knowledge Representation Model) to Ontoweb, FOAF or BibTeX formats.

Flow of events
The flow of events of this use case is quite simple, as we see in Figure 4-37. There is just one
operation, initiated by the KW User or by the Guest User, that requests to export internal
content, in batch or runtime mode, and using a certain wrapper for the translation. If the user has
selected batch mode, the KW portal will export the data at the frequency provided. If he has
selected runtime mode, the portal will export just once, in the moment of the request. Therefore,
the wrapper will internally translate the internal content to the supported language.

It is important to mention the fact that the KW portal does not interact here with an external
actor, it just supplies information (keeping it internally in a certain language) that may be
retrieved by somebody external.

 64

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-37 Sequence diagram of the Export Content use case.

Architectural Implications: None

Contracts

Name: exportInternalContent(location, [frequency | runtime], wrapper)
Responsibilities: Requests the export of internal content, in batch or runtime mode, and

using a certain wrapper for the translation.
Crossed
References:

Use case Export Content.

Notes: If the user (KW or Guest) has selected batch mode, the KW portal will
take frequency as the frecuency of the execution.

Exceptions:
Preconditions:
Postconditions: The KW portal has exported an internal content (from location) in batch

or runtime mode, and using the wrapper wrapper for the translation.

4.9 Semantic Navigation Model Management
Description
The Semantic Navigation Model Management use case allows the Web Designer to manage the
navigation models. A navigation model is implemented as an ontology inside the Ontology
Server. It may be seen as an state diagram, in which the states are represented by concepts of the
ontology (which actually are views), and the transitions between states are defined by relations
between concepts (which actually are actions between different views). This way, each view has
a name, description, precondition to be accomplished to retrieve the view and its location
(URL). All these attributes are represented as concept attributes (class attributes) of the views.

The Semantic Navigation Model Management provides the following functionalities: add,
update and remove a navigation model. As we can see in Figure 4-38, the Semantic Navigation
Model Management only uses another use case, Conceptualization Management from the
Ontology Repository.

 65

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-38 Use case diagram of the Semantic Navigation Model Management use case.

As we said before, this use case is in charge of managing the navigation models implemented in
the KW portal. A navigation model allows the user to navigate correctly through the portal. It is
important to mention that we have decided to implement the navigation model together with all
its views, so we have also modelled the navigation model as an ontology which is stored inside
the Ontology Server. This way, changes to be done to any navigation model will mean accessing
to the Ontology Server to modify the corresponding ontology.

Flow of events
The flow of events of this use case is specified by the sequence diagram depicted in Figure 4-
39. There we can see that the Web Designer can decide whether to create, update or remove a
navigation model.

Therefore, when creating a navigation model, the KW semantic portal must access the Ontology
Server in order to create a new ontology, and the concepts and relations indicated by the user as
values.

The same happens when updating a navigation model. The KW Portal must access the Ontology
Server in order to update the name of an existing ontology, or its concepts and relations as
indicated by the values provided by the Web Designer.

Finally, when the Web Designer decides to remove a navigation model, the only thing the KW
portal must do is remove the ontology from the Ontology Server.

 66

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Figure 4-39 Sequence diagram of the Semantic Navigation Model Management use case.

Architectural Implications: None

Contracts

Name: createNavigation(navOntologyName, value[])
Responsibilities: Creates a new navigation model in the KW portal.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes:
Exceptions: If there is already a navigation model with that name, show a message

explaining the error.
Preconditions:
Postconditions: A new navigation model called navOntologyName has been created in the

KW portal with the data contained in value[].

Name: createOntology(navOntologyName)
Responsibilities: Creates an ontology in the Ontology Server.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes: The navigation model is implemented as an ontology inside the Ontology
Server.

Exceptions: If there is already an ontology with that name in the Ontology Server,
show a message explaining the error.

Preconditions:
Postconditions: A new ontology called navOntologyName has been created in the

Ontology Server.

