

D 1.2.5 Architecture of the Semantic Web
Framework v2

Raúl García-Castro (UPM)
Óscar Muñoz-García (UPM), M. Carmen Suárez-Figueroa (UPM), Asunción

Gómez-Pérez (UPM), Stefania Costache (L3S), Diana Maynard (USFD),
Stamatia Dasiopoulou (CERTH), Raúl Palma (UPM), Vit Novacek (NUIG),
Freddy Lécué (FT), Ying Ding (UIBK), Monika Kaczmarek (PUE), Ruzica

Piskac (UIBK), Dominik Zyskowski (PUE), Jérôme Euzenat (INRIA), Martin
Dzbor (OU), Lyndon Nixon (FU Berlin), Alain Léger (FT), Tomas Vitvar

(NUIG), Michal Zaremba (NUIG), Jens Hartmann (UKARL)

Abstract.
EU-IST Network of Excellence (NoE) FP6-507482 KWEB
Deliverable D1.2.5 (WP1.2)
This deliverable continues with the definition of the SWF and its architecture. This framework
contains the definition of the semantic-related components, the dependencies that exist between
these components, and the implementations of components that could be used.

Document Identifier: KWEB/2006/D1.2.5/v1.3
Class Deliverable: KWEB FP6-507482
Version: V1.3
Date: February 11th, 2008
State: Final
Distribution: Public

Copyright © 2008 The contributors

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 2

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of

the European Communities as project number IST-2004-507482.

University of Innsbruck (UIBK) – Coordinator
Institute of Computer Science,
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polythechnique Fédérale de Lausanne
(EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne.
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse, 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST - 655 avenue de l'Europe - Montbonnot
Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-
CERTH)
1st km Thermi – Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom.
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 3

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of
Computer Science, University of Manchester,
Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

University of Aberdeen (UNIABDN)
King’s College
AB24 3FX Aberdeen
United Kingdom
Contact person: Jeff Pan
E-mail address: jpan@csd.abdn.ac.uk

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 4

Work package participants

The following partners have taken an active part in the work leading to the elaboration of
this document, even if they might not have directly contributed to the writing of the
document:

France Telecom
Freie Universität Berlin
Institut National de Recherche en Informatique et en Automatique
National University of Ireland Galway
Learning Lab Lower Saxony
The Open University
Universidad Politécnica de Madrid
University of Innsbruck
University of Sheffield
Poznan University of Economics
Centre for Research and Technology-Hellas

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 5

Changes

Version Date Author Changes

0.1 22-06-2007 Raúl García-Castro First skeleton

0.2 24-07-2007 Raúl García-Castro Inserted the component implementations

0.3 25-07-2007 Raúl García-Castro, Óscar
Muñoz-García, Asunción

Gómez-Pérez

Introduction

0.4 1-08-2007 Óscar Muñoz-García Related Work section

0.5 5-08-2007 Raúl García-Castro, M. Carmen
Suárez-Figueroa, Óscar

Muñoz-García

Semantic Web Framework section

0.6 1-9-2007 Raúl García-Castro, Jérôme
Euzenat, Óscar Muñoz-García

Modified Ontology Engineering dimension

0.7 28-11-2007 Martin Dzbor, Óscar Muñoz-
García

Modified Ontology Customization dimension

0.8 1-12-2007 Óscar Muñoz-García, Raúl
García-Castro

Updated component implementations

0.9 8-12-2007 Óscar Muñoz-García, Lyndon
Nixon

Updated use cases

1.0 12-12-2007 Óscar Muñoz-García Inclusion of comments by Rosario Plaza

1.1 20-12-2007 Óscar Muñoz-García, Raúl
García-Castro

Inclusion of comments by the Quality Assessor
(Asunción Gómez-Pérez)

1.2 7-2-2008 Óscar Muñoz-García, Raúl
García-Castro

Inclusion of comments by the Quality Controller
(Lyndon Nixon)

1.3 11-2-2008 Óscar Muñoz-García, Raúl
García-Castro

Final version

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 6

Executive Summary
Developing Semantic Web applications is a difficult task for people outside the research
community. To ease the construction of Semantic Web Applications, in this deliverable
we provide a definition of the Semantic Web Framework, a structure in which Semantic
Web applications can be organised and developed.

The architecture of the Semantic Web Framework classifies the different types of
Semantic Web technologies according to their functionalities and represents these
technologies as independent components. This component-based framework contains the
definition of the semantic-related software components that can be used in the
development of Semantic Web applications, the dependencies that exist between these
components, and it also lists the existing software that implement the components.

This deliverable also represents the architecture of the Knowledge Web use cases
(described in D1.1.4 v1) using the Semantic Web Framework components.

The document, extends and replaces the deliverable D1.2.4 [1] improving the previous
version by:

• Identifying existing implementations of the components.

• Contrasting the definitions of the use cases with the systems developed using the
Semantic Web Framework dimensions and components.

• Refining the definition of the Semantic Web Framework dimensions and their
components.

 D 1.2.5: Architecture of the Semantic Web Framework

Contents

1 Introduction ... 1
2 Related Work ... 3

2.1 Component-based Software Development ... 3
2.2 Software Architectures and Frameworks.. 3
2.3 Semantic Web Applications.. 3
2.4 Semantic Web Application Architectures... 4

3 Semantic Web Framework.. 7
3.1 Design principles of the Semantic Web Framework .. 7
3.2 Definition and classification of the components... 8

4 Components of the Semantic Web Framework.. 10
4.1 Data and Metadata Management .. 13
4.2 Querying and Reasoning... 18
4.3 Ontology Engineering... 21
4.4 Ontology Customization ... 28
4.5 Ontology Evolution... 34
4.6 Ontology Instance Generation .. 37
4.7 Semantic Web Services... 42

5 Use Cases and the Semantic Web Framework... 50
5.1 Use Case 1. Recruitment from Worldwidejobs .. 50
5.2 Use Case 2. B2C portals from France Telecom.. 51
5.3 Use Case 3. News aggregation from Neofonie... 52
5.4 Use Case 4. Product lifecycle management from Semtation............................ 55
5.5 Use Case 5. Managing Knowledge at Trenitalia .. 57
5.6 Use Case 6. Integrated Access to Biological Data from Robotiker 58
5.7 Use Case 7. Semantic Web needs for the Petroleum Industry.......................... 59
5.8 Use Case 8. Hospital Information System from L&C Global 60

6 Conclusions and future work... 62
References...64
Appendix I Dependencies between the components of the Semantic Web
Framework... 66
Appendix II Dependencies between the use cases and the Semantic Web
Framework... 73
Appendix III Implementations of the Semantic Web Framework components 74

6.1 Data and Metadata Management .. 74
6.2 Querying and Reasoning... 82
6.3 Ontology Engineering... 85
6.4 Ontology Customization ... 102
6.5 Ontology Evolution... 108
6.6 Ontology Instance Generation .. 111
6.7 Semantic Web Services... 115

KWEB/2006/D1.2.5/v1.3 2/11/2008 7

 D 1.2.5: Architecture of the Semantic Web Framework

1 Introduction
Semantic Web technology is being used beyond the borders of the research world and is
reaching all kinds of users ranging from individuals to companies. When developing
Semantic Web applications, IT developers have to face several obstacles:

• IT developers do not know precisely the types of Semantic Web technologies and the
functionalities that Semantic Web technologies provide, nor do they know the
dependencies between them.

• For naive Semantic Web users, it is not easy to know how to use existing Semantic
Web technologies and how to reuse or include them when building Semantic Web
applications.

• It is not always known how Semantic Web technologies interoperate with other
Semantic Web technologies or with existing IT systems.

• They cannot accurately make decisions when developing Semantic Web applications
such as estimating the cost and resources needed when semantic capabilities are
included into legacy applications or when new Semantic Web applications are built
from scratch.

The Semantic Web Framework is intended to help Semantic Web application developers
to build Semantic Web applications quicker and better and to solve the obstacles
explained before. It is a reference framework that

• Describes the existing types of Semantic Web technologies, their functionalities, and
the dependencies between these technologies.

• Identifies existing implementations for each type of Semantic Web technologies.

• Facilitates technology reuse by providing specifications and guidelines.

• Shows how to achieve interoperability between Semantic Web technologies.

• Helps application developers to make decisions when developing Semantic Web
applications from scratch or when they introduce semantic into an application.

The first version of the Semantic Web Framework was presented in D1.2.4 [1], which
was elaborated from the requirements stated in D1.2.2 [2]. This first version included
initial definitions of the components that compose the Semantic Web Framework and the
description of the use cases according to the Semantic Web Framework made by the
deliverable authors. This deliverable extends and replaces the previous deliverable
(D.1.2.4 [1]) by:

• Identifying existing implementations of the components. In order to speed up the
construction of Semantic Web Applications, this deliverable identifies
implementations of the different components, taking into account existing

KWEB/2006/D1.2.5/v1.3 2/11/2008 1

 D 1.2.5: Architecture of the Semantic Web Framework

implementations in the Web and those in the Semantic Web Tools and Applications
Information Repository1 developed inside workpackage 1.4.

• Contrasting the definitions of the use cases with the systems developed. In order
to give recommendations for the Knowledge Web business use cases and to perform a
first validation of the Semantic Web Framework v1, the use cases described in D1.1.4
v1 [3] have been redefined using the components included in this version of the
deliverable.

• Refining the definition of the Semantic Web Framework components. The two
tasks above produced feedback that allowed us to update and complete the definition
and the dependencies of the Semantic Web Framework components.

This deliverable is structured as follows:

• Chapter 2 describes the related work about Component-based Software Development,
Software Architectures and Frameworks, Semantic Web Applications and Semantic
Web Application Architectures.

• Chapter 3 presents the Semantic Web Framework itself.

• Chapter 4 updates the definitions of the components of the Semantic Web Framework
v1 and their dependencies.

• Chapter 5 examines the semantic functionalities of the use cases according to the
Semantic Web Framework v2.

• Chapter 6 draws some conclusions and outlines future lines of this work.

• Appendix I show in tables the dependencies between all the components of the
Semantic Web Framework.

• Appendix II show in tables the dependencies between the use cases and the
components of the Semantic Web Framework.

• Appendix III includes the implementations found for the components described in
Chapter 3.

1 http://cgi.csc.liv.ac.uk/KWebToolsSurvey/

KWEB/2006/D1.2.5/v1.3 2/11/2008 2

http://cgi.csc.liv.ac.uk/KWebToolsSurvey/

 D 1.2.5: Architecture of the Semantic Web Framework

2 Related Work

2.1 Component-based Software Development
In Component-based Software Development, application developers reuse software
components already developed and tested in order to build their applications in a robust
and quick way. In this scenario, it is normally known the components interfaces or
contracts given by the components developers, but it is unknown the details about the
components implementation or the way the components were conceived to be used.

A software component is a software composition unit that specifies a set of interfaces and
a set of requirements. A software component can be composed of other components
independently in time and space [4].

Component-based systems have the following characteristics [5]:

• Interoperability. Components cooperate despite differences in language, interface,
and execution platform.

• Distribution. Components can be hosted in different machines in a network.

• Heterogeneity. Components can be executed in different platforms or operating
systems and written in different languages by different developers.

• Extensibility independence. The applications are modifiable and extensible allowing
the addition of new components.

• Dynamism. Applications can evolve by extending, extinguish, or substituting
components, or by reconfiguring the relationships between components.

2.2 Software Architectures and Frameworks
Software architecture is defined as the fundamental organization of a system embodied in
its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution [6].

The objectives of software architectures are 1) to understand and improve complex
application structures, 2) to reuse the application structure to solve similar problems, 3) to
plan the application evolution, 4) to analyse the application correction and the compliance
degree with respect to the initial requirements, and 5) to allow the study of some domain
specific parts.

A framework is a reusable design of all or part of a system that is represented by a set of
abstract classes and the way their instances interact [7]. Frameworks define a set of
components and their interfaces in an abstract way, establishing the interaction rules and
mechanisms between them. Frameworks are a kind of domain-specific software
architecture [8] that define the architectural style relating the components inside a system.

2.3 Semantic Web Applications
The Semantic Web is an extension of the current web, in which information is given
well-defined meaning, and which better enables computers and people to work in

KWEB/2006/D1.2.5/v1.3 2/11/2008 3

 D 1.2.5: Architecture of the Semantic Web Framework

cooperation [9]. Semantic Web Applications have been characterized by different
authors [10] and by events such as the Semantic Web Challenge2 with the following
features:

• Data is represented using formal descriptions.

• Semantic data is reused, manipulated and processed.

• Data sources are heterogeneous and are owned or controlled by different
organisations.

• Applications assume an open world (i.e. the information is never complete).

• Multiple natural languages are supported.

• RDF(S) and OWL, the open standards recommended by the W3C, are used.

In addition, Motta et al. define the features for a next generation of Semantic Web
Applications [10] as follows:

• Semantic data can be defined in terms of many different ontologies.

• Semantic Web Applications must scale in terms of the amount of data used and of
distributed components working together.

• Semantic Web Applications ought to embed Web 2.0 features.

In the Semantic Web, reuse appears not only at the data level, as shown above, but also at
the application level. Nowadays we can find much open software from a wide range of
sources that can be reused when building Semantic Web Applications. In the application
level, semantic software reuse follows three different approaches: a distributed services
approach, by integrating web service technology in their architectures; a shared memory
approach, by composing components that use a shared space of common memory to
communicate, as in the case of reusing libraries inside an application; and a mixed
approach, by combining the two other approaches.

2.4 Semantic Web Application Architectures
Mika et al. sketch a generic architecture of ontology-based applications (see Figure 1)
based in a call-and-return style and structured in three hierarchical layers [11]. The layers
involved are from bottom to top: ontology, middleware and application. The ontology
layer contains the components concerned with the creation and maintenance of the model
of the application; the middleware layer supplies common ontology-related services; and
the application layer builds on the ontology and related services to provide some kind of
ontology functionality to an end user. They follow the architectural styles classification
presented in [12].

2 http://iswc2007.semanticweb.org/callfor/SemanticWebChallenge.asp
KWEB/2006/D1.2.5/v1.3 2/11/2008 4

http://iswc2007.semanticweb.org/callfor/SemanticWebChallenge.asp

 D 1.2.5: Architecture of the Semantic Web Framework

Figure 1. A generic architecture of ontology-based applications taken from [11].

Thanh et al. [13] present a service oriented architecture (see Figure 2) also structured in
hierarchical layers: the data layer hosts any kind of data sources, including others
different from ontological sources; the logic layer includes application-specific services
that are implemented for a particular use case and operate on specific object models; the
presentation layer hosts presentation components that the user interacts with. They also
classify the components inside the logic layer into ontology services, ontology
engineering services and ontology usage services.

The Semantic Web Technology is composed of heterogeneous systems. Therefore, the
framework described in this document is an open system and is not divided in layers.
Some of the disadvantages of layered approaches are the difficulty in structuring some
systems in a layered fashion; performance considerations when high level functions
require close coupling to low level implementations; and the difficulty to find the right
level of abstraction, especially if existing systems cross several layers [12].

The main differences between the two architectures presented before and the Semantic
Web Framework is that the first identify some example components for illustrating their
approaches while in the Semantic Web Framework we have tried to exhaustively identify
the existing semantic components of Semantic Web applications. The 33 components
identified in the Semantic Web Framework cover 16 and 21 components identified in the
previous approaches. On the other hand, [11] and [13] do not identify the exhaustive list
of relationships and dependences between the components, nor do they list a set of
software implementations of the components.

KWEB/2006/D1.2.5/v1.3 2/11/2008 5

 D 1.2.5: Architecture of the Semantic Web Framework

Figure 2. A generic architecture taken from [13].

KWEB/2006/D1.2.5/v1.3 2/11/2008 6

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 7

3 Semantic Web Framework
In this deliverable, the Semantic Web Framework (SWF) is defined as a structure in
which Semantic Web applications can be organized and developed.

3.1 Design principles of the Semantic Web Framework
The Semantic Web Framework is guided by general design principles. These principles
state that the Semantic Web Framework should be as follows:

• Developer-oriented. To consider different audiences such as developers with low
expertise with Semantic Web technologies or ontology practitioners.

• Easy to understand. To facilitate the understanding and use of the Semantic Web
Framework, its components have been organised in dimensions according to the
major properties of the problem space that have significant variation over Semantic
Web technology.

• Inexpensive to adopt. To develop a Semantic Web application or to upgrade an
existing application with semantic capabilities should be easy and thus, the impact on
legacy systems to be enriched with semantics is minimized.

• Semantics focused. To describe only the components that provide semantic
functionalities and functionalities to manage semantics. Other components that deal
with communication, distribution, etc. are not taken into account to ease the
integration of the components of the Semantic Web Framework in other software
architectures.

• Component based. To define some specifications of these components that allow
different implementations of them, providing each of these components a basic
functionality.

• Evolving. To extend easily the Semantic Web Framework by inserting new
components or modifying the existing ones because the Semantic Web, and also its
technology, is continuously evolving.

The Semantic Web Framework has been defined as a component-based framework
because Semantic Web applications possess similar characteristics to those of
component-based systems described above: interoperability, distribution, heterogeneity,
extensibility independence, and dynamism.

Furthermore, component-based frameworks provide the following features that facilitate
software reuse [X14X]:

• Abstraction, to reduce and factor out details;

• Selection, to help developers locate, compare and select reusable software artefacts;

• Specialisation, to allow specialising generic artefacts; and

• Integration, to combine a collection of artefacts.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 8

According to the definition of software architecture presented in Section X2.2X, to define the
architecture of the Semantic Web Framework we need to identify its components and
their interaction.

In this deliverable, we focus on the identification of the components of the Semantic Web
Framework; on their classification, as stated below; and on the main interfaces of these
components with other components and with the environment. In a future work, we will
define a concrete specification of the interfaces, the patterns that describe the composition
of the components, and the restrictions when applying those patterns.

3.2 Definition and classification of the components
We follow the definition of component given by Szyperski [X4X] since a Semantic Web
Framework component is an autonomous and modular unit with well defined interfaces
that describes a service and performs a specific functionality. Such components can be
used either independently or together to develop applications for the Semantic Web.
Components in this sense can be divided into four types: services, program libraries,
applications, and protocols.

Components are usually defined by specifying some general information about them,
such as a natural language description, their interfaces, including the functionalities that
the component implements and those that it uses, and their contracts, which are
specifications added to the interface, and which establish the use and implementation
conditions [X4X].

In this version of the Semantic Web Framework, we do not describe the component
contracts, which will be defined in future works; we explicitly divide the interfaces into
the functionalities that a component implements and those that it uses. Therefore, each
component is defined by the following fields:

• Name. The name of the component.
• Description. A high-level description of the component.
• Functionalities provided. An enumeration of the functionalities that the component

provides, specifying for each functionality the type or types of interface that it
provides (user interface, programming interface, service interface, hardware interface,
etc.).

• Component dependencies. An enumeration of the functionalities required by the
component for working correctly and provided by other components.

To classify the components of the Semantic Web Framework, we have considered the
dimensions of an architecture as the major properties of the problem space that have
significant variation over the systems of concern to the architecture, in other words, the
groups of components that provide some specific support to the architecture. These
dimensions are subjective. In this deliverable we have classified the different components
according to the main functionalities that they provide. Furthermore, these dimensions are
not exhaustive.

The dimensions considered are the following:

• Data and metadata management. This dimension includes those components that
manage knowledge and data sources.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 9

• Querying and reasoning. This dimension includes those components that generate
and process queries.

• Ontology engineering. This dimension includes those components that provide
functionalities to develop and manage ontologies.

• Ontology customization. This dimension includes the components that customize
ontologies.

• Ontology evolution. This dimension includes those components that manage the
ontology evolution.

• Ontology instance generation. This dimension includes those components that
generate ontology instances.

• Semantic web services. This dimension includes those components that discover,
adapt/select, mediate, compose, choreograph, ground, and profile semantic web
services.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 10

4 Components of the Semantic Web Framework
XFigure 3X presents the components of the Semantic Web Framework that have been
identified from those currently available or under construction. The enumeration of
components is neither exhaustive nor complete, and is open to improvements and
extensions in future works.

In XFigure 3X, each dimension of the architecture is represented as a column and reflects
those components that provide a particular functionality to the architecture. The order of
the components or of the dimensions in the figure does not imply any precedence or
relation between them.

Figure 3. Components of the Semantic Web Framework v2.

Next a brief description of the components of the Semantic Web Framework v2 is shown.
This description will be extended in the subsections that deal with each dimension in this
section.

• Data and metadata management:
o Information directory manager component. This component provides

functionalities to handle query distribution, to manage a content provider
directory, to identify information providers from a query, and to handle the
storage and access to distributed ontologies and data.

o Ontology repository component. This component provides functionalities to
locally store and access ontologies and ontology instances.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 11

o Data repository component. This component provides functionalities to
locally store and access data and ontology annotated data.

o Alignment repository component. This component provides functionalities to
handle the storage and access to distributed alignments.

o Metadata registry component. This component provides functionalities to
locally store and access metadata information.

• Querying and reasoning:
o Query answering component. This component takes care of all the issues

related to the logical processing of a query by providing reasoning
functionalities to search results from a knowledge base.

o Semantic query processor component. This component takes care of all
issues related to the physical processing of a query, by providing
functionalities to manage query answering over ontologies in distributed
sources.

o Semantic query editor component. This component takes care of all the
issues related to the user interface.

• Ontology engineering:
o Ontology editor component. This component provides functionalities to

create and modify ontologies, ontology elements, and ontology
documentation.

o Ontology browser component. This component provides functionalities to
browse an ontology visually.

o Ontology evaluator component. This component provides functionalities to
evaluate ontologies, either their formal model or their content, in the different
phases of the ontology life cycle.

o Ontology learner component. This component provides functionalities to
acquire knowledge and generate ontologies of a given domain through some
kind of (semi)-automatic process.

o Ontology matcher component. This component provides functionalities to
match two ontologies and output some alignments.

• Ontology customisation:
o Ontology localization and profiling component. This component provides

functionalities to adapt an ontology according to some context or some user
profile.

o Ontology discovery and ranking component. This component provides
functionalities to find appropriate views, versions or sub-sets of ontologies,
and then to rank them according to some criterion.

o Ontology adaptation operators component. This component is in charge of
applying appropriate operators to the ontology in question, the result of which
is an ontology customized according to some criterion.

o Ontology view customisation component. This component is responsible for
enabling the user to change or amend a view on a particular ontology in order
to fit a particular purpose.

• Ontology evolution:
o Ontology versioner component. This component allows maintaining, storing

and managing different versions of an ontology.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 12

o Ontology evolution visualizer component. This component allows visualising
different versions of an ontology.

o Ontology evolution manager component. This component allows
maintaining, storing and managing different versions of an ontology, and
possibly visualising the versions within a broader context of complex
ontology evolution and development platform.

• Ontology instance generation:
o Instance editor component. This component provides functionalities to

manually create and modify instances of concepts and of relations between
them in existing ontologies.

o Manual annotation component. This component is in charge of the manual
and semi-automatic annotation of digital content documents (e.g. web pages)
with concepts in the ontology.

o Automatic annotation component. This component is in charge of the
automatic annotation of digital content (e.g. web pages) with concepts in the
ontology.

o Ontology populator component. This component provides functionalities to
automatically generate new instances in a given ontology from a data source.

• Semantic web services:
o Web service discoverer component. This component provides functionalities

to publish and search service registries, to control access to registries, and to
distribute and delegate requests to other registries.

o Web service selector component. After discovering a set of potentially useful
services, this component needs to check whether the services can actually
fulfil the user's concrete goal and under what conditions.

o Web service composer component. This component will be in charge of the
automatic composition of the web services in order to provide new value-
added web services.

o Web service choreography engine component. This component provides
functionalities to use the choreography descriptions of both the service
requester and provider to conduct the conversation between them.

o Web service process mediator component. This component provides
functionalities to reconcile the public process heterogeneity that can appear
during the invocation of web services.

o Web service grounding component. This component is responsible for the
communication between web services.

o Web service profiling component. This component provides functionalities to
create web service profiles based on their execution history.

o Web service registry component. This component provides functionalities to
register semantic web services.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 13

In the following subsections, component dependencies are represented graphically in the
following way: when one component depends on the functionalities of another, it is then
represented with an arrow that goes from the first component to the component that
provides the functionalities. Furthermore, different colours have been given to the
different components in order to facilitate the reading of the figures.

