
D1.2.2.1.4 Benchmarking of Processing
Inconsistent Ontologies

Zhisheng Huang (Vrije Universiteit Amsterdam)

with contributions from:
Johanna Volker, Qiu Ji(University of Karlsruhe),

Heiner Stuckenschmidt, Christian Meilicke(University of Mannheim),
Stefan Schlobach, Frank van Harmelen(Vrije University Amsterdam),

and Joey Lam(University of Aberdeen)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.1.6.3/D1.2.2.1.4 (WP2.1+WP1.2)
This deliverable investigates methods and results for benchmarking of processing inconsistent
ontologies. In this document, we propose a gold standard specification language for evaluation of
processing inconsistent ontologies. We have implemented a benchmarking suite for processing
inconsistent ontologies, which consists of benchmarking tools, data sets, and gold standards. We
have performed a series of experiments of benchmarking with realistic inconsistent ontologies.
In this document, we report a comprehensive evaluation of various approaches of processsing
inconsistent ontologies.
Keyword list: benchmarking, ontology reasoning, inconsistency

Copyright c© 2008 Vrije Universiteit Amsterdam

Document Identifier KWEB/2007/D1.2.2.1.4/v1.0.0
Project KWEB EU-IST-2004-507482
Version v1.0.0
Date January 3rd, 2008
State final draft
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

University of Karlsruhe
University of Aberdeen
Vrije Universiteit Amsterdam
University of Mannheim

Executive Summary

Re-using and combining multiple ontologies on the Web is bound to lead to inconsisten-
cies between the combined vocabularies. Even many of the ontologies that are in use
today turn out to be inconsistent once some of their implicit knowledge is made explicit.
That appeals for efficient and robust approaches to deal with inconsistencies in the Se-
mantic Web.

Various frameworks of processsing inconsistent ontologies have been proposed, which
range from various methods for reasoning with inconsistent ontologies to various ap-
proaches for debugging inconsistent ontologies. In order to enable a user or a system
developer to decide which method is best suited for his/her task, we need a comprehen-
sive evaluation and benchmarking on those proposed approaches.

This deliverable investigates methods and results for benchmarking of processing in-
consistent ontologies. First we present a methodology study of the benchmarking of pro-
cessing inconsistent ontology. We develop a gold standard specification language for
automatic/semi-automatic evaluation of processing inconsistent ontologies. We have im-
plemented a benchmarking suite for processing inconsistent ontologies. In this document
we provide a detailed manual how to use the benchmarking suite.

We have performed a series of experiments of benchmarking with realistic and large
scale inconsistent ontologies. In this document, we report a comprehensive evaluation
of various methods of processing inconsistent ontologies, which include a) syntactic
approaches versus semantic approaches, b) linear extension versus multi-step extension,
c) blind backtracking versus informed backtracking, and d) reasoning with inconsistent
ontologies versus debugging inconsistent ontologies. Those methods are evaluated with
respect to the three benchmarking factors: quality of query answers, performance, and
scalability. We finally discuss the results and draw the conclusions about the future of
processing inconsistent ontologies.

Contents

1 Introduction 1

2 Processing of Inconsistent Ontologies 5
2.1 General Framework of Reasoning with Inconsistent Ontologies 5
2.2 Strategies . 6
2.3 Relevance-based Selection Functions . 8
2.4 Syntactic Relevance-based Selection Functions 9
2.5 K-extension . 10
2.6 Semantic Relevance Based Selection Functions 12
2.7 Variants of Over-determined Processing 17

2.7.1 Pros and Cons of Semantic Relevance 18
2.7.2 Mixed Approach for Over-determined Processing 18

2.8 Debugging Incoherent Terminologies 19
2.8.1 Logical errors in Description Logic terminologies 20
2.8.2 Framework for debugging and diagnosis 21
2.8.3 DION: A Bottom-up Approach for Debugging Incoherent On-

tologies . 25
2.8.4 RepairTab: A Heuristic Approach for Repairing Unsatisiable On-

tologies . 28
2.8.5 RaDON: A System for Reasoning and Diagnosis in Ontology

Networks . 30
2.8.6 Other Approaches for Debugging 30

3 A Framework for Benchmarking of Processing Inconsistent Ontologies 32
3.1 Framework . 32

3.1.1 Measuring the Quality of Query Answers 32
3.1.2 Basic Definitions . 33
3.1.3 Workflows of Evaluation and Benchmarking 34
3.1.4 Taxonomy . 34

3.2 A Specification Language for Golden Standards 36
3.3 A Benchmarking Suite for Processing Inconsistent Ontologies 38

3.3.1 Benchmarking Tools . 38
3.3.2 Gold Standard Authoring Tool 39

ii

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

3.3.3 Test Tool . 40
3.3.4 Evaluation Tool . 42

3.4 Data Sets . 45
3.4.1 Inconsistent Mapping . 46
3.4.2 Inconsistency created by Ontology Learning 48

4 Benchmarking Experiments 51
4.1 Syntactic Approaches versus Semantic Approaches 51
4.2 Linear extension versus Multi-step extension 55
4.3 Reasoning with Inconsistent Ontologies versus Debugging of Inconsistent

Ontologies . 58
4.4 Inconsistency Processing and Reasoners 61

5 Discussions and Conclusions 63
5.1 Discussions . 63

5.1.1 Semantic Approach for Reasoning with Inconsistent Ontologies . 63
5.1.2 Integrating Reasoning with Inconsistent Ontologies with Debug-

ging of Inconsistent Ontologies 64
5.1.3 Processing Inconsistencies in Database Systems 64

5.2 Future Work . 65
5.3 Concluding Remarks . 66

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 iii

Chapter 1

Introduction

One cannot live without inconsistency.
- Carl Gustav Jung (1875-1961)

There is nothing constant in this world but inconsistency.
-Jonathan Swift (1667-1745)

A key ingredient of the Semantic Web vision is avoiding to impose a single ontology.
Hence, merging ontologies is a key step. Earlier experiments (e.g. [Hameed et al., 2003])
have shown that merging multiple ontologies can quickly lead to inconsistencies.
Other studies have shown how migration [Schlobach and Cornet, 2003a] and evolution
[Haase et al., 2005] also lead to inconsistencies. This suggests the importance and om-
nipresence of inconsistencies in ontologies in a truly web-based world.

At first sight, it might seem that many ontologies are semantically so lightweight (e.g.
expressible in RDF Schema only, [d’Aquin et al., 2007]) that the inconsistency problem
doesn’t arise, since RDF Schema is too weak to even express an inconsistency1. How-
ever, [Schlobach, 2005a] has shown that on a closer look, many of these semantically
lightweight ontologies make implicit assumptions such as the Unique Name Assumption,
or assuming that sibling classes are disjoint. Such implicit assumptions, although not
stated, are in fact used in the applications that deploying these ontologies. Not making
these disjointness assumptions explicit harms the re-usability of these ontologies. How-
ever, if such assumptions are made explicit, many ontologies turn out to be in fact incon-
sistent.

In [Volker et al., 2007a], Volker and her colleagues made an experiment of human
annotation of disjointness. In this experiment, we observe an interesting case which shows
that inconsistency occurs easily even in medium-scale ontologies with single authorship
in a non-distributed environment.

In the experiment of the disjointness by Volker and her colleagues, a large number

1besides the rather limited case of disjoint datatypes

1

1. INTRODUCTION

of manually created disjointness are manually created. As a basis for the creation of the
datasets and as background knowledge for the ontology learning algorithms they took a
subset of the freely available PROTON ontology. Each concept pair was randomly as-
signed to 6 different people - 3 from each of two groups the first one consisting of PhD
students from their institute (all of them professional ”ontologists”), the second is being
composed of under-graduate students without profound knowledge in ontological engi-
neering. Each of the annotators was given between 385 and 406 pairs along with natural
language descriptions of the classes whenever those were available. Possible taggings
for each pair were + (disjoint), − (not disjoint) and ? (unknown). Furthermore, they
computed the majority votes for all the above mentioned datasets by considering the in-
dividual taggings for each pair. If at least 50 percent (or 100 percent respectively) of the
human annotators agreed upon + or − this decision was assumed to be the majority vote
for that particular pair. See [Volker et al., 2007a] for the details of the experiments.

Adding those created disjointness to PROTON results in inconsistent PROTON on-
tologies. For example, there are 24 unsatisfiable concepts in the PROTON ontology with
the disjointness are created by 50 percent votes by the students. It is more interesting to
observe that 100 percent of experts and students agree at the following axioms, however,
they are inconsistent2:

{Reservoir v Lake,
Lake v WaterRegion,
Reservior v HydrographicStructure,
HydrographicStrure v Facility,
Disjoint(WaterRegion, Facility)}.

The conclusion Reservoir v WaterRegion follows from the first two axioms,
whereas Reservoir v Facility follows from the third and the fourth axioms. How-
ever, it contradicts with the axiom that WaterRegion and Facility are disjoint. This
case shows that inconsistency occurs much more easily than what people expect, because
this scenario involves with only a small size of ontology without multiple-authorship and
distribution. It is surprising that the expertise does not help to avoid the inconsistency in
the ontologies.

Considering the fact that most realistic ontologies in the Semantic Web involve scal-
ability, distribution, and multi-authorship, inconsistencies are expected to occur much
more frequently if those ontologies are required to provide suitable formalization of a
conceptualization, like enriched ontologies with disjointness axioms or negation concepts.
Therefore, dealing with inconsistencies is one of important issues in the Semantic Web.

One way to deal with inconsistencies is to first diagnose and then repair them.
[Schlobach and Cornet, 2003a] proposes a nonstandard reasoning service for debugging
inconsistent terminologies. This is a possible approach, if we are dealing with one on-
tology and we would like to improve this ontology. Another approach to deal with in-

2In this document we do not make a distinction between inconsistency and incoherence. Namely, they
are interchangeable. See [Flouris et al., 2006] for the distinction between inconsistency and incoherence.

2 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

consistent ontologies is to simply avoid the inconsistency and to apply a non-standard
reasoning method to obtain answers that are still meaningful, even though they have been
obtained from an inconsistent ontology [Huang et al., 2005, Huang et al., 2004]. The first
approach could be dubbed “removing inconsistencies”, while the second could be called
“living with inconsistencies”. This latter approach is more suitable for an open Web set-
ting, where one would be importing ontologies from other sources, making it impossible
to repair them, and where the scale of the combined ontologies would be too large to
make repair effective. PION is a system of reasoning with inconsistent ontologies which
is developed based the latter approach[Huang et al., 2005, Huang et al., 2004].

The classical entailment in logics is explosive: any formula is a logical consequence
of a contradiction. Therefore, conclusions drawn from an inconsistent knowledge base
by classical inference may be completely meaningless. The general task of a system of
reasoning with inconsistent ontologies is: given an inconsistent ontology, return mean-
ingful answers to queries. In [Huang et al., 2005, Huang et al., 2004] a general frame-
work of reasoning with inconsistent ontologies is developed. Various approaches of rel-
evance based selection functions, extension strategies, and various approaches of over-
determined processing are proposed for processing inconsitent ontologies to obtain mean-
ingful answers, where the meaningfulness is interpreted as the answer is supported by a
selected consistent sub-ontology of the inconsistent ontology, and its negative answer is
not supported.

In [Huang and van Harmelen, 2006, Huang and van Harmelen, 2007,
Schlobach et al., 2006, Schlobach and Huang, 2007], the preliminary experiments
of various approaches are evaluated and the results have been reported. In order to obtain
better understanding of the performance and the anwer quality of various approaches
of processing inconsistent ontologies, in this document, we report experiments and
evaluation of various approaches with several realistic ontologies.

In order to justify the benchmarking approach, a methodology study of benchmark-
ing is helpful. This document presents a methodology study of the benchmarking of
processing inconsistent ontology. We develop a gold standard specification language for
automatic/semi-auotmatic evaluation of processing inconsistent ontologies. We have im-
plemented a benchmarking suite for processing inconsistent ontologies. In this document
we will provide a detailed manual for how the benchmarking suite can be used.

We have performed a series of experiments of benchmarking with realistic and large
scale inconsistent ontologies. In this document, we report a comprehensive evaluation
of various methods of processing inconsistent ontologies, which include a) syntactic ap-
proaches versus semantic approaches, b) linear extension versus multi-step extension, c)
blind backtracking versus informed backtracking, and d) reasoing with inconsistent on-
tologies versus debugging inconsistent ontologies. For the evaluation, we consider the
following three benchmarking factors: quality of query answers, performance, and scala-
bility. We finally discuss the results and draw the conclusions about the future of process-
ing inconsistent ontologies.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 3

1. INTRODUCTION

This document is organized as follows: Chapter 2 overviews various approaches of
processing inconsistent ontologies, which include various methods of reasoning with in-
consistent ontologies, and various systems of debugging inconsistent ontologies. Chapter
3 presents a methodology study of benchmarking of processing inconsistent ontologies
and introduce the benchmarking suite, which are developed for the task of benchmarking
of processing inconsistent ontologies in the KnowledgeWeb project. Chapter 4 provides
the detailed report of the benchmarking experiments and make the analysis of the eval-
uation of various approaches of processing inconsistent ontologies. Chapter 5 discusses
further work and concludes the document.

4 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

Chapter 2

Processing of Inconsistent Ontologies

In this chapter, we will provide an overview of the framework of reasoning with inconsis-
tent ontologies and various approaches for processing inconsistent ontologies. Moroever,
in this chapter we will propose a semantic approach for reasoning with inconsistent on-
tologies.