 67

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: createConcept(navOntologyName, conceptName)
Responsibilities: Creates a new concept in a certain ontology of the Ontology Server.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes: The navigation model is implemented as an ontology inside the Ontology
Server.

Exceptions: If there is already a concept with that name in that ontology, show a
message explaining the error.

Preconditions:
Postconditions: A concept called conceptName has been created in the ontology

navOntologyName.

Name: createRelation(navOntologyName, relName, originConcept,

destinationConcept)
Responsibilities: Creates a new relation in a certain ontology of the Ontology Server.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes: The navigation model is implemented as an ontology inside the Ontology
Server.

Exceptions: If there is already a relation with that name in that ontology, show a
message explaining the error.

Preconditions:
Postconditions: A relation called relName has been created in the ontology

newOntologyName, from the concept originConcept to
destinationConcept.

Name: updateNavigation(navOntologyName, value[])
Responsibilities: Updates a navigation model in the Knowledge Web Portal.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes:
Exceptions:
Preconditions:
Postconditions: The navigation model navOntologyName has been updated in the KW

portal with the data contained in value[].

Name: updateOntology(navOntologyName)
Responsibilities: Updates an ontology in the Ontology Server.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes: The navigation model is implemented as an ontology inside the Ontology
Server.

Exceptions:
Preconditions:
Postconditions: The ontology navOntologyName has been updated.

 68

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

Name: updateConcept(navOntologyName, conceptName)
Responsibilities: Updates a concept in a certain ontology of the Ontology Server.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes: The navigation model is implemented as an ontology inside the Ontology
Server.

Exceptions:
Preconditions:
Postconditions: The concept called conceptName has been updated in the ontology

navOntologyName.

Name: updateRelation(navOntologyName, relName, conceptOrigin,

conceptDestination)
Responsibilities: Updates a relation in a certain ontology of the Ontology Server.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes: The navigation model is implemented as an ontology inside the Ontology
Server.

Exceptions:
Preconditions:
Postconditions: The relation called relName has been updated in the ontology

newOntologyName, from the concept originConcept to
destinationConcept.

Name: removeNavigation(navOntologyName)
Responsibilities: Removes a navigation model from the KW portal.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes:
Exceptions:
Preconditions:
Postconditions: The navigation model navOntologyName is no longer in the KW portal.

Name: removeOntology(navOntologyName)
Responsibilities: Removes an ontology from the Ontology Server.
Crossed
References:

Use case Semantic Navigation Model Management.

Notes: The navigation model is implemented as an ontology inside the Ontology
Server.

Exceptions:
Preconditions:
Postconditions: The ontology navOntologyName is no longer in the Ontology Server.

 69

Requirement Analysis Model D1.6.1: Portal Requirements and System Design

4.10 Web Designing
Description
As we see in Figure 4-40, there is only one actor interacting with this use case. It allows the
Web Designer to create views with his designing tools and deploy them manually in the KW
portal.

Figure 4-40 Use case diagram of the Web Designing use case

Therefore, ODESeW will not provide tools for the designing of views.

 70

Analysis D1.6.1: Portal Requirements and System Design

 71

5 Analysis

The Analysis activity is intended to obtain a high-level system architecture. The main functional
blocks and their interactions are identified on this phase. This phase is comprised of the
following activities:

� Integration Environment, for describing the platforms needed to run the KW

Semantic Portal.
� Software Architecture, for describing the main elements that comprise the software

architecture system.
� UML class and sequence diagrams, for detailing the sequence diagrams including the

identification of classes and their methods.

This section only contains the first two points of this phase: the integration environment (section
5.1) and the software architecture (section 5.2).

5.1 Integration environment

In this section we will describe the hardware and software platforms needed to run the KW
Semantic Portal.