For example, XFigure 4X shows the dependence between the Ontology editor and the
Ontology repository components, where the Ontology editor component uses
functionalities from the Ontology repository component to access and store ontologies
and ontology elements.

Figure 4. Dependence between the Ontology editor and the Ontology repository components.

The table below summarizes the dependencies found between the different dimensions,
that is, if a component of a given dimension (A) depends on another component in other
dimension (B), then, there is a potential dependency from A to B. The dependencies of a
given dimension are shown in the rows, while the dimensions that are dependent on a
given dimension are shown in the columns. For example, as shown in row (3) the
ontology engineering dimension potentially requires components from the data and
metadata management, querying and reasoning and ontology customization dimension;
while the components in data and metadata management dimension are potentially
required by the rest of the dimensions, as shown in column (1).

 (1) (2) (3) (4) (5) (6) (7)
Data and metadata management (1) X
Querying and reasoning (2) X
Ontology engineering (3) X X X
Ontology customization (4) X
Ontology evolution (5) X
Ontology instance generation (6) X
Semantic web services (7) X X X

The next sections present the definition of the components for each of the dimensions;
Appendix I includes tables that show the dependencies between all the components of the
Semantic Web Framework.

4.1 Data and Metadata Management
This dimension includes those components that provide functionalities to manage
knowledge and data sources.

The basic dependencies of the components in this dimension are shown in XFigure 5X:

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 14

Figure 5. Dependencies of the components in the Data and metadata management dimension.

4.1.1 Information directory manager component
This component will be in charge of handling the distribution of a given query among the
data providers, managing a content provider directory, identifying relevant information
providers from a query and identifying provider self-descriptions, and handling the
storage and access to distributed ontologies and data, independent of the particular
representation formalism.

Functionalities provided

• It handles the distribution of a given query among the data providers.

• It supplies a unique mechanism for accessing different data and metadata (registry)
sources.

• It supplies a SAIL, which is a storage and inference layer for accessing and
synchronising different data and metadata (registry) repositories, and which also gets
involved in the distributed query answering.

• It consists of various local data repositories and annotated data and metadata
(registry) repositories that are synchronized with the help of a SAIL.

Component dependencies
This component uses

• The Data repository component to get access to the local data and annotated data
sources, especially for answering a query but also for normal management functions,
via an application interface.

• The Metadata registry component to get access to the local metadata repositories,
especially for query answering but also for normal management functions, via an
application interface.

• The Ontology matcher component (described below in the Ontology engineering
dimension) to manage query answering, using its data translation functionalities,
independent of the representational form of the data and metadata, via an application
interface.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 15

• The Ontology repository component to get access to the local ontologies descriptions,
especially for query answering but also for normal management functions, via an
application interface.

• The Alignment repository component to get access to the local alignments, especially
for query answering but also for normal management functions, via an application
interface.

4.1.2 Ontology repository component
The Ontology repository component provides functionalities to store and access
ontologies and ontology instances locally. Optionally, the ontology repository can be
distributed and, therefore, it will provide transparent access to ontologies and ontology
instances logically and physically distributed.

Functionalities provided

• Storage capabilities that
o Provide a defined protocol to access ontologies.
o Support standard ontology query languages
o Offer a virtual unique storage space
o Provide fault tolerance mechanisms by ensuring access to the system in the

case of a failure of the central server.
o Implement caching mechanisms to improve performance of resource retrieval.
o Manage change propagation automatically when an ontology is updated (i.e.

to ensure consistency of dependent artefacts e.g. dependent ontologies,
ontology instances, ontology metadata, etc.)

o Scale its resources without any performance decrease
o Allow access management to ontologies and ontology instances.

• Optionally, distributed storage capabilities that
o Allow access to ontologies and ontology instances resources transparently

from their location.
o Manage internally the physical location where the ontologies and ontology

instances are actually stored.
o Provide high availability of ontologies and ontology instances by

automatically distributing replicas, ensuring the consistency among them.
o Provide fault tolerance mechanisms by ensuring access to the system

regardless of whether any node of the distributed repository is temporarily
unavailable

Component dependencies
For this component to communicate with the other components that it might interact with,
it will send its requests and updates to the Information Directory Manager; any messages
that the component needs to receive, it will get them through the Information Directory
Manager.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 16

4.1.3 Data repository component
The Data repository component provides functionalities to store and access any type of
data (text, images, etc.) and ontology annotated data locally. Optionally, the data
repository can be distributed and, therefore, it will provide transparent access to data and
annotated data logically and physically distributed.

Functionalities provided

• Storage capabilities that
o Provide a defined protocol to access data resources.
o Offer a virtual unique storage space
o Provide fault tolerance mechanisms by ensuring access to the system in the

case of a failure of the central server.
o Implement caching mechanisms to improve performance of resource retrieval.
o Manage change propagation automatically when a data resource is updated

(i.e. to ensure consistency of dependent artefacts e.g. data annotations,
applications, related ontologies, etc.)

o Scale its resources without any performance decrease
o Allow access management to its resources

• Optionally, distributed storage capabilities that
o Allow access to data and data annotations resources transparently from their

location.
o Manage internally the physical location where the data and data annotations

are actually stored.
o Provide high availability of data and data annotations by automatically

distribute replicas, ensuring the consistency among them.
o Provide fault tolerance mechanisms by ensuring access to the system

regardless of whether any node of the distributed repository is temporarily
unavailable

Component dependencies
For this component to communicate with the other components that it might interact with,
it will send its requests and updates to the Information Directory Manager; any messages
that the component needs to receive, it will get them through the Information Directory
Manager.

4.1.4 Alignment repository component
This component will be in charge of providing functionalities for handling the storage
and access to distributed alignments.

Functionalities provided

• Stores different defined alignments.

• Provides access, via a protocol, to different alignments.

• Allows the different alignments to be published into this distributed repository.

Component dependencies

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 17

For this component to communicate with the other components that it might interact with,
it will send its requests and updates to the Information Directory Manager; any messages
that the component needs to receive, it will get them through the Information Directory
Manager.

4.1.5 Metadata registry component
The Metadata registry component provides functionalities to store and access metadata
information (e.g., ontology metadata) locally. Optionally, the registry can be distributed
and, therefore, it will provide transparent access to metadata information logically and
physically distributed.

Functionalities provided

• Storage capabilities that
o Provide a defined protocol to access metadata information.
o Offer a virtual unique storage space.
o Provide fault tolerance mechanisms by ensuring access to the system in the

case of a failure of the central server.
o Implement caching mechanisms to improve performance of metadata

information retrieval.
o Manage change propagation automatically when a metadata element is

updated (i.e. to ensure consistency of dependent artefacts e.g. related
ontologies.)

o Scale its resources without any performance decrease.
o Allow access management to metadata information.

• Optionally, distributed storage capabilities that
o Allow access to metadata information transparently from their location.
o Manage internally the physical location where the metadata information is

actually stored.
o Provide high availability of metadata information by automatically

distributing replicas, ensuring the consistency among them.
o Provide fault tolerance mechanisms by ensuring access to the system

regardless of whether any node of the distributed repository is temporarily
unavailable.

Component dependencies
For this component to communicate to the other components that it might interact with, it
will send its requests and updates to the Information Directory Manager; any messages
that the component needs to receive, it will get them through the Information Directory
Manager.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 18

4.1.6 Data and Metadata Management Implementations

The implementations of the Ontology repository component here considered are those
specialized in semantic web resources (i.e., ontologies, RDF schemas, etc.). They can be
classified in 2 different types: centralized or decentralized.

We considered implementations of the Data repository component as any collection of
digital data that is available to one or more entities (e.g. users, systems) for a variety of
purposes (e.g. learning, administrative processes, research, etc.) and that has the
characteristics proposed by Heery and Anderson [X26X]. Note that over time, data
repositories have been referred by other names (e.g. knowledge base, data library, digital
library, data warehouse) depending on its contents, purpose or capabilities.

Not so many implementations were found for the Alignment repository component since
this area is quite new in the research environment. Several other components of this kind
are under development but they have not yet been made publicly available. Besides, we
can easily see that the tools that were identified also incorporate an alignment tool, which
shows again that this area is very young and further refinements are expected.

Finally, even though we could find many Metadata registry implementations of general
purpose, we only considered those that are either specialized for ontologies or that can
store ontology metadata in some way.

4.1.7 Existing Implementations
The table below shows the implementations found for these dimensionsF

3
F:

Component # Implementations
Information
directory
manager

6 Aduna Metadata Server, Alvis, Beagle++, Gnowsis, Haystack, OWLIM

Ontology
repository

15 KAON2, Jena, Sesame, Ontology Server, RDF Server, Knowledge zone,
Onthology, OntoSelect, DAML Ontology Library, SchemaWeb,
ONTOSEARCH2, Protégé Ontologies Library, OntStore, RDFPeer, RDF2GO

Data
repository

3 DSpace, Lucene, Zebra

Alignment
repository

2 COMA++, Alignment API and Alignment Server

Metadata
registry

17 3store, AllegroGraph, Boca, Brahms, Hawk, The open metadata registry
(prototypes 1-3), OASIS ebXML Registry, Oyster, Oyster2, Kowari,
RDFGateway, RDF2GO, RDFStore, SemWeb, YARS

4.2 Querying and Reasoning
This dimension includes those components that provide functionalities to generate and
process queries.

3 Note that not all the implementations found for a certain component cover all the functionalities described
for the component. Identifying the degree of coverage of an implementation for a component is out of the
scope of this deliverable.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 19

The basic dependencies of the components in this dimension are shown in XFigure 6X:

Figure 6. Dependencies of the components of the Querying and reasoning dimension.

4.2.1 Query answering component
The Query answering component takes care of all the issues related to the logical
processing of a query by providing reasoning functionalities to search results from a
knowledge base [X15X].

Functionalities provided
The Query answering component provides the following main functionalities:

• Query consistency functionalities, which are in charge of checking whether a query is
satisfiable [X15X]. In particular, the ontology consistency functionalities will be able to
check whether the whole knowledge base is satisfiable.

• Query containment functionalities, which check whether the answer to a query is a
subset of the answer to another query by using the subsumption functionalities, which
check whether a concept is more general than another [X15X].

• Instance checking functionalities, which check whether an individual is an instance of
a particular concept (cf. [X15X], pg. 67).

• Query rewriting functionalities. The answer to a query can be a subset (view) of the
knowledge base. The scope of a query can be not the whole knowledge base but just a
view of it. Such a query can be seen as the cascade (intersection) of two queries, the
first of which being the one that retrieves the suitable view of the knowledge base and
the second, the proper query.

It can also provide the following functionalities:

• Checking if a query pattern matches an ontology. The Query answering component
returns a boolean value, which is true if the query pattern matches an ontology
schema.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 20

• Selecting ontology concepts that satisfy query constraints. The Query answering
component returns zero or more bindings of variables contained in the query. Each set
of bindings satisfies the query.

• Extracting ontology parts relevant to the particular query. The Query answering
component recreates and returns an ontology part (sub ontology) that matches the
query.

• Describing ontology concepts. The Query answering component returns all the
information about the given concept available within an ontology, including its
connections to the other ontology concepts.

• Restricting result number. The Query answering component allows the specification
of an upper bound on the number of query results returned.

Component dependencies
This component uses

• The Semantic query processor component through an application interface.

• The Information Directory Manager component as a mediator for accessing various
components, the Ontology repository component to access to knowledge bases or the
Data repository component to access instances.

4.2.2 Semantic query processor component
The Semantic query processor component takes care of all issues related to the physical
processing of a query, by providing functionalities to manage query answering over
ontologies in distributed sources. This involves (among other functions) translating
queries and their results from one ontology to another. The Semantic query processor will
have, as input, the results from the Query answering component. It will also merge results
from different information sources into a consistent unified result which can be presented
to the end user.

Functionalities provided
Other additional functionalities provided by this component are

• Identifying sources that contain information relevant to the query.

• Requesting information from the identified sources.

Component dependencies
This component uses

• The Query answering component in order to translate queries to the ontologies used
by distributed sources through an application interface. It uses this component
through an application interface in order to initiate query execution in remote sources
and to obtain query results.

• The Ontology repository and the Information Directory Manager components to
answer queries over ontologies in distributed sources and/or distributed information
sources.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 21

4.2.3 Semantic query editor component
The Semantic query editor component takes care of all issues related with the interface
with the user, by supporting a user in formulating a query.

Functionalities provided

• Supports the user in formulating a query.
• Provides a user-friendly query language.
• Provides a user-friendly representation of results.

Component dependencies
This component uses

• The Semantic query processor component to translate queries and their results from
the user-friendly format to the others and back again.

4.2.4 Querying and reasoning implementations
The most important conclusion that can be drawn for this dimension is that the
components that we have identified here are not always easily outlined and delimited in
real life implementations. Even so, we still feel that the identified components are correct,
since the logical procedure in answering a query matches the identified components.

4.2.5 Existing Implementations
Next table shows the implementations found for these dimensions:

Component # Implementations
Query answering 6 AJAX Client for SPARQL, Bor, Corese, KAONP2P, KAONWeb,

Oyster2
Semantic query processor 2 AeroText, Sesame
Semantic query editor 2 Ontogator, SemSearch

4.3 Ontology Engineering
This dimension includes those components that provide functionalities to develop and
manage ontologies.
The basic dependencies of the components in this dimension are shown in Figure 7:

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 22

Figure 7. Dependencies of the components in the Ontology engineering dimension.

4.3.1 Ontology editor component
The Ontology editor component provides functionalities to create and modify ontologies,
ontology elements, and ontology documentation. These functionalities include a single
element edition or a more advanced edition such as ontology pruning, extension or
specialization.

The Ontology editor component does not restrict the ontology edition to a specific
knowledge representation formalism or format, the restriction depends on the
implementation of the component.

Functionalities provided

• Ontology edition functionalities, to create and modify ontologies and ontology
elements. These functionalities are provided through a user interface.

• Ontology pruning functionalities, to remove elements from an ontology which are no
relevant to a given application domain [X15X]. These functionalities are provided
through a user interface.

• Ontology extension functionalities, to broaden the covered domain of an ontology by
extending its elements. These functionalities are provided through a user interface.

• Ontology specialization functionalities, to specialize ontology elements for a
particular domain [X16X]. These functionalities are provided through a user interface.

• Ontology documentation functionalities, to document ontologies and ontology
elements. These functionalities are provided through a user interface.

• Ontology browsing functionalities, to visually browse an ontology. While the
Ontology browser component also provides these functionalities, they are an integral

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 23

part of the Ontology editor component. These functionalities are provided through a
user interface.

Component dependencies
This component uses
• The Ontology repository component to access and store ontologies and ontology

elements through a programming interface.
• Optionally, the Semantic query processor component to check if an ontology is

satisfiable after performing changes through a programming interface.
• Optionally, the Ontology browser component to navigate through an ontology, to

insert, modify or document its elements, either through a user interface or through a
programming interface.

4.3.2 Ontology browser component
The Ontology browser component provides functionalities to visually browse an
ontology.

Functionalities provided

• Visual browsing functionalities to visually browse an ontology. These functionalities
are provided through a user interface.

Component dependencies
This component uses
• The Ontology repository component to access ontologies through a programming

interface.
• Optionally, the Ontology view customization component to visualize the ontology to

be browsed through a programming interface.

4.3.3 Ontology evaluator component
The Ontology evaluator component provides functionalities to evaluate ontologies, either
their formal model or their content, in the different phases of the ontology life cycle.

Functionalities provided

• Ontology evaluation functionalities, to make a technical judgment of the ontologies,
their associated software environments and documentation with regard to a frame of
reference during each phase and between phases of their life cycle [X17X]. These
functionalities can be provided through a user interface or a programming interface.

• Ontology verification functionalities, to ensure that the ontology implements correctly
the ontology requirements and competency questions, or that functions correctly in
the real world [X18X]. These functionalities can be provided through a user interface or a
programming interface.

• Ontology validation functionalities, to prove that the world model (if it exists and is
known) is compliant with the world modelled formally in the ontology [X18X]. These
functionalities can be provided through a user interface or a programming interface.

• Ontology assessment functionalities, to judge the understanding, usability, usefulness,
abstraction, quality and portability of the ontology from the user’s point of view [X18 X].

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 24

These functionalities can be provided through a user interface or a programming
interface.

• Ontology diagnosis functionalities, to identify the causes of errors in an ontology.
These functionalities can be provided through a user interface or a programming
interface.

Component dependencies
This component uses
• The Semantic query processor component using subsumption functionalities to decide

whether a concept is more general than another, classification functionalities to build
concept hierarchies, and ontology consistency functionalities to check if an ontology
is satisfiable, through a programming interface.

• The Ontology repository component to access ontologies through a programming
interface.

• Optionally, the Data repository component to access other sources such as linguistic
resources to help in the ontology evaluation through a programming interface.

4.3.4 Ontology learner component
The Ontology learner component provides functionalities to acquire knowledge and
generate ontologies of a given domain through some kind of (semi)-automatic process.

Functionalities provided

• Ontology learning functionalities, to derive ontologies (semi)-automatically from
natural language texts as well as semi-structured sources and databases by means of
machine learning and natural language analysis techniques [X15X]. These functionalities
can be provided through a user interface or a programming interface.

Component dependencies
This component uses
• The Ontology repository component to access ontologies through a programming

interface.
• The Data repository component to access data sources through a programming

interface.

4.3.5 Ontology matcher component
The Ontology matcher component provides functionalities to match two ontologies and
output some alignments. We can distinguish two main types of such systems: those that
provide only matching and those that directly use matching for processing another task
(merging, mediating, etc.).

Among the other types of differentiation are the requirement that a user drive the system
and the type of input required by the system.

Functionalities provided
The functions provided by theses systems, which here are called matchers, can be
numerous:

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 25

• Matcher: The ontology matcher will provide an alignment (set of correspondences)
from a list of two or more ontologies.

• Server: The server stores and loads alignments from persistent repositories such as a
file system, a database or a distributed repository.

• API: An API provides alignment manipulation such as trimming or format change.

• Editor: An editor provides the graphic representation and manipulation of the
alignments.

• Transformer: From one ontology written in a particular ontology language, the
Ontology transformer component generates an ontology in another language

• Merger: From an alignment between two ontologies to generate a new ontology that
contains the entities of both ontologies as well as the relationships between these
entities.

• Data translator: A data translator performs the translation of data according to an
alignment between a source ontology or data source with regard to which the data is
expressed and a target ontology to which it is translated.

• Mediator generation: A mediator generator generates a program able to transform
queries from one ontology or a data source to another ontology according to an
alignment between them and to transform the answers to the query with regard to the
same alignment.

So, we have recasted the modules of deliverable 1.2.4 into functions because they are
often tied to matchers.

Component dependencies
The dependencies of this component are mostly those of the Ontology API they use. They
are also sometimes related to some repository and reasoning mechanism (they relate to
some Ontology API). We mention them when they are applied in the description of the
systems.

The dependencies with components that are now identified as functions are presented
under that heading in the following.

4.3.6 Ontology engineering implementations
Ontology Editor

The Ontology editor component implementations (ontology editors from now on) can be
classified into 2 different types. The most common one is that of applications whose main
goal is ontology edition and the least frequent are ontology edition plugins of larger
applications.

Ontology editors dealing with one specific ontology have not been considered.

Some ontology editors provide other ontology engineering functionalities besides pure
ontology edition.

All the ontology editors are standalone or web applications that are accessed through user
interfaces. They access other component implementations using programming interfaces.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 26

Most of the ontology editors manage RDF(S), OWL, or both for knowledge
representation.

Although different ontology editors use different Ontology repository implementations,
most of them are able to access ontologies stored in a local file system and, in some
cases, remote ontologies stored in a web server.

Not all the implementations benefit from the reasoning capabilities of Semantic query
processor implementations. And, on the other hand, Ontology browser implementations
are only used by one implementation (Protégé). The rest of the implementations provide
themselves ontology browsing functionalities.

Ontology Browser
The Ontology browser component implementations (ontology browsers from now on) can
be classified into 3 different types: applications whose main goal is ontology browsing,
ontology browsing plugins of larger applications, and ontology development tools that
provide ontology browsing functionalities. In this section we do not consider
implementations of ontology development tools, as they are included in the
implementations of the Ontology editor component. Furthermore, ontology browsers that
only deal with one specific ontology have not been considered.

All the ontology browsers are standalone or web applications that are accessed through
user interfaces; they have ontology browsing as their only functionality, and access other
component implementations using programming interfaces.

Ontology browsers manage RDF(S), OWL, or both. Except in the case of the Protégé
plugins, which use Protégé as Ontology repository implementation, the rest of the
ontology browsers only access ontologies stored in files that are located on local file
systems, web servers, or both.

Ontology browsers do not use Ontology view customization components.

Ontology Evaluator
The Ontology evaluator component implementations (ontology evaluators from now on)
are either applications (standalone or web) or program libraries. In the case of program
libraries, usually one small application has been developed using the program library to
allow users to evaluate ontologies.

The implementations of the Semantic query processor component can be used to evaluate
ontologies using their subsumption, classification and consistency checking
functionalities. In this section we do not consider these implementations, as they are
included in the implementations of the Semantic query processor component.

All the ontology evaluators access other component implementations using programming
interfaces.

All the ontology evaluators manage RDF(S), OWL, or both for knowledge
representation.

Although different ontology evaluators use different Ontology repository
implementations most of them are able to access ontologies stored in a local file system
and, in some cases, remote ontologies stored in a web server.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 27

The implementations do not benefit from the reasoning capabilities of Semantic query
processor implementations, and Data repository implementations are only used by one
implementation (CLEANONTO).

Ontology Learner
The Ontology learner component implementations (ontology learners from now on) are
either standalone applications or program libraries. Some of these ontology learners are
part of ontology engineering environments that provide other functionalities.

All the ontology learners access other component implementations using programming
interfaces.

Most of the ontology learners manage RDF(S), OWL, or both for knowledge
representation.

Although different ontology editors use different Ontology repository implementations
most of them are able to access ontologies stored in a local file system and, in some
cases, remote ontologies stored in a web server. All the implementations use local file
systems as Data repository implementations.

Ontology Matcher
The Ontology matcher component implementations can be classified into 3 different
types: applications whose main goal is ontology browsing, ontology browsing plugins of
larger applications, and ontology development tools that provide ontology browsing
functionalities.

There are many ontology matchers available. A regularly updated list of such systems can
be found at Hhttp://www.ontologymatching.org/projects.htmlH.

A technical description of most of the systems below has been provided in Deliverable
1.2.2.2.1. A more systematic analysis of such systems has been provided in [X25X].

According to this last reference, we distinguish Ontology matchers, which are algorithms
for matching, from Alignment framework, which supports the whole alignment lifecycle.

It can be observed that there are many different tools that can provide ontology matching.
As far interoperability of these tools is concerned, they are very often tied to a particular
implementation of ontology API or editor, and they deliver heterogeneous formats.

Therefore, communication is difficult and often has to go through serialisation of the
alignments, i.e., printing and parsing.

Using a framework ensures the availability of many different functions under the same
hood, which avoids these printing and parsing cycles. These frameworks also often have
many different ways of interacting with them providing easier integration.

Some of these frameworks have sheltered various tools made by third parties (Alignment
API, Prompt). This is often a guarantee of openness and easier customisation. It is thus
largely advisable to use such tools unless specific requirements are at play.