2.1 General Framework of Reasoning with Inconsistent
Ontologies

A general framework of reasoning with inconsistent ontologies is developed in
[Huang et al., 2005]1 , in which relevance based selection functions are used to obtain
meaningful answers by using a non-standard reasoning, where the meaningfulness is in-
terpreted as the answer is supported by a selected consistent sub-ontology of the inconsis-
tent ontology, and its negative answer is not supported. The main idea of the framework
is: given a selection function, which can be defined on the syntactic or semantic rel-
evance, we select some consistent sub-theory from an inconsistent ontology. Then we
apply standard reasoning on the selected sub-theory to find meaningful answers. If a sat-
isfying answer cannot be found, the relevance degree of the selection function is made
less restrictive thereby extending the consistent sub-theory for further reasoning.

In the following, we use Σ |= φ to denote that φ is a consequence of Σ in the stan-
dard reasoning2, and we will use Σ |≈ φ to denote that φ is a consequence of Σ in the
non-standard reasoning. The values of non-standard inference are defined as follows,

1More details of the framework can be found in [Huang et al., 2006]
2Namely, for any model M of Σ, M |= φ.

5

2. PROCESSING OF INCONSISTENT ONTOLOGIES

following the 4-valued schema by [Belnap, 1977]:

Accepted: Σ |≈ φ and Σ 6|≈ ¬φ
Rejected: Σ 6|≈ φ and Σ |≈ ¬φ
Overdetermined: Σ |≈ φ and Σ |≈ ¬φ
Undetermined: Σ 6|≈ φ and Σ 6|≈ ¬φ

Selection functions play the main role in the framework of reasoning with incon-
sistent ontologies. A system of reasoning with inconsistent ontologies uses a selection
function to determine which consistent subsets of an inconsistent ontology should be con-
sidered in its reasoning process. The general framework is independent of the particular
choice of selection function. The selection function can either be based on a syntactic ap-
proach, like Chopra, Parikh, and Wassermann’s syntactic relevance [Chopra et al., 2000],
or based on semantic relevance like for example in computational linguistics as in Word-
net [Budanitsky and Hirst, 2001] or based on semantic relevance which is measure by the
co-occurrence of concepts in search engines like Google.

In the framework of reasoning with inconsistent ontologies, selection functions are
designed to query-specific, which is different from the traditional approach in belief re-
vision and nonmonotoic reasoning, which assumes that there exists a general preference
ordering on formulas for selection. Given an ontology (i.e., a formula set) Σ and a query
φ, a selection function s is one which returns a subset of Σ at the step k > 0. Let L
be the ontology language, which is denoted as a formula set. A selection function s is
a mapping s : P(L) × L × N → P(L) such that s(Σ, φ, k) ⊆ Σ. A selection func-
tion s is called monotonic if the subsets it selects monotonically increase or decrease,
i.e., s(Σ, φ, k) ⊆ s(Σ, φ, k + 1), or vice verse. For monotonically increasing selection
functions, the initial set is either an emptyset, i.e., s(Σ, φ, 0) = ∅, or a fixed set Σ0. For
monotonically decreasing selection functions, usually the initial set s(Σ, φ, 0) = Σ. The
decreasing selection functions will reduce some formulas from the inconsistent set step
by step until they find a maximally consistent set.

Monotonically increasing selection functions have the advantage that they do not have
to return all subsets for consideration at the same time. If a query Σ |≈ φ can be answered
after considering some consistent subset of the ontology Σ for some value of k, then other
subsets (for higher values of k) don’t have to be considered any more, because they will
not change the answer of the reasoner.

2.2 Strategies

A linear extension strategy is carried out as shown in Figure 2.1. Given a query Σ |≈ φ,
the initial consistent subset Σ′ is set. Then the selection function is called to return a
consistent subset Σ′′, which extends Σ′, i.e., Σ′ ⊂ Σ′′ ⊆ Σ for the linear extension
strategy. If the selection function cannot find a consistent superset of Σ′, the inconsistency

6 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 2.1: Linear Extension Strategy.

reasoner returns the answer ‘undetermined’ (i.e., unknown) to the query. If the set Σ′′

exists, a classical reasoner is used to check if Σ′′ |= φ holds. If the answer is ‘yes’, the
reasoner returns the ’accepted’ answer Σ |≈ φ. If the answer is ‘no’, the reasoner further
checks the negation of the query Σ′′ |= ¬φ. If the answer is ‘yes’, the reasoner returns the
’rejected’ answer Σ |≈ ¬φ, otherwise the current result is undetermined, and the whole
process is repeated by calling the selection function for the next consistent subset of Σ
which extends Σ′′.

It is clear that the linear extension strategy may result in too many ‘undetermined’ an-
swers to queries when the selection function picks the wrong sequence of monotonically
increasing subsets. It would therefore be useful to measure the successfulness of (linear)
extension strategies. Notice, that this depends on the choice of the monotonic selection
function.

In general, one should use an extension strategy that is not over-determined and not
undetermined. For the linear extension strategy, we can prove that a reasoner using a
linear extension strategy is never over-determined, may be undetermined, always sound,
and always meaningful[Huang et al., 2004]. A reasoner using a linear extension strategy
is useful to create meaningful and sound answers to queries. It is always locally sound and
locally complete with respect to a consistent set Σ0, if the selection function always starts
with the consistent set Σ0 (i.e., s(Σ, φ, 0) = Σ0). Unfortunately it may not be maximal.
The advantages of the linear strategy is that the reasoner can always focus on the current
working set Σ′3. The reasoner doesn’t need to keep track of the extension chain. The

3Alternatively it is called the selected set.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 7

2. PROCESSING OF INCONSISTENT ONTOLOGIES

disadvantage of the linear strategy is that it may lead to an inconsistency reasoner that
is undetermined. There exists other strategies which can improve the linear extension
approach, for example, by backtracking and heuristics evaluation. We will disuss how it
can be achieved in the over-determined processing in Section 2.7.

2.3 Relevance-based Selection Functions

In [Chopra et al., 2000], Chopra, Parikh, and Wassermann propose the syntactic relevance
to measure the relationship between two formulas in belief sets, so that the relevance can
be used to guide the belief revision based on Schaerf and Cadoli’s method of approximate
reasoning[Schaerf and Cadoli, 1995]. Given a formula set Σ, two atoms p, q are directly
relevant, denoted by R(p, q,Σ) iff there is a formula α ∈ Σ such that p, q appear in α. A
pair of atoms p and q are k-relevant with respect to Σ iff there exist p1, p2, . . . , pk ∈ L
such that: (a) p, p1 are directly relevant; (b) pi, pi+1 are directly relevant, i = 1, . . . , k−1;
and (c) pk, q are directly relevant (i.e., directly relevant is k-relevant for k = 0).

The notions of relevance above are based on propositional logics. However, ontology
languages are usually written in some fragment of first order logic. We extend the ideas
of relevance to description logic-based ontology language. The Direct relevance between
two formulas are defined as a binary relation on formulas, namely R ⊆ L × L. Given a
direct relevance relation R, we can extend it to a relation R+ on a formula and a formula
set, i.e., R+ ⊆ L× P(L) as follows:

〈φ,Σ〉 ∈ R+iff there exists a formula ψ ∈ Σ such that 〈φ, ψ〉 ∈ R.

Namely, a formula φ is relevant to a formula set Σ iff there exists a formula ψ ∈ Σ such
that φ and ψ are directly relevant. We can similarly specialize the notion of k-relevance.
Two formulas φ, φ′ are k-relevant with respect to a formula set Σ iff there exist formulas
ψ0, . . . ψk ∈ Σ such that φ and ψ0, ψ0 and ψ1, . . ., and ψk and φ′ are directly relevant. A
formula φ is k-relevant to a formula set Σ iff there exists a formula ψ ∈ Σ such that φ and
ψ are k-relevant with respect to Σ.

We can use a relevance relation to define a selection function s to extend the query
‘Σ |≈ φ?’ as follows: We start with the query formula φ as a starting point for the selection
based on syntactic relevance. Namely, we define:

s(Σ, φ, 0) = ∅.

Then the selection function selects the formulas ψ ∈ Σ which are directly relevant to φ
as a working set (i.e. k = 1) to see whether or not they are sufficient to give an answer to
the query. Namely, we define:

s(Σ, φ, 1) = {ψ ∈ Σ | φ and ψ are directly relevant}.

8 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

If the reasoning process can obtain an answer to the query, it stops. Otherwise the selec-
tion function increases the relevance degree by 1, thereby adding more formulas that are
relevant to the current working set. Namely, we have:

s(Σ, φ, k) = {ψ ∈ Σ | ψ is directly relevant to s(Σ, φ, k − 1)},

for k > 1. This leads to a ”fan out” behavior of the selection function: the first selection
is the set of all formulae that are directly relevant to the query; then all formulae are
selected that are directly relevant to that set, etc. This intuition is formalized in this: The
syntactic relevance-based selection function s is monotonically increasing. We observe
that If k ≥ 1, then

s(Σ, φ, k) = {φ|φ is (k-1)-relevant to Σ}
The syntactic relevance-based selection functions defined above usually grows up to an
inconsistent set rapidly. That may lead to too many undetermined answers. In order to
improve it, we can require that the selection function returns a consistent subset Σ′′ at the
step k when s(Σ, φ, k) is inconsistent such that s(Σ, φ, k − 1) ⊂ Σ′′ ⊂ s(Σ, φ, k). It is
actually a kind of backtracking strategies which are used to reduce the number of unde-
termined answers to improve the linear extension strategy. We call the procedure an over-
determined processing(ODP) of the selection function. Note that the over-determined
processing does not need to exhaust the powerset of the set s(Σ, φ, k) − s(Σ, φ, k − 1),
because of the fact that if a consistent set S cannot prove or disprove a query, then nor
can any subset of S. Therefore, one approach of ODP is to return just a maximally con-
sistent subset. Let n be |Σ| and k be n − |S|, i.e., the cardinality difference between the
ontology Σ and its maximal consistent subset S (note that k is usually very small), and let
C be the complexity of the consistency checking. The complexity of the over-determined
processing is polynomial to the complexity of the consistency checking. Note that ODP
introduces a degree of non-determinism: selecting different maximal consistent subsets
of s(Σ, φ, k) may yield different answers to the query Σ |≈ φ. The simplest example of
this is Σ = {φ,¬φ}.

2.4 Syntactic Relevance-based Selection Functions

There are various ways to define syntactic relevance between two formulas. Given a for-
mula φ, we use I(φ), C(φ), R(φ) to denote the sets of individual names, concept names,
and relation names that appear in the formula φ respectively. In [Huang et al., 2005],
we propose a direct relevance which considers the syntactic existence of a common con-
cept/role/individual name in two formulas.

Two formula φ, ψ are directly syntactic relevant, written RSynRel(φ, ψ), iff there is a
common name which appears both in formula φ and formula ψ, i.e.,

〈φ, ψ〉 ∈ RSynRel iff I(φ) ∩ I(ψ) 6= ∅ ∨ C(φ) ∩ C(ψ) 6= ∅ ∨R(φ) ∩R(ψ) 6= ∅.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 9

2. PROCESSING OF INCONSISTENT ONTOLOGIES

In [Huang and van Harmelen, 2006] we propose directly concept relevance, as a vari-
ant of directly syntactic relevance, which considers only one side of concept names in
subsumption axioms to track along the concept hierarchy in an ontology more efficiently.
For a query C1 v C2, we start from C1, i.e., the left hand side of the query to select a set
of relevant axioms to see whether or not the selected set entails the query4. If ’not’, the
selection function will extend the selected set by adding more formulas in the ontology
which are relevant to the current selected set until the query is proved or disproved, or ’un-
determined’ when there is no more relevant formulas, as it is described in the extension
strategies.

Thus, a formula φ is directly concept-relevant to a formula ψ, written
RSynConRel(φ, ψ), iff
(i) C(C1) ∩ C(ψ)) 6= ∅ if the formula φ has the form C1 v C2,
(ii) C(C1) ∩ C(ψ) 6= ∅ or C(C2) ∩ C(ψ) 6= ∅ if the formula φ has the form C1 = C2.
(iii) C(C1) ∩ C(ψ) 6= ∅ or . . . or C(Cn) ∩ C(ψ) 6= ∅ if the formula φ has the form
disjoint(C1, . . . , Cn).

In [Huang and van Harmelen, 2006, Huang et al., 2005], a preliminary evaluation of
the prototype by applying it to several inconsistent ontologies is reported. The syntactic
relevance approach works with real-world inconsistent ontologies because it mimics our
intuition that real- world truth is (generally) preserved best by the argument with the short-
est number of steps; and whatever process our intuitive reasoning uses, it is very likely
that it would somehow privilege just these shortest path arguments. However, the problem
is that the syntactic relevance approach requires that knowledge engineers have to care-
fully specify their ontologies to represent their intuitive understandings on the knowledge.
The syntactic relevance approach require that knowledge engineers carefully specify on-
tologies based on the intuition to balance reasoning paths. The semantic approach is
developed to be expected to be a complement of syntactic approaches. We will propose a
semantic approach for reasoning with inconsistent ontologies in Section 2.6.

2.5 K-extension

Compared with the linear extension strategy, the k-extension can be considered as a multi-
step extension strategy. The k-extension strategy allows for k-step difference on the paths.
Namely, if the step difference between two paths is less than k, they are considered
equally. We call the step difference number k the k-value of the algorithm. Thus, the
linear extension is actually 1-extension, namely its k-value is 1. The general idea of k-
extension is that the algorithm considers k steps in the linear extension as a single step in
the k-extension, by which the algorithm can tolerate k-step unbalanced reasoning paths.