5.1.1 Description of the target integration platform
The platform that will be used for the integration is the following:

• Hardware:
¾ Pentium IV 2.4 Ghz
¾ 512Mb of RAM

• Software:
¾ Windows 2000
¾ Professional. Service Pack 3
¾ J2SDK 1.4.1_031
¾ J2SDKEE 1.3.12

¾ Apache Ant 1.5.13

¾ AXIS4

¾ Resin 2.15

¾ Oracle 8.0.5
¾ Log4J 1.2.86

¾ JUnit 3.8.17

¾ ActivePerl 5.6.1 build for MSWin32-x86-multithread8

¾ Red Hat Linux 99

¾ WebODE

1http://java.sun.com/j2se/1.4.1/download.html
2http://java.sun.com/j2ee/1.3/download.html
3http://ant.apache.org/
4http://ws.apache.org/axis/
5http://www.caucho.com/download/index.xtp
6http://jakarta.apache.org/log4j/docs/index.html
7http://www.junit.org/index.htm
8http://www.activestate.com/Products/ActivePerl/
9http://www.redhat.com/

Analysis D1.6.1: Portal Requirements and System Design

 72

5.2 Software architecture

ODESeW has been built in the framework of WebODE, a scalable ontology engineering
workbench that gives support to the ontology building methodology METHONTOLOGY.

As shown in Figure 5-1, the KW semantic portal is one of the two main front-end applications
of the WebODE workbench. The other one is the WebODE ontology editor, which integrates all
the ontology editing and management functions of the platform.

Figure 5-1. KW Portal architecture

WebODE is platform-independent, since it is completely implemented in Java. To allow
scalability and easy extensibility, it is supported by an application server, so that services can be
easily created and integrated in the workbench by means of a management console. One
important advantage of using this application server is that it allows deciding which users or
user groups may access each of the services of the workbench.

The figure also shows the most relevant services currently available in the WebODE
workbench. The core of the WebODE’s ontology development services are: the cache,
consistency and axiom services, and the ontology access service (ODE API), which defines an
API for accessing WebODE ontologies. One of the main advantages of this architecture is that
these services can be accessed remotely from any other application or any other instance of the
WebODE workbench.

Furthermore, ontologies are stored in a relational database, so they can manage huge ontologies
quite efficiently. And it is also easily extensible, so that the database manager can be changed,
or any backend system can be plugged in the bottom of the architecture. Finally, WebODE also
provides backup management functions for the ontologies stored in the server.

The figure shows that the import, export and evaluation services are running on top of the
ontology access service. These services import ontologies from XML, RDF(S) and OWL, to
WebODE; and export ontologies from WebODE to XML, RDF(S) and OWL.

Once described the main characteristics of the WebODE workbench, we will proceed to
describe the services used by the ODESeW application. To implement ODESeW, we have built

Analysis D1.6.1: Portal Requirements and System Design

 73

three more services on top of the ODE API, as shown in the right of the figure: ODESearch,
permission and SeW.

• ODESearch allows querying the WebODE ontologies, by means of keywords or using the
attributes of the ontology concepts as templates, as will be explained in section 3.3.

• The permission service is in charge of managing security in the access to the concepts,

instances and attributes of the ontologies. It will manage both read and write access permissions
to the content stored.

• SeW gives support to the administration functions of the ODESeW application. It allows

selecting which ontologies will be published in the portal, which types of users can access it
(administrators, guest users, etc.), how instances in the ontology will be visualized in the portal,
etc. These functions are described in section 3.4.

There are many advantages of having built ODESeW on top of the WebODE workbench. First
of all, ODESeW can use any of the WebODE workbench services. For example, with the
ontology import services we can import other ontologies in the workbench, and these new
ontologies can be easily selected for publication in the KW semantic portal. Consequently, we
can create a complete new knowledge portal (including its Intranet and its Extranet) in a very
short period of time.

Another advantage is that we can edit any of the ontologies published with ODESeW using the
WebODE ontology editor, and observe at run-time the modifications in the knowledge portal,
which means that there is auto-synching of the portal with respect to the ontology.