4.3.7 Existing Implementations
The table below shows the implementations found for these dimensions:

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 28

Component # Implementations
Ontology
editor

23 Altova Semanticworks, DOODLE (Domain ontology rapid development
environment), DOE, DOME, Fenfire, Graphl, GrOWL, IBM Integrated Ontology
Development Toolkit, Infered, IsaViz, KAON OI Modeler, Linkfactory, Ontotrack,
Powl, Protégé, Rhodonite, SemTalk, SWOOP, Topbraid composer, WebODE,
DogmaModeler, ICOM

Ontology
browser

15 Brownsauce, BrowseRDF, Drve RDF Browser, Disco, Horus, Longwell, OINK,
RDF Gravity, Tabulator, Welkin, Jambalaya, Ontosphere 3D, OntoViz, OWLViz,
TGVizTab

Ontology
evaluator

7 ARP: Another RDF Parser, CLEANONTO, ConsVISor, Eyeball, ODEVal, OWL
API, Semantic Web RDF Library for C#/.NET

Ontology
learner

4 DOODLE (Domain ontology rapid development environment), KEA (Keyphrases
Extraction Algorithm), Text2Onto, TERMINAE

Ontology
matcher

29 AMV, AUTOMS, CMS, CtxMatch, eTuner/iMap/Glue/LSD, Falcon-AO, NOM,
QOM, APFEL, H-Match, LOM, MapOnto, MetaQuerier, MoA, OLA, S-Match,
SAMBO, Similarity Flooding, ToMAS/Clio, OntoBuilder, OntoMerge, Aligment
API & Aligment server, COMA & COMA++, FOAM, PROMPT, Rondo,
Chimaera, MAFRA, Mapping Discovery

4.4 Ontology Customization
This dimension includes the components that provide functionalities to customize and
tailor ontologies. In general, the ontology customization and personalization tasks attempt
to address the problems that arise as ontologies become larger and more complex. In
principle, we distinguish two types of customization for the purposes of this deliverable:

• The customization of the view on an ontology, e.g. when exploring a network of
ontologies. This customization is more or less ad-hoc and the results of the
customization may be discarded once the user proceeds with exploring the ontology.
This customization when exploring an ontology tries to reduce the complexity of an
ontology and only shows parts which are relevant to the current user.

• The customization for the purposes of reusing ontologies and integrating them into a
network with other ontologies according to specific needs (e.g. during the ontology
deployment, reasoning or design phases). Here the results of the customization will
often be integrated into the edited ontology; and so the nature of these results is more
persistent.

The basic dependencies of the components in this dimension are shown in XFigure 8X:

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 29

Figure 8. Dependencies of the components in the Ontology customization dimension.

4.4.1 Ontology localization and profiling component
This component is in charge of providing functionalities to adapt an ontology according
to some context (e.g. communal or individual preferences, language, expertise, etc.) or
some user profile.

Customizing/personalizing ontologies via adjusting the views on them based on the user
profiles can be seen as bringing an ontology in the context of a particular user.
Consequently, user profiles and preferences can be seen as contextual modifiers. There
are several ways of constructing and using a user profile for this purpose. User profiles
are seen here as a mode of describing some user properties or characteristics and thus, as
a representation of the context of a user. Such a profile may, for example, provide
information about the role of a user, the domain of interest or the current task.

When talking about the user, it is important to mention that we can decide to have an
abstract user – this would, in principle, correspond to any member of a group of users in
a particular situation. The same user can belong to different groups depending on the task
at hand. A user profile can be constructed in different ways depending on the data it
includes and the methods used for its construction: manual, semi-automated and fully
automated. While manual methods have no problem with providing benefit to the new
users, automatic methods can only make guesses. Hence, automated methods may
sometimes provide very limited or no benefit to the new user, while they are waiting to
collect enough data for automatically constructing a reasonable user profile. On the other
hand, one of the important dimensions of the user profile is also its adaptation to the
changes over time, which may be important to some applications (e.g., recommending
clothes or movies to the user). The adaptation requires updating of the user profile, which
is easier if we have automatic methods for profiling.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 30

Functionalities provided

• Manual construction and activation of user profiles

o Acquisition of preferences from the user

o Acquisition of information about the user (interests, demographic, …)

• Semi-automated construction and adaptation of user profiles

o Extension of profiling dimensions (for subsequent manual acquisition)

o Addition of new profiling dimensions (for manual acquisition)

o Monitoring of the user alongside defined profiling dimensions

o Machine learning with subsequent user feedback

• Automated acquisition and management of user profiles

o Case-based profile learning and adaptation

o Statistical profile learning and adaptation

o Explicit and/or implicit feedback facilities

User profiles can be used in the analysis of the users, providing some insights into the
population that use the system, but more significantly, they may be used to change some
action/interface of the system; i.e. they provide us the opportunity to influence user’s
further actions based on his or her current profile. An example of how user profiling may
be used in the context of ontological engineering can be found in [X19X]. The user profile is
then constructed in interaction with the user by grouping documents into a hierarchy
based on their content similarity. The approach is based on the previously proposed idea
of capturing the interest of the user in a topic hierarchy automatically constructed from
the web documents visited by the user. The same idea was also used in an automatic user
profiling to enable the interest-focused visualization of the ontologies [X20X].

Component dependencies
This component uses
• The Ontology repository component to access ontologies through an application

interface.

4.4.2 Ontology discovery and ranking component
This component is in charge of providing functionalities to find appropriate views,
versions or sub-sets of ontologies, and then to rank them according to some criterion.

It is a widely cited fact that the number of ontologies and semantically marked up data is
growing at a rapid pace. However, the current knowledge of the quality of the content in
the distributed Semantic Web resources is very sparse. A component is therefore needed
to facilitate and enable advanced Semantic Web applications to access and use ontologies
that may be distributed throughout the Web, and to enrich access to distributed ontologies
by taking into account their quality, the relationships and the interdependencies.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 31

Functionalities provided
Three broad functionalities can be identified for the following purposes:

• Crawling the Web (or another repository) for ontological content

o Executing and managing generic data crawling through a network

o Syntactic filtering of ontological and semantic content

o Caching and storing crawled content

• Validating crawled ontologies and calculating a range of quality measures

o Managing syntactic dependencies to ensure consistency

o Charting topological relationships between and within ontologies

o Inferring other semantic relationships within ontologies

o Establishing semantic networked relationships among ontologies

o Indexing discovered ontologies for future use

• Supporting queries for ontologies, ontological entities, relationships, etc.

o User-level (human-centric) queries (e.g. web forms)

o Machine-level (content-centric) queries (e.g. SPARQL)

o Keyword/term level queries

o Concept and/or ontology URI-s level query

o Exploratory navigation through the discovered ontologies

Component dependencies
This component is not dependent on other prerequisites; however, the three
functionalities mentioned above are dependent on each other. In other words, querying
relies on some information being recorded during the validation stage, and validation, in
turn, relies on ontologies or other semantic content being available.

Components that may depend on the ontology discovery include e.g. feeds to the
ontology registry, to ontology metadata schemas, etc.

This component uses functionalities from the Ontology repository component to access
ontologies, through an application interface.

4.4.3 Ontology adaptation operators component
This component is in charge of applying appropriate operators to the ontology in
question, the result of which is an ontology customized according to some criterion (e.g.
levels of trust or group preferences).

One way in which (usually) large ontologies could be customized for different purposes
is that of splitting them into a network of smaller sub-ontologies or modules. Arranging
and relating these modules to each other represents already a form of customization.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 32

These techniques typically involve some selection and filtering; e.g. removing parts
which are not relevant for the user.

A modularized approach to create ontologies such as this one would facilitate ontology
reuse and would also help to breakdown ontologies into smaller, manageable pieces. This
would benefit subsequent functional components of the architectural framework. For the
purpose of this section, we would emphasize the SELECT operation. There may exist
several selection operators that help to select those parts of an ontology or those modules
that are of interest for the user.

Functionalities provided

• Selecting an ontology (sometimes referred to as module selection).

• Summarizing an ontology or its parts (or sometimes ontology collapsing).

• Making a glossary from (or flattening) an ontology into a list of terms.

• Filtering a sub-set of concepts satisfying a given condition/criterion.

• Extracting a sub-set of concepts and construction of a coherent and consistent
module/ontology.

Note that the above functionalities are focused largely on working with one ontology and
on making some amendments to it. There is obviously the possibility of taking a
complementary view whereby one would work with a set or network of ontologies and
attempt to carry out operations such as merge, match, assemble, compute intersect or
compute union. However, these adaptation operations are more applicable in the context
of networked ontologies and will not be elaborated here.

Component dependencies
In terms of dependencies, the operators in this component may rely on

• The Ontology profiling and localization component, and

• The Ontology discovery and ranking component, to a limited extent.

• The Ontology repository component to access ontologies through an application
interface.

4.4.4 Ontology view customization component
This component is responsible for enabling the user to change or amend a view on a
particular ontology to fit a particular purpose (e.g. preview, content-based view,
topography, etc.).

One of the key characteristics of the Semantic Web is the emphasis on separating the
content from its presentation. Semantic Web languages are in principle presentation-free.
Like the Web, when using technologies as for example XHTML+CSS or even
XML+XSLT, content is separated from its presentation. This has a major advantage -
information and knowledge become comprehensible to computers and artificial agents.
However, it also has a major disadvantage - any semantically annotated chunk of formal

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 33

knowledge needs to be ’transformed’ into a form or shape comprehensible by a human
user.

First, datasets typical of the Semantic Web are relatively large; the challenge of large
open information spaces is to provide a simple, yet effective way of finding, sorting and
viewing relevant information. Second, ontologies that conceptually underpin some
Semantic Web applications could be complex structures representing different types of
relationships. If each of such potential relations is treated as a dimension in which
allowed values could be depicted, then even a moderately complex ontology leads to a
multi-dimensional space, which poses challenges for navigation and interaction.

Functionalities provided
Functionally, we can distinguish between

• Handling large and/or complex conceptual spaces using reduction strategies –
these are typically concerned with showing less information (in our case, fewer
concepts, entities or relationships), and

• Handling complexity and/or size by an appropriate projection – which tackles the
same issue by showing the same set of concepts, entities and relations differently.

Subsequently, we can identify the following sub-components contributing to the ontology
view adaptation:

• Faceted browsing techniques (e.g. Longwell, \facet, etc.)

• Spatial navigation and representations (w.g. VIKI, mSpace, etc.)

• Focus-context projections based on semantic relationships/properties (such as
FishEye or CropCircles)

• Ontology content depiction, e.g. in terms of layering an ontology over a
statistically constructed landscape of a particular corpus/domain

Component dependencies
In terms of dependencies, the parts of this component rely to some extent on

• The Ontology adaptation operators component (in particular summarization,
glossarization and filtering).

• The Ontology localization and profiling component.

• The Ontology repository component to access ontologies, through an application
interface.

4.4.5 Ontology customization implementations
In principle we distinguished three types of customization tools for the purposes of
reviewing implementations:

• Tools focusing on gathering and mining information that can later be used for
ontology customization, adaptation, and view construction, but also for ontology
extension, learning, etc.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 34

• Tools accomplishing customization of the view on an ontology, mostly the view on
ontological instances and the relationships among them. This customization is more
or less ad-hoc and the results of the customization may be discarded once the user
proceeds with exploring the ontology. This customization, when exploring an
ontology, tries to reduce the complexity of an ontology and only shows parts which
are relevant to the current user.

• The customization for the purposes of reusing ontologies and integrating them into a
network with other ontologies according to specific needs (e.g. during the ontology
deployment, reasoning or design phases). Here the results of the customization will
often be integrated into the edited ontology and their nature is more persistent.

Of the three groups, the best progress is visible in the first one, followed by the second.
Especially, in recent years, the second group has been extended with a number of high-
profile applications working with real datasets. Yet, most tools in this second group focus
on customizing view of the datasets, less so on ontologies.

4.4.6 Existing Implementations
The table below shows the implementations found for these dimensions.

Component # Implementations
Ontology
localization and
profiling

4 Ontogen, Calendar Apprentice, Personal WebWatcher, Document Atlas

Ontology discovery
and ranking

3 Watson, Swoogle

Ontology adaptation
operators

4 ONION, PROMPT, Chimaera, FONTE

Ontology view
customisation

14 Longwell, TGVizTab, OntoViz, Jambalaya, OWLViz, /facet, mSpace,
VIKI, CropCircles, CS Aktive Space, SpaceTree, TreeMap, Spotlight,
IsaViz

4.5 Ontology Evolution
This dimension includes those components that provide functionalities to manage the
ontology evolution.

The basic dependencies of the components in this dimension are shown in XFigure 9X:

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 35

Figure 9. Dependencies of the components in the Ontology evolution dimension.

4.5.1 Ontology versioner component
The Ontology versioner component allows maintaining, storing and managing different
versions of an ontology.

Functionalities provided

• The Ontology versioner component performs changes to ontologies.

Component dependencies
This component uses
• The Ontology repository component for manipulating the ontologies.
• The Data repository component for manipulating the data.

4.5.2 Ontology evolution visualizer component
The Ontology evolution visualizer component allows visualizing different versions of an
ontology. The dependencies of the ontology evolution visualizer with other components
of the SWF are shown in XFigure 9X.

Functionalities provided

• The component will visualize the evolution of ontologies.

Component dependencies
This component uses

• The Ontology versioner component for visualizing different versions of ontologies.

• The Ontology repository component for querying the ontologies.

• The Data repository component for querying the data.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 36

4.5.3 Ontology evolution manager component
The Ontology evolution manager component allows maintaining, storing and managing
different versions of an ontology, and visualizing as well as possible the versions within a
broader context of complex ontology evolution and development platform. The
dependencies of the ontology evolution manager with other components of the SWF are
shown in XFigure 9X.

Functionalities provided

• The component will manage the adaptation of an ontology regarding changes that
may arise.

Component dependencies
This component uses
• The Ontology repository component for manipulating the ontologies.
• The Data repository component for manipulating the data.

• Other evolution components such as the Evolution visualizer and the Ontology
versioner wrapping the functionalities of this two lower-level components.

4.5.4 Ontology evolution implementations
Ontology versioner
The Ontology versioner component implementations usually present a library that
implements the essential functions for storing ontology versions, difference computation
(either syntactic or semantic), querying of multiple versions, change management (e.g.
user commits, check-outs, branching, etc.). Then other components of the evolution
dimension may build on these libraries.

Conclusions

• Implementation of the operations underlying the change management of ontologies.
• Ontology versioning functionalities provided via API.

Ontology evolution visualizer
The Ontology evolution visualizer component implementations usually present a user
interface that allows browsing an ontology in the context of its multiple versions,
compare visually different ontologies, and might also perform some versioning
operations within the visual interface (e.g. merging of branches). Other components of
the evolution dimension may incorporate this interface.

Conclusions

• Implementation of the visualization of different versions of ontologies.
• The visualization and possible version management functionalities provided via user

interface.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 37

Ontology evolution manager
The Ontology evolution manager component implementations are usually incorporated
into complex ontology development and evolution framework, providing either APIs or
user (web of standalone) interfaces.

Conclusions

• Implementation of the ontology evolution within a broader ontology development
platform.

• Lower-level ontology versioning functionalities realised via specific implementations
of other evolution components (e.g. ontology versioner) can, however, be often built-
in into the particular platforms (based for instance on database transactional model or
pure syntactic versioning similar to CVS principles).

4.5.5 Existing Implementations
 The table below shows the implementations found for these dimensions:

Component # Implementations
Ontology versioner 2 SemVersion, DIP ontology versioning
Ontology evolution visualizer 3 SemVersion Protégé plug-in, PROMPT, PROMPTDiff
Ontology evolution manager 5 KAON, DOME, MarcOnt Portal, Linkfactory, Powl

4.6 Ontology Instance Generation
This dimension includes four components that provide functionalities to generate
ontology instances.

The basic dependencies of the components in this dimension are shown in XFigure 10X:

Figure 10. Dependencies of the components in the Ontology instance generation dimension.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 38

4.6.1 Instance editor component
The Instance editor component is in charge of providing functionalities to manually
create and modify instances of concepts and of relations between them in existing
ontologies.

Functionalities provided
This component provides a GUI that enables the user to manually add, delete and modify
instances of concepts in an existing ontology, and also properties of and relations
between the instances. Adding a new instance is a fairly simple process. However, when
an instance is modified or deleted, this may affect other concepts in the ontology. For
example, an instance may belong to more than one concept in the ontology, so it may
need to be removed or modified in several places. The same holds true for properties. The
instance editor component provides some of the same functionalities as the ontology
editor component described in Section 4.1, but the latter have added a functionality which
may not be present in the simpler instance editor component. The instance editor
component is a simple tool which may be easier to integrate with the other ontology
instance generation tools described in this section.

Component dependencies
This component uses
• The Ontology repository component to insert ontology information.
• The Data repository component to obtain information from the content sources.

4.6.2 Manual annotation component
The Manual annotation component is in charge of manual and semi-automatic annotation
of digital content documents (e.g. web pages) with concepts in the ontology. With respect
to textual data, mentions of instances in the text which correspond to concepts in the
ontology are annotated manually in the document. Similarly, for non-textual data (e.g.,
visual, audio and audiovisual sources), the concepts in the ontology, reflecting the
meaning conveyed, are associated with the media content item. This annotation process
may be assisted or guided by a machine (semi-automatic annotation).

Functionalities provided

The manual annotation of text must provide a user-friendly GUI which enables users to
view the ontology and text and annotate mentions of instances in the text with classes
from the ontology (for example, to annotate "John Smith" with the concept "Person").
Note that if there are several occurrences of "John Smith" in the text, which all refer to a
person, then they are all annotated identically. Compare this with the Ontology populator
component, which will only create one instance in the ontology for "John Smith" no
matter how many times it is mentioned in the text (given that it is referring to the same
person). The aforementioned also holds for the case of non-textual data annotation, while
additionally appropriate functionalities need to be provided so that the user can select the
specific media parts that he wants to annotate. For example, when annotating a video, a
user may want to associate a concept in the ontology with a sequence of frames, a single
frame, or some 2D spatially defined region within a frame.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 39

The Manual annotation component requires an ontology to be selected for annotation,
and a content item or set of content items to be loaded. Ideally, for the content to be
annotated, a variety of formats should be supported such as plain text, XML, HTML,
PDF, MPEG-2, JPG, TIFF, etc. The annotator should enable, at the least, annotation with
class information from the ontology, and preferably annotation with instance information
and properties.

There are a number of desirable (though not essential) features that an annotator
component should contain:

Multiple ontologies: the component should enable the user to select multiple ontologies
to work with simultaneously. This could be via a pull-down menu of ontologies available
to the system. With respect to non-textual content annotation, another useful property
refers to providing support for using not only domain-specific ontologies, but also
ontologies for describing the structure and decomposition of content, so that the
interoperability of annotations is further enhanced.

Ontology evolution: the GUI ideally needs to cater for changes in the ontology – provide
a migration support, where content already annotated with concepts and instances that
have changed can automatically be re-annotated or, if this is not possible, provide a way
for the user to specify the mappings from old to new concepts/properties or even correct
manually each one of the occurrences.

Collaborative annotation: in order to reduce the burden of annotation, the component
can allow several users to annotate content from the same collection simultaneously. The
collaboration can take place at two different levels: first, when the same ontology is
shared among several users and needs to be edited to populate instances in it, and second,
when a same document is annotated by several annotators at the same time. In order to
address the first scenario, having a common ontology repository is important. This
provides a way to set up a common ontology repository from which users can load an
ontology and save it back. The second scenario requires the use of Web services such as
an Annotator GUI. Each user who participates in the annotation process is allocated a
separate annotation set where all the annotations they create are stored. The document
can then be merged once all annotators have completed their task.

Searching for similar annotated content: the user might be unsure of how something
needs to be annotated or has forgotten whether he/she has already annotated such content
before. One interesting feature is to allow searching for similar content. This can be done
using IR-based document similarity or by measuring how much overlap of annotation
exists between the documents [X15X].

Machine-assisted annotation: in order to gain faster a large number of instances with
minimal manual annotation effort, an interface that collects previous occurrences of
annotations and suggests them to the user is required. Once a user has annotated, for
example, some string or an image region as a class and instance, then a background
process collects all occurrences of this string or visually similar regions in the corpus and
suggests them in a KWIC-like (or other) manner to the user. The user may have the
chance to change them if they are not correct. These then get passed to an algorithm that,
based on the surrounding context, can learn some rules and return new annotations on

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 40

other documents. Those with the highest confidence get presented to the user, who has
the chance to change them, and so on.

Component dependencies
This component uses

• The Ontology repository component to obtain ontology information and for
collaborative annotation.

• The Data repository component to access and insert information into the content
sources.

4.6.3 Automatic annotation component
The Automatic annotation component is in charge of the automatic annotation of digital
content (e.g. web pages) with concepts in the ontology. Occurrences in the considered
content of instances of concepts in the ontology are automatically detected and
subsequently annotated.

Functionalities provided
Like the Manual annotation component, this component is responsible for annotating
occurrences of instances in the content with classes from the ontology (for example, to
annotate "John Smith" with the concept "Person" or to annotate region r1 that holds some
specific visual characteristics as "Sea"). It differs in that the process is run by an engine
such as the ontology-based information extraction (OBIE) or by the so called, in terms of
non-textual content, ontology-based semantic analysis.

For the purposes of automatic annotation, the OBIE process needs to perform the
following two tasks:

1. Identify mentions in the text, using the classes from the ontology instead of the flat
list of types in “traditional” information extraction systems.

2. Perform disambiguation (for example, if we find two occurrences of “John Smith" in
the text, of which one refers to a person, and the other to the name of the beer, the
first might be annotated with the concept "Person" and the second with the concept
"Beer").

It may also perform a third task: that of identifying relations between instances.

In a similar fashion, in order to carry out ontology-based semantic analysis of multimedia
content in an automatic way, the following tasks are required:

1. Identify (possible) instances of the ontology concepts in the considered content by
exploiting associations between concepts in the ontology and low-level features that
can be automatically extracted. Such associations can be acquired either manually,
semi-automatically (utilizing user feedback) or in a complete automatic way
(employing machine learning techniques and ontology evolution strategies).

2. Identify relations between such instances (e.g., spatial, temporal, spatiotemporal
ones).

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 41

3. Perform disambiguation. For example, due to similarities in appearance shared among
different ontology concepts and the limitations in the multimedia processing
algorithms, several regions in an image may have been identified as “Sea”.
Knowledge about the context where the ontology concepts appear, their logical
relations and semantics (e.g., a region depicting “Sea” can never be above one
depicting “Sky”) enables to disambiguate such cases to a certain degree.
Disambiguation is also required to resolve inconsistencies between instances
identified by different modalities comprising the content (e.g., in an audiovisual
content item, the auditory part (speech) and the visual one may produce contradicting
annotations).

4. Identify (possible) instances of the ontology concepts in the content that corresponds
to higher-abstraction semantics that cannot be directly identified by means of
analysis. For example, annotations such as island, swimmer, scoring a goal, car
overtake etc., require first the identification of more simple concepts, and the
utilization of their logical relations in order to be detected.

Component dependencies
This component uses
• The Ontology repository component to obtain ontology information.
• The Data repository component to access and insert information into the content

sources.
• The Manual annotation component to bootstrap learning.

4.6.4 Ontology populator component
This component is in charge of providing functionalities to automatically generate new
instances in a given ontology from a data source. It links unique occurrences of instances
in the content to instances of concepts in the ontology.

Functionalities provided
This component is similar in function to the automatic annotation component. However,
it requires that instances be not only disambiguated (as with the automatic annotation
component) but also that co-referring instances be identified. For example, if we find two
occurrences of “John Smith" in the text, of which one refers to a person, and the other to
the name of the beer, then our system should add the first as an instance of the concept
Person, and the second as an instance of the concept "Beer". In contrast to the automatic
annotation component, if we find an occurrence of "John Smith" in the text and an
occurrence of "Mr Smith", the system must also identify whether they are referring to the
same person or to two different people (or even that one occurrence is referring to the
beer and the other to a person), and if they are co-referring, then only one instance should
be added to the ontology. In a similar fashion, occurrences of concept instances in
multimedia content that correspond to the same instance of concept need to be identified.
For example, if we have two images for which the analysis shows that they both depict
“John Smith”, or two video shots in which the same athlete is depicted, the system should
add only one instance in the ontology. Furthermore, assuming an image whose area
depicting Sky has been segmented into more than one region, the system should create
one Sky instance and associate it with these regions.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 42

Component dependencies
This component uses

• The Ontology repository component to insert ontology information.

• The Data repository component to obtain information from the content sources.