The algorithm of k-extension is shown in Figure 2.2. In the algorithm, we use Ks to

4PION2 supports only subsumption queries and instance queries. Instance queries are handled by their
corresponding subsumption queries internally.

10 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 2.2: k Extension Strategy.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 11

2. PROCESSING OF INCONSISTENT ONTOLOGIES

denote the k-value of the algorithm, Σ to denote the ontology, and φ to denote the query
respectively. We use two additional counters K and Kc in the extension processing. The
former is a global counter which counts how many steps have been done in the extension,
which plays the same role like the counter k in the algorithm of the linear extension.
The latter is a local counter that counts how many steps have been done since the last
k-extension is done. The algorithm starts its selection function s(Σ, φ, 0) with the global
counter K with its initial value K = 1 and the local counter with its initial value Kc = 0.
If there are no new selected formulas can be found, i.e., it is not the case that s(Σ, φ,K −
1) ⊂ s(Σ, φ,K), then the algorithm takes the current extension set as the selected set.
When the local counter Kc is bigger than the k-value Ks, then the algorithm takes the
current extension set as the selected set. Namely, the algorithm stops the k-extension.
It checks whether or not the selected set s(Σ, φ,K) is consistent. If the selected set is
inconsistent, the algorithm calls the over-determined processing. If the selected set is
consistent, then the algorithm checks whether or not the query or its negation is entailed
by the selected set. If none of the query and its negation can be proved by the selected
set, then the algorithm will start a new Ks step extension, by setting the local counter Kc
with its initial value Kc = 0. If none of the query and its negation can be proved by the
selected set and there are no new selected formulas in the k-extension, the algorithm will
stops with the answer ’undetermined’.

For the k-extension algorithm, it is easy to see that when Ks > 1, i.e., non linear
extension, k-extension would more easily get to the over-determined processing, because
it considers multiple extension steps as a single extension step like that in the linear ex-
tension algorithm. That required us to consider different strategies of over-determined
processing. We will discuss variants of over-determined processing strategies in Section
2.7.

2.6 Semantic Relevance Based Selection Functions

The syntactic relevance-based selection functions prefer shorter paths to longer paths in
the reasoning. It requires knowledge engineers should carefully design ontologies to avoid
unbalanced reasoning path. The k-extension can tolerate the k-step difference of reason-
ing paths. Setting the k-value as a very big number can make the reasoning processing
tolerates big step difference in reasoning paths. However, it would lead to another big
problem that it encounters the over-determined processing problem much more easily.

Naturally we will consider semantic relevance based selection functions as alterna-
tives of syntactic relevance based selection functions. In the following, we will pro-
pose a semantic relevance based section function that is developed based on Google dis-
tance. Namely, we want to take advantage of the vast knowledge on the web by us-
ing Google based relevance measure, by which we can obtain light-weight semantics
for selection functions. The basic assumption here is that: more frequently two con-
cepts appear in the same web page, more semantically relevant they are, because most

12 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

of web pages are meaningful texts. Therefore, information provided by a search en-
gine can be used for the measurement of semantic relevance among concepts. We select
Google as the targeted search engine, because it is the most popular search engine nowa-
day. The second reason why we select Google is that Google distances are well studied
in [Cilibrasi and Vitanyi, 2004, Cilibrasi and Vitany, 2007].

In [Cilibrasi and Vitanyi, 2004, Cilibrasi and Vitany, 2007], Google Distances are
used to measure the co-occurrence of two keywords over the Web. Normalized Google
Distance (NGD) is introduced to measure semantic distance between two concepts by the
following definition:

NGD(x, y) =
max{logf(x), logf(y)} − logf(x, y)

logM −min{logf(x), logf(y)}

where

f(x) is the number of Google hits for the search term x,

f(y) is the number of Google hits for the search term y,

f(x, y) is the number of Google hits for the tuple of search terms x and y, and,

M is the number of web pages indexed by Google5.

NGD(x, y) can be understood intuitively as a measure for the symmetric conditional
probability of co-occurrence of the search terms x and y.

NGD(x, y) usally takes a real number between 0 and 16. NGD(x, x) = 0 means
that any search item is always the closest to itself. NGD(x, y) is defined for two search
items x and y, which measures the semantic dissimilarity, alternatively called semantic
distance, between them.

Semantic relevance is considered as the reverse relation of semantic dissimilarity:
the more semantically relevant two concepts are, the smaller the distance between them.
Assuming that both relevance and distance are taken from the [0,1] interval, this boils
down to

Similarity(x, y) = 1−Distance(x, y).

In the following we use the terminologies semantic dissimilarity and semantic dis-
tance interchangeably.

To use semantic dissimilarity for reasoning with inconsistent ontologies, we define
the dissimilarity measure between two formulas in terms of the dissimilarity measure be-
tween two concepts/roles/individuals from the two formulas. Moreover, in the following
we consider only concept names C(φ) as the symbol set of a formula φ to simplify the
formal definitions. However, note that the definitions can be easily generalised into ones

5Currently, the Google search engine indexs approximately tenbillion pages.
6NGD(x, y) may exceed 1 for some natural terms. NGD values greater than 1 may be thougt to corre-

spond to the idea of negative correlation in probability theory. See [Cilibrasi and Vitanyi, 2004] for details.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 13

2. PROCESSING OF INCONSISTENT ONTOLOGIES

in which the symbol sets contain also roles and individuals. We use SD(φ, ψ) to denote
the semantic distance between two formulas. We expect the semantic distance between
two formulas SD(φ, ψ) to satisfy the following intuitive properties:

• Range The semantic distance is a real number between 0 and 1: 0 ≤ SD(φ, ψ) ≤ 1
for any φ and ψ.

• Reflexivity Any formula is always semantically closest to itself: SD(φ, φ) = 0 for
any φ.

• Symmetry The semantic distance between two formulas is symmetric:
SD(φ, ψ) = SD(ψ, φ) for any φ and ψ.

• Maximum distance If all symbols in a formula are semantically most-dissimilar
from any symbol of another formula, then the two formulas are totally dissimilar:
if SD(Ci, Cj) = 1 for all Ci ∈ C(φ) and Cj ∈ C(ψ), then SD(φ, ψ) = 1.

• Intermediate values If some symbols are shared between two formula, and some
symbols are semantically dissimilar, the semantic distance between the two formu-
las is neither minimal nor maximal:
If C(φ)∩C(ψ) 6= ∅ and C(φ) 6⊆ C(ψ) and C(ψ) 6⊆ C(φ) then 0 < SD(φ, ψ) < 1.

However, note that semantic distances do not always satisfy the Triangle Inequality

SD(φ, ψ) + SD(ψ, ρ) ≥ SD(φ, ρ),

a basic property of distances in a metric topology. [Lin, 1998] provides a counter-example
of the Triangle Inequality for a semantic similarity measure.

NGD(x, y) is defined between two search items x and y. Simple ways to extend this
to measure the semantic distance between two formulas are to take either the minimal,
the maximal or the average NGD values between two concepts (or roles, or individuals)
which appear in two formulas as follows:

SDmin(φ, ψ) =
min{NGD(Ci, Cj)|Ci ∈ C(φ) and Cj ∈ C(ψ)}

SDmax(φ, ψ) =
max{NGD(Ci, Cj)|Ci ∈ C(φ) and Cj ∈ C(ψ)}

SDave(φ, ψ) =
sum{NGD(Ci, Cj)|Ci ∈ C(φ) and Cj ∈ C(ψ)}

(|C(φ)| ∗ |C(ψ)|)

where |C(φ)| means the cardinality of C(φ). However, it is easy to see that SDmin and
SDmax do not satisfy the Intermediate Values property, and SDave does not satisfy Re-
flexivity and the Maximum Distance property.

We therefore propose a semantic distance which is measured by the ratio of the
summed distance of the difference between two formulas to the maximal distance be-
tween two formulas:

14 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Definition 1 (Semantic Distance)

SD(φ, ψ) =
sum{NGD(Ci, Cj)|Ci ∈ C(φ)\C(ψ), Cj ∈ C(ψ)\C(φ)}

(|C(φ)| ∗ |C(ψ)|)

The intuition behind this definition is to sum the semantic distances between all terms that
are not shared between the two formulae, but these must be normalised (dividing by the
maximum distance possible) to bring the value back to the [0,1] interval.

It is easy to prove the following:

Proposition 2 The semantic distance SD(φ, ψ) satisfies the properties Range, Reflexiv-
ity, Symmetry, Maximum Distance, and Intermediate Values.

Using the semantic distance defined above, the obvious way to define a relevance
relation for selection functions in reasoning with inconsistent ontologies is to take the
semantically closest formulas as directly relevant:

〈φ, ψ〉 ∈ Rsd iff¬∃ψ′ ∈ Σ : SD(φ, ψ′) < SD(φ, ψ).

(i.e. there exist no other formulas in the ontology that is semantically closer)

Given this semantic relevance relation, we now need to define a selection function. In
the syntactic approach, we used the query formula as the starting point for the selection
function. Since we intend to use the selection function for reasoning over ontologies,
we propose a specific approach to deal with subsumption queries, which are of the form
C1 v D where C1 is a concept. In this new approach, C1 is considered as the central
concept of the query, and the newly defined selection function will track along the concept
hierarchy in an ontology and always add to the selected set the closest formulas to C1

which have not yet been selected7:

Definition 3 (Semantic Selection Function)

s(Σ, C1 v D, 0) = ∅
s(Σ, C1 v D, k) =

s(Σ, C1 v D, k − 1) ∪
{ψ ∈ Σ | ¬∃ψ′ ∈ Σ : ψ′ 6∈ s(Σ, C1 v D, k − 1) ∧

SD(ψ′, C1) < SD(ψ,C1)}

In words: the k-th selected set equals the previously selected set (at k − 1), augmented
with the semantically closest formula that wasn’t selected yet in the previous round.

7It is easy to see the definition about SD(φ, ψ) is easily extended into a definition about SD(φ,C),
where φ, ψ are formulas, and C is a concept. Moreover, it is easy to see that SD(φ1, C) < SD(φ2, C) iff
NGD(D1, C) < NGD(D2, C) for any φ1 is of the form C1 v D1 and any φ2 is of the form C1 v D2

where C,C1, D1 and D2 are different concepts.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 15

2. PROCESSING OF INCONSISTENT ONTOLOGIES

Figure 2.3: NGD and MadCow Queries

16 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Example: Consider the MadCow ontology in which Cows are speficied as Vegetarians
and MadCows are specified as Cows which eat brains of sheep. In this ontology, the
concept ’MadCow’is unsatisfiable, because it belongs to a parent concept ’Vegetarian’
and its negative concept ’non-Vegetarian’. An improved specification of the MadCow
ontology is to introduce balanced paths in the specification as follows:

MadCow − Cow − eat.Grass−Grass is not animal − V egetarian.

MadCow − eat.Sheep− Sheep are animals− eat.Animals− not V egetarian.

However, it still fails in the syntactic distance. Figure 2.3 shows how the semantic
distance is used to obtain intuitive answers on the MadCow ontology. By calculation of
the Normalised Google Distance, we know that

NGD(MadCow,Grass) = 0.722911
NGD(MadCow, Sheep) = 0.612001.

Hence, the semantic distance between MadCow and Sheep is shorter than the semantic
distance between MadCow and Grass (even though their syntactic distance is larger). Be-
cause of this, the reasoning path between MadCow and Sheep is preferred to the reasoning
path between MadCow and Grass. Thus, we obtain the intuitive answer that MadCow are
not Vegetarians instead of the previously obtained counter-intuitive answer that MadCow
are Vegetarians. The intuition here is that although syntactically, the MadCow - Sheep
path is the longer of the two, the accumulated semantic distance on this syntactically
longer path is still shorter than the semantic distance on the syntactically short MadCow -
Grass path.

2.7 Variants of Over-determined Processing

The reasoning extension procedure usually grows up to an inconsistent set rapidly. That
may lead to too many undetermined answers. In order to improve it, over-determined pro-
cessing is introduced, by which we require that the selection function returns a consistent
subset Σ′′ at the step k when s(Σ, φ, k) is inconsistent such that s(Σ, φ, k − 1) ⊂ Σ′′ ⊂
s(Σ, φ, k). It is actually a kind of backtracking strategies used to reduce the number of
undetermined answers to improve the extension strategy. An easy solution to the over-
determined processing is to return the first maximal consistent subset (FMC) of s(Σ, φ, k),
based on certain search procedure. Query answers which are obtained by this procedure
are still sound, because they are supported by a consistent subset of the ontology. How-
ever, it does not always provide intuitive answers because it depends on the search pro-
cedure of maximal consistent subset in over-determined processing. In the following we
will propose a semantic relevance based approach for over-determined processing. Before
doing that, we would like to discuss the pros and cons of semantic relevance first.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 17

2. PROCESSING OF INCONSISTENT ONTOLOGIES

2.7.1 Pros and Cons of Semantic Relevance

Although empirical findings will only be discussed in Chapter 4, we can already establish
some of the advantages and disadvantages of the semantic approach to relevance.

Slower fan out behavior: As is clear from the definition about the semantic selection
function, the growth of a relevance based on semantic distance is much slower than one
based on syntactic relevance. In fact, at each step the semantic relevance set grows by a
single formula (barring the exceptional case when some formulas share the same distance
to the query).

Almost never needs a backtracking step: This slower growth of semantic relevance
means that it will also hardly ever need a backtracking step, since the relevance set is
unlikely to become “too large” and inconsistent.