6 Conclusions

In this deliverable we have presented the Business Model, the Requirement Analysis Model and
part of the Analysis phase of the Knowledge Web Semantic Portal
(http://knowledgeweb.semanticweb.org). In order to achieve these activities, we have followed
the Rational Unified Process methodology (RUP) [Kruchten, 99], defined in Section 2.

In the Business Model (Section 3) we have identified the actors that interact with the KW portal,
the business use cases that represent its functionalities and finally, the business object model, in
which we describe separately the ODESeW objects and the WebODE’s ones.

The Requirement Analysis Model (Section 4) defines the detailed requirement specification of
the ODESeW technology, according to the main groups of functions identified in the former
section.

Finally, in Section 5, we have carried out the first two points of the Analysis phase: the
integration environment and the software architecture.

http://knowledgeweb.semanticweb.org/

References D1.6.1: Portal Requirements and System Design

 74

7 References

[Annex I] Knowledge Web, Network of Excellence. Annex 1 “Description

of Work”. November, 2003
[Arpirez et al., 2001] Arpírez JC, Corcho O, Fernández-López M, Gómez-Pérez A.

WebODE: a Scalable Workbench for Ontological Engineering.
First International Conference on Knowledge Capture
(KCAP'01). ACM Press (1-58113-380-4). pp: 6-13. October
2001

[Arpirez et al., 2003] Arpírez J.C, Corcho O, Gomez-Pérez A, Fernández-López M
(2003) WebODE In A Nutshell. AI Magazine (Fall 2003), 24
(3) pp: 37-47

[Blázquez et al., 1998] Blázquez M, Fernández-López M, García-Pinar JM, Gómez-
Pérez A (1998) Building Ontologies at the Knowledge Level
using the Ontology Design Environment. In: Gaines BR,
Musen MA (eds) 11th International Workshop on Knowledge
Acquisition, Modeling and Management (KAW’98). Banff,
Canada, SHARE4:1–15

[Brickley and Guha, 2000] Brickley D, Guha R (2000) Resource Description Framework
(RDF) Schema Specification 1.0 Candidate Recommendation,
World Wide Web Consortium

[Corcho et al., 2003] O. Corcho, A. Gómez-Pérez, A. Lopez-Cima, V. López-
García, M.C. Suárez-Figueroa ODESeW. Automatic
Generation of Knowledge Portals for Intranets and Extranets.
2nd International Semantic Web Conference (ISWC2003)
Industrial Track. Sanibel Island, Florida, USA. October 2003.
The Semantic Web - ISWC 2003 (LNCS2870) pp: 802-817

[Dean and Schreiber, 2003] Dean M, Schreiber G (2003) OWL Web Ontology Language
Reference. W3C Working Draft.

[E. Valle, M. Brioschi, 204] Emanuele Della Valle, Maurizio Brioschi: Toward a
Framework for Semantic Organizational Information Portal.
ESWS 2004: 402-416

[F. Bellas et al., 2004] Fernando Bellas, Daniel Fernández and Abel Muiño. A flexible
framework for engineering "My" portals. 13th international
conference on World Wide Web 2004: 234 - 243

[Fernández et al., 1997] Fernández-López M, Gómez-Pérez A, Juristo N (1997)
METHONTOLOGY: From Ontological Art Towards
Ontological Engineering. Spring Symposium on Ontological
Engineering of AAAI. Stanford University, California, pp: 33–
40

[Fernández-López et al., 1999] Fernández-López M, Gómez-Pérez A, Pazos A, Pazos J (1999)
Building a Chemical Ontology Using Methontology and the
Ontology Design Environment. IEEE Intelligent Systems &
their applications 4(1) pp: 37–46

[Fluit et al., 2003] Fluit C, Sabou M, van Harmelen, F. (2003) Visualizing the
Semantic Web. Chapter 3: Ontology-based Information
Visualization, Springer-Verlag, pp: 36-37