• The Manual annotation component to bootstrap learning.

4.6.5 Ontology instance generation implementations
The component that has more implementations found is the Manual annotation
component having the rest very few implementations to choose.

4.6.6 Existing Implementations
The table below shows the implementations found for these dimensions:

Component # Implementations
Instance editor 2 GATE Ontology Editor, OCAT
Manual annotation 7 OCAT, OntoMat-Annotizer, M-OntoMat-Annotizer, PhotoStuff

(Mindswap), AKTive Media - Ontology based annotation system,
Ontolog, Magpie

Automatic annotation 3 KIM, AKTiveAgent, GATE ML
Ontology populator 3 CLIE, AKTive Futures, ALVIS

4.7 Semantic Web Services
This dimension includes those components that provide functionalities to discover,
adapt/select, mediate, compose, choreograph, ground, and profile semantic web services.

The basic dependencies of the components in this dimension are shown in XFigure 11X:

Figure 11. Dependencies of the components in the Semantic Web Services dimension.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 43

4.7.1 Web Service discoverer component
This component will be in charge of providing functionalities to publish and search
service registries, to control access to registries, and to distribute and delegate requests to
other registries.

Figure 12. Dependencies of the components in the Semantic Web Service Discoverer Component.

Functionalities provided
The Web Service discoverer component provides a discovery engine based on keywords
and existing annotations (WSDL, HTML docs, etc). The data set they operate on comes
from publicly available Web service descriptions. Initially this has been limited to the
information that can be obtained from the WSDL files. A search request can be expressed
using keywords or advanced template search that allows querying for specific operation
names or similar. WSDL documents can also be retrieved by URL. This phase will also
include basic monitoring functionality for determining if the service specified in the
given WSDL document is available.

Component Dependencies
This component uses
• The Ontology repository and Metadata registry components to perform service

discovery.
• The Semantic query processor component in order to value the request and to infer

correct discovery.
• The Web Service registry to access and store the Web Service data.

4.7.2 Web Service selector component
After discovering a set of potentially useful services, the Web Service selector component
needs to check whether the services can actually fulfil the user’s concrete goal and under
what conditions. Those that cannot fulfil the goal are removed from the list of discovered
services.

Figure 13. Dependencies of the components in the Semantic Web Service Selector component.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 44

Functionalities provided
Negotiation or the process of checking whether and under what conditions a service can
fulfil a concrete goal. It also encompasses the so-called filtering. By filtering we
understand the process of narrowing the set of discovered services which provide the
functionality requested, by considering only the services that have the appropriate non-
functional properties requested by the user. Furthermore, building a ranking/order
relation based on non-functional properties criteria like price, availability, etc. is also part
of the filtering process. This process is called selection.
Negotiation, filtering and selection are tasks of the Web Service selector component.

Component Dependencies
This component uses

• The Web service discoverer component to discover the relevant set of Web services.

• The Web Service registry to access the Web Service data.

4.7.3 Web Service composer component
The Web Service composer component will be in charge of providing functionalities for
designing a workflow of web services based on their choreography specifications.

Once the selection of the necessary Web services is done (by the Web Service selector
component), the Web Service composer component will be in charge of the automatic
composition of the latter Web services in order to provide new value-added Web
services.

Figure 14. Dependencies of the components in the Semantic Web Service Composer component.

Functionalities provided
The Web Service composer component provides methods to do automatic Web Service
composition, starting from web service descriptions at various levels of abstraction,
specifically, the functional level and process level components, starting from
requirements until the goal composition is achieved.

Component Dependencies
This component uses
• The Web Service discoverer to discover the relevant set of web services to compose.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 45

• The Web Service selector to select appropriate Web services in the composition
process.

• The Ontology repository and Metadata registry components to perform service
composition.

• The Semantic query processor in order to infer correct composition.

• The Web Service registry to access the Web Service data.

4.7.4 Web Service choreography engine component
The Web Service choreography engine component will be in charge of providing
functionalities to use the choreography descriptions of both the service requester and
provider to drive the conversation between them.

Figure 15. Dependencies of the components in the Semantic Web service choreography engine

component.

Functionalities provided
The choreography part is meant to implement a process language which should allow for
formal specifications of interactions and processes between the service providers and
clients, define reasoning tasks that should be performed using this language, and
implement an engine to support the execution of interactions, as well as to support
reasoning in this language.

Component Dependencies
This component uses
• The Ontology repository and Metadata registry components to perform service

choreography.

• The Web Service process mediator component.

• The Web Service registry to access the Web Service data.

4.7.5 Web Service process mediator component
The Web Service process mediator component will be in charge of providing
functionalities to reconcile the public process heterogeneity that can appear during the
invocation of web services. That is, ensuring that the public processes of the invoker and
the invoked match.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 46

Figure 16. Dependencies of the components in the Semantic Web service process mediator component.

Functionalities provided
The main functionality of this component is mediation. Mediation aims at providing
flexible mediation service at both data and process level. Data mediation provides
automatic data transformation from the format used by the source party to the format
required by the target party involved in conversation, while process mediation is
concerned with the heterogeneity of the public processes of the participants in a
conversation.
• Data Mediation provides automatic data transformation from the ontology used by

the source party to the ontology required by the target party involved in conversation
[X22X]. The Data Mediation Service has to support instance transformation from terms
of one ontology to the terms of another ontology, based on the set of already created
mappings between the two given ontologies.

• The Process Mediator service has the task of solving the communication
(behavioural) mismatches that may occur during the communication between a
requestor and a service provider [X23X]. The requestor is a Goal, while the provider is a
Semantic Web Service; the Process Mediator’s task is to accommodate the
mismatches between the goal’s requested Choreography and the Semantic Web
Service’s choreography.

Component Dependencies
This component uses
• The Ontology repository and Metadata registry components to perform service

choreography.
• The Ontology matcher, the Data translator and the Mediator generator components

to perform data mediation.
• The Web Service registry to access the Web Service data.

4.7.6 Web Service grounding component
This component is responsible for the communication between Web Services i.e., to send
the necessary request messages and receive the responses.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 47

Figure 17. Dependencies of the components in the Semantic Web service grounding component.

Functionalities provided
Because internal communication within a Semantic Web Service Architecture uses
semantic data and practically all currently deployed Web services use their specific XML
formats, the External Communication component needs to translate the involved data
forms. This translation is also known as data grounding [X24X]. Above that, this proposed
architecture also needs to support concrete network protocols (HTTP, SOAP, other
bindings) to be able to exchange messages with the Web service.

Component Dependencies
This component uses
• The Web Service process mediator component.
• The Web Service registry to access the Web Service data.

4.7.7 Web Service profiling component
The Web Service profiling component will be in charge of providing functionalities to
create web service profiles based on their execution history.

Figure 18. Dependencies of the components in the Semantic Web service profiling component.

Functionalities provided

The Web Service profiling component is responsible for creating service profiles. A
service profile should be understood as a subset of non-functional parameters, mainly
Quality of Service (QoS) attributes e.g. price, execution time, etc. characterizing a Web
service. It allows services comparison on the basis of non-functional parameters and
choosing the service most suited to a user’s needs.

As it is, the Web Service profiling component should be responsible for collecting,
computing, and providing other components with values of the selected non-functional
parameters.

Component Dependencies
This component uses
• The Web Service registry to store the Web Service profiles.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 48

4.7.8 Web Service Registry component
The Web Service registry component will be in charge of providing functionalities to
register semantic Web services i.e., supporting semantic publication and discovery (based
on some specific semantic Web service approach). Therefore Semantic Web services are
referred to in an online collection of semantic Web services.

Functionalities provided
The Web Service Registry component is responsible for storing Semantic Web services
according to their description and profile.

Figure 19. Dependencies of the components in the Semantic Web service registry component.

Component Dependencies
This component uses
• The Ontology repository and Metadata registry components to perform semantic

registries.

4.7.9 Semantic Web Services implementations
There are Semantic Web Service frameworks, such as WSMX, that encompass the
functionalities of the components of the Semantic Web Services dimension. Nevertheless,
the components of these frameworks cannot interoperate with components of other
frameworks (e.g. OWL-S vs WSMO).

With respect to the Web Service profiling component there are only two implementations
and the profile creation functionality is available via Java API. Service execution data
(log files) is required to perform service profiling. Other sources of information on Web
services (feedback from users, initial service description given by service providers) may
be also taken into account when creating the service profile. In general, the more data
describing/evaluating the service available, the more adequate and precise the profile
generated.

Most of the semantic Web service registries are private registries with restricted access.
Therefore, any public registries of semantic Web services that we can access without a
special authorization do not yet exist. All applications interacting with a registry assume
an ad hoc registry of semantic Web services. For instance, any service discoverer or
composer suggests discovering and composing a set of Web services from an ad hoc
registry e.g., OWL Semantic Search Services, WSMX Discovery Framework. A first
proposal of a public semantic service discovery is the OWL-S UDDI Matchmaker.

4.7.10 Existing implementations
The table below shows the implementations found for these dimensions:

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 49

Component # Implementations
Web service discoverer 4 Hybrid OWL-S Web Service Matchmaker - OWLS MX, The TUB

OWL-S Matcher (The OWLSM), WSMX Discovery Framework, OWL
Semantic Search Services (owl-semsearch)

Web service selector 1 WSMX Selector and Ranking Prototype
Web service composer 6 Kweb Semantic Web Service Composition, Semantic Web service

composition through Cusal Link Composition, Composer, Semantic web
services browser and composer, Web service Composition, Service
Composition Engine (Developed within ASG)

Web service
choreography engine

2 WSMX Choreography Engine, IRS-III

Web service process
mediator

1 WSMX Process Mediation Prototype

Web service grounding 1 WSMX Communication Manager
Web service profiling 2 Service Profiler, Web Service profiling
Web service registry 2 OWL-S UDDI Matchmaker, OWLS-TC

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 50

5 Use Cases and the Semantic Web Framework
This chapter provides a description of how the Semantic Web Framework and its
components could support the development of the Knowledge Web use cases, as are
described in the deliverable D1.1.4 v1: System and knowledge technology components
for prototypical applications and business cases [X3X].

For each case, we provide a brief description of the system to be implemented, a figure
with the components of the Semantic Web Framework that could be used in the use case
(including the dependencies identified between the components in the previous chapter),
and the functionalities of the use case that are covered by these components.

In this second version of the Semantic Web Framework, use cases 3 and 4 have been
reviewed according to the feedback collected from the use case partners. The rest of the
use cases have been refined according to the changes made to the components (Chapter
4).

Appendix II includes a table showing the dependencies of the use cases with all the
components of the Semantic Web Framework.

5.1 Use Case 1. Recruitment from Worldwidejobs
The aim of the online recruitment system is to facilitate filling open job vacancies by
finding the best qualified and suitable candidate in the fastest time. The system will allow
job seekers to overview all the offers published on the internet in the different portals and
websites with open positions, and to assess their suitability to vacancies. The system will
also allow companies to post their vacancies with a formal meaning, to gain diffusion of
the vacancies and will allow semi-automatic matching between candidates and vacancies.

XFigure 20X presents the components of the Semantic Web Framework that can support this
use case and their dependencies.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 51

Figure 20. Dependencies between the SWF components in the use case 1.

In order to achieve all of the goals proposed in the business use case, the system could
use the following SWF components:

• The Ontology matcher component for the automatic matching of job postings and job
applications, and for managing the created alignments.

• The Manual and Automatic annotation components or the Ontology populator
component for publishing the job postings using the employers’ existing legacy
infrastructure.

• The Ontology editor component for editing the system ontologies, since the
information is subject to change and the ontologies should be updated. This
component will also use the Ontology browser.

• The components of the Ontology evolution dimension for managing the evolution of
the ontologies.

• The Semantic query processor and the Query answering components for supporting
reasoning tasks in different components of the system.

• The Ontology, Data and Alignment repository components for managing the data
storage and retrieval.

5.2 Use Case 2. B2C portals from France Telecom
The system’s objective is to complete the commercial perimeter of the current holiday
package offers, with some dynamically packaged solutions to meet the customers'
expectations (holidays, week-end, all leisure services) by offering users a one-stop
browsing and purchasing personalized tourism packages through a dynamic combination
of various tourism offers (e.g., travel, accommodation, meals) from different providers.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 52

XFigure 21X presents the components of the Semantic Web Framework that can support this
use case and their dependencies.

Figure 21. Dependencies between the SWF components in the use case 2.

In order to achieve all of the goals proposed in the business use case, the system could
use the following SWF components:

• The integration in the system of new package offers or service providers and the
aggregation into the system of content from these providers can be performed by
using the Ontology matcher component for defining and managing the alignments of
the provider ontologies to the system ontologies. The Ontology matcher component
also generates wrappers for using the information from the providers in the system.

• The Ontology profiler component for deducting information about users from their
requests and for inferring relations between concepts from the user profile.

• The components of the Semantic Web Services dimension can provide the
mechanisms for implementing the system as a Service Oriented Architecture where
some re-usable components are made available through web services interfaces.

• The Semantic query processor and the Query answering components for supporting
reasoning tasks in different components of the system.

• The Ontology, Data and Alignment repository components for managing the data
storage and retrieval.

5.3 Use Case 3. News aggregation from Neofonie
The system deals with the provision of an aggregated news service able to provide
business clients with accurate search, thematic clustering, classification of news stories,
and e-mail notification of stories of interest. The news sources are not just the main news

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 53

feeds and media outlets but also press releases, announcements on websites and other
“alternative” sources.

Following the presentation of the framework and the resulting discussion with the use
case provider Neofonie GmbH, the next figure shows the high level architecture of a
proposed semantic solution for the use case.

Figure 22. High level architecture of a proposed semantic solution for the use case 3.

XFigure 23X presents the components of the Semantic Web Framework that can support this
use case and their dependencies.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 54

Figure 23. Dependencies between the SWF components in the use case 3.

In order to achieve all of the goals proposed in the business use case, the system could
use the following SWF components:

• The ontology repository, the data repository, the alignment repository and the
metadata registry store all the data necessary for the use case: the ontologies used for
each source, the instance data extracted from these sources and the alignments that
have been created between each source ontology.

• The query answering, the semantic query processor and the semantic query editor
provide both the user interface support for formulating the query and displaying the
results and the system-intern support for performing the query across the aligned
instance data and extracting the results.

• Ontologies for representing the data of each source are created semi-automatically
using ontology learning techniques through the ontology learner component. The
initial ontology extraction is refined using the ontology browser component to view
the ontology and the ontology editor component to complete the ontology manually.

• It is possible that with the use of the system over time, the ontologies will need to be
revised as new concepts or properties gain relevance. Hence the ontology versioner
component may be employed at a later stage in the system. Likewise, in the ontology
extraction part, extracted terms may overlap with those of existing ontologies for
related domains such as politics, sport etc.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 55

• Given the existence of an ontology that represents terms from a certain source,
knowledge extraction can take place. Instance data is generated through semi-
automatic annotation approaches using the automatic annotation component, the
manual annotation component for adding semantic data to news sources, and the
ontology population component.

• Finally, two approaches to resolving searches can be considered. One is that queries
are expressed in terms of one ontology and, at run time, they are mapped into the
other ontologies of the sources; then they are executed across the different source data
and the results are combined at the end. However, this approach is very resource
intensive at query time. Given that we update the source data only periodically, it
makes better sense to transform all source data into a core ontology, which can be
built from the merge of all source ontologies. Then we generate first alignments
between the source ontologies and a core ontology using the ontology matcher
component. These alignments need manual proofing and correction. The alignments
also help to refine the core ontology (e.g. stripping equivalent terms, as synonymy
will be captured in the alignments). Given now a core ontology and alignments to the
individual source ontologies, mediators can be generated for the transformation of
instance data from any source in terms of the core ontology. Hence a core knowledge
base is maintained against which the queries are executed.

5.4 Use Case 4. Product lifecycle management from Semtation
The system is intended to be used for developing and maintaining product catalogues
throughout the product lifecycle, by explicitly modelling product knowledge according to
an agreed, shared terminology for the product domain.

Following the presentation of the framework and the resulting discussion with the use
case provider Semtation, XFigure 24X presents the components of the Semantic Web
Framework that can support this use case and their dependencies.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 56

Figure 24. Dependencies between the SWF components in the use case 4.

In order to achieve all of the goals proposed in the business use case, the system could
use the following SWF components:

• Product ontologies are stored in the ontology repository component.

• Product models are stored in the data repository component.

• While product ontologies may be standardised in the industry for use in such systems,
and hence the ontology engineering effort reduced for individual enterprises, an
ontology browser and editor component will allow understanding the ontology and
modifying it when necessary.

• Ontology customization components are important in this use case to ensure that
different users can access the data in appropriate ways, e.g. providing different views
of the ontology depending on the department of the company.

• Given that a product portfolio will change over time, also in terms of its
characteristics, ontology evolution components may also be necessary. Versioning
management ensures compatibility between products described at different times by
the evolving ontology.

• An instance editor component is used to generate the product models. In order to
check against ontology/rule-defined restrictions (to keep product models consistent) a

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 57

semantic query processor component is used with a query answering component as
the consistency checker.

5.5 Use Case 5. Managing Knowledge at Trenitalia
The knowledge management system should be able to support the activities of a major
business unit in TSF Trenitalia, UTMR (Unità Tecnologie Materiale Rotabile), which is
responsible for the design, maintenance and engineering of rolling stocks manufactured
by external suppliers. Such a unit is composed of heterogeneous and specialized
professional communities that need to manage locally their knowledge and, above all, to
exchange knowledge across communities meaningfully and, particularly, to solve the
semantic issues posed by the need to preserve linguistic heterogeneity while facilitating
coordination and collaboration.

XFigure 25X presents the components of the Semantic Web Framework that can support this
use case and their dependencies.

Figure 25. Dependencies between the SWF components in the use case 5.

In order to achieve all of the goals proposed in the business use case, the system could
use the following SWF components:

• The Ontology learner component to discover semantic relationships and new
structures.

• The three components in the ontology evolution dimension to track the evolution of
individual ontologies.

• The Ontology matcher component to map entities of different ontologies.

• The Ontology merger to merge ontologies and form a new one.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 58

• The Ontology editor, the Ontology visualize and the Ontology browser in order to
allow users to evolve their personal ontologies.

• The three components in the querying and reasoning dimension to interpret the
queries for retrieving knowledge, to ensure the uniqueness of each result, and to rank
the results.

• The Ontology profiler to be able to consider different types of users.

5.6 Use Case 6. Integrated Access to Biological Data from
Robotiker

The system should provide a unified point of access for different biological data
repositories, and these can be accessible through internet (Nucleotide Sequences, amino
acid sequences, etc.); corporate databases; results of experiments (DNA-chips); health
cards; medical literature sites, etc.

The system should also support the generation and extraction of knowledge from
biological data by means of ontologies, the combination of them (ontology merging)
and/or the association of them (ontology mapping); this knowledge is to be exploited by
means of annotations, intelligent agents, semantic web services and/or semantic grid.

XFigure 26X presents the components of the Semantic Web Framework that can support this
use case and their dependencies.

Figure 26. Dependencies between the SWF components in the use case 6.

In order to achieve all of the goals proposed in this business use case, the system could
use the following SWF components:

• The Alignment editor component to allow domain experts to define the alignments
between the ontologies to be merged.

• The Ontology matcher component to map similar concepts in different ontologies and
to obtain a more complete ontology using several ontologies, at least one ontology for
each data repository/domain to be aggregated.

• The Automatic annotation and the Ontology populator components to produce
content metadata from the biological data sources, based on the defined ontologies.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 59

• The Ontology learner component to extract knowledge from biological data
repositories.

5.7 Use Case 7. Semantic Web needs for the Petroleum Industry
The current goals of the Institut Français du Pétrole (IFP) are to develop knowledge
models for semantic memories and intelligence of CO2 mitigation, a key application
target now that the Kyoto Protocol has entered into force. For this aim, ontologies of
chemical processes (flowcharts, chemical compounds, structures, experimental results…)
and of geosciences (geological models, geophysical data, wells…) are needed.

This business case deals with the management of large collection of project documents
(in the form of texts, geological maps, software, subsurface models, data bases, etc.) in
the field of geosciences. IFP goal is to access the documents produced by these projects
in a structured manner, so that a new project can make the best use of the results
produced by previous projects.

XFigure 27X presents the components of the Semantic Web Framework that can support this
use case and their dependencies.

Figure 27. Dependencies between the SWF components in the use case 7.

In order to achieve all of the goals proposed in this business use case, the system could
use the following SWF components:

• The Ontology editor and the Ontology repository to develop domain ontologies either
from scratch or by re-using existing relevant ontologies.

• The Ontology browser to navigate through the ontology, and the Ontology view
customization to visualize ontologies in an intuitive way

• The Ontology learner to determine concepts and their relations through data analysis.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 60

• The Automatic annotation to annotate the produced documents (software, models,
data bases, etc.) with semantic markers from ontologies.

• The three components in the querying and reasoning dimension to query the
geosciences projects semantic memory to find relevant documents.

• The three components in the ontology evolution dimension to maintain large domain
ontologies in complex evolving technical domains.

5.8 Use Case 8. Hospital Information System from L&C Global
This use case deals with the issue of database integration in the domain of healthcare.
Health care organisations such as hospitals may have several dispersed data sources
containing interrelated information. For example, there may be a central repository which
contains administrative information of all patients registered at the hospital. Additionally,
each division holds additional information about the diagnoses and treatments of the
patients examined. As information stored about a patient in one division may be relevant
to a professional seeking information from another division, a unified search is highly
desired. Two challenges in this case are that the data may be stored in very different
fashions, from totally unstructured text (e.g. notes written by the doctor) to highly
structured repositories (e.g. relational databases), and that access must be achieved within
a suitable time frame.

XFigure 28X presents the components of the Semantic Web Framework that can support this
use case and their dependencies.

Figure 28. Dependencies between the SWF components in the use case 8.

 In order to achieve all of the goals proposed in this business use case, the system could
use the following SWF components:

• The Ontology editor, the Ontology browser, and the three components in the ontology
evolution dimension for the development and continuing maintenance of ontologies.

• The Ontology view customization to visualize ontologies in an intuitive way.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 61

• The Ontology evaluator to evaluate the data storage (e.g. removing redundancy).

• The Ontology learner to generate suggestions for concepts and properties through
analysis of data corpus.

• The three components in the querying and reasoning dimension to retrieve
knowledge.

• The Ontology repository and the Data repository to store instance data.

• The Ontology matcher to map different ontologies.

• The Alignment repository to store the alignments done between ontologies.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 62

6 Conclusions and future work
The Semantic Web Framework (SWF) is intended to help developers to build Semantic
Web applications and to diminish the cost of this development.

During the last two years, inside workpackage 1.2, eleven Knowledge Web partners have
devoted their efforts to the definition of the SWF, which is an initial step to providing
foundation for the large-scale development of Semantic Web applications. Here we
present a first definition of the SWF as a component-based framework, describing the
existing types of Semantic Web technology, their functionalities, and the dependencies
between these technologies.

This first definition required a common consensus on vocabulary for defining semantic
components, which in turn required a consensus on the names and definitions of all the
components of the SWF.

Furthermore, to provide real-world users and application developers not just the
theoretical components but ready-to-use implementations of them, we searched and
described existing reusable Semantic Web tools and categorized them into SWF
components.

We also had the opportunity to refine and validate the SWF, not just inside Knowledge
Web but also within the companies that provided the eight use cases considered in
Knowledge Web. We presented to these companies the SWF and our view of their use
cases using the SWF, and contrasted our view with their own vision of the use case.

Although the SWF is useful as a reference and helps reuse existing technology, Semantic
Web application developers will still have to develop applications and their
functionalities.

Nevertheless, application development can be less expensive, as can be observed in the
business use cases dealt with in Chapter 5, by first identifying the semantic functionalities
needed and then reusing the corresponding components of the SWF.

Chapter 5 shows that some components such as the Ontology repository, the Data
repository and the Metadata registry are used in all the use cases, whereas other
components such as the Alignment repository, the Query answering, the Semantic query
processor, the Ontology editor, Ontology browser, the Ontology view customization, the
four components of the Ontology evolution dimension, and the Ontology matcher are
used in all the use cases.