Expensive to compute: Again by inspecting the definition about the semantic selection
function, it is clear that computing the semantic relevance is expensive: it requires to
know the semantic distance between the query and every formula ψ in the theory Σ.
Furthermore, this must be done again for every new query concept C1. With realistic
modern ontologies often at a size ofO(105) concepts, and a computation time in the order
of 0.2 secs for a single NGD-value, this would add a prohibitive cost to each query8.

The picture that emerges from the pro’s and cons of the semantic approach is that
syntactic relevance is cheap to compute, but grows too quickly and then has to rely on a
blind backtracking step, while semantic relevance has controlled growth, with no need for
backtracking, but is expensive to compute.

2.7.2 Mixed Approach for Over-determined Processing

In this section, we will propose a mixed approach which combine the advantages of both:
we will use a syntactic-relevance selection function to grow the selection set cheaply, but
we will use semantic relevance to improve the backtracking step.

Instead of picking the first maximal consistent subset through a blind breadth-first
descent, we can prune semantically less relevant paths to obtain a consistent set. This is
done by removing the most dissimilar formulas from the set s(Σ, φ, k) − s(Σ, φ, k − 1)
first, until we find a consistent set such that the query φ can be proved or disproved.

8although some of this can be amortised over multiple queries by caching parts of the values that make
up the NGD.

18 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Example: Taking the same example of the MadCow ontology above, we can see from
Figure 2.3 that the path between MadCow and Grass can be pruned first, rather than
pruning the path between MadCow and Sheep, because of the NGD information:

NGD(MadCow, Sheep) = 0.612001
NGD(MadCow,Grass) = 0.722911

Thus, the path MadCow - Grass (which lead to the counter-intuitive conclusion that Mad-
Cow are vegetarians) is pruned first.

We call this over-determined processing (ODP) using path pruning with Google dis-
tance. While syntactic over-determined processing can be seen as a blind breadth-first
search, semantic-relevance ODP can be seen as a hill-climbing procedure, with the se-
mantic distance as the heuristic.

Notice that semantic backtracking is not guaranteed to yield a maximal consistent
subset. Consequently, the completeness of the algorithm may be affected, since we might
have removed too many formulas from the relevance set in our attempt to restore con-
sistency, thereby loosing the required implication to obtain the intuitive answer. Further-
more, it is possible that the semantic backtracking might lead to the wrong consistent
subset, one supporting φ where ¬φ would have been the intuitive answer, or vice versa.
In our experiment in Chapter 4 we will find that indeed the completeness drops (as ex-
pected), but not by very much, while the unsoundness does not increase at all (making us
belief that SD is a good heuristic for the hill-climbing search towards a consistent subset).

Finally, the semantic distance provides the possibility for adjustable behaviour of the
backtracking increments that are taken in the over-determined processing phase. We in-
troduce a cutting level α (0 ≤ α ≤ 1), and instead of only pruning the semantically least
relevant paths one by one until we obtain a consistent subset, we now prune in one step
all formulas whose distance to the query is higher than α. In this way, α plays the role
of a threshold, so that the processing can be sped up by pruning in a single step all those
formulas which do not meet the relevance threshold. This might of course increase the
amount of undetermined answers (since we may have over-pruned), but it allows us to
make a tradeoff between the amount of undetermined answers and the time performance.
In Chapter 4 we will report an experiment in which this tradeoff obtains a 500% efficiency
gain in exchange for only a 15.7% increase in undetermined answers.

2.8 Debugging Incoherent Terminologies

Description Logics are a family of well-studied set-description languages which have
been in use for over two decades to formalize knowledge. They have a well-defined model
theoretic semantics, which allows for the automation of a number of reasoning services.
In this section we provide an overview on various methods for debugging inconsistent
ontologies.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 19

2. PROCESSING OF INCONSISTENT ONTOLOGIES

2.8.1 Logical errors in Description Logic terminologies

For a detailed introduction to Description Logics we point to the second chapter of the DL
handbook [Baader et al., 2003]. Briefly, in DL concepts will be interpreted as subsets of
a domain, and roles as binary relations. Let, throughout the paper, T = {ax1, . . . , axn}
be a set of (terminological) axioms, where axi is of the form Ci v Di for each 1 ≤ i ≤ n
and arbitrary concepts Ci and Di. We will also use terminological axioms of the form
C = D and disjointness statements disjoint(C,D) between two concepts C and D, which
are simple abbreviations of C v D&D v C, and C v ¬D respectively. Most DL
systems also allow for assertional axioms in a so-called ABox. In this paper, ABoxes
will not be considered. Throughout the paper the term ontologies will refer to general
knowledge bases which possibly include both terminological and assertional knowledge.
The term terminology is solely used in the technical sense of a DL TBox.

2.8.1.1 Unsatisfiability and Incoherence

Let U be a finite set of objects, called the universe. A mapping I, which interprets DL
concepts as subsets of U is a model of a terminological axiom C v D, if, and only if,
CI ⊆ DI . A model for a TBox T is an interpretation which is a model for all axioms in
T . Based on these semantics a TBox can be checked for incoherence, i.e., whether there
are unsatisfiable concepts: concepts which are necessarily interpreted as the empty set in
all models of the TBox. More formally

1. A concept C is unsatisfiable w.r.t. a terminology T if, and only if, CI = ∅ for all
models I of T .

2. A TBox T is incoherent if, and only if, there is a concept-name in T which is
unsatisfiable.

Conceptually, these cases often point to modeling errors because we assume that a
knowledge modeler would not specify something like an impossible concept in a complex
way.

Table 2.1 demonstrates this principle. Consider the (incoherent) TBox T 1, where
A,B and C, as well as A1, . . . , A7 are concept names, and r and s roles. Satisfiability
testing returns a set of unsatisfiable concept names {A1, A3, A6, A7}. Although this is still
of manageable size, it hides crucial information, e.g., that unsatisfiability of A1 depends,
among others, on unsatisfiability of A3, which is in turn unsatisfiable because of the con-
tradictions between A4 and A5. We will use this example later in this paper to explain our
debugging methods.

20 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

ax1:A1v¬A uA2 uA3 ax2:A2vA uA4

ax3:A3vA4 uA5 ax4:A4v∀s.B u C
ax5:A5v∃s.¬B ax6:A6vA1 t ∃r.(A3 u ¬C uA4)
ax7:A7vA4 u ∃s.¬B

Table 2.1: A small (incoherent) TBox T 1

2.8.1.2 Unfoldable ALC TBoxes

In this section we study ways of debugging and diagnosing of incoherence and unsatisfi-
ability in DL terminologies. The general ideas can easily be extended to inconsistency of
ontologies with assertions as suggested in [Schlobach et al., 2006]. As the evaluation in
this document will be about terminological debugging only, we will restrict the technical
definitions to the necessary notions.

Whereas the definitions of debugging were independent of the choice of a particular
Description Logic, we will later present algorithms for the Description Logic ALC, and
unfoldable TBoxes, in particular.

ALC is a simple yet relatively expressive DL with conjunction (C uD), disjunction
(CtD), negation (¬C) and universal (∀r.C) and existential quantification (∃r.C), where
the interpretation function is extended to the different language constructs as follows:

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = U \ CI

(∃R.C)I = {d ∈ U | ∃e ∈ U : (d, e) ∈ RI and e ∈ CI}
(∀R.C)I = {d ∈ U | ∀e ∈ U : (d, e) ∈ RI implies e ∈ CI}

A TBox is called unfoldable if the left-hand sides of the axioms (the defined con-
cepts) are atomic and unique, and if the right-hand sides (the definitions) contain no di-
rect or indirect reference to the defined concept [Nebel, 1990]. In T1, our example TBox,
A1, . . . , A7 are defined concepts.

2.8.2 Framework for debugging and diagnosis

A theory of debugging and diagnosis and link it to description logic-based systems in
[Schlobach and Huang, 2007]. In this case a diagnosis is a smallest set of axioms that
needs to be removed or corrected to render a specific concept or all concepts satisfiable.

In some situations, terminologies can contain a large number of unsatisfiable concepts.
This can occur for example when terminologies are the result of a merging process of
separately developed terminologies, or when closure axioms (i.e. disjointness statements
and universal restrictions) are added to terminologies. Unsatisfiability propagates, i.e. one

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 21

2. PROCESSING OF INCONSISTENT ONTOLOGIES

unsatisfiable concept may cause many other concepts to become unsatisfiable as well. As
it is often not clear to a modeler what concepts are the root cause of unsatisfiability, we
also describe a number of heuristics that help to indicate reasonable starting points for
debugging an terminology.

2.8.2.1 Model-based Diagnosis

The literature on model-based diagnosis is manifold, but we focus on the seminal
work of Reiter [Reiter, 1987], and [Greiner et al., 1989], which corrects a small bug
in Reiter’s original algorithm. We refer the interested reader to a good overview
in [Console and Dressler, 1999].

Reiter introduces a diagnosis of a system as the smallest set of components from that
system with the following property: the assumption that each of these components is
faulty (together with the assumption that all other components are behaving correctly) is
consistent with the system description and the observed behavior. In other words: assum-
ing correctness of any one of the components in a diagnosis would cause inconsistency
between the system description and the observed behavior. For example, a simple elec-
trical circuit can be defined, consisting of a number of adders. Based on the description
of the system and some input values, one can calculate the output of the system. If the
observed output is different from the expected output, at least one of the components must
be faulty, and diagnoses determine which components could have caused the error.

To apply this definition to a description logic terminology, we regard the terminology
as the system to be diagnosed, and the axioms as the components of this system. The
concepts and roles in a concept definition are regarded as input values, and the defined
concepts as output values. If we look at the example terminology from Table 2.1, the
system description states that it is coherent (i.e. all concepts are satisfiable), but the ob-
servation is that A1, A3, A6, and A7 are unsatisfiable. In Reiter’s terminology, a minimal
set of axioms that need to be removed (or better fixed) is called a diagnosis. This adapta-
tion of Reiter’s method leads to the following definition of diagnosis.

Definition 4 Let T be an incoherent terminology. A diagnosis for the incoherence prob-
lem of T is a minimal set of axioms T ′ ⊆ T such that T \ T ′ is coherent. Similarly, a
diagnosis for unsatisfiability of a single concept A in T is a minimal subset T ′ ⊆ T , such
that A is satisfiable w.r.t. T \ T ′.

Reiter provides a generic method to calculate diagnoses on the basis of conflict sets
and their minimal hitting sets. A conflict set is a set of components that, when assumed to
be fault free, lead to an inconsistency between the system description and observations.
A conflict set is minimal if and only if no proper subset of it is a conflict set. The minimal
conflict sets (w.r.t. coherence) for the system in Table 2.1 are {ax1, ax2}, {ax3, ax4,
ax5}, and {ax4, ax7}.

A hitting set H for a collection of sets C is a set that contains at least one element of

22 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

each of the sets in C. Formally: H ⊆
⋃

S∈C S such that H ∩ S 6= ∅ for each S ∈ C. A
hitting set is minimal if and only if no proper subset of it is a hitting set. Given the conflict
sets above, the minimal hitting sets are: {ax1, ax3, ax7}, {ax1, ax4}, {ax1, ax5, ax7},
{ax2, ax3, ax7}, {ax2, ax4}, and {ax2, ax5, ax7}.

Reiter shows that the set of diagnoses actually corresponds to the collection of mini-
mal hitting sets for the minimal conflict sets. Hence, the minimal hitting sets given above
determine the diagnoses for the system w.r.t. coherence. In [de Kleer and Williams, 1987]
diagnosis is extended by providing a method for computing the probabilities of failure of
various components based on given measurements. Especially in cases where there are
many diagnoses, additional observations (measurements) need to be made in order to de-
termine the actually failing components. The method provided can also determine what
observation has the highest discriminating power, i.e. needs to be performed to maximally
reduce the number of diagnoses.

2.8.2.2 Debugging

As previously mentioned, the theory of diagnosis is built on minimal conflict sets. But in
the application of diagnosis of erroneous terminologies, these minimal conflict sets play
a role of their own, as they are the prime tools for debugging, i.e. for the identification of
potential errors. For different kind of logical contradictions we introduce several different
notions based on conflict sets, the MUPS for unsatisfiability of a concept, the MIPS for
incoherence of a terminology.

Minimal unsatisfiability-preserving sub-TBoxes (MUPS)
In [Schlobach and Cornet, 2003b] we introduced the notion of Minimal Unsatisfiabil-
ity Preserving Sub-TBoxes (MUPS) to denote minimal conflict sets. Unsatisfiability-
preserving sub-TBoxes of a TBox T and an unsatisfiable concept A are subsets of T in
which A is unsatisfiable. In general there are several of these sub-TBoxes and we se-
lect the minimal ones, i.e., those containing only axioms that are necessary to preserve
unsatisfiability.

Definition 5 A TBox T ′ ⊆ T is a minimal unsatisfiability preserving sub-TBox (MUPS)
for A in T if A is unsatisfiable in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′.

We will abbreviate the set of MUPS of T and A by mups(T , A). MUPS for our example
TBox T 1 and its unsatisfiable concepts are:

mups(T 1, A1): {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T 1, A3): {{ax3, ax4, ax5}}
mups(T 1, A6): {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T 1, A7): {{ax4, ax7}}

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 23

2. PROCESSING OF INCONSISTENT ONTOLOGIES

In the terminology of Reiter’s diagnosis each mups(T , A) is a collection of minimal
conflict sets w.r.t. satisfiability of concept A in TBox T .