[Gómez-Pérez et al., 1995] Gómez-Pérez A, Juristo N, Pazos J (1995) Evaluation and
assessment of knowledge sharing technology. In: Mars N (ed)
Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing (KBKS’95). University of Twente,
Enschede, The Netherlands. IOS Press, Amsterdam, The
Netherlands, pp: 289–296

[Gómez-Pérez et al., 2003] Gómez-Pérez A, Fernández-López M, Corcho O (2003)
Ontological Engineering Springer-Verlag. 2003

References D1.6.1: Portal Requirements and System Design

 75

[Gómez-Pérez, 1998] Gómez-Pérez A (1998) Knowledge Sharing and Reuse. In:
Liebowitz J (ed) Handbook of Expert Systems. CRC Chapter
10, Boca Raton, Florida

[J. Hartmann, Y. Sure, 2004] J. Hartmann and Y. Sure. An Infrastructure for Scalable,
Reliable Semantic Portals. In: IEEE - Intelligent Systems, pp.
58-65. IEEE, 2004.

[Kruchten, 1999] Kruchten Philippe (1999). The Rational Unified Process: An
Introduction. Englewood Cliffs, NJ: Prentice--Hall.

[Lassila and Swick, 1999] Lassila O, Swick R (1999) Resource Description Framework
(RDF) Model and Syntax Specification. W3C
Recommendation.

[R. Keller et al., 2004] Richard Keller, Daniel Berrios, Robert Carvalho, David Hall,
Stephen Rich, Ian Sturken, Keith Swanson, Shawn Wolfe.
SemanticOrganizer: A Customizable Semantic Repository for
Distributed NASA Project Teams. ISWC 2004: 767-781

[Rojas, 1998] Rojas MD (1998) Ontologías de iones monoatómicos en
variables físicos del medio ambiente. Proyecto Fin de Carrera.
Facultad de Informática, Universidad Politécnica de Madrid,
Madrid, Spain

[Y. Jin et al., 2003] Yuhui Jin, Stefan Decker, Gio Wiederhold. OntoWebber:
Building Web Sites Using Semantic Web Technologies.
Submitted to the Twelfth International World Wide Web
Conference, 20-24

[Y. Lei et al., 2004] Yuangui Lei, Enrico Motta, John Domingue: OntoWeaver-S:
Supporting the Design of Knowledge Portals. EKAW 2004:
216-230

	Introduction
	Software methodology for building the KW Semantic Portal: RU
	Rational Unified Process
	Business modelling
	Requirement analysis
	Analysis
	Design
	Implementation and testing
	Deployment and testing

	Business Model
	Global view of the KW Semantic Portal domain
	Actors
	Business Use Cases
	Business Object Model
	Ontology Repository Business Object Model
	ODESeW Business Object Model

	Requirement Analysis Model
	Ontology Repository
	Administration
	User Management
	Insert User
	Remove User
	Modify User

	Permission Management
	Reading Permission Management
	Modify Instance Reading Permission
	Modify Concept Reading Permission

	Modify Instance Writing Permission

	Ontology Publish Management
	Add Ontology Publication
	Remove Ontology Publication

	Attribute Ordering
	Set Order Of Attributes

	Short Instance Description
	Set Instance Description

	Logging
	Semantic Editing
	Instance Creation
	Instance Editing
	Instance Removal

	Semantic Browsing
	Semantic Navigation
	Semantic Visualization

	Semantic Searching
	Search In Term Names
	Search In Instance Values

	Semantic Content Visualization
	Content Generation in Semantic Web Languages
	OWL Translation
	OWL Ontology Translation
	OWL Instance Translation

	RDF(S) Translation
	RDFS Ontology Visualization
	RDF Instance Translation

	Interoperability
	Import Resource
	Export Content

	Semantic Navigation Model Management
	Web Designing

	Analysis
	Integration environment
	Description of the target integration platform

	Software architecture

	Conclusions
	References