On the other hand, components such as the Information directory manager, the Ontology
evaluator, the Ontology discovery and ranking, the Ontology adaptation operators, the
Instance editor and all the components of the Semantic Web Service dimension are not
used at all or are slightly used in the use cases.

Every component described in this document has a set of implementations and each of
them covers totally or partially the functionality described. To sum up, 200 component
implementations have been referenced. Some of these implementations have been taken

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 63

from the Semantic Web Tools and Applications Information RepositoryF

4
F developed in

workpackage 1.4.

A future line of work will be to develop specifications of the components identified in
this deliverable and of their interfaces and guidelines for implementing or reusing them.

One extension of the SWF will include a new dimension for social components. Work in
this direction is being carried out in the Avanza project PLATA (FIT-350503-2007-6).

4 Hhttp://cgi.csc.liv.ac.uk/KWebToolsSurvey/H

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 64

References
1. D1.2.4 Architecture of the Semantic Web Framework. Raúl García-Castro, M.

Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Diana Maynard, Stefania
Costache, Raúl Palma, Jérôme Euzenat, Freddy Lécué, Alain Léger, Tomas Vitvar,
Michal Zaremba, Dominik Zyskowski, Monika Kaczmarek, Martin Dzbor, Jens
Hartmann, Stamatia Dasiopoulou. Knowledge Web technical report, February 2007.

2. D1.2.2: Semantic Web Framework requirements analysis. Wolf Siberski, J. Euzenat,
J. Hartmann, A. Léger, D. Maynard, J. Pan, M.C. Suárez-Figueroa, et al. Knowledge
Web technical report, June 2005.

3. D1.1.4 v1: System and knowledge technology components for prototypical
applications and business cases A. Léger, L. Nixon, F. Paulus, L. Rocuet, M.
Mochol, Y. Kompatsiaris, V. Papastathis, S. Dasiopoulou, M. Jarrar, R. Cuel, M.
Bonifacio. Knowledge Web technical report, June 2005.

4. Component Software, Beyond Object Oriented Programming. Clemens Szyperski.
Addison-Wesley, 1998.

5. Component-Based Software Engineering: Putting the Pieces Together. George T.
Heineman, William T. Councill. Addison-Wesley Professional, 2001.

6. IEEE Recommended Practice for Architectural Description of Software Intensive
Systems. IEEE Std 1471-2000.

7. Frameworks = (Components + Patterns). Ralph E. Johnson. Communications of the
ACM 40(10): 39-42, October 1997.

8. DSSA frequently asked questions. W. Traz. ACM Software Engineering Notes 19(2):
52-56, April 1994.

9. The Semantic Web. T. Berners-Lee, J. Handler and O. Lassila. Scientific American.
May 2001.

10. Next Generation Semantic Web Applications. Enrico Motta and Marta Sabou. Proc. of
the 1st Asian Semantic Web Conference (ASWC), September 2006.

11. D1.2 Analysis of the State-of-the-Art in Ontology-based Knowledge Management.
Peter Mika and Hans Akkermans. SWAP Project, February 2003.

12. Software Architecture: Perspectives on an Emerging Discipline. Mary Shaw and
David Garlan. Prentice Hall. 1st edition, April 1996.

13. Lifecycle-Support in Architectures for Ontology-Based Information Systems. Thanh
Tran, Peter Haase, Holger Lewen, Óscar Muñoz-García, Asunción Gómez-Pérez and
Rudi Studer. Proceedings of the 6th International Semantic Web Conference pp. 508-
522, November 2007.

14. Software Reuse. Charles W. Krueger. ACM Comput. Surveys 24(2): 131-183, June
1992.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 65

15. Description Logic Handbook: Theory, Implementation and Applications. F. Baader,
D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider. Cambridge
University Press, 2003.

16. The role of semantics in e-government service model verification and evolution. L.
Stojanovic, A. Abecker, D. Apostolou, G. Mentzas, R. Studer. The Semantic Web
meets eGovernment Symposium. 2006 AAAI Spring Symposium Series. Stanford
University, California, USA, March 27-29, 2006.

17. A Framework to Verify Knowledge Sharing Technology. Gómez-Pérez A. 1996.
Expert Systems with Application 11(4): 519–529.

18. Evaluation of Ontologies. Gómez-Pérez A. 2001. International Journal of Intelligent
Systems 16(3):391–409.

19. Semi-automatic data-driven ontology construction system. Fortuna, B; Mladenic, D.
and Grobelnik, M. In Proc. of the 9th Multiconference on Information Society. pp.
223-226. 2006

20. User profiling for interest-focused browsing history. M. Grcar, D. Mladenic and M.
Grobelnik. In Proc. of the 9th Multiconference on Information Society. pp. 223-226.
2006

21. Methods and Tools for Ontology Evolution. L. Stojanovic. Dissertation. 2004.
Referee: Rudi Studer, Christof Weinhardt, Asunción Gómez-Pérez.

22. Using Uneven Margins SVM and Perceptron for Information Extraction. Y. Li, K.
Bontcheva, and H. Cunningham. In Proceedings of Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), 2005.

23. Mediation Enabled Semantic Web Services Usage E. Cimpian, A. Mocan, M.
Stollberg, 1st Asian Semantic Web Conference (ASWC2006), Beijing, China,
September 2006.

24. Semantic Web Services Grounding J. Kopecky, D. Roman, M. Moran, and D. Fensel.
In Proc. of the Int'l Conference on Internet and Web Applications and Services
(ICIW'06), Guadeloupe, February 2006.

25. Ontology matching. J. Euzenat and P. Shvaiko, Springer-Verlag, Berlin (DE), 2007.

26. Digital Repositories Review: February 2005. Rachel Heery, UKOLN, University of
Bath and Sheila Anderson, Arts and Humanities Data Service, February 2006.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 66

Appendix I Dependencies between the components of
the Semantic Web Framework
This appendix includes tables that show the dependencies of all the components of the
Semantic Web Framework with the components of each dimension.

 Information
Directory
Manager

Ontology
Repository

Data
Repository

Alignment
Repository

Metadata
Registry

Information Directory
Manager

 X X X X

Ontology Repository
Data Repository
Alignment Repository
Metadata Registry
Query Answering X
Semantic Query
Processor

X X

Semantic Query Editor
Ontology Editor X
Ontology Browser X
Ontology Evaluator X X
Ontology Learner X X
Ontology Matcher X X X
Ontology Discovery &
Ranking

 X

Ontology Localization
& Profiling

 X

Ontology Adaptation
Operators

 X

Ontology View
Customization

 X

Ontology Evolution
Manager

 X X

Ontology Evolution
Visualizer

 X X

Ontology Versioner X X
Instance Editor X X
Manual Annotation X X
Automatic Annotation X X
Ontology Populator X X
Web Service Registry X X
Web Service Discoverer X X
Web Service Selector
Web Service Composer X X
Web Service
Choreography Engine

 X X

Web Service Process
Mediator

 X X

Web Service Grounding
Web Service Profiling

Table 1 Dependencies of the components with the components of the Data and metadata management
dimension

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 67

 Query

Answering
Semantic Query

Processor
Semantic Query

Editor
Information Directory Manager
Ontology Repository
Data Repository
Alignment Repository
Metadata Registry
Query Answering
Semantic Query Processor X
Semantic Query Editor X
Ontology Editor X
Ontology Browser
Ontology Evaluator X
Ontology Learner
Ontology Matcher X
Ontology Discovery & Ranking
Ontology Localization & Profiling
Ontology Adaptation Operators
Ontology View Customization
Ontology Evolution Manager
Ontology Evolution Visualizer
Ontology Versioner
Instance Editor
Manual Annotation
Automatic Annotation
Ontology Populator
Web Service Registry
Web Service Discoverer X
Web Service Selector
Web Service Composer X
Web Service Choreography Engine
Web Service Process Mediator
Web Service Grounding
WS Profiling

Table 2 Dependencies of the components with the components of the Querying and reasoning
dimension

 Ontology
Editor

Ontology
Browser

Ontology
Evaluator

Ontology
Learner

Ontology
Matcher

Information Directory
Manager

 X

Ontology Repository
Data Repository
Alignment Repository
Metadata Registry
Query Answering
Semantic Query Processor
Semantic Query Editor
Ontology Editor X
Ontology Browser
Ontology Evaluator
Ontology Learner

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 68

Ontology Matcher X
Ontology Discovery &
Ranking

Ontology Localization &
Profiling

Ontology Adaptation
Operators

Ontology View
Customization

Ontology Evolution
Manager

Ontology Evolution
Visualizer

Ontology Versioner
Instance Editor
Manual Annotation
Automatic Annotation
Ontology Populator
Web Service Discoverer
Web Service Selector
Web Service Composer
Web Service Choreography
Engine

Web Service Process
Mediator

 X

Web Service Grounding
Web Service Profiling

Table 3 Dependencies of the components with the components of the Ontology Engineering
dimension

 Ontology
Discovery &

Ranking

Ontology
Localization &

Profiling

Ontology
Adaptation
Operators

Ontology
View

Customization
Information Directory
Manager

Ontology Repository
Data Repository
Alignment Repository
Metadata Registry
Query Answering
Semantic Query Processor
Semantic Query Editor
Ontology Editor
Ontology Browser X
Ontology Evaluator
Ontology Learner
Ontology Matcher X
Ontology Discovery &
Ranking

Ontology Localization &
Profiling

Ontology Adaptation
Operators

X X

Ontology View X

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 69

Customization
Ontology Evolution
Manager

Ontology Evolution
Visualizer

Ontology Versioner
Instance Editor
Manual Annotation
Automatic Annotation
Ontology Populator
Web Service Registry
Web Service Discoverer
Web Service Selector
Web Service Composer
Web Service Choreography
Engine

Web Service Process
Mediator

Web Service Grounding
Web Service Profiling

Table 4 Dependencies of the components with the components of the Ontology customization
dimension

 Ontology
Evolution
Manager

Ontology
Evolution
Visualizer

Ontology
Versioner

Information Directory Manager
Ontology Repository
Data Repository
Alignment Repository
Metadata Registry
Query Answering
Semantic Query Processor
Semantic Query Editor
Ontology Editor
Ontology Browser
Ontology Evaluator
Ontology Learner
Ontology Matcher
Ontology Discovery & Ranking
Ontology Localization & Profiling
Ontology Adaptation Operators
Ontology View Customization
Ontology Evolution Manager X X
Ontology Evolution Visualizer X
Ontology Versioner
Instance Editor
Manual Annotation
Automatic Annotation
Ontology Populator
Web Service Discoverer
Web Service Selector
Web Service Composer

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 70

Web Service Choreography Engine
Web Service Process Mediator
Web Service Grounding
Web Service Profiling

Table 5 Dependencies of the components with the components of the Ontology evolution dimension

 Instance
Editor

Manual
Annotation

Automatic
Annotation

Ontology
Populator

Information Directory Manager
Ontology Repository
Data Repository
Alignment Repository
Metadata Registry
Query Answering
Semantic Query Processor
Semantic Query Editor
Ontology Editor
Ontology Browser
Ontology Evaluator
Ontology Learner
Ontology Matcher
Ontology Discovery & Ranking
Ontology Localization & Profiling
Ontology Adaptation Operators
Ontology View Customization
Ontology Evolution Manager
Ontology Evolution Visualizer
Ontology Versioner
Instance Editor
Manual Annotation
Automatic Annotation X
Ontology Populator X
Web Service Registry
Web Service Discoverer
Web Service Selector
Web Service Composer
Web Service Choreography Engine
Web Service Process Mediator
Web Service Grounding
Web Service Profiling

Table 6 Dependencies of the components with the components of the Ontology instance generation
dimension

 Web
Service
Registry

Web
Service

Discoverer

Web
Service
Selector

Web
Service

Composer

Web Service
Choreography

Engine

Web
Service
Process

Mediator

Web
Service

Grounding

Web
Service

Profiling

Information
Directory
Manager

Ontology
Repository

Data

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 71

Repository
Alignment
Repository

Metadata
Registry

Query
Answering

Semantic
Query
Processor

Semantic
Query Editor

Ontology
Editor

Ontology
Browser

Ontology
Evaluator

Ontology
Learner

Ontology
Matcher

Ontology
Discovery &
Ranking

Ontology
Localization &
Profiling

Ontology
Adaptation
Operators

Ontology
View
Customization

Ontology
Evolution
Manager

Ontology
Evolution
Visualizer

Ontology
Versioner

Instance Editor
Manual
Annotation

Automatic
Annotation

Ontology
Populator

Web Service
Registry

Web Service
Discoverer

X

Web Service X X

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 72

Selector
Web Service
Composer

X X X

Web Service
Choreography
Engine

X X

Web Service
Process
Mediator

X

Web Service
Grounding

X X

Web Service
Profiling

X

Table 7 Dependencies of the components with the components of the Semantic Web Services
dimension

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 73

Appendix II Dependencies between the use cases and
the Semantic Web Framework
This appendix includes a table that shows the dependencies of the use cases and all the
components of the Semantic Web Framework.

 UC 1 UC 2 UC 3 UC 4 UC 5 UC 6 UC 7 UC 8
Information Directory
Manager

Ontology Repository X X X X X X X X
Data Repository X X X X X X X X
Alignment Repository X X X X X X
Metadata Registry X
Query Answering X X X X X X X
Semantic Query Processor X X X X X X X
Semantic Query Editor X X X X
Ontology Editor X X X X X X
Ontology Browser X X X X X X
Ontology Evaluator X
Ontology Learner X X X X X
Ontology Matcher X X X X X X
Ontology Discovery &
Ranking

 X

Ontology Localization &
Profiling

 X X X

Ontology Adaptation
Operators

 X

Ontology View Customization X X X X X X
Ontology Evolution Manager X X X X X
Ontology Evolution Visualizer X X X X X
Ontology Versioner X X X X X X
Instance Editor X
Manual Annotation X X
Automatic Annotation X X X X
Ontology Populator X X X
Web Service Registry X
Web Service Discoverer X
Web Service Selector X
Web Service Composer X
Web Service Choreography
Engine

Web Service Process
Mediator

Web Service Grounding
Web Service Profiling

Table 8 Dependencies of the use cases with the components of the Semantic Web Framework

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 74

Appendix III Implementations of the Semantic Web
Framework components
This appendix includes the implementations found for the SWF components described in
Chapter 4.

6.1 Data and Metadata Management

6.1.1 Information directory manager component
Name: Aduna Metadata Server
URL: Hhttp://www.aduna-

software.com/solutions/metadata_server/overview.viewH

Type of implementation: Application
Multiple components: Yes. It is also a Data and Metadata Repository.
Representation formalisms: RDF
Functionalities provided: Accessing both data and metadata.
 Type of interface: User interface and Web interface
Metadata Registry used: Metadata Server
 Required/Optional: Required
 Type of interface: Programming Interface

Name: Alvis
URL: Hhttp://www.alvis.info/alvis/H

Type of implementation: Application
Multiple components: Yes. It is also a data and metadata repository and also contains a

query answering component.
Representation formalisms: RDF
Functionalities provided: Storing and accessing data and metadata
 Type of interface: Web interface
Data Repository used: Zebra
 Required/Optional: Required
 Type of interface: Programming interface

Name: Beagle++
URL: Hhttp://beagle.l3s.deH

Type of implementation: Application
Multiple components: Yes. It is a data and metadata repository and contains a semantic

query processor.
Representation formalisms: RDF
Functionalities provided: Store and access metadata.
 Type of interface: User interface
Data Repository used: Lucene
 Required/Optional: Required
 Interface: Lucene API
 Type of interface: Programming interface
Metadata Registry used: Sesame
 Required/Optional: Required
 Interface: Sesame API
 Type of interface: Programming interface

Name: Gnowsis
URL: Hhttp://www.gnowsis.org/H

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 75

Type of implementation: Application
Multiple components: Yes. It is a data, metadata,ontology store and also a query answering

component.
Representation formalisms: RDF
Functionalities provided: Store data and metadata and representational ontologies.
 Type of interface: User interface
Data Repository used: Aperture
 Required/Optional: Required
 Interface: Java Api
 Type of interface: Programming Interface
Metadata Registry used: Sesame Repository
 Required/Optional: Required
 Interface: Java Api
 Type of interface: Programming Interface

Name: Haystack
URL: Hhttp://haystack.csail.mit.edu/home.htmlH

Type of implementation: Application
Multiple components: Yes. It is a data and metadata storage.
Representation formalisms: RDF
Functionalities provided: Store metadata and browse through it.
 Type of interface: User interface

Name: OWLIM
URL: Hhttp://www.ontotext.com/owlim/H

Type of implementation: Application
Multiple components: Yes. Storage, querying, reasoning over metadata
Representation formalisms: RDF/S, OWL
Functionalities provided: Storage, querying, reasoning over metadata. SAIL over

Sesame(sync)
 Type of interface: User interface
Metadata Registry used: Sesame
 Required/Optional: Required
 Interface: Sesame API
 Type of interface: Programming Interface

6.1.2 Ontology repository component
The implementations of the ontology repository component that we consider are those
specialized in semantic web resources (i.e., ontologies, RDF schemas, etc.). They can be
classified in 2 different types: centralized or decentralized applications.

Centralized ontology repositories
Name: Jena
URL: Hhttp://jena.sourceforge.net/H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Reading and writing RDF in RDF/XML, N3 and N-Triples

In-memory and persistent storage
SPARQL query engine
Inference support
RDF/OWL support

 Type of interface: API

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 76

Name: KAON2
URL: Hhttp://kaon2.semanticweb.org/H

Type of implementation: Application
Multiple components: Yes
Representation formalisms: OWL-DL and F-Logic
Functionalities provided: Management of OWL-DL, SWRL, and F-Logic ontologies,

Inference engine for answering conjunctive queries (expressed using
SPARQL syntax),
DIG interface
Extraction of ontology instances from relational databases
Supports remote access through RMI

 Type of interface: API

Name: Sesame
URL: Hhttp://www.openrdf.org/ H

Type of implementation: Application
Multiple components: Yes
Representation formalisms: RDF
Functionalities provided: RDF Schema querying

RDF Schema storing
RDF Schema inferencing
Supports both local and remote access(through HTTP or RMI)
Supports several query languages

 Type of interface: API

Name: Ontology Server
URL: Hhttp://www.starlab.vub.ac.be/research/dogma/OntologyServer.htmH

Type of implementation: Application
Multiple components: No
Functionalities provided: Get ontologies/concepts

Add ontologies/concepts
 Type of interface: API

Name: RDF Server
URL: Hhttp://semanticweb.gr/rdftp/H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Add ontologies

Query
Update

 Type of interface: API

Name: Knowledge zone
URL: Hhttp://smi- TUprotegeUT.stanford.edu:8080/KnowledgeZone/H

Type of implementation: Web portal
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Search by Keyword

Browse by Topic
Submit new Ontology and related Metadata
Rating System

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 77

 Type of interface: Web interface

Name: Onthology
URL: Hhttp://www.onthology.org/H

Type of implementation: Web portal
Multiple components: Yes
Representation formalisms: OWL
Functionalities provided: Search by some metadata

Browse by some metadata
Submit new Ontology and related Metadata
Export Repository
Rating System

 Type of interface: Web interface

Name: OntoSelect
URL: Hhttp://olp.dfki.de/ontoselect/H

Type of implementation: Web portal
Multiple components: No
Functionalities provided: Search by keywords

Browse ontologies
Document-based automatic ontology selection
Multilingual label support
Submit new ontology

 Type of interface: Web interface

Name: DAML Ontology Library
URL: Hhttp://www.daml.org/ontologies/H

Type of implementation: Web portal
Multiple components: No
Functionalities provided: Browse ontologies

Submit new ontology
 Type of interface: Web interface

Name: SchemaWeb
URL: Hhttp://www.schemaweb.info/H

Type of implementation: Web portal
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse ontologies

Search by keywords
Query triples
Submit new ontology

 Type of interface: Web interface

Name: ONTOSEARCH2
URL: Hhttp://www.ontosearch.org/H

Type of implementation: Web portal
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Search by keywords

SPARQL query support
Submit new ontology

 Type of interface: Web interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 78

Name: ProtégéOntologiesLibrary
URL: Hhttp://TUprotegeUT.cim3.net/cgi-bin/wiki.pl? TUProtegeUTOntologiesLibraryH

Type of implementation: Web portal
Multiple components: No
Functionalities provided: Browse ontologies

Submit new ontology
 Type of interface: Web interface

Name: Ontolingua
URL: Hhttp://www-ksl-svc.stanford.edu:5915/&service=FRAME-EDITORH

Type of implementation: Web portal
Multiple components: No
Functionalities provided: Browse ontologies

Search by keywords
Submit new ontology

 Type of interface: Web interface

Decentralized ontology repositories
Name: OntStore
URL: Hhttp://ui.sav.sk/parcom/index.html H

Type of implementation: Application
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Query RDF triples

Add ontology
 Type of interface: API

Name: RDFPeer
URL: Hhttp://www.isi.edu/index.phpH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Query RDF triples

Add ontology
 Type of interface: API

Name: RDF2GO
URL: Hhttp://wiki.ontoworld.org/wiki/RDF2Go H

Type of implementation: Program Library
Multiple components: Yes. Also offers querying over metadata.
Representation formalisms: RDF
Functionalities provided: Storage and querying over metadata
 Type of interface: Programming interface

6.1.3 Data repository component
Name: DSpace
URL: Hhttp://dspace.org/H

Type of implementation: Application
Multiple components: No.
Functionalities provided: Storing data.
 Type of interface: Web-based user interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 79

Name: Lucene
URL: Hhttp://lucene.apache.orgH

Type of implementation: Application
Multiple components: Yes. It also has a querying component.
Functionalities provided: Storage and querying of textual data.
 Type of interface: Programming and user interface

Name: Zebra
URL: Hhttp://www.indexdata.dk/zebra/H

Type of implementation: Application
Multiple components: Yes. It also allows querying for data.
Functionalities provided: Storage and querying of the data
 Type of interface: User interface

6.1.4 Alignment repository component
Name: COMA++
URL: Hhttp://dbs.uni-leipzig.de/Research/coma.htmlH

Type of implementation: Application and Web Application
Multiple components: Yes. It is also an ontology matching tool.
Representation formalisms: OWL, XSD
Functionalities provided: Alignment repository, alignment tool
 Type of interface: User interface

Name: Alignment API and Alignment Server
URL: Hhttp://alignapi.gforge.inria.fr/H

Type of implementation: Application and API
Multiple components: Yes. It is also an ontology alignment tool.
Representation formalisms: RDF, XML
Functionalities provided: Alignment repository, alignment tool
 Type of interface: User, programming interface and as a web service.