Remember that a diagnosis is a minimal hitting set for a collection of conflict sets.
Hence, from the MUPS, we can also calculate the diagnoses for unsatisfiability of concept
A in TBox T , which we will denote ∆T ,A.

∆T1,A1 : {{ax1}, {ax2, ax3}, {ax2, ax4}, {ax2, ax5} }
∆T1,A3 : {{ax3}, {ax4}, {ax5}}
∆T1,A6 : {{ax1}, {ax4}, {ax6}, {ax2, ax3}, {ax2, ax5} }
∆T1,A7 : {{ax4}, {ax7}}

Minimal incoherence-preserving sub-TBoxes (MIPS)
MUPS are useful for relating sets of axioms to the unsatisfiability of specific concepts, but
they can also be used to calculate MIPS, which relate sets of axioms to the incoherence
of a TBox in general (i.e. unsatisfiability of at least one concept in a TBox).

Definition 6 A TBox T ′ ⊆ T is a minimal incoherence preserving sub-TBox (MIPS) of
T if, and only if, T ′ is incoherent, and every sub-TBox T ′′ ⊂ T ′ is coherent.

This means that MIPS are minimal subsets of an incoherent TBox preserving unsatisfia-
bility of at least one atomic concept. The set of MIPS for a TBox T is abbreviated with
mips(T). For T1 we get 3 MIPS: mips(T 1) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

Analogous to MUPS, each element of mips(T) is a minimal conflict set w.r.t. in-
coherence of TBox T . Hence, from mips(T), a diagnosis for coherence of T can be
calculated, which we denote as ∆T . From these definitions, we can determine the diag-
nosis for coherence of T 1:

∆T 1 = {{ax1, ax4}, {ax2, ax4}, {ax1, ax3, ax7}, {ax2, ax3, ax7}, {ax1, ax5, ax7},
{ax2, ax5, ax7}}

The number of MUPS a MIPS is a subset of determines the number of unsatisfiable
concepts of which it might be the cause. We will call this number the MIPS-weight.

In the example terminology T 1 we found six MUPS and three MIPS. The MIPS {ax1,
ax2} is equivalent to one of the MUPS forA1, {ax1, ax2}, and a proper subset of a MUPS
for A6, {ax1, ax2, ax4, ax6}. Hence, the weight of MIPS {ax1, ax2} is two. In the same
way we can calculate the weights for the other MIPS: the weight of {ax3, ax4, ax5} is
three, the weight of {ax4, ax7} is one. Intuitively, this suggests that the combination of
the axioms {ax3, ax4, ax5} is more relevant than {ax4, ax7}.

Weights are easily calculated, and play an important role in practice to determine
relative importance within the set of MIPS, as we experienced in our case-studies which
are described in [Schlobach et al., 2007].

24 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

2.8.2.3 Pinpoints

Experiments described in [Schlobach, 2005b] indicated that calculating diagnoses from
MIPS and MUPS is simple, but computationally expensive, and often impractical for
real-world terminologies. For this purpose, we introduced in [Schlobach, 2005a] the no-
tion of a pinpoint of an incoherent terminology T , in order to approximate the set of
diagnoses. The definition of the set of pinpoints is a procedural one, following a heuristic
to ensure that most pinpoints will indeed be diagnoses. However, there is no guarantee of
minimality, so that not every pinpoint is necessarily a diagnosis.

To define pinpoints we need the notion of a core: MIPS-weights provide an intuition
of which combinations of axioms lead to unsatisfiability. Alternatively, one can focus on
the occurrence of the individual axioms in MIPS, in order to predict the likelihood that
an individual axiom is erroneous. We define cores as sets of axioms occurring in several
MIPS. The more MIPS such a core belongs to, the more likely its axioms will be the cause
of contradictions.

Definition 7 A non-empty subset of the intersection of n different MIPS in mips(T)
(with n ≥ 1) is called a MIPS-core of arity n (or simply n-ary core) for T .

For our example TBox T 1 we find one 2-ary core, {ax4} of size 1. The other axioms in
the MIPS are 1-ary cores. Pinpoints are defined in a structural way.

Definition 8 Let mips(T) be the set of MIPS of T , i.e. a collection of sets of axioms.
The set of possible outputs of the following procedure will be called the set of pinpoints.

Let M := mips(T) be the collection of MIPS for T , P = ∅:
(1) Choose in M an arbitrary core {ax} of size 1 with maximal arity.
(2) Then, remove from M any MIPS containing {ax}
(3) P := P ∪ {ax}

Repeat steps

(1) to (3) until M = ∅. The set P is then called a pinpoint of the terminology.

As step (1) contains a non-deterministic choice there is no unique pinpoint but a set pos-
sible of possible outputs of the algorithm: the set of pinpoints.

For our example TBox T 1 with mips(T 1) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4,
ax7}} we first take the 2-ary core, {ax4}. Removing the MIPS containing ax4 leaves
{ax1, ax2}. Hence, there is a non-deterministic choice: if we choose ax1 to continue
{ax4, ax1} is the calculated pinpoint, otherwise {ax4, ax2}. Both are diagnoses of T1.

2.8.3 DION: A Bottom-up Approach for Debugging Incoherent On-
tologies

In [Schlobach and Huang, 2005, Schlobach and Huang, 2007], an informed bottom-up
approach to calculate MUPS with the support of an external DL reasoner is proposed. The

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 25

2. PROCESSING OF INCONSISTENT ONTOLOGIES

advantage of this approach is that it can deal with any DL-based ontology supported by an
external reasoner. Currently there exist several well-known DL reasoners, like RACER9,
FaCT++10, and Pellet11, each of which has proved to be reliable and stable. They support
various DL-based ontology languages, including OWL-DL.

Given an unsatisfiable concept A and a terminology T MUPS can be systematically
calculated by checking whether A is unsatisfiable in subsets T ′ of T of increasing size.
Such a procedure is complete and easy to implement, but infeasible in practice. Even the
most simple real-world terminology in our tests in [Schlobach et al., 2007] has an average
size of 5 axioms per MUPS and 417 axioms, which requires over 1011 calls to the external
reasoner.

This observation implies that one has to control the subsets of T that are checked
for satisfiability of A by means of a selection function. Such a selection function selects
increasingly large subsets which are heuristically chosen to be relevant additions to the
currently selected subset. Although this approach is not guaranteed to give us the com-
plete solution set of MUPS it provides an efficient approach for debugging inconsistent
terminologies. We will now formally introduce the core notions of selection functions
and relevance.

In [Huang and van Harmelen, 2006] two different selection functions are defined. The
most simple one is based on co-occurrence of concept names in axioms. In this approach,
they focus on unfoldable TBoxes,12 they use a slightly more complex selection function
here. The basic idea is that an axiom ax is relevant to a concept name A if, and only if,
A occurs on the left-hand side of ax. In a way this variant of the bottom-up approach
mimics the unfolding procedure in order to restrict the number of tests needed. This is
also the one implemented in the DION system.

Using the concept relevance relation, we can define a particular selection function.
For a terminology T and a concept A, define a selection function s as follows:

Definition 9 The concept-relevance based selection function for a TBox T and a concept
A is defined as

(i) s(T , A, 0) = ∅;
(ii) s(T , A, 1) = {ax | ax ∈ T and ax is concept-relevant to A};
(iii) s(T , A, k) = {ax | ax ∈ T and ax is concept-relevant to an

element in s(T , A, k − 1)} for k > 1.

An informed bottom-up approach to obtain MUPS is proposed in
[Schlobach and Huang, 2007]. In logics and computer science, an increment-reduction
strategy is often used to find minimal inconsistent sets [de la Banda et al., 2003]. Under

9http://www.sts.tu-harburg.de/∼r.f.moeller/racer/
10http://owl.man.ac.uk/factplusplus/
11http://www.mindswap.org/2003/pellet/
12Remember that the top-down is defined for unfoldable TBoxes only.

26 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

k := 0
M(T , A) := ∅
repeat
k := k + 1

until A unsatisfiable in s(T , A, k) (*)
Σ := s(T , A, k)− s(T , A, k − 1)
S := s(T , A, k − 1)
W := {S}
for all ax ∈ Σ do

for all S ′ ∈ W do
if A satisfiable in S ′ ∪ {ax} and S ′ ∪ {ax} 6∈ W then
W := W ∪ {S ′ ∪ {ax}}

end if
if A unsatisfiable in S ′ ∪ {ax} and S ′ ∪ {ax} 6∈M(T , A) then
M(T , A) := M(T , A) ∪ {S ′ ∪ {ax}}

end if
end for

end for
M(T , A) := MinimalityChecking(M(T , A))
return M(T , A)

Figure 2.4: MUPS bottomup(T , A)

this approach, the algorithm first finds a collection of inconsistent subsets of an incon-
sistent set, before it removes redundant axioms from these subsets. Similarly, a heuristic
procedure for finding MUPS of a TBox T and an unsatisfiable concept-name A consists
of the following three stages:

• Expansion : Use a relevance-based selection function to find two subsets Σ and S
of T such that a concept A is satisfiable in S and unsatisfiable in S ∪ Σ.

• Increment: Enumerate subsets of Σ to obtain the sets S” such that the concept A
is unsatisfiable in S” ∪ S . We call those sets A-unsatisfiable sets.

• Reduction: Remove redundant axioms from those A-unsatisfiable sets to get
MUPS.

Figure 2.4 describes an algorithm MUPS bottomup(T , A) based on this strategy to
calculate MUPS. The algorithm first finds two subsets Σ and S of T by increasing the
relevance degree k on the selection function untilA is unsatisfiable in S∪Σ but satisfiable
in Σ. Compared with T , the set Σ can be expected to be relatively small. The algorithm
then builds the power-set of Σ to get A-unsatisfiable sets by adding an axiom ax ∈ Σ
in each iteration of the loop to the sets S ′ in the working set W . If A is satisfiable in

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 27

2. PROCESSING OF INCONSISTENT ONTOLOGIES

Figure 2.5: MinimalityChecking(M(T , A))
for all M ∈M(T , A) do
M ′ := M
for all ax ∈M ′ do

if A unsatisfiable in M ′ − {ax} then
M ′ := M ′ − {ax}

end if
end for
M(T , A) := M(T , A)− {M} ∪ {M ′}

end for
return M(T , A)

S ′ ∪ {ax}, then the set S ′ ∪ {ax} is added to the working set to build up the union of
each elements of the power-set of Σ with the set S.13 If A is unsatisfiable in S ′ ∪ {ax},
then add the set S ′ ∪ {ax} into the resulting set M(T , A) instead of the working set W .
This avoids the calculation of the full power-set of Σ because any superset of S ′ ∪ {ax}
in which A is unsatisfiable is pruned. Finally, by checking minimality we obtains MUPS.
The procedure to check minimality of the calculated subsets of T is described in Figure
2.5.

2.8.4 RepairTab: A Heuristic Approach for Repairing Unsatisiable
Ontologies

[Lam, 2007, Lam et al., 2006] investigate the heuristics used by ontology engineers to re-
solve inconsistencies in ontologies. An empirical study has been conducted to acquire a
variety of such heuristics from ontology engineers. Some of the acquired heuristics are
already incorporated in existing tools, however, a sizeable number of additional useful
heuristics have also discovered. Moreover, the usefulness of incorporating these heuris-
tics in a software tool is investiagted to guide non-expert ontology modelers to select
appropriate axioms for modification. The result of the usability study shows that the
heuristics are useful to help ontology users debug ontologies. This work shows that the
approach of acquiring human heuristics and encoding them in a tool is viable for ontology
debugging.

The heuristics used by ontology engineers have been acquired to resolve inconsis-
tencies in ontologies. These heuristics have been formalized to evaluate confidence in
axioms, so as to suggest to the user which axioms should be removed or modified. This
approach is implemented in the RepairTab system, which is a plug-in of Protege 3.3.

Given an ontology with unsatisfiable concepts, we use the tableau-tracing technique
to pinpoint the sets of axioms which cause the concepts to be unsatisfiable. At least one

13Namely {S′/S|S′ ∈W} ⊆ P(Σ)

28 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

axiom from each set of axioms must be removed/modified to resolve an unsatisfiability;
however we need to identify which axiom should be removed/modified. To do this we
assign confidence values to axioms. If an axiom is assigned a high confidence value we
recommend that the axiom should be preserved. If an axiom is assigned a low confidence
value this means that we recommend that the axiom should be removed or modified.
Confidence values are assigned by a set of heuristics; an example is the “impact” heuris-
tic which assigns high confidence to axioms whose removal would impact many of the
named concepts in the ontology (the aim is to minimise the loss of information from the
ontology).

The confidence function below provides a ranking over the axioms, allowing us to
indicate axioms recommended for modification or preservation. As we have to compare
the relative confidence values of axioms, the heuristic formulas below transform the com-
puted values into the range [−1, 1] (normalisation). Axioms are initially presumed to have
0 confidence; axioms with values close to +1 are strongly recommended for preservation,
while those with values close to −1 are strongly recommended for removal. Axioms
for which a confidence value is not determined for a particular heuristic are assigned the
default confidence value 0.