6.1.5 Metadata registry component
Name: 3store
URL: Hhttp://inanna.ecs.soton.ac.uk/3store/H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Store RDF triples
 Type of interface: RDQL query interface via Web or directly with the C library

Name: AllegroGraph
URL: Hhttp://www.franz.com/products/allegrograph/H
Type of implementation: Application
Multiple components: Yes. It is also an ontology repository and it has a query & reasoning

tool.
Representation formalisms: RDF
Functionalities provided: Metadata repository
 Type of interface: Programming interface

Name: Boca
URL: Hhttp://sourceforge.net/project/showfiles.php?group_id=181986&pack

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 80

age_id=210881H

Type of implementation: Application
Multiple components: No.
Representation formalisms: RDF
Functionalities provided: RDF store
 Type of interface: User interface

Name: Brahms
URL: Hhttp://lsdis.cs.uga.edu/projects/semdis/brahms/H

Type of implementation: Application
Multiple components: No.
Representation formalisms: RDF/S
Functionalities provided: Metadata storage
 Type of interface: User interface

Name: Hawk
URL: Hhttp://swat.cse.lehigh.edu/projects/index.html#hawkH

Type of implementation: Application
Multiple components: No.
Representation formalisms: OWL
Functionalities provided: Storing OWL data
 Type of interface: Programming interface

Name: The open metadata registry (prototype 1)
URL: Hhttp://www.dlib.org/dlib/may02/wagner/05wagner.htmlH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Search RDF schemas

Browse RDF schemas
Register RDF schema

 Type of interface: Web Interface

Name: The open metadata registry (prototype 2)
URL: Hhttp://www.dlib.org/dlib/may02/wagner/05wagner.htmlH

Type of implementation: Java Servlet Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Search RDF schemas

Browse RDF schemas
Register RDF schema

 Type of interface: Web Interface

Name: The open metadata registry (prototype 3)
URL: Hhttp://www.dlib.org/dlib/may02/wagner/05wagner.htmlH

Type of implementation: Java Servlet Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Search RDF schemas

Browse RDF schemas
Register RDF schema
Login
Import

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 81

 Type of interface: Web Interface

Name: OASIS ebXML Registry
URL: Hhttp://ebxmlrr.sourceforge.net/H

Type of implementation: Application
Multiple components: No
Representation formalisms: XML
Functionalities provided: Role Based Access Control

Cataloging of XML Content
HTTP Interface to Registry
Content-based Event Notification
Registry Managed Version Control
Parameterized Stored Queries

 Type of interface: Web Interface, Java User Interface

Name: Oyster
URL: Hhttp://oyster.ontoware.org H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Search ontologies by metadata

Register ontology metadata
Modify ontology metadata
Import/export metadata
Extract Metadata from ontology files

 Type of interface: Java Graphical User Interface

Name: Oyster2
URL: Hhttp://oyster2.ontoware.orgH

Type of implementation: Application
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Search ontologies by metadata

Register ontology metadata
Modify ontology metadata
Import/export metadata
Extract Metadata from ontology files

 Type of interface: API, Java Graphical User Interface

Name: Kowari
URL: Hhttp://www.kowari.org/H

Type of implementation: Application
Multiple components: Yes. It also has a querying component
Representation formalisms: RDF, OWL
Functionalities provided: Storage, retrieval and analysis of metadata
 Type of interface: User interface

Name: RDFGateway
URL: Hhttp://www.intellidimension.com/ H

Type of implementation: Application
Multiple components: Yes. It also has a querying component.
Representation formalisms: RDF,OWL
Functionalities provided: Store and query metadata
 Type of interface: Programming and user interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 82

Name: RDF2GO
URL: Hhttp://wiki.ontoworld.org/wiki/RDF2Go H

Type of implementation: Program Library
Multiple components: Yes. Also offers querying over metadata.
Representation formalisms: RDF
Functionalities provided: Storage and querying over metadata
 Type of interface: Programming interface

Name: RDFStore
URL: Hhttp://rdfstore.sourceforge.net/H

Type of implementation: Application
Multiple components: No.
Representation formalisms: RDF
Functionalities provided: Storage of metadata
 Type of interface: User and programming interface

Name: SemWeb
URL: Hhttp://razor.occams.info/code/semweb/ H

Type of implementation: Library
Multiple components: Yes. It also has a querying component.
Representation formalisms: RDF
Functionalities provided: Storing and querying over metadata.
 Type of interface: Programming interface

Name: YARS
URL: Hhttp://sw.deri.org/2004/06/yars/H

Type of implementation: Application
Multiple components: Yes. It also has a querying module
Representation formalisms: RDF, N3
Functionalities provided: Storing and querying metadata
 Type of interface: Programming

6.2 Querying and Reasoning

6.2.1 Query answering component
Name: AJAX Client for SPARQL
URL: Hhttp://xmlarmyknife.org/docs/rdf/sparql/ajax.htmlH

Type of implementation: AJAX client
Multiple components: No.
Representation formalisms: RDF
Functionalities provided: Query RDF
 Type of interface: Programming interface

Name: Bor
URL: Hhttp://www.ontotext.com/bor/H

Type of implementation: Library
Multiple components: No.
Representation formalisms: DAML+OIL
Functionalities provided: Reasoner
 Type of interface: Programming interface

Name: Corese

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 83

URL: Hhttp://www.inria.fr/acacia/coreseH

Type of implementation: Application
Multiple components: Yes. It is a semantic web search engine.
Representation formalisms: RDF(S), OWL Lite, RDF Rules, SPARQL (and its XML Result

Format)
The underlying formalism is Conceptual Graph - Written in Java 1.5

Functionalities provided: Query consistency
Query rewriting
Checking if a query pattern matches an ontology.
Selection of ontology concepts that satisfy query constraints
Extraction of ontology parts relevant to the particular query
Description of ontology concepts
Restriction of results number
Identifying sources that contain information relevant to the query
Request information from the identified sources
Supports the user in formulating a query
Provides a user-friendly query language (SPARQL)
Provides a user-friendly representation of results.
In addition: SPARQL query processing with RDFS entailment,
query RDF Schema, approximate search with similarity function,
aggregation (group, count, sum, etc.), expression in select, path.
Corese RDF Inference Rule Language (forward chaining)
RDFS type inference (classify resources according to property
signature)

 Type of interface: API, JSP Semantic Tag Library for building Semantic Web Servers
(library name: Sewese)
Web Service

Name: KAONP2P
URL: Hhttp://kaonp2p.ontoware.orgH

Type of implementation: Application
Multiple components: Yes
Representation formalisms: OWL
Functionalities provided: Expressive Reasoning ability

Supports mappings between various domain ontologies
Dynamic User Interface

 Type of interface: Java Graphical User Interface

Name: KAONWeb
URL: Hhttp://kaonweb.ontoware.orgH

Type of implementation: Application
Multiple components: Yes
Representation formalisms: OWL
Functionalities provided: Expressive Reasoning ability

Supports mappings between various domain ontologies
 Type of interface: Web Interface

Name: Oyster2
URL: Hhttp://oyster2.ontoware.orgH

Type of implementation: Application
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Search ontologies by metadata

Register ontology metadata

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 84

Modify ontology metadata
Import/export metadata
Extract Metadata from ontology files

 Type of interface: API, Java Graphical User Interface

6.2.2 Semantic query processor component
Name: AeroText
URL: Hhttp://www.lockheedmartin.com/wms/findPage.do?dsp=fec&ci=11255&sc=400H

Type of
implementation:

Application

Multiple components: Yes. It is also a query answering component.
Functionalities
provided:

Answering to queries related to concepts, not only documents, over a database.

Name: Sesame
URL: Hhttp://www.openrdf.org/ H

Type of implementation: Application
Multiple components: Yes
Representation
formalisms:

RDF

Functionalities provided: RDF Schema querying
RDF Schema storing
RDF Schema inferencing
Supports both local and remote access(through HTTP or RMI)
Supports several query languages

 Type of interface: API

6.2.3 Semantic query editor component
Name: Ontogator
URL: Hhttp://www.seco.tkk.fi/projects/semweb/dist.phpH

Type of implementation: Application
Multiple components: Yes. It allows the user to create a query, to manually/visually modify it, and

of course it answers the query.
Representation
formalisms:

RDF/XML

Functionalities provided: Query, edit query in RDF.
 Type of interface: User interface

Name: SemSearch
URL: Hhttp://semanticweb.kmi.open.ac.uk:8080/ksw/pages/semantic_searching.jspH

Type of implementation: Application
Multiple components: Yes. It includes a query answering and a query editor.
Functionalities provided: Writing a query and answering it.
 Type of interface: User interface
Semantic query processor
used:

Sesame

 Required/Optional: Required
 Interface: Sesame API
 Type of interface: Programming Interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 85

6.3 Ontology Engineering

6.3.1 Ontology editor component
The Ontology editor component implementations (ontology editors from now on) can be
classified in 2 different types. The most common one is that of applications whose main
goal is ontology edition and the less frequent are ontology edition plugins of larger
applications.
Ontology editors that only deal with one specific ontology have not been considered.

Name: Altova Semanticworks
URL: Hhttp://www.altova.com/products/semanticworks/semantic_web_rdf_

owl_editor.htmlH

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: DODDLE: Domain ontology rapid development environment
URL: Hhttp://www.yamaguchi.comp.ae.keio.ac.jp/mmm/doddle/H

Type of implementation: Application
Multiple components: Yes. It is an ontology learner and an ontology editor
Representation formalisms: OWL Lite
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: (PI)

Name: DOE
URL: Hhttp://homepages.cwi.nl/~troncy/DOE/H

Type of implementation: Application
Multiple components: Yes. It is an ontology browser
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: DOME
URL: Hhttp://dome.sourceforge.net/H

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: WSML
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: Fenfire

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 86

URL: Hhttp://fenfire.org/apps/editing.html H

Type of implementation: Application
Multiple components: Yes. It is an ontology browser
Representation formalisms: RDF
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: Graphl
URL: Hhttp://home.subnet.at/flo/mv/graphl/H

Type of implementation: Application
Multiple components: Yes. It is an ontology browser
Representation formalisms: RDF
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Ontology repository used: Web server
 Required/Optional: Optional

Name: GrOWL
URL: Hhttp://ecoinformatics.uvm.edu/technologies/growl-knowledge-

modeler.htmlH

Type of implementation: Application
Multiple components: Yes. It is an ontology browser
Representation formalisms: OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: IBM Integrated Ontology Development Toolkit
URL: Hhttp://www.alphaworks.ibm.com/tech/semanticstkH

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: Web interface
Semantic query processor used: Minerva
 Required/Optional: Required
 Interface: EMF Ontology Definition Metamodel (EODM) API
 Type of interface: Programming interface
Ontology repository used: Minerva
 Required/Optional: Required
 Interface: EMF Ontology Definition Metamodel (EODM) API
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: EMF Ontology Definition Metamodel (EODM) API
 Type of interface: Programming interface

Name: Infered

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 87

URL: Hhttp://www.intellidimension.com/ H

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: Web interface
Ontology repository used: RDF Gateway
 Required/Optional: Required
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: IsaViz
URL: Hhttp://www.w3.org/2001/11/IsaViz/H

Type of implementation: Application
Multiple components: Yes. It is an ontology browser
Representation formalisms: RDF
Functionalities provided: Edit ontologies
 Type of interface: User interface
Semantic query processor used: Jena
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming interface
Semantic query processor used: Sesame
 Required/Optional: Optional
 Interface: Sesame API
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming interface
Ontology repository used: Web server
 Required/Optional: Optional
 Interface: Jena API
 Type of interface: Programming interface
Ontology repository used: Sesame
 Required/Optional: Optional
 Interface: Sesame API
 Type of interface: Programming interface

Name: KAON OI Modeler
URL: Hhttp://kaon.semanticweb.org/H

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S)
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: Linkfactory
URL: Hhttp://www.landcglobal.com/pages/linkfactory.phpH

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 88

Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Ontology repository used: Oracle, Sybase and SQLServer
 Required/Optional: Optional

Name: Ontotrack
URL: Hhttp://www.informatik.uni-ulm.de/ki/ontotrack/H

Type of implementation: Application
Multiple components: Yes. It is an ontology browser
Representation formalisms: OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Semantic query processor used: RACER
 Required/Optional: Required
 Interface: RACER API
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming interface
Ontology repository used: Web server
 Required/Optional: Optional
 Interface: Jena API
 Type of interface: Programming interface

Name: Powl
URL: Hhttp://aksw.informatik.uni-leipzig.de/Projects/PowlH

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Powl store
 Required/Optional: Required
 Interface: RAP – RDF API for PHP
 Type of interface: Programming interface
Ontology repository used: Powl store
 Required/Optional: Required
 Interface: Powl RDFS and OWL API for PHP
 Type of interface: Programming interface

Name: Protégé
URL: Hhttp://TUprotegeUT.stanford.edu/H

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology browser used: ezOWL, FCAView, GrOWL Tab Widget, Jambalaya, OntoViz,

OWLViz, TGVizTab
 Required/Optional: Optional
 Interface: Protégé plugin APIs

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 89

 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Ontology repository used: Sesame
 Required/Optional: Optional
Ontology repository used: JDBC Backend
 Required/Optional: Optional

Name: Rhodonite
URL: Hhttp://rhodonite.angelite.nl/H

Type of implementation: Application
Multiple components: Yes. It is an ontology browser
Representation formalisms: RDF
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Ontology repository used: Web server
 Required/Optional: Optional

Name: SemTalk
Type of implementation: MS Visio plugin
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Semantic query processor used: Pellet
 Required/Optional: Optional
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: SWOOP
URL: Hhttp://www.mindswap.org/2004/SWOOP/H

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Semantic query processor used: Pellet
 Required/Optional: Required
 Interface: Proprietary plugin based system
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Manchester OWL API
 Type of interface: Programming interface
Ontology repository used: Web server
 Required/Optional: Optional
 Interface: Manchester OWL API
 Type of interface: Programming interface

Name: Topbraid composer
URL: Hhttp://www.topbraidcomposer.com/H

Type of implementation: Application

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 90

Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Semantic query processor used: Pellet
 Required/Optional: Required
 Interface: DIG interface
 Type of interface: Programming interface
Semantic query processor used: Any DIG-based reasoner
 Required/Optional: Optional
 Interface: DIG interface
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Ontology repository used: Web server
 Required/Optional: Optional

Name: WebODE
URL: Hhttp://webode.dia.fi.upm.es/WebODEWeb/index.html H

Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Representation formalisms: RDF(S), OWL
Functionalities provided: Edit ontologies
 Type of interface: User interface
Ontology repository used: WebODE server
 Required/Optional: Required
 Interface: WebODE API
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Optional
 Interface: WebODE API
 Type of interface: Programming interface

Name: DogmaModeler
Type of implementation: Application
Multiple components: Yes. It is an ontology engineering environment
Functionalities provided: DogmaModeler is software tool for modeling and engineering

ontologies. It supports among other things: (1) the development,
browsing, and management of domain and application
axiomatizations, and axiomatization libraries; (2) the modeling of
application axiomatizations using the ORM graphical notation, and
the automatic generation of the corresponding ORM-ML; (3) Maps
ORM diagrams into DIG and uses Racer for reasoning; (3) the
verbalization of application axiomatizations into pseudo natural
language (supporting flexible verbalization templates for English,
Dutch, Arabic, and Russian, for example) that allows non-experts to
check, validate, or build axiomatizations; (4) the automatic
composition of axiomatization modules, through a well-defined
composition operator; (5) the validation of the syntax and semantics
of application axiomatizations; (6) the incorporating of linguistic
resources in ontology engineering; (7) a simple approach of
multilingual lexicalization of ontologies; (8) the automatic mapping
of ORM schemes into X-Forms and HTML-Forms; etc.

 Type of interface: User interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 91

Name: ICOM
URL: Hhttp://www.inf.unibz.it/~franconi/icom/H

Type of implementation: Application
Representation formalisms: OWL-DL
Functionalities provided: The ontology language supported by ICOM can express:

- standard UML or Entity-Relationship models, extended with
definitions attached to entities and relations by means of view
expressions over other entities and relationships in the ontology;
- rich class of (interschema) integrity constraints, as inclusion and
equivalence dependencies between view expressions involving
entities and relationships possibly belonging to different schemas.
The expressive power of ICOM is equivalent to OWL-DL without
nominals; ICOM has an export function to OWL-DL.
ICOM reasons with (multiple) diagrams by encoding them in a
single description logic knowledge base, and shows the result of any
deductions such as inferred links, new stricter constraints, and
inconsistent entities or relationships.

 Type of interface: User interface

6.3.2 Ontology browser component
The Ontology browser component implementations (ontology browsers from now on)
can be classified into 3 different types: applications whose main goal is ontology
browsing, ontology browsing plugins of larger applications, and ontology development
tools that provide ontology browsing functionalities. In this section, we have not
considered implementations of ontology development tools, as they are included in the
implementations of the Ontology editor component. Furthermore, ontology browsers that
only deal with one specific ontology have not been considered.

Ontology browsers
Name: Brownsauce
URL: Hhttp://brownsauce.sourceforge.net/H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse RDF
 Type of interface: Web interface
Ontology repository used: Web server
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming interface

Name: BrowseRDF
URL: Hhttps://launchpad.net/browserdfH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse RDF
 Type of interface: Web interface
Ontology repository used: Web server
 Required/Optional: Required
 Interface: ActiveRDF API

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 92

 Type of interface: Programming interface

Name: Drive RDF Browser
URL: Hhttp://www.driverdf.org/articles/rdfbrowser.htmlH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Ontology repository used: Web server
 Required/Optional: Optional

Name: Disco
URL: Hhttp://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse ontologies
 Type of interface: Web interface
Ontology repository used: Web server
 Required/Optional: Required

Name: Horus
URL: Hhttp://sites.wiwiss.fu-

berlin.de/suhl/bizer/rdfapi/tutorial/horus/index.htmH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse RDF
 Type of interface: Web interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: RAP – RDF API for PHP
 Type of interface: Programming interface

Name: Longwell
URL: Hhttp://simile.mit.edu/wiki/LongwellH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: Web interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Name: OINK
URL: Hhttp://wiki.nrcc.noklab.com/SwapMe/OINKH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse ontologies
 Type of interface: User interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 93

Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Wilbur API
 Type of interface: Programming interface

Name: RDF Gravity
URL: Hhttp://semweb.salzburgresearch.at/apps/rdf-gravity/index.htmlH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming interface

Name: Tabulator
URL: Hhttp://www.w3.org/2005/ajar/tab H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Web server
 Required/Optional: Required

Name: Welkin
URL: Hhttp://simile.mit.edu/welkin/H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required

Ontology browsing plugins
Name: Jambalaya
URL: Hhttp://www.thechiselgroup.org/jambalayaH

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

Name: Ontosphere 3D
URL: Hhttp://ontosphere3d.sourceforge.net/H

Type of implementation: Protégé plugin
Multiple components: No

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 94

Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

Name: OntoViz
URL: Hhttp://TUprotegeUT.cim3.net/cgi-bin/wiki.pl?OntoViz H

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

Name: OWLViz
URL: Hhttp://www.co-ode.org/downloads/owlviz/co-ode-index.phpH

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

Name: TGVizTab
URL: Hhttp://www.ecs.soton.ac.uk/~ha/TGVizTab/TGVizTab.htmH

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

6.3.3 Ontology evaluator component
The Ontology evaluator component implementations (ontology evaluators from now on)
are either applications (standalone or web) or program libraries. In the case of program
libraries, usually one small application has been developed using the program library to
allow users to evaluate ontologies.
The implementations of the Semantic query processor component can be used to evaluate
ontologies using their subsumption, classification and consistency checking

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 95

functionalities. In this section we have not considered these implementations, as they are
included in the implementations of the Semantic query processor component.

Name: ARP: Another RDF Parser
URL: Hhttp://www.hpl.hp.com/personal/jjc/arp/H

Type of implementation: Program library
Multiple components: No
Representation formalisms: RDF
Functionalities provided: Ontology evaluation
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming Interface

Name: CLEANONTO
URL: Hhttp://www.csd.abdn.ac.uk/~qreul/software.htmlH

Type of implementation: Application
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Ontology evaluation
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming Interface
Data repository used: WordNet
 Required/Optional: Required
 Interface: JWNL API
 Type of interface: Programming interface

Name: ConsVISor
URL: Hhttp://www.vistology.com/consvisor/H

Type of implementation: Application
Multiple components: No
Representation formalisms: OWL, RDF, DAML
Functionalities provided: Ontology evaluation
 Type of interface: User interface
Ontology repository used: Web server
 Required/Optional: Required

Name: Eyeball
URL: Hhttp://jena.sourceforge.net/EyeballH

Type of implementation: Program library
Multiple components: No
Representation formalisms: RDF, OWL
Functionalities provided: Ontology evaluation
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming Interface

Name: ODEval

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 96

URL: Hhttp://minsky.dia.fi.upm.es/odevalH

Type of implementation: Program library
Multiple components: No
Representation formalisms: RDF(S), DAML+OIL, OWL
Functionalities provided: Ontology evaluation
 Type of interface: Programming interface
Ontology repository used: WebODE server
 Required/Optional: Required
 Interface: WebODE API
 Type of interface: Programming Interface
Ontology repository used: Local filesystem
 Required/Optional: Optional
 Interface: WebODE API
 Type of interface: Programming Interface

Name: OWL API
URL: Hhttp://owlapi.sourceforge.net/OWLAPI/H

Type of implementation: Program library
Multiple components: Yes, it is an Ontology repository
Representation formalisms: RDF(S), OWL
Functionalities provided: Ontology evaluation
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: OWL API
 Type of interface: Programming Interface

Name: Semantic Web/RDF Library for C#/.NET
URL: Hhttp://rdfabout.com/demo/validator/H

Type of implementation: Program library
Multiple components: Yes, it is an Ontology repository
Representation formalisms: RDF
Functionalities provided: Ontology evaluation
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: SemWeb C# RDF
 Type of interface: Programming Interface

Name: Validating RDF Parser
URL: Hhttp://139.91.183.30:9090/RDF/VRP/H

Type of implementation: Program library
Multiple components: Yes, it is an Ontology repository
Representation formalisms: RDF(S)
Functionalities provided: Ontology evaluation
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: VRP API
 Type of interface: Programming Interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 97

6.3.4 Ontology learner component
The Ontology learner component implementations (ontology learners from now on) are
either standalone applications or program libraries. Some of these ontology learners are
part of ontology engineering environments that provide other functionalities.

Name: DODDLE: Domain ontology rapid development environment
URL: Hhttp://www.yamaguchi.comp.ae.keio.ac.jp/mmm/doddle/H

Type of implementation: Application
Multiple components: Yes. It is an Ontology editor and an Ontology browser
Representation formalisms: OWL Lite
Functionalities provided: Ontology learning
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming Interface
Data repository used: Local filesystem
 Required/Optional: Required

Name: KEA: Keyphrases Extraction Algorithm
URL: Hhttp://www.nzdl.org/Kea/H

Type of implementation: Program library
Multiple components: No
Representation formalisms: SKOS
Functionalities provided: Ontology learning
 Type of interface: Programming interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming Interface
Data repository used: Local filesystem
 Required/Optional: Required

Name: OntoLearn Tool
URL: Hhttp://lcl.di.uniroma1.it/tools.jspH

Type of implementation: Application
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Ontology learning
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Data repository used: Local filesystem
 Required/Optional: Required
Data repository used: WordNet
 Required/Optional: Required
Data repository used: SemCor
 Required/Optional: Required

Name: Text2Onto
URL: Hhttp://ontoware.org/projects/text2onto/H

Type of implementation: Application

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 98

Multiple components: No
Representation formalisms: RDF(S), OWL, F-Logic
Functionalities provided: Ontology learning
 Type of interface: User interface
Ontology repository used: KAON
 Required/Optional: Required
 Interface: KAON API
 Type of interface: Programming interface
Data repository used: Local filesystem
 Required/Optional: Required
Data repository used: WordNet
 Required/Optional: Required

Name: TERMINAE
URL: Hhttp://www-lipn.univ-paris13.fr/~szulman/TERMINAE.html H

Type of implementation: Application
Multiple components: Yes, it is an Ontology editor and Ontology browser
Representation formalisms: RDF(S), OWL, OIL, XML
Functionalities provided: Ontology learning
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
Data repository used: Local filesystem
 Required/Optional: Required

6.3.5 Ontology matcher component
Below, the ontology matchers modules are classified under two categories: matchers that
provide the basic function of taking two ontologies and generating an alignment, and a
framework that integrates many functions around alignments.

Ontology matchers
Name: AMW
URL: Hhttp://www.eclipse.org/gmt/amw/ H

Type: semi-automatic
Input formalisms: UML
Output formalisms: alignment
Functionalities provided: Editor/Transformer/Data translator
Type of interface: Plug-in
Dependencies: Eclipse

Name: AUTOMS
URL: Hhttp://www.icsd.aegean.gr/ai-lab/projects/AUTOMS/H

Type: standalone/semi-automatic
Input formalisms: OWL
Output formalisms: OWL
Functionalities provided: Matcher/Merger
Type of interface: CLI
Dependencies: WordNet

Name: CMS
URL: Hhttp://www.aktors.org/crosi/H

Type: standalone
Input formalisms: OWL

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 99

Output formalisms: Alignment format/OWL/SKOS
Functionalities provided: Matcher
Type of interface: API/Web(servlet)/CLI
Dependencies: WordNet, Jena

Name: CtxMatch
URL: Hhttp://dit.unitn.it/~zanobini/downloads.htmlH

Type: semi-automatic
Input formalisms: OWL/Taxonomy
Output formalisms: Alignment
Functionalities provided: Matcher
Type of interface: CLI
Dependencies: WordNet, SAT solvers

Name: eTuner/iMap/Glue/LSD
URL: Hhttp://anhai.cs.uiuc.edu/home/projects/schema-matching.htmlH

Type: standalone
Input formalisms: BDSchema/XML Schema/taxonomy
Output formalisms: Alignment
Functionalities provided: Matcher
Type of interface: CLI

Name: Falcon-AO
URL: Hhttp://xobjects.seu.edu.cn/project/falcon/falcon.htmH

Type: standalone
Input formalisms: OWL/RDF
Output formalisms: Alignment format
Functionalities provided: Matcher
Type of interface: CLI

Name: NOM, QOM, APFEL
URL: Hhttp://www.aifb.uni-karlsruhe.de/WBS/meh/foam/H

Type: standalone
Input formalisms: OWL/RDF
Output formalisms: Alignment
Functionalities provided: Matcher
Type of interface: GUI/API/Plug-in
Dependencies: FOAM, KAON2

Name: H-Match
URL: Hhttp://islab.dico.unimi.it/hmatch/H

Type: standalone
Input formalisms: OWL
Output formalisms: Alignment
Functionalities provided: Matcher/Mediator generator
Type of interface: GUI/API/Web/WS/CLI/Plug-in

Name: LOM
URL: Hhttp://reliant.teknowledge.com/DAML/H

Type: standalone/semi-automatic
Input formalisms: OWL/DAML
Output formalisms: Alignment
Functionalities provided: Server/Matcher/Transformer
Type of interface: WS

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 100

Name: MapOnto
URL: Hhttp://www.cs.toronto.edu/semanticweb/maponto/index.htmlH

Type: standalone/semi-automatic
Input formalisms: OWL/DBSchema/XML Schema
Output formalisms: Rules
Functionalities provided: Matcher/Merger
Type of interface: Plug-in
Dependencies: Protégé

Name: MetaQuerier
URL: Hhttp://metaquerier.cs.uiuc.edu/H

Type: semi-automatic
Input formalisms: Web interface
Output formalisms: Query answers
Functionalities provided: Matcher/Server/Query engine
Type of interface: WS

Name: MoA
URL: Hhttp://mknows.etri.re.kr/moa/ H

Type: standalone/semi-automatic
Input formalisms: OWL
Output formalisms: OWL
Functionalities provided: Matcher/Editor
Type of interface: GUI/CLI

Name: OLA
URL: Hhttp://www.iro.umontreal.ca/~owlola/alignment.htmlH

Type: standalone
Input formalisms: OWL
Output formalisms: Alignment format
Functionalities provided: Matcher/
Type of interface: API/CLI
Dependencies: Alignment API, OWL API

Name: S-Match
URL: Hhttp://dit.unitn.it/~accord/H

Type: standalone/semi-automatic
Input formalisms: OWL/Taxonomy/XML Schema
Output formalisms: Alignment
Functionalities provided: Matcher/
Type of interface: API/CLI
Dependencies: WordNet, SAT solvers

Name: SAMBO
URL: Hhttp://www.ida.liu.se/~iislab/projects/SAMBO/H

Type: standalone/semi-automatic
Input formalisms: OWL/DAML+OIL
Output formalisms: Alignment/OWL/DAML+OIL
Functionalities provided: Matcher/Merger
Type of interface: Web

Name: Similarity Flooding
URL: Hhttp://www-db.stanford.edu/~melnik/mm/sfa/H

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 101

Type: semi-automatic
Input formalisms: DB Schema/XML Schema
Output formalisms: Alignment
Functionalities provided: Matcher
Type of interface: API
Dependencies: Contained in Rondo system

Name: ToMAS/Clio
URL: Hhttp://www.cs.toronto.edu/db/clio/H

Type: semi-automatic
Input formalisms: DB Schema/XML Schema
Output formalisms: SQL Queries
Functionalities provided: Editor/Matcher/Data translator
Type of interface: GUI

Name: OntoBuilder
URL: Hhttp://iew3.technion.ac.il/OntoBuilder/H

Type: semi-automatic
Input formalisms: Web forms/XML Schema
Output formalisms: Mediator
Functionalities provided: Matcher/Data translator/Mediator generator
Type of interface: GUI/Web/WS/CLI

Name: OntoMerge
URL: Hhttp://cs-www.cs.yale.edu/homes/dvm/daml/ontology-

translation.htmlH

Type: standalone/semi-automatic
Input formalisms: OWL
Output formalisms: OWL
Functionalities provided: Matcher/Merger
Type of interface: Web

Alignment frameworks

Name: Alignment API & Alignment server
URL: Hhttp://co4.inrialpes.fr/align/align.htmlH

Type: standalone
Input formalisms: OWL
Output formalisms: Alignment format
Functionalities provided: Matcher/Server/API/Transformer/Merger/Data translator/Mediator

generator
Type of interface: API/Web/WS/CLI
Dependencies: MySQL (for server)

Name: COMA & COMA++
URL: Hhttp://dbs.uni-leipzig.de/Research/coma.htmlH

Type: semi-automatic
Input formalisms: OWL/DBSchema/XML Schema
Output formalisms: Alignment
Functionalities provided: Matcher/Data translator
Type of interface: GUI

Name: FOAM
URL: Hhttp://www.aifb.uni-karlsruhe.de/WBS/meh/foam/H

Type: standalone

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 102

Input formalisms: OWL/RDF
Output formalisms: Alignment
Functionalities provided: Matcher
Type of interface: GUI/API/Plug-in

Name: PROMPT
URL: Hhttp://TUprotegeUT.stanford.edu/plugins/prompt/prompt.htmlH

Type: standalone/semi-automatic
Input formalisms: OWL/RDF
Output formalisms: OWL/RDF
Functionalities provided: Matcher/Editor/Transformer/Merger/Data translator
Type of interface: GUI/Plug-in
Dependencies: Protégé

Name: Rondo
URL: Hhttp://infolab.stanford.edu/~melnik/mm/rondo/H

Type: semi-automatic
Input formalisms: DB Schema/XML Schema
Output formalisms: OWL
Functionalities provided: Matcher/Transformer/Merger
Type of interface: GUI

Name: Chimaera
URL: Hhttp://www.ksl.stanford.edu/software/chimaera/ H

Type: semi-automatic
Input formalisms: OWL
Output formalisms: OWL
Functionalities provided: Editor
Type of interface: GUI

Name: MAFRA
URL: Hhttp://sourceforge.net/projects/mafra-toolkit/H

Type: standalone/semi-automatic
Input formalisms: OWL/RDF
Output formalisms: Rules
Functionalities provided: Matcher/API
Type of interface: GUI/API

6.4 Ontology Customization
The Ontology customization component implementations can be classified into several
different types: applications whose main goal is the construction and/or the gathering of
inputs for ontology customization, ontology customization operators, ontology
visualization plugins of larger applications, and standalone application that provide
ontology customization functionalities.

6.4.1 Ontology localization and profiling component
Name: OntoGen
URL: Hhttp://ontogen.ijs.si/H

Type of implementation: Application
Multiple components: Yes
Representation formalisms: RDF, OWL
Functionalities provided: Extend ontology using a custom text corpus

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 103

 Type of interface: standalone
Ontology repository used: Local, standalone
 Required/Optional: Required
 Interface: Proprietary
 Type of interface: Programming interface, user interface

Name: Calendar Apprentice
URL: Hhttp://citeseer.ist.psu.edu/481999.html H

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF, (OWL) Rules
Functionalities provided: Derive rules for customizing ontology instance selection
 Type of interface: standalone
Ontology repository used: local
 Required/Optional: optional
 Interface: API
 Type of interface: Programming interface

Name: Personal WebWatcher
URL: Hhttp://www-ai.ijs.si/DunjaMladenic/pww.htmlH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF and custom
Functionalities provided: Create profiles of how users interact with ontological instances and

propose link recommendations
 Type of interface: Web interface and a local application
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: API
 Type of interface: Programming interface

Name: Document Atlas
URL: Hhttp://docatlas.ijs.si/H

Type of implementation: Application
Multiple components: Yes.
Representation formalisms: OWL and custom
Functionalities provided: Create custom rich visualization of ontologies and structured

information about text corpora
 Type of interface: Web interface, local application
Ontology repository used: Local
 Required/Optional: Optional
 Interface: API and GUI
 Type of interface: Programming and user interfaces

6.4.2 Ontology discovery and ranking component
Name: Watson
URL: Hhttp://watson.open.ac.ukH

Type of implementation: Application, framework
Multiple components: Yes
Representation formalisms: RDF(S), OWL
Functionalities provided: Discover ontologies, describe ontologies, assess ontology quality on

multiple measures, search ontologies
 Type of interface: Web interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 104

Ontology repository used: Web server based on Jena and custom DB-s
 Required/Optional: Required
 Interface: API-s, web interfaces
 Type of interface: Programming and user interfaces

Name: Swoogle
URL: Hhttp://swoogle.umbc.edu/H

Type of implementation: Application
Multiple components: Yes
Representation formalisms: RDF(S), OWL
Functionalities provided: Collect and search ontologies
 Type of interface: API and User interface
Ontology repository used: Local filesystem (?)
 Required/Optional: Required
 Interface: API, GUI
 Type of interface: Programming and user interfaces

6.4.3 Ontology adaptation operators component
Name: ONION
URL: Hhttp://infolab.stanford.edu/~prasen9/H

Type of implementation: Application
Multiple components: Yes
Representation formalisms: RDF
Functionalities provided: Semi-automatic derivation of rules and mappings using operators to

extend ontologies, ontology composition
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Optional

Name: PROMPT
URL: Hhttp://TUprotegeUT.stanford.edu/plugins/prompt/prompt.htmlH

Type of implementation: Algorithm(s)
Multiple components: yes
Representation formalisms: RDF
Functionalities provided: Creating ontologies by applying various operators onto the existing

ontologies and data
 Type of interface: Web interface
Ontology repository used: Local
 Required/Optional: Optional
 Interface: API
 Type of interface: Plugin (e.g. in Protégé)

Name: Chimaera
URL: Hhttp://www-ksl.stanford.edu/software/chimaera/H

Type of implementation: Web application
Multiple components: Yes
Representation formalisms: RDF(S), OWL (OKBC compliant)
Functionalities provided: Create ontologies using a range of predefined operators mainly for

merging
 Type of interface: User interface
Ontology repository used: Protégé and local (user submitted)
 Required/Optional: Optional
 Interface: Web application (GUI)

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 105

 Type of interface: User interface

Name: FONTE
URL: Hhttp://www.aifb.uni-karlsruhe.de/~sst/Research/Publications/K-Cap-

03.pdfH

Type of implementation: Application
Multiple components: No
Representation formalisms: RDF(S)
Functionalities provided: Factorize and merge ontologies from different domains by means of

‘Cartesian product’ like operator
 Type of interface: User interface
Ontology repository used: Local (user submitted)
 Required/Optional: Optional
 Interface: GUI
 Type of interface: User interface

6.4.4 Ontology view customization component
Name: Longwell
URL: Hhttp://simile.mit.edu/longwell/H

Type of implementation: Web application, framework
Multiple components: Yes
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse and navigate through ontologies in a faceted manner
 Type of interface: User interface and stylesheets
Ontology repository used: Custom
 Required/Optional: Required
 Interface: GUI, API
 Type of interface: Programming and also user interfaces

Name: TGVizTab
URL: Hhttp://www.ecs.soton.ac.uk/~ha/TGVizTab/TGVizTab.htmH

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

Name: OntoViz
URL: Hhttp://TUprotegeUT.cim3.net/cgi-bin/wiki.pl?OntoViz H

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 106

Name: Jambalaya
URL: Hhttp://www.thechiselgroup.org/jambalayaH

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

Name: OWLViz
URL: Hhttp://www.co-ode.org/downloads/owlviz/co-ode-index.phpH

Type of implementation: Protégé plugin
Multiple components: No
Representation formalisms: OWL
Functionalities provided: Browse ontologies
 Type of interface: User interface
Ontology repository used: Protégé
 Required/Optional: Required
 Interface: Protégé plugin APIs
 Type of interface: Programming interface

Name: /facet
URL: Hhttp://swik.net/slashfacetH

Type of implementation: Web application, framework
Multiple components: Yes
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse and navigate through ontologies in a faceted manner
 Type of interface: User interface and stylesheets
Ontology repository used: Custom
 Required/Optional: Required
 Interface: GUI, API
 Type of interface: Programming and also user interfaces

Name: mSpace
URL: Hhttp://mspace.fm/H

Type of implementation: Web application, framework
Multiple components: Yes
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse and navigate through ontologies in a faceted manner, define

facets based on ontological rules/properties
 Type of interface: User interface
Ontology repository used: Custom, 3store
 Required/Optional: Required
 Interface: GUI, API
 Type of interface: Programming and also user interfaces

Name: VIKI
Type of implementation: Web application, framework
Multiple components: Yes
Representation formalisms: RDF(S), OWL

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 107

Functionalities provided: Browse and navigate through ontologies in a faceted manner
 Type of interface: User interface and stylesheets
Ontology repository used: Custom
 Required/Optional: Required
 Interface: GUI, API
 Type of interface: Programming and also user interfaces

Name: CropCircles
URL: Hhttp://ontoworld.org/wiki/CropCircles:_Topology_Sensitive_Visuali

zation_of_OWL_Class_HierarchiesH

Type of implementation: Standalone application, algorithm
Multiple components: Yes
Representation formalisms: OWL
Functionalities provided: Visualize and navigate through ontologies in by means of ontology

import (inclusion)
 Type of interface: User interface
Ontology repository used: Custom
 Required/Optional: Optional
 Interface: GUI

Name: CS AKTive Space
URL: Hhttp://cs.aktivespace.org/H

Type of implementation: Web application
Multiple components: Yes
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse and navigate through ontological instances in a faceted

manner and using different visualization metaphors
 Type of interface: User interface
Ontology repository used: Custom, 3Store
 Required/Optional: Required
 Interface: GUI
 Type of interface: User interface

Name: SpaceTree
Type of implementation: Standalone application, algorithm
Multiple components: Yes
Representation formalisms: OWL
Functionalities provided: Visualize and navigate through ontologies by means of hypertree

like structures
 Type of interface: User interface
Ontology repository used: Custom
 Required/Optional: Optional
 Interface: GUI

Name: TreeMap
Type of implementation: Standalone application, algorithm
Multiple components: Yes
Representation formalisms: OWL
Functionalities provided: Visualize and navigate through ontologies by means of tree

structures mapped onto geometrical regions
 Type of interface: User interface
Ontology repository used: Custom
 Required/Optional: Optional
 Interface: GUI

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 108

Name: Spotlight
URL: Hhttp://kmi.open.ac.uk/people/paulm/rae/ht05.pdfH

Type of implementation: Standalone application, algorithm
Multiple components: No
Representation formalisms: OCML (OWL via import)
Functionalities provided: Visualize and navigate through ontological instances by means of

their semantic and usage relevance, proximity
 Type of interface: User interface
Ontology repository used: Custom
 Required/Optional: Required
 Interface: GUI

Name: IsaViz
URL: Hhttp://www.w3.org/2001/11/IsaViz/H

Type of implementation: Application, plugin
Multiple components: Yes. It is also an RDF editor.
Representation formalisms: RDF
Functionalities provided: Browse RDF
 Type of interface: User interface
Ontology repository used: Local filesystem
 Required/Optional: Required
 Interface: Jena API
 Type of interface: Programming interface
Ontology repository used: Web server
 Required/Optional: Optional
 Interface: Jena API
 Type of interface: Programming interface
Ontology repository used: Sesame
 Required/Optional: Optional
 Interface: Sesame API
 Type of interface: Programming interface

6.5 Ontology Evolution

6.5.1 Ontology versioner component
The Ontology versioner component implementations usually present a library that
implements the essential functions for storing ontology versions, difference computation
(either syntactic or semantic), querying of multiple versions, change management (e.g.
user commits, check-outs, branching, etc.). Other components of the evolution dimension
may build on these libraries.

Name: SemVersion
URL: Hhttp://ontoware.org/projects/semversion/H

Type of implementation: Program library
Multiple components: No
Representation formalisms: RDF(S), OWL
Functionalities provided: Version ontologies
 Type of interface: Programmatic interface
Ontology and data repository
used:

RDF2Go

 Required/Optional: Required
 Interface: Program library

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 109

 Type of interface: Programmatic interface

Name: DIP ontology versioning
URL: Hhttp://www.omwg.org/tools/versioning/v1.0/versioning.zipH

Type of implementation: Program library
Multiple components: No
Representation formalisms: WSML
Functionalities provided: Version ontologies
 Type of interface: Programmatic interface

6.5.2 Ontology evolution visualizer component
The Ontology evolution visualizer component implementations usually present a user
interface that allows browsing an ontology in the context of its multiple versions,
comparing visually different ontologies, and possibly performing some versioning
operations within the visual interface (e.g. merging of branches). Other components of
the evolution dimension may incorporate this interface.

Name: SemVersion Protégé plug-in
URL: Hhttp://ontoware.org/projects/semversion/H

Type of implementation: Plug-in
Multiple components: Yes – versioner and visualizer
Representation formalisms: RDF(S), OWL
Functionalities provided: Version ontologies, browse the versions
 Type of interface: User interface
Ontology and data repository
used:

RDF2Go, Protégé native repositories

 Required/Optional: Required
 Interface: Program libraries
 Type of interface: Programmatic interfaces

Name: PROMPT, PROMPTDiff
URL: Hhttp://TUprotegeUT.stanford.edu/plugins/prompt/prompt.htmlH

Type of implementation: Plug-in
Multiple components: Yes – ontology merging and difference visualisation tool
Representation formalisms: OWL, other formats supported in Protégé
Functionalities provided: Browse differences between different versions
 Type of interface: User interface
Ontology and data repository
used:

Protégé native repositories

 Required/Optional: Required
 Interface: Program library
 Type of interface: Programming interface

6.5.3 Ontology evolution manager component
The Ontology evolution manager component implementations are usually incorporated
into complex ontology development and evolution framework, providing either APIs or
user (web of standalone) interfaces. The component wraps the functionalities of lower-
level components (ontology versioner, visualizer).

Name: KAON
URL: Hhttp://kaon.semanticweb.org/H

Type of implementation: Application, library

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 110

Multiple components: Yes – It is an ontology development platform
Representation formalisms: KAON knowledge model, RDF(S), OWL extensions
Functionalities provided: Ontology development, browsing, reasoning, version management

using transaction mechanism
 Type of interface: User interfaces, programmatic interface
Ontology and data repository
used:

KAON native

 Required/Optional: Required
 Interface: Program library
 Type of interface: Programming interface

Name: DOME
URL: Hhttp://dome.sourceforge.netH

Type of implementation: Application
Multiple components: Yes – an ontology management environment
Representation formalisms: WSML
Functionalities provided: Ontology development, browsing, version management (DIP

versioning used), ...
 Type of interface: User interface

Name: MarcOnt Portal
URL: Hhttp://portal.marcont.orgH

Type of implementation: Application, service interfaces planned
Multiple components: Yes – ontology merging and difference visualisation tool
Representation formalisms: OWL, other formats supported in Protégé
Functionalities provided: Collaborative ontology development, ontology version visualization

and management
 Type of interface: Web interface, service interfaces planned
Ontology and data repository
used:

Jena

 Required/Optional: Required
 Interface: Program library
 Type of interface: Programming interface

Name: Linkfactory
URL: Hhttp://www.landcglobal.com/pages/linkfactory.phpH

Type of implementation: Application
Multiple components: Yes. It is an ontology development tool
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies, manage versions in a database
 Type of interface: User interface
Ontology repository used: Oracle, Sybase and SQLServer
 Required/Optional: Optional

Name: Powl
URL: Hhttp://aksw.informatik.uni-leipzig.de/Projects/PowlH

Type of implementation: Application
Multiple components: Yes. It is an ontology development tool
Representation formalisms: RDF(S), OWL
Functionalities provided: Browse ontologies, manage versions (syntactic)
 Type of interface: User interface
Components used: Powl store
 Required/Optional: Required
 Interface: RAP – RDF API for PHP

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 111

 Type of interface: Programming interface

6.6 Ontology Instance Generation

6.6.1 Instance editor component
Name: GATE Ontology Editor
URL: Hwww.gate.ac.ukH

Type of implementation: GATE plug-in
Multiple components: No
Representation formalisms: A combination of limited OWL Lite and unconstrained RDFS
Functionalities provided: Create, Browse, Modify ontology
 Type of interface: GUI
Ontology repository used: In memory
 Required/Optional: Required
 Interface: GATE Ontology API
 Type of interface: Programming Interface

Name: OCAT
URL: Hwww.gate.ac.ukH

Type of implementation: GATE plug-in
Multiple components: NO
Representation formalisms: A combination of limited OWL Lite and unconstrained RDFS
Functionalities provided: Creation of new manual instances from any text
 Type of interface: GUI
Ontology repository used: In memory
 Required/Optional: Required
 Interface: GATE Ontology API
 Type of interface: Programming Interface
Data Repository used: GATE Documents
 Required/Optional: Required
 Interface: GATE API
 Type of interface: Programming Interface

6.6.2 Manual annotation component
Name: OCAT
URL: Hwww.gate.ac.ukH

Type of implementation: GATE plug-in
Multiple components: NO
Representation formalisms: a combination of limited OWL Lite and unconstrained RDFS
Functionalities provided: Concept, instance and property annotations
 Type of interface: GUI
Ontology repository used: GATE Ontology API – a wrapper for OWLIM
 Required/Optional: Required
 Interface: GATE plug-in
 Type of interface: API and GUI
Data Repository used: GATE Documents
 Required/Optional: Required
 Interface: GATE API
 Type of interface: Programming Interface

Name: OntoMat-Annotizer
URL: Hhttp://annotation.semanticweb.org/ontomat/index.htmlH

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 112

Type of implementation: Application
Multiple components: NO
Representation formalisms: OWL
Functionalities provided: Web page annotation tool, creating and maintaining ontology-based

OWL-Mark-ups, Ontology Browsing
 Type of interface: GUI
Ontology repository used: Ontobroker's underlying F-Logic based inference

engine SilRI
 Required/Optional: Required
 Interface: GUI
 Type of interface: User Interface

Name: M-OntoMat-Annotizer
URL: Hhttp://www.acemedia.org/aceMedia/results/software/m-ontomat-

annotizer.htmlH
Type of implementation: Application
Multiple components: NO
Representation formalisms: RDFS
Functionalities provided: Region-based image & video annotation, creation of RDFS

ontology-based mark-ups, association of ontology concepts with
prototype instances of MPEG-7 visual descriptors, ontology
browsing

 Type of interface: GUI

Name: PhotoStuff (Mindswap)
URL: Hhttp://www.mindswap.org/2003/PhotoStuff/H
Type of implementation: Application
Multiple components: NO
Representation formalisms: RDFS and OWL
Functionalities provided: Region-based image annotation, RDFS/OWL ontology mark-ups,

keyword-based metadata search, ontology browsing
 Type of interface: GUI
Ontology repository used: Sesame/Kowari
 Required/Optional: Optional
 Type of interface: API

Name: AKTive Media - Ontology based annotation system
URL: Hhttp://www.dcs.shef.ac.uk/~ajay/html/cresearch.htmlH
Type of implementation: Application
Multiple components: NO
Representation formalisms: RDFS, DAML and OWL
Functionalities provided: Image (region-based) and text annotation, RDFS/DAML/OWL

ontology mark-ups, ontology browsing, SPARQL query/retrieval
 Type of interface: GUI

Name: Magpie
URL: Hhttp://kmi.open.ac.uk/projects/magpieH

Type of implementation: Internet Browser plugin
Functionalities provided: Web and Semantic Web are usually seen as two fairly independent

technologies. Magpie uses KMi's ontology infrastructure and
expertise in handling ontologies to semantically markup web
documents on the fly.