Definition 10 (Confidence) Let α be an axiom in an ontology O, the confidence of α is
a function

confidence : α→ [−1, 1]

We have acquired a variety of heuristics from our empirical study. We formalise
the heuristics which allow us to evaluate the confidence of axioms further. We combine
our heuristics with those already incorporated in existing debugging tools (i.e., arity and
number of lost entailments) and divide them into the following categories:

1. Impact of removal on the ontology – two heuristics are presented to analyse the loss
of entitlements due to removing axioms

2. Knowledge of ontology structure – five novel heuristics are proposed to analyse

(a) disjointness between siblings,

(b) disjointness between non-siblings,

(c) sibling patterns,

(d) length of paths in a concept hierarchy, and

(e) depth of concepts in a concept hierarchy

3. Linguistic heuristic – one heuristic is presented to analyse the similarities of the
names of the concepts

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 29

2. PROCESSING OF INCONSISTENT ONTOLOGIES

2.8.5 RaDON: A System for Reasoning and Diagnosis in Ontology
Networks

RaDON14 is a system for Reasoning and Diagnosis in Ontology Networks, which is de-
veloped by the AIFB. RaDON - Repair and Diagnosis for Ontology Networks - provides
a set of techniques for dealing with inconsistencies and incoherence in ontologies. In
particular, RaDON supports various strategies and consistency models for distributed and
networked environments.

RaDON is a system that extends the capabilities of existing reasoners with function-
alities to deal with inconsistencies. These additional functionalities are made accessible
via extensions to the DIG interface. The idea of extending the DIG interface with non-
standard reasoning services has been developed originally in the SEKT project and has
for example been applied in PION and evOWLution.

These functionalities are accessible in two different ways in the RaDON system and
the KAON2 OWL Tools: While the implementation of RaDON is based on extensions to
the DIG interface, the KAON2 OWL Tools allow a command line based interface to the
functionalities.

The implemented functionalities basically support the individual steps of the RaDON
approach to resolving inconsistency and incoherence. In particular, the implementation
supports the following tasks of the process:

• Consistency checking of TBox and ABox: Consistency checking is a standard
reasoning task provided by DL reasoners. We simply perform separate checks for
the TBox, ABox, and their union ;

• Checking the Coherence of TBox: By definition, we simply need to check the
coherence of all concepts of the ontology. This again is a standard reasoning task;

• Consistency checking of TBox and ABox. For each unsatisfiable concept, its
minimal unsatisfiability-preserving sub-TBox (MUPS) will be given. In such case,
we will point out all the minimal incoherence-preserving sub-TBox (MIPS) where
the incoherence occurs.

2.8.6 Other Approaches for Debugging

The MINDSWAP group at the University of Maryland has done significant work in this
area, culminating in the recent thesis of Kalyanpur [Kalyanpur, 2006]. The work investi-
gates two different approaches, one based on modifying the internals of a DL reasoner (the
so-called “glass box” approach), and one based on using an unmodified external reasoner
(the “black box” approach).

14http://radon.ontoware.org/

30 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

The glass box approach is closely related to our top-down approach, and is based on
the techniques in [Baader and Hollunder, 1995]. The work deals with OWL-Lite, except
for max cardinality roles, and is efficient since it avoids having to do full tableau satura-
tion (details are in [Kalyanpur et al., 2005]). The work in [Baader and Hollunder, 1995]
is particularly noteworthy: Although that paper is about a different topic (computing ex-
tensions for a certain class of default Description Logics), it turns out that one of the
algorithms is very similar to the top-down approach. The main difference to Baader et.
al’s work is that they consider ABoxes instead of TBoxes, and the purpose of the algo-
rithm (computing default extensions vs. computing diagnoses).

The black box approach (i.e.. detecting inconsistencies by calling an unmodi-
fied external DL reasoner) is based on Reiter’s Hitting Set algorithm (similar to our
work in [Schlobach, 2005b]), and also closely related to a proposal of Friedrich et
al. [Friedrich and Shchekotykhin, 2005] who bring the general diagnostic theories from
[Reiter, 1987] to bear for diagnosing ontologies. An interesting difference with the work
reported in this document is that Friedrich et. al use generic diagnoses software. As we
do in our bottom-up method, they use a DL reasoner as oracle.

Kalyanpur also proposes a method for “axiom pinpointing”15, which rewrites ax-
ioms into smaller ones, and then debugs the resulting ontology after rewriting, with
the effect that a more precise diagnosis is obtained. Early results have been reported
in [Kalyanpur et al., 2006]

A second pinpointing technique called “error pinpointing” by Kalyanpur is similar
to what we call pinpointing here. Interestingly, Kalyanpur has performed user studies
which reveal that a combination of axiom pinpointing (i.e.. breaking large axioms up
into smaller ones) and error pinpointing (ie. finding the errors which lie at the root of a
cascading chain of errors) together seems to be the cognitively most efficient support for
users.

Finally, a significant extension to the work in [Schlobach and Cornet, 2003b] was pub-
lished in [Meyer et al., 2006], where the authors extend the saturation based tableau cal-
culus with blocking conditions, so that general TBoxes can be handled.

We have reported the benchmarking experiments on the debugging approaches in
[Schlobach et al., 2007]. In Chapter 4 of this document we will report the benchmarking
experiments on the comparison between the approaches of reasoning with inconsistent
ontologies and the approaches of debugging inconsistent ontologies.

15A different use of the word pinpointing from our use, and even from the identical term ”axiom pin-
pointing” in [Schlobach and Cornet, 2003b].

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 31

Chapter 3

A Framework for Benchmarking of
Processing Inconsistent Ontologies

3.1 Framework

3.1.1 Measuring the Quality of Query Answers

In ontology engineering, evaluation and benchmarking target at software products, tools,
services, and processes. Those objects are called tested systems. Evaluation and bench-
marking are the systematic determination of merit, worth, and significance of tested sys-
tems. Those merit, worth, and significance are characterized as a value relation, which is
considered as a preference relation, i.e., a partial order set 〈A,�〉.

The answer value set for reasoning with inconsistent ontologies usually consists of
three values accepted, rejected, and undetermined as discussed in the previous chap-
ter. We will develop gold standards which represent intuitive answers from a human for
queries on the system of processing inconsistent ontologies. Thus, we can compare the
answers from the tested system/approach with the gold standard which is supposed to be
intuitively true by a human to see to what quality of query answers provided by tested
systems.

For a query, there might exist the following difference between an answer from the
tested system/approach and its intuitive answer in a gold standard.

• Intended Answer: the system’s answer is the same as the intuitive answer;

• Counter-intuitive Answer: the system’s answer is opposite to the intuitive answer.
Namely, the intuitive answer is ’accepted’ whereas the system’s answer is ’rejected’,
or vice versa.

• Cautious Answer: The intuitive answer is ’accepted’ or ’rejected’, but the system’s
answer is ’undetermined’.

32

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

• Reckless Answer: The system’s answer is ’accepted’ or ’rejected’ whereas the
intuitive answer is ’undetermined’. We call it a reckless answer, because under this
situation the system returns just one of the possible answers without seeking other
possibly opposite answers, which may lead to ’undetermined’.

Therefore, a value set

{intended answer, cautious answer, reckless answer, counter intuitive answer},

can be introduced for the evaluation of answers with golden standards. An intended
answer is considered as a best one, whereas a counter intuitive answer is considered as
a worst one. Cautious answers are usually not considered as wrong answers, whereas
reckless answers may give wrong answers. Thus, a preference relation on the value set
can be like this:

{intended answer � cautious answer,
cautious answer � reckless answer,
reckless answer � counter intuitive answer}

Based on this preference order, we can measure the quality of query answers by the
following answer rates:

• IA Rate, which counts only intended answers. Namely the Intended Answer Rate
is defined as the ratio of the amount of Intended Answers to the total amount of the
answers.

• IC Rate, which counts non-error answers. Namely, IC Rate = (Intended Answers
+Cautious Answers)/TotalAnswerNumber.

3.1.2 Basic Definitions

In order to clarify our ideas about the framework for benchmarking of processing incon-
sistent ontologies, we introduce a set of relevant definitions in the following

• Tested systems: Tested systems are ones which are targeted by the objectives of
evaluation or benchmarking. A tested system can be characterized as an input-
output function, alternatively, called a characteristic function of the tested system.
Namely, it maps a tuple of the input parameters into an output value.

• Value relation: A value relation is a preference relation on a set of values. Namely,
a value relation is characterized as a partial order set.

• Evaluation: Evaluation is the systematic determination of the values of tested sys-
tems with respect to its partial ordered value relation.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 33

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

• Benchmarking: Benchmarking is a continuous process for improving by system-
atically evaluating tested systems, and comparing them to those considered to be
the best. Namely, benchmarking is a continuous processing of evaluation.

• Golden Standard: A golden standard is an evaluation function which maps queries
into answers with confidence values1.

3.1.3 Workflows of Evaluation and Benchmarking

Common data sets and common golden standards are usually used for an evaluation of
different tested systems. Those systems may be heterogeneous with respect to their input
data. For example, a reasoner may support only OWL data, whereas another reasoner may
support only DIG data. That needs a data translator to convert data sets represented in a
standard format into the data sets which are represented in a format which is supported by
a tested system. Based on comparison between test results and golden standards, result
evaluation can be done manually, semi-automatically, or automatically. The output of
the result evaluation and the implication are further analyzed by an evaluation analysis.
The methods of statistics and visualization are usually introduced in the phase for better
illustration. The evaluation results will be ranked with respect to its value relation. Finally,
it leads to an evaluation report which concludes the values of tested systems and explain
the reasons why the system behave differently. An investigate is usually made to detect
the problem of tested systems based on the analysis of the evaluation. The workflow of
evaluation is shown in Figure 3.1.

As discussed above, benchmarking is a continuous processing of evaluation. There-
fore, for benchmarking, evaluation results are used further for the improvement of tested
systems. That would usually lead to new versions of tested systems. Based on a bench-
marking analysis, new test data sets may be re-designed or previous data sets are adjusted
for further evaluation with respect to some targeted problems. The workflow of bench-
marking is shown in Figure 3.2. In this benchmarking activity, we have instantiated the
Knowledge Web benchmarking methodology[Garcá-Castro et al., 2005] to the particular
case of benchmarking the processing of inconsistent ontologies.

3.1.4 Taxonomy

There are various perspectives on tested systems for evaluation and benchmarking. We
distinguish the following variants and dimensions:

• Black box vs. Glass box: Tested systems (products/services/processes) can be con-
sidered as black boxes or glass boxes. The former means that the internal details of
the tested systems are not transparent to their evaluators.

1We will discuss gold standards in Section 3.2.

34 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 3.1: Workflow of evaluation.

Figure 3.2: Workflow of benchmarking

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 35

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

• Internal comparison vs. External comparison: the former refers to the comparison
of various functions inside a tested system, whereas the latter refers to the compar-
ison among different systems.

• Qualitative evaluation vs. Quantitative evaluation. The latter refers one in which
the value relation is a subset of real numbers. The former refers to one in which
the value relation is not a total order set. A Boolean evaluation is one in which the
value relation is a Boolean set {0, 1} (or {unintended, intended}, or {good, bad}).

In the benchmarking of reasoning with inconsistent ontologies, we will conduct an inter-
nal comparison of the system. Namely we will evaluate and compare various selection
functions of the system and various approaches of extension strategies and various strate-
gies of over-determined processing. The result of the benchmarking is expected to provide
a quantitative results. We will suggest possible improvements on the functionalities and
implementation of the tested system. Thus, we can considered the tested system as a
Glass box.

3.2 A Specification Language for Golden Standards

Manual evaluation and analysis of test results are usually time consuming, labor intensive,
and error prone. The formalism of golden standard will pave a way for automatic or semi-
automatic evaluation and analysis of test results.

A golden standard is an evaluation function which maps queries into answers
with confidence values. For reasoner benchmarking, a gold standard is a (partial)
function which maps queries into (intuitive) answers with a confidence value. For
example, for benchmarking inconsistency processing, we considered the answer set
{accepted, rejected, undetermined}. For a query ”are birds animals?”, the expected
answer is intuitively considred as ”accepted” with confidence value ”1.0”. However, for
the query ”are men animals?”, the expected answers may be well suitable to be spec-
ified as an answer with lower confidence value, say, ”accepted” with confidence value
”0.4”, ”rejected” with confidence value ”0.4”, and ”undetermined with the confidence
value ”0.2”. Namely, we use the confidence values to represent some kinds of uncertainty
of expected answers. The confidence values can be obtained by various approaches, like
from questionnaires, statistics, machine learning, etc.

We design gold standards which are independent from a specific ontology. Namely,
it is up to evaluators/users to decide which ontologies can be applied with respect to a
golden standard.

In the following, we develop a golden standard specification language in which the
concept language is based on the DIG data format. Thus, it is an XML file, which is
easy to be used and read. Of course an alternative is to develop the golden standard
specification language by using OWL.

36 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

The following is an example of a golden standard:

<?xml version="1.0" encoding="ISO-8859-1"?>

<goldenStandard xmlns="http://wasp.cs.vu.nl/knowledgeweb/d2163/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/knowledgeweb/d2163/gd.xsd">

<name value="Kweb golden standard example 1" version="0.0.1"/>
<comment text="just an example, which is independent from any
particular ontology. It is up to evaluators to decide
which ontology can be applied"/>

<query id="Are birds animals?" querytype="subsumes">
<subsumes>
<catom name="#Animal"/>
<catom name="#bird"/>
</subsumes>

<expectedAnswers>
<answer value="accepted" confidence="1"/>

</expectedAnswers>
</query>

<query id="Are men animals?" querytype="subsumes">
<subsumes>
<catom name="#Animal"/>
<catom name="#man"/>

</subsumes>
<expectedAnswers>
<answer value="accepted" confidence="0.4"/>
<answer value="undetermined" confidence="0.2"/>
<answer value="rejected" confidence="0.4"/>
<comment text="just an example which shows the possibility

of multiple answers in a golden standard"/>
</expectedAnswers>

</query>

</goldenStandard>

Which specifies the name and the version of the golden standard. Each query con-
sists of a detailed query statement (in the DIG query language) and its expected answer
specification. Each expected answer is attached by a confidence value.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 37

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

3.3 A Benchmarking Suite for Processing Inconsistent
Ontologies

[Garcá-Castro et al., 2005] suggests that desirable properties for a benchmark suite should
be: Accessibility, Affordability, Representativity2, Portability3, Scalability4, Robustness5,
and Consensus6. The design of the benchmarking suite for processing inconsistent on-
tologies considers those properties to some extent. In particular, the benchmarking suite
is designed to be one is accessible for any user who may have no any knowledge of pro-
gramming for the accessbility. It is affordable, because it is designed to be use freewares
such as SWI prolog. It is portable because it can be used on different platforms.

We have implemented a benchmarking suite for processing inconsistant ontolo-
gies. The benchmarking suite is implemented by using SWI prolog7, and pow-
ered by the XDIG, an extended DIG interface for Prolog[Huang and Visser, 2004,
Wielemaker et al., to appear]. However, the users of the benchmarking suite need no any
knowledge of Prolog to use it.

3.3.1 Benchmarking Tools

The benchmarking suite consists of the following benchmarking tools:

• Gold Standard Authoring Tool. As its name implies, it is a tool for gold standard
authoring. It provides various approaches for the authoring, which can create a gold
standard from a scratch, or extend the current gold standard with newly added data.

• Query Test Tool. It is a program which is used to create queries, post queries to
tested systems, and record the answers from tested systems automatically.

• Evaluation Tool. It is a tool which is designed for compare the answers from the
tested system with a gold standard automatically.

The relation among the benchmarking tools is shown in Figure 3.3.

2The actions that perform the benchmarks that compose the benchmark suite must be representative of
the actions that are usually performed on the system.

3The benchmark suite should be executed on as wide a variety of environments as possible, and should
be applicable to as much systems as possible.

4The benchmark suite should be parameterised to allow to scale the benchmarks with varying input
rates. It should also scale to work with tools or techniques at different levels of maturity. It should be
applicable to research prototypes and commercial products.

5The benchmark suite must consider unpredictable environment behaviours, and should not be sensitive
to factors not relevant to the study.

6The benchmark suite must be developed by experts that provide their knowledge about the domain, and
are able to identify the key problems. It should also be assessed and agreed on by the whole community.

7http://www.swi-prolog.org

38 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 3.3: Architecture of Benchmarking Suite

In the following we will provide a detailed manual how the benchmarking tool can be
installed and used. First of all, you can download the benchmarking suite from the VUA
KnowledgeWeb website:

http : //wasp.cs.vu.nl/knowledgeweb/d2163.

Unzip the suite into a directory and make sure that SWI Prolog has been installed in
your computer.

3.3.2 Gold Standard Authoring Tool

The Gold Standard Authoring Tool can be launched by double clicking on the file
’gstool.pl’. If you encounter the error ’out of global stack’ because of too large data
in the gold standard, you can launch the Gold Standard Authoring tool by double click-
ing on the file ’gstool bigglobalStack.bat’ after changing the path setting ”C:/Program
Files/pl/bin/plwin.exe” in the bat file if SWI-prolog is installed in other directories. The
Gold Standard Authoring Tool will display a window, in which you can check the setting
such as the gold standard file name, the working directory, etc, and change them accord-
ingly, as shown in Figure 3.4. The selected conceptpair file name allows the system to
load a list of pre-selected concept pairs for queries. User can also different strategies to

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 39

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

Figure 3.4: The Setting Interface of the Gold Standard Authoring Tool

create a set of subsumption queries. The current verison of the gold standard authoring
tool supports the strategy ’random’ only. Namely, the system selects concept pairs for
queries randomly.

3.3.3 Test Tool

The Test Tool is a program for automatically posting queries into a tested system and
record the responses from the system. This tool is used in the command line of SWI-
Prolog. However, users are not required to have a knowledge of Prolog.

Users can do the following steps to use the test tool.

1) Use a text editor to edit the file testtool/testtool.pl on the following setting lines:

40 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 3.5: The Interface for Adding Gold Standard Data

testtool_setting(url, [protocol(http), host(localhost),
port(8001), path(/)]).

testtool_setting(ontology, ’proton_50_rudis.dig.xml’).
testtool_setting(log_type, load_and_ask_log).
testtool_setting(test_type, subsumption_list).
testtool_setting(selected_concept_list, L):-

L=[’Airport’, ’Book’, ...].

If the port number of the tested system is not ’8001’, then change it accordingly.
Before the test, copy the tested ontology into the same directory where the program test-
tool.pl locates. Change the tested ontology file name in the test tool setting line.

The log type setting provides several modes for loading tested ontologies and record-
ing the results:

• log type=load and ask log: load the tested ontologies, create the corresponding
queries, post the queries, and log the queries in the directory ’ask’.

• log type= load and no ask log: load the tested ontologies, create the corresponding
queries, and post the queries without the log of the queries in the directory ’ask’.

• log type=no load and no ask log: obtain the list of all concepts from the tested
system in which an ontology has been loaded, and create the corresponding queries,
post the queries without the log of the queries.

The test type provides several modes for tests:

• test type=subsumption full: create the subsumption queries for all concept pairs in
the tested ontology.

• test type=subsumption list: create the subsumption queries for a selected concept
list which is defined in the selected concept list of the testtool setting.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 41

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

The list L in the following setting line

testtool_setting(selected_concept_list, L):-
L=[’Airport’, ’Book’, ...].

defines the selected concept list, from which the test tool can create corresponding queries
based on the concept pairs from this pre-selected concept list automatically.

After the change of the setting, users can launch the file ’testtool.pl’ to start the test.
The responses from the tested system are recorded in the directory ’response’ automati-
cally. Namely, users can follow the following procedure to do a test:

• Changing the setting. Use any text editor to check and change the setting in the file
’testtool.pl’,

• Starting the tested system. Start a tested system like the PION system,

• Launching the testtool until the test is done,

• Checking the test results. Use any text/xml viewers to see the results which are
stored in the directory ’response’.

3.3.4 Evaluation Tool

The Evaluation tool is used to compare the response data from tested systems with a gold
standard. The corresponding queries in the response files are identified by their query ID.

Before starting the evaluation tool, users can check and change the following setting
lines in the file ’evaluationtool.pl’:

default_value(goldstandard_file, ’gs.xml’).
default_value(dataDirectory, ’./response’).
default_value(evaluation_result_file, ’evaluation_result.xml’).

The setting above states that the file of the gold standard is ’gs.xml’, the directory of
the response data is ’./response’, and the comparison result will be recorded in the file
’evaluation result.xml’.

The user can also change the evaluation function in the following lines in the file
’evalutiontool.pl’:

gs_comparison_value(accepted,rejected, counterintuitive):-!.
gs_comparison_value(rejected,accepted, counterintuitive):-!.

42 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 3.6: Evaluation result.xml

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 43

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

Figure 3.7: Evaluation result.xls

gs_comparison_value(accepted,undetermined, reckless):-!.
gs_comparison_value(rejected,undetermined, reckless):-!.
gs_comparison_value(undetermined,accepted, cautious):-!.
gs_comparison_value(undetermined,rejected, cautious):-!.

gs_comparison_value(A,A, intended):-!.

gs_comparison_value(_,_, unknown).

The first, the second, and the third parameters in the predicate gs comparison value
correspond the query answer from the response data, the expected answer from the gold
standard, and the evaluation result respectively. Therefore, the lines above define the
evaluation function which is described in Section 3.1.1.

Users can define their own evaluation functions by changing the definition of the pred-
icate ’gs comparison value’ in the file ’evaluationtool.pl’. For example, we can use it to
define an evaluation function which intrepretes boolean answers (i.e, ’true’ or ’false’)
into multi-valued answers for an evaluation of the answer quality by a debugging system,
which is used in the next chapter.

For the interpretation in which ’true’ is interpreted as ’accepted’ and ’false’ as ’re-
jected’ , we define the evaluation funciton in the Evaluation Tool ’evaluationtool.pl’ as
follows:

gs_comparison_value(false,accepted, counterintuitive):-!.

44 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

gs_comparison_value(true,accepted, intended):-!.

gs_comparison_value(true,rejected, counterintuitive):-!.
gs_comparison_value(false,rejected, intended):-!.

gs_comparison_value(true,undetermined, reckless):-!.
gs_comparison_value(false,undetermined, reckless):-!.

For the interpretation in which ’true’ is intrepreted as ’accepted, and ’false’ as ’re-
jected’ or ’undetermined’, we define the evaluation funciton in the Evaluation Tool ’eval-
uationtool.pl’ as follows:

gs_comparison_value(false,accepted, cautious):-!.
gs_comparison_value(true,accepted, intended):-!.

gs_comparison_value(true,rejected, counterintuitive):-!.
gs_comparison_value(false,rejected, intended):-!.

gs_comparison_value(true,undetermined, reckless):-!.
gs_comparison_value(false,undetermined, intended):-!.

The comparison results are recorded in the file ’evaluation result.xml’, as shown in
Figure 3.6.

This xml file of the evaluation results can be converted into an excel file by using
the program swift x2e, or any other software which supports the same functionality. The
resulting excel file can be used to obtain the statistic data of the benchmarking, as shown
in Figure 3.7.

3.4 Data Sets

We are collecting the following data sets of inconsistent ontologies for the benchmarking.

• Inconsistent Mapping: Inconsistent ontologies are created by joining paris of on-
tologies using automatically generated mappings. There are 36 data sets than con-
tain inconsistencies. Contributors: Christian Meilicke and Heiner Stuckenschmidt
(KR&KM Research Group of Manheim University)

• Inconsistent Learning: Inconsistent ontologies are created by human annotation
of disjointness on ontology learning data. There are 9 data sets which contain in-
consistencies. Contributor: Johanna Völker (University of Karlsruhe)

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 45

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

• Inconsistency Processing of SEKT WP3: Inconsistent ontologies are created in
the SEKT WP3.4 (Reasoning with Inconsistent Ontologies) and SEKT WP3.6 (Di-
agnosis and repair of Inconsistent Ontologies). There are 7 data sets which contain
inconsistencies. Contributors: Zhisheng Huang and Stefan Schlobach (Vrije Uni-
versity Amsterdam).

3.4.1 Inconsistent Mapping

The inconsistent ontologies available at this data set are created by joining pairs of ontolo-
gies using automatically generated mappings. The concepts of the original ontologies are
connected inside the resulting ontologies by adding additional (and sometimes incorrect)
axioms. These axioms result from a translation of the matching-results of the Ontology
Alignment Evaluation Initiative 2006.

The results of the matching systems Falcon-AO, COMA++, HMatch and Owl-
CtxMatch have been chosen to create the ”union” of two ontologies. Therefore, the
equivalence correspondences created by those matching systems have been translated into
a pair of corresponding subsumptions axioms. Since those matching systems often pro-
duce erroneous mappings the resulting ontologies contain in many cases unsatisfiable
classes. The following tables give an overview about the size of the resulting ontologies
and the number of unsatisfiable concepts. Three matching systems generated symmetric
mappings (more precise, the same result for the input ontologies 〈Source, Target〉 and
〈Target, Source〉), while HMatch produces different results with respect to source and
target ontology being exchanged.

All resulting ontologies as well as the manually evaluated mappings can be down-
loaded from the website:

http://webrum.uni-mannheim.de/math/lski/
ontdebug/index.html#download

Falcon-AO

Number of unsatisfiable classes / all classes
CRS PCS CMT CONFTOOL SIGKDD EKAW

CRS - 0 / 38 0 / 44 2 / 53 2 / 64 0 / 87
PCS - 0 / 53 0 / 62 0 / 73 0 / 97
CMT - 0 / 68 0 / 79 0 / 103
CONFTOOL - 0 / 88 7 / 112
SIGKDD - 0 / 123
EKAW -

COMA++

46 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Number of unsatisfiable classes / all classes
CRS PCS CMT CONFTOOL SIGKDD EKAW

CRS - 2 / 38 0 / 44 2 / 53 0 / 64 7 / 87
PCS - 0 / 53 8 / 62 0 / 73 6 / 97
CMT - 10 / 68 0 / 79 14 / 103
CONFTOOL - 13 / 88 5 / 112
SIGKDD - 0 / 123
EKAW -

Hmatch

Number of unsatisfiable classes / all classes

CRS PCS CMT CONFTOOL SIGKDD EKAW
CRS - 9 / 38 11 / 44 0 / 53 19 / 64 42 / 87
PCS 20 / 38 - 0 / 53 21 / 62 0 / 73 10 / 97
CMT 13 / 44 0 / 53 - 35 / 68 0 / 79 n.a.
CONFTOOL 10 / 53 n.a. 26 / 68 - 4 / 88 21 / 112
SIGKDD 0 / 64 0 / 73 0 / 79 0 / 88 - 7 / 123
EKAW 47 / 87 33 / 97 18 / 103 1 / 112 42 / 123 -

Owl-CtxMatch

Number of unsatisfiable classes / all classes

CRS PCS CMT CONFTOOL SIGKDD EKAW
CRS - 2 / 38 1 / 44 0 / 53 0 / 64 0 / 87
PCS - 0 / 53 n.a. 0 / 73 0 / 97
CMT - 18 / 68 n.a 0 / 103
CONFTOOL - 0 / 88 39 / 112
SIGKDD - 4 / 123
EKAW -

In opposite to the other matching systems, OWL-CtxMatch generates not just equiva-
lence correspondences, but also subsumption correspondences.