Magpie technology is lightweight, yet flexible and providing

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 113

sufficiently robust and open features for semantically enriched web
browsing. Magpie as a web browser plugin aims to identify and filter
out the concepts-of-interest from any webpage it is given. The
current set of concepts can be influenced by a selection of a
particular ontology of concepts and relations.

In addition to identifying the concepts that are relevant from the
perspective of a particular ontology, each such concept may provide
an applicable set of relations or commands that can be executed.
These are accessible via contextual semantic menus. Magpie is
available for Internet Explorer and Mozilla/Firefox, and has been
deployed in several commercial scenarios, the most recent one being
semantic browsing support in the Food and Agriculture Organization
of the United Nations (FAO).

Name: Ontolog
URL: Hhttp://www.idi.ntnu.no/~heggland/ontolog/H
Type of implementation: Application
Multiple components: NO
Representation formalisms: RDFS
Functionalities provided: Video annotation, RDFS ontology mark-up, ontology creation,

ontology browsing
 Type of interface: GUI

6.6.3 Automatic annotation component
Name: KIM
URL: Hhttp://www.ontotext.com/kim/ H

Type of implementation: Web Interface
Multiple components: Yes
Representation formalisms: a combination of limited OWL Lite and unconstrained RDFS
Functionalities provided: Automatic instance annotation, indexing and searching
 Type of interface: Web Interface
Ontology repository used: Web Server
 Required/Optional: Required
 Interface: KIM API
 Type of interface: Programming Interface
Ontology repository used: Local File System
 Required/Optional: Required
 Interface: KIM API
 Type of interface: Programming Interface
Data repository used: GATE Documents
 Required/Optional: Required
 Interface: GATE API
 Type of interface: Programming Interface

Name: AKTAgent
Multiple components: Yes
Representation formalisms: a combination of limited OWL Lite and unconstrained RDFS
Functionalities provided: AKTAgent extends and enhances the functionalities provided by the

KIM platform that provides semantic annotation, indexing and
retrieval of documents. In AKTAgent, users create and store queries
that are periodically submitted to a search engine. In this way agents
search for documents that match the users long term interests. Unlike
similar applications (such GoogleAlert) the use of semantic web

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 114

technology permits users to specify semantic queries according to an
ontology (the one provided by KIM for the annotation of the
resources). This allows users to retrieve information more accurately
than search engines that express queries based on natural language
only. In addition, these user-specified queries and their results can be
used to further enhance the indexing and extraction process of the
search engine.

Name: GATE ML
URL: Hhttp://www.gate.ac.uk H

Type of implementation: API
Multiple components: Yes
Representation formalisms: Machine Learning Model
Functionalities provided: Automatic annotation
 Type of interface: API and GUI
Ontology repository used: Local File System
 Required/Optional: Required
 Interface: GATE Learning API
 Type of interface: Programming Interface
Data repository used: GATE Documents
 Required/Optional: Required
 Interface: GATE API
 Type of interface: Programming Interface

6.6.4 Ontology populator component
Name: CLIE (Controlled Language Information Extraction)
URL: Not public yet
Type of implementation: GATE Application
Multiple components: YES
Representation formalisms: a combination of limited OWL Lite and unconstrained RDFS
Functionalities provided: Ontology population
 Type of interface: GUI & API
Ontology repository used: In Memory
 Required/Optional: Required
 Interface: GATE Ontology API
 Type of interface: Programming Interface
Data repository used: GATE Documents
 Required/Optional: Required
 Interface: GATE API
 Type of interface: Programming Interface

Name: ALVIS
URL: Hhttp://www.alvis.info/alvis/H

Functionalities provided: ALVIS allows application-domain experts to link together individual
sites so that can they can form a search network, by providing means
to develop complementary, distributed components, together with
bridges to existing topic-specific search sites. The system relies on a
semantic-based search engine that is intended to automatically build
and maintain its own semantic structure from input primitive
ontologies. Although making use of ontologies, the semantic
structure is created semi-automatically using statistical and machine
learning methods for the purpose of returning better search results.
The distributed system is intended to operate with heterogeneous
search servers, using query topics as a routing mechanism, and using

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 115

distributed methods for ranking and semantic-based processing.

Name: AKTive Futures
URL: Hhttp://triplestore.aktors.org/demo/AKTiveFutures/H

Functionalities provided: The portal is meant to support analyst work by providing a means to
analyse a large information space. The portal provides a conceptual
open hypertext interface that annotates external resources using a
domain ontology, and it is complemented by a graphing tool that
allows the analysis of trends in temporal data in the context of
relevant contemporary events. An ontology of business drivers
provides a common framework used to mediate information gathered
from different sources. The ontology allows drawing inferences that
are used to indicate the relevance of datasets to key drivers. Data is
gathered from a variety of freely-available sources, transformed into
RDF/XML using the vocabulary defined by the domain ontology,
and stored in an RDF triplestore that provides a query interface to the
other system components.

6.7 Semantic Web Services

6.7.1 Web Service discoverer component
Name: Hybrid OWL-S Web Service Matchmaker – OWLS MX
URL: Hhttp://www-ags.dfki.uni-sb.de/~klusch/owls-mx/H

Type of implementation: Open source
Multiple components: No
Representation formalisms: OWL
Functionalities provided: OWLS-MX is a hybrid semantic Web service matchmaker that

retrieves services for a given query written in OWL-S, and based on
imported ontologies in the W3C recommended ontology web
language OWL. For this purpose, the OWLS-MX matchmaker
performs pure profile based service IO-matching but it combines
crisp logic-based semantic matching with syntactic token-based
similarity metrics to obtain the best of both worlds - description
logics and information retrieval. The "X" in OWLS-MX stands for
five different instances (M0 to M4) of the generic hybrid matching
scheme OWLS-MX, depending on whether and which syntactic
similarity metric is used. The OWLS-MX matchmaker is fully
implemented in Java, uses the OWL-DL description logic reasoner
Pellet for logic based filtering, the cosine, loss-of-information,
extended Jacquard, and Jensen-Shannon information divergence
based similarity metrics for complementary approximate matching.

 Type of interface: Java, API
Ontology repository used: Ad Hoc
 Required/Optional: Required
 Interface: OWL files
 Type of interface: None
Web Service Registry used: Test collection OWLS-TC
 Required/Optional: Required
 Interface: OWL files
 Type of interface: None

Name: The TUB OWL-S Matcher (The OWLSM)
URL: Hhttp://owlsm.projects.semwebcentral.org/H

Type of implementation: Java

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 116

Multiple components: No
Representation formalisms: OWL-S, OWL
Functionalities provided: The OWL-S Matcher is a Java implementation of a matchmaking

algorithm for matching OWL-S descriptions. OWL-S is an upper
ontology that defines a vocabulary for describing services. OWL-S
can be used to define classifications for the elements and
characteristics of a Web service. OWL-S is based on the Web
Ontology Language (OWL). The matchmaker compares two
descriptions (one form a service requester and another by the service
provider) and identifies different relations between the two
descriptions (e.g. "match" or "no match")

 Type of interface: API
Ontology repository used: OWL ontologies
 Required/Optional: Required
 Interface: None
 Type of interface: None
Web Service Registry used: OWL-S services
 Required/Optional: Required
 Interface: None
 Type of interface: None

Name: WSMX Discovery Framework
URL: Hhttp://sourceforge.net/projects/wsmx/H

Type of implementation: Open Source
Multiple components: No
Representation formalisms: WSML (DL/Rule/Flight)
Functionalities provided: Discovery of Semantic Web Services
 Type of interface: API
Ontology repository used: Dynamic Web Locator and WSMX internal repository
 Required/Optional: Optional
 Interface: WSMO4J
 Type of interface: API
Web Service Registry used: Dynamic Web Locator and WSMX internal repository
 Required/Optional: Optional
 Interface: WSMO4J
 Type of interface: API
Metadata Registry used: Dynamic Web Locator and WSMX internal repository
 Required/Optional: Optional
 Interface: WSMO4J
 Type of interface: API
Semantic Query Processor used: WSML2Reasoner Framework. Can be used with one of the

following reasoners: MINS, IRIS, KAON2, Pellet
 Required/Optional: Required
 Interface: WSML2Reasoner
 Type of interface: API

Name: OWL Semantic Search Services (owl-semsearch)
URL: Hhttp://projects.semwebcentral.org/projects/owl-semsearch/H

Type of implementation: Open Source
Multiple components: No
Representation formalisms: OWL
Functionalities provided: OWL Semantic Search Services crawls and indexes DAML/OWL

content on the Web. Users submit logical queries that are answered
with exact data. It can broaden queries with simple inference, such

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 117

as equivalence, inversion, generalization and specialization
 Type of interface: API
Web Service Registry used: Ad hoc repository
 Required/Optional: Optional
 Interface: OWL-S interface
 Type of interface: API

6.7.2 Web Service selector component
Name: WSMX Selector and Ranking Prototype
URL: Hhttp://sourceforge.net/projects/wsmx/H

Type of implementation: Software Component - Open Source
Multiple components: YES
Representation formalisms: WSML
Functionalities provided: Ranking of services based on non-functional properties and selection
 Type of interface: API
Web Service Discoverer used: Any WSMX Discovery component
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface

6.7.3 Web Service composer component
Name: Kweb- Semantic Web Service Composition
URL: Hhttp://www.astroproject.org/downloads/kweb/H

Type of implementation: Open Source
Multiple components: Yes
Representation formalisms: WSMO, BPEL
Functionalities provided: Discovery of the most relevant services to perform the end to end

composition.
First-step of composition i.e., Functional Level composition through
AI planning.
Second-step of composition i.e., Process Level composition.
Execution of the whole composition as a BPEL process.

 Type of interface: API
Ontology repository used: UDDI
 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: jUDDI
Web Service Registry used: UDDI
 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: jUDDI

Name: Semantic Web service composition through Causal Link

Composition
URL: Hftp://huitrier.rd.francetelecom.comH

Type of implementation: Software Component
Multiple components: Yes
Representation formalisms: OWL, WSMO, BPEL
Functionalities provided: Discovery of the most relevant services to perform the end to end

composition
First-step of composition i.e., Functional Level composition through
AI planning i.e., Causal Link composition between Web services.
Generation of a picture of the generated process i.e., jpeg, png, dot…
Execution of the whole composition as a BPEL process.

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 118

 Type of interface: API
Ontology repository used: UDDI
 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: jUDDI
Web Service Registry used: UDDI
 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: jUDDI

Name: Composer
URL: Hhttp://www.mindswap.org/2005/composer/downloads/H and

Hhttp://svn.mindswap.org/composer/H

Type of implementation: Open Source
Multiple components: No
Representation formalisms: OWL
Functionalities provided: A prototype that guides a user in the dynamic composition of web

services. Semi-automatic process includes presenting matching
services to the user at each step of a composition, filtering the
possibilities by using semantic descriptions of the services. The
generated composition is then directly executable through the
WSDL grounding of the services.

 Type of interface: API, java

Name: Semantic web services browser and composer
Type of implementation: Commercial
Multiple components: Yes
Representation formalisms: OWL-S
Functionalities provided: The Semantic Web Services Browser and composer is a system for

searching, retrieving, invoking and composing semantic web
services. Using a SESAME-based registry, users can store OWL-S
descriptions of web services and link them to an ontology of services
categories, which is displayed in the browser. The user can search or
browse this ontology to find the service that they require. They can
then invoke this service directly or use it as a basis to begin the
composition of a more complex service. The composition module
gives the users a graphical view of the web service and allows them
to select input or outputs. The system will then automatically search
all other web services in the repository to find services that have
semantically equivalent input/outputs, which could be linked to
create a composite service. This can be repeated until the user has
built the required composition. Any non-matching inputs can be
entered manually, and the composition invoked. The Browser offers
the facility to combine Web Services so that the data output of one
service can be fed into the input of another, thus creating a new
composite Web Service. Currently, the Browser assumes that the
data types of these inputs and outputs are the same. More
realistically, a mediation function would be required to convert
between differing data types.

Name: Web Service Composition
URL: Work in progress – being developed within SUPER project
Type of implementation: Not licensed yet (hence, it cannot be distributed)
Multiple components: No
Representation formalisms: Accepts WSMO Descriptions (excluding Mediators)

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 119

Functionalities provided: Validation of the input WSMO descriptions that assure they comply
with the underlying formalism on which the tool is based. Upon
successful validation, the WSMO elements are translated and fed in
to the composition tool.
Using similar techniques as for AI Planning, the tool searches for a
solution within the input pool of Web Services which fulfils the
required Goal. The tool takes into consideration the background
ontology used by the input descriptions. Plugin matches are
considered. The input web services are assumed to be the result of a
discovery process.
Types of searching techniques: Blind Search, Heuristic, Filtering
(using a pruning technique), Full (using both Heuristic and Pruning)
Future work will include: Adding expressive constructs to the
background theory such that searching for a solution is kept in
polynomial time, Parallelization of the output solution,
Consideration of Business Policies during the composition process

 Type of interface: API

Name: Service Composition Engine (Developed within ASG)
URL: Hhttp://asg-platform.org/cgi-bin/twiki/view/Public/H

Prototype Demo
Type of implementation: Open Source (LGPL)
Multiple components: Yes (within the ASG Context only)
Representation formalisms: WSMO
Functionalities provided: Automatic web service composition based on semantic descriptions

Uses an Extended Hill Climbing Heuristic search to find a solution.
Generates WS-BPEL descriptions
Re-Composition in case of Invocation Errors

 Type of interface: API
Web Service Discoverer used: ASG Discovery Database
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface
Ontology repository used: Internal Repository
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface
Web Service Registry used: Internal Repository
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface

6.7.4 Web Service choreography engine component
Name: WSMX Choreography Engine
URL: http://sourceforge.net/projects/wsmx/
Type of implementation: Open Source
Multiple components: No
Representation formalisms: WSML
Functionalities provided: Choreography Management
 Type of interface: API
Ontology repository used: Local repository
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 120

Web Service Process Mediator
used:

WSMX Process Mediator

 Required/Optional: Optional
 Interface: API
 Type of interface: Programming Interface
Web Service Registry used: Local Repository
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface

Name: IRS-III
URL: Hhttp://kmi.open.ac.uk/projects/irs/H

Type of implementation: Not applicable
Multiple components: Yes
Representation formalisms: OCML
Functionalities provided: Semantic Web Service Execution Management
 Type of interface: API/URI/SWS
Ontology repository used: Internal repository
 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: Programming Interface and Browser for user interaction
Web Service Process Mediator
used:

Internal Mediator Component

 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: Programming Interface and Browser for user interaction
Web Service Repository used: Internal Repository
 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: Programming Interface and Browser for user interaction
Metadata Registry used: Internal (same as ontology repository)
 Required/Optional: Required
 Interface: API/URI/SWS
 Type of interface: Programming Interface and Browser for user interaction

6.7.5 Web Service process mediator component
Name: WSMX Process Mediation Prototype
URL: Hhttp://sourceforge.net/projects/wsmx/H

Type of implementation: Open Source
Multiple components: Yes
Representation formalisms: WSML
Functionalities provided: Mediation between two WSMO choreographies
 Type of interface: API
Ontology repository used: Local repository
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface
Ontology Matcher used: WSMX Data Mediator
 Required/Optional: Required
 Interface: API
 Type of interface: Programming interface

6.7.6 Web Service grounding component
Name: WSMX Communication Manager

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 121

URL: Hhttp://sourceforge.net/projects/wsmx/H

Type of implementation: Open Source
Multiple components: No
Representation formalisms: WSML / Java
Functionalities provided: Grounding management for wsml to xml and xml to wsml. (Xml to

wsml is based on wsml descriptions, while wsml to xml is based on
ad hoc Java components.)

 Type of interface: API
Web Service Registry used: Local Repository
 Required/Optional: Required
 Interface: API
 Type of interface: Programming Interface

6.7.7 Web Service profiling component
Name: Service Profiler
URL: Hhttps://subversion.asg-

platform.org/svn/branches/M30SourceCodeInstaller/ProfilingH

Type of implementation: Java component
Multiple components: No
Representation formalisms: XML Schema
Functionalities provided: Profile creation
Type of interface: Programming interface in Java

Name: Web Service profiling
URL: Hhttp://sourceforge.net/projects/wsmx/H

Type of implementation: Software Component - Open Source
Multiple components: NO
Representation formalisms: WSML
Functionalities provided: Monitoring - collecting, computing, and providing other

components with values of selected non-functional parameters
Type of interface: API
Web Service Registry used: WSMX internal repository
 Required/Optional: Optional
 Interface: WSMO4J
 Type of interface: API

6.7.8 Web Service Registry component
Name: OWL-S UDDI Matchmaker
URL: Hhttp://projects.semwebcentral.org/projects/owl-s-uddi-mm/H and

Hhttp://www.daml.ri.cmu.edu/matchmaker/H

Type of implementation: Open Source
Multiple components: No
Representation formalisms: Java, OWL
Functionalities provided: OWL-S/UDDI matchmaker combines UDDI's proliferation into the

web service infrastructure and OWL-S's explicit semantic
description of the web service. Matchmaker is implemented as an
extension of the HjUDDIH which is an open source Java
implementation of the Universal Description, Discovery, and
Integration (UDDI) specification for Web Services.

 Type of interface: API
Ontology Repository used: OWL ontologies
 Required/Optional: Required
 Interface: API

 D 1.2.5: Architecture of the Semantic Web Framework

KWEB/2006/D1.2.5/v1.3 2/11/2008 122

 Type of interface: OWL API

Name: OWLS-TC
URL: Hhttp://projects.semwebcentral.org/frs/download.php/255/owls-

tc2.zipH or Hhttp://projects.semwebcentral.org/projects/owls-tc/ H

Type of implementation: Open source
Multiple components: No
Representation formalisms: OWL-S
Functionalities provided: A set of semantic Web services together with their ontologies.

OWLS-TC version 2.1
 Type of interface: None

	1 Introduction
	2 Related Work
	2.1 Component-based Software Development
	2.2 Software Architectures and Frameworks
	2.3 Semantic Web Applications
	2.4 Semantic Web Application Architectures
	3 Semantic Web Framework
	3.1 Design principles of the Semantic Web Framework
	3.2 Definition and classification of the components

	4 Components of the Semantic Web Framework
	4.1 Data and Metadata Management
	4.1.1 Information directory manager component
	4.1.2 Ontology repository component
	Functionalities provided
	Component dependencies

	4.1.3 Data repository component
	Functionalities provided
	Component dependencies

	4.1.4 Alignment repository component
	4.1.5 Metadata registry component
	Functionalities provided
	Component dependencies

	4.1.6 Data and Metadata Management Implementations
	4.1.7 Existing Implementations

	4.2 Querying and Reasoning
	4.2.1 Query answering component
	Functionalities provided
	Component dependencies

	4.2.2 Semantic query processor component
	Functionalities provided
	Component dependencies

	4.2.3 Semantic query editor component
	Functionalities provided
	Component dependencies

	4.2.4 Querying and reasoning implementations
	4.2.5 Existing Implementations

	4.3 Ontology Engineering
	4.3.1 Ontology editor component
	Functionalities provided
	Component dependencies

	4.3.2 Ontology browser component
	Functionalities provided
	Component dependencies

	4.3.3 Ontology evaluator component
	Functionalities provided
	Component dependencies

	4.3.4 Ontology learner component
	Functionalities provided
	Component dependencies

	4.3.5 Ontology matcher component
	Functionalities provided
	Component dependencies

	4.3.6 Ontology engineering implementations
	Ontology Editor
	Ontology Browser
	Ontology Evaluator
	Ontology Learner
	Ontology Matcher

	4.3.7 Existing Implementations

	4.4 Ontology Customization
	4.4.1 Ontology localization and profiling component
	Functionalities provided
	Component dependencies

	4.4.2 Ontology discovery and ranking component
	Functionalities provided
	Component dependencies

	4.4.3 Ontology adaptation operators component
	Functionalities provided
	Component dependencies

	4.4.4 Ontology view customization component
	Functionalities provided
	Component dependencies

	4.4.5 Ontology customization implementations
	4.4.6 Existing Implementations

	4.5 Ontology Evolution
	4.5.1 Ontology versioner component
	Functionalities provided
	Component dependencies

	4.5.2 Ontology evolution visualizer component
	Functionalities provided
	Component dependencies

	4.5.3 Ontology evolution manager component
	Functionalities provided
	Component dependencies

	4.5.4 Ontology evolution implementations
	Ontology versioner
	Ontology evolution visualizer
	Ontology evolution manager

	4.5.5 Existing Implementations

	4.6 Ontology Instance Generation
	4.6.1 Instance editor component
	4.6.2 Manual annotation component
	4.6.3 Automatic annotation component
	4.6.4 Ontology populator component
	4.6.5 Ontology instance generation implementations
	4.6.6 Existing Implementations

	4.7 Semantic Web Services
	4.7.1 Web Service discoverer component
	Functionalities provided
	Component Dependencies

	4.7.2 Web Service selector component
	Functionalities provided
	Component Dependencies

	4.7.3 Web Service composer component
	The Web Service composer component will be in charge of providing functionalities for designing a workflow of web services based on their choreography specifications.
	Functionalities provided
	Component Dependencies

	4.7.4 Web Service choreography engine component
	Functionalities provided
	Component Dependencies

	4.7.5 Web Service process mediator component
	Functionalities provided
	Component Dependencies

	4.7.6 Web Service grounding component
	Functionalities provided
	Component Dependencies

	4.7.7 Web Service profiling component
	Functionalities provided
	Component Dependencies

	4.7.8 Web Service Registry component
	Functionalities provided
	Component Dependencies

	4.7.9 Semantic Web Services implementations
	4.7.10 Existing implementations

	5 Use Cases and the Semantic Web Framework
	5.1 Use Case 1. Recruitment from Worldwidejobs
	5.2 Use Case 2. B2C portals from France Telecom
	5.3 Use Case 3. News aggregation from Neofonie
	5.4 Use Case 4. Product lifecycle management from Semtation
	5.5 Use Case 5. Managing Knowledge at Trenitalia
	5.6 Use Case 6. Integrated Access to Biological Data from Robotiker
	5.7 Use Case 7. Semantic Web needs for the Petroleum Industry
	5.8 Use Case 8. Hospital Information System from L&C Global

	6 Conclusions and future work
	 References
	 Appendix I Dependencies between the components of the Semantic Web Framework
	 Appendix II Dependencies between the use cases and the Semantic Web Framework
	Appendix III Implementations of the Semantic Web Framework components
	6.1 Data and Metadata Management
	6.1.1 Information directory manager component
	6.1.2 Ontology repository component
	Centralized ontology repositories
	Decentralized ontology repositories

	6.1.3 Data repository component
	6.1.4 Alignment repository component
	6.1.5 Metadata registry component

	6.2 Querying and Reasoning
	6.2.1 Query answering component
	6.2.2 Semantic query processor component
	6.2.3 Semantic query editor component

	6.3 Ontology Engineering
	6.3.1 Ontology editor component
	6.3.2 Ontology browser component
	Ontology browsers
	Ontology browsing plugins

	6.3.3 Ontology evaluator component
	6.3.4 Ontology learner component
	6.3.5 Ontology matcher component
	Ontology matchers
	Alignment frameworks

	6.4 Ontology Customization
	6.4.1 Ontology localization and profiling component
	6.4.2 Ontology discovery and ranking component
	6.4.3 Ontology adaptation operators component
	6.4.4 Ontology view customization component

	6.5 Ontology Evolution
	6.5.1 Ontology versioner component
	6.5.2 Ontology evolution visualizer component
	6.5.3 Ontology evolution manager component

	6.6 Ontology Instance Generation
	6.6.1 Instance editor component
	6.6.2 Manual annotation component
	6.6.3 Automatic annotation component
	6.6.4 Ontology populator component

	6.7 Semantic Web Services
	6.7.1 Web Service discoverer component
	6.7.2 Web Service selector component
	6.7.3 Web Service composer component
	6.7.4 Web Service choreography engine component
	6.7.5 Web Service process mediator component
	6.7.6 Web Service grounding component
	6.7.7 Web Service profiling component
	6.7.8 Web Service Registry component

	