All used original ontologies, the mappings and the resulting ontologies are zipped in
the file ontologies.zip from the following website:

http://webrum.uni-mannheim.de/math/lski/ontdebug/ontologies.zip

If you extract the contents of this file, you will get the following directory structur:

CMT.owl
CRS.owl

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 47

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

... (all other original ontologies)
coma-mappings/ (the coma mappings in txt-format)
coma-joined/ (contains the union-ontologies based on

the coma mappings)
coma-evaluation/ (the evaluated coma mappings in txt-format)
... (the same directories for the other matching system)

3.4.2 Inconsistency created by Ontology Learning

3.4.2.1 PROTON

As described in Chapter Introduction, Völker and her colleagues made an experiment of
human annotation of disjointness[Völker et al., 2007b]. In this experiment, a large num-
ber of manually created disjointness are manually created. As a basis for the creation
of the datasets and as background knowledge for the ontology learning algorithms they
took a subset of the freely available PROTON ontology. The PROTON Ontology (PROTo
ONtology) has been developed in the scope of the SEKT Project 8. PROTON is a basic
upper-level ontology to facilitate the use of background or preexisting knowledge for au-
tomatic metadata generation. PROTON covers the general concepts necessary for a wide
range of tasks, including semantic annotation, indexing, and retrieval of documents. PRO-
TON consists of 4 modules: System module, Top module, Upper module, and Knowledge
Management module. In these experiments, the selected subset of PROTON contains 266
classes, 77 object properties, 34 datatype properties and 1388 siblings. Each concept pair
was randomly assigned to 6 different people - 3 from each of two groups the first one
consisting of PhD students from their institute (all of them professional ”ontologists”),
the second is being composed of under-graduate students without profound knowledge
in ontological engineering. Each of the annotators was given between 385 and 406 pairs
along with natural language descriptions of the classes whenever those were available.
Possible taggings for each pair were ’+’(disjoint), ’-’ (not disjoint) and ? (unknown).
Furthermore, they computed the majority votes for all the above mentioned datasets by
considering the individual taggings for each pair. If at least 50 percent (or 100 percent
respectively) of the human annotators agreed upon ’+’ or ’-’ this decision was assumed to
be the majority vote for that particular pair. Adding those created disjointness to Proton
results in inconsistent PROTON ontologies. There are 24 unsatisfiable concepts in the
PROTON ontology with the disjointness are created by 50 percent votes by Students. In
this experiment, there are 6 data sets which contain inconsistencies. Contributor: Johanna
Völker (University of Karlsruhe)

8http://proton.semanticweb.org/

48 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

3.4.2.2 KM1500

The ’km1500’ ontology has been generated automatically from 1500 abstracts of the
’knowledge management’ information space which is part of the BT Digital Library. We
applied the ontology learning framework Text2Onto[Cimiano and Völker, 2005] in order
to extract concepts, instances, taxonomic and non-taxonomic relationships, as well as dis-
jointness axioms from these documents. However, unlike in our previous experiments on
ontology learning and consistent ontology evolution[Haase and Völker, 2005], we omit-
ted all confidence and relevance values generated by Text2Onto. Obviously, this gave us
a bigger, but less reliable set of axioms resulting in a very high number of unsatisfiable
concepts. Contributor: Johanna Vlker (University of Karlsruhe).

The ’km1500’ ontology is converted into one in the DIG format with only disjoint
axioms and subclass (impliesc) axioms. It leads to three sub-ontologies which are incon-
sistent. Contributor: Zhisheng Huang (Vrije University of Amsterdam)

Numbers of unsatisfiable classes

Ontology Concepts UC Axioms Size(KB) DA SA
km1500a 2116 879 3091 315 1915 1176
km1500b 2137 941 2937 302 1707 1230
km1500c 2724 1270 4265 424 2501 1764

UC= Unsatisfiable Concepts, DA = Disjoint Axioms, SA= Subclass Axioms

From the original km1500 ontology, we created N (N = 3, 5, 10) subsets of increasing
size. Starting with the most reliable ontology learning results we subsequently added
more elements (i.e. concepts, instances, relations and axioms) to the ontology by
lowering the threshold. That lead to the following variants of the km1500 ontology.
Contributor: Johanna Völker (University of Karlsruhe).

km1500 3.zip (3 data sets)
km1500 5.zip (5 data sets)
km1500 10.zip (10 data sets)

Those variants of the ’km1500’ ontology are converted into ones in the DIG format with
only disjoint axioms and subclass (impliesc) axioms. It leads to 10 sub-ontologies which
are inconsistent. Contributor: Zhisheng Huang (Vrije University of Amsterdam)

km1500 3.dig.zip (2 inconsistent data sets)
km1500 5.dig.zip (3 inconsistent data sets)
km1500 10.dig.zip (5 inconsistent data sets)

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 49

3. A FRAMEWORK FOR BENCHMARKING OF PROCESSING INCONSISTENT ONTOLOGIES

Ontology Concepts UC Axioms Size(KB) DA SA
km1500 3ontology1 6383 0 5383 556 1 5382
km1500 3ontology2 9659 3657 10106 1035 1447 8659
km1500 3ontology3 9725 3991 10944 1116 2091 8853
km1500 5ontology1 4026 0 3291 339 0 3291
km1500 5ontology2 7692 0 6583 681 0 6583
km1500 5ontology3 9574 2999 9221 947 688 8533
km1500 5ontology4 9725 3991 10930 1115 2091 8839
km1500 5ontology5 9725 3991 10944 1116 2091 8853
km1500 10ontology1 1787 0 1331 137 0 1331
km1500 10ontology2 3665 0 2975 307 0 2975
km1500 10ontology3 5527 0 4621 477 0 4621
km1500 10ontology4 7351 0 6266 647 0 6266
km1500 10ontology5 9127 0 7910 817 0 7910
km1500 10ontology6 9573 2999 9218 947 685 8533
km1500 10ontology7 9714 3660 10650 1088 1991 8659
km1500 10ontology8 9725 3991 10930 1115 2091 8839
km1500 10ontology9 9725 3991 10937 1115 2091 8846
km1500 10ontology10 9725 3991 10944 1116 2091 8853

UC= Unsatisfiable Concepts, DA = Disjoint Axioms, SA= Subclass Axioms

Figure 3.8: km1500 ontologies

The km1500 ontologies and their scale data are shown in Figure 3.8. See the table,
we can see that the series of the ontology ’km1500 10ontology’ provides a rich variant
of ontologies in this data set: the ontology ’km1500 10ontology10’ is the largest scale
ontology with 9725 concepts, 10944 axioms, and 3991 unsatisfiable concepts, whereas
the ontology ’km1500 10ontology1’ is a medium-scale ontology with 1787 concepts and
1331 axioms.

50 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

Chapter 4

Benchmarking Experiments

In this chapter, we report the experiments and the evaluation on various methods of pro-
cessing inconsistent ontologies with respect to the following perspectives:

• Syntactic Approaches versus Semantic Approaches.

• Linear Extension versus Multi-Step Extension (k-extension).

• Reasoning with Inconsistent Ontologies versus Debugging of Inconsistent Ontolo-
gies.

Moreover, we will evaluate various description logic reasoners with inconsistent ontolo-
gies. We evaluate various approaches of processing inconsistent ontologies with respect
to the three factors:

• Quality of Query Answers: We compare the system’s query answers with the
expected answers in a gold standard.

• Performance: We want to see how much the average time cost per query is for
each method.

• Scalability: We want to know whether or not the system can handle large scale of
ontologies.

4.1 Syntactic Approaches versus Semantic Approaches

Given that the mixed approach (using syntactic relevance for growing the relevant set,
and using semantic relevance for backtracking, possibly using α-cuts) seems to be the
best alternative to the purely syntactic approach of our earlier work, our experiment is

51

4. BENCHMARKING EXPERIMENTS

Ontology Approach α IA CA RA CIA IA Rate(%) IC Rate(%)
100 rudis FMC n/a 266 219 32 12 50.28 91.68
100 rudis SD 0.75 225 260 32 12 42.53 91.68
100 rudis SD 0.80 239 246 32 12 45.18 91.68
100 rudis SD 0.85 246 238 32 13 46.50 91.49
50 studis FMC n/a 292 179 44 14 55.20 89.04
50 studis SD 0.75 234 248 38 9 44.23 91.12
50 studis SD 0.80 246 230 39 14 46.503 89.98
50 studis SD 0.85 254 219 41 15 4802 89.41

IA = Intended Answers, CA = Cautious Answers, RA = Reckless Answers, CIA =
Counter-Intuitive Answers, IA Rate = Intended Answers(%), IC Rate = IA+CA(%), FMC
= First Maximal Consistent subset, SD = Semantic Distance, α=Threshold, 50 studis =
the ontology ’proton 50 studis.xml’, 100 rudis = the ontology ’proton 100 rudis.xml’,

Figure 4.1: Syntactic approach and Semantic approach by α cutting-off.

Ontology Approach α TimeCost TimeRatio IA Change Rate
100 rudis FMC n/a 114.63 n/a n/a
100 rudis SD 0.75 22.37 5.12 -0.15
100 rudis SD 0.80 39.96 2.87 -0.10
100 rudis SD 0.85 54.28 2.11 -0.08
50 studis FMC n/a 175.27 n/a n/a
50 studis SD 0.75 23.16 7.57 -0.20
50 studis SD 0.80 39.39 4.45 -0.16
50 studis SD 0.85 60.43 2.90 -0.13

TimeCost = Time Cost per Query (second), TimeRatio = TimeCost(FMC)/TimeCost(SD),
IR Rate Change = (IA(SD)-IA(FMC))/IA(FMC)

Figure 4.2: Syntactic approach and Semantic approach by α cutting-off: Time Perfor-
mance

52 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 4.3: α Cutting-off and Time Performance

aimed at (1) finding out the quality of the answers generated by the mixed approach, and
(2) finding out the quality/cost trade-offs that can be obtained by varying the α-levels.

We created 529 subsumption queries randomly, and obtained PION’s answers of these
queries with backtracking done either blindly (First Maximal Consistent Subset, FMC), or
via the semantic distance (SD). We compared these answers against a hand-crafted Gold
Standard that contained the humanly-judged correct answer for all of these 529 queries.
For each query, the answer given by PION can be classified in one of the following cate-
gories, based on the difference with the intuitive answer in the Gold Standard: Intended
Answer (IA), Cautious Answer (CA), Reckless Answer (RA), and Counter-Intuitive An-
swer (CIA), as defined in the previous chapter. Obviously, one would like to maximize
the Intended Answers, and minimize the Reckless and Counter-intuitive Answers.

Furthermore, We introduced different α-thresholds in the Over-determined processing
to see how the tradeoff between the quality of query-answers and the time performance is
effected by different cutting levels.

Our results obtained by running PION with the data and the tests described above
are shown in Figure 4.1 and Figure 4.2. The first 4 rows show experiments on the pro-
ton rudis 100 ontology, the final 4 rows on the proton studis 50 ontology. In all cases, we
use use syntactic relevance for growing the relevance set until an answer can be found, but
they differ on what happens when the relevance set becomes inconsistent, and backtrack-
ing is required. On the first line (labeled FMC, for First Maximal Consistent subset), the
backtracking is done blindly, on the other lines, backtracking is is guided by the semantic
distance function, at different α-levels (i.e. with different sizes of the backtracking steps;
smaller values for α, i.e. lower thresholds, means that more formulas are removed during

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 53

4. BENCHMARKING EXPERIMENTS

backtracking).

Not listed in the table is the fact that among the 529 queries, 414 (i.e. 78%) resulted in
relevance sets that became inconsistent before the query could be answered meaningfully,
hence they needed a backtracking phase.

The tables shows that when switching from syntactic backtracking (labeled FMC)
to semantic backtracking (labeled SD) the intended answer (IA) rate does indeed drop,
as predicted in section 2.7.2. Furthermore, the IA-rate declines slowly with decreasing
α-levels. Similarly, the cautious answer rate increases slowly with decreasing α-levels.
This is again as expected: larger backtracking steps are more likely to remove too many
formulas from the relevance set, hence potentially making the relevance set too small. Or
put another way: the hill-climbing search performed in the ODP phase is aiming to get
close to a maximal consistent subset, but larger hill-climbing steps make it harder to end
up close to such a set, because of possible over-pruning.

The combined IC-rate (combining intended and cautious answers, i.e. those answers
that are not incorrect, but possibly incomplete), stays constant across between and FMC
and SD, and across all α-levels.

It is important to note that the numbers of reckless and counter-intuitive answers re-
mains constant1. This means that although the semantically guided large-step reductions
(at low α-levels) do of course remove formulas, they do not remove the wrong formulas,
which could have potentially lead to reckless or counter-intuitive answers.

Summarizing, when switching from FMC to SD, and with decreasing α-levels, the
completeness of the algorithm (IA Rate) gradually declines, while the soundness of the
algorithm (IC rate) stays constant.

Although these findings on the answer quality are reassuring (the semantic backtrack-
ing doesn’t damage the quality), they are not by themselves a reason to prefer semantic
backtracking over syntactic backtracking. The strong point of the semantic backtrack-
ing becomes clear when we look at the computational costs of syntactic and semantic
backtracking, particularly in the light of the answer quality.

Above, we have seen that the answer quality only degrades very gradually with de-
creasing α-levels. The final two columns of table 4.2 however show that the answer costs
reduce dramatically when switching from syntactic to semantic backtracking, and that
they drop further with decreasing α-levels. The absolute computation time is more than
halved when switching from FMC to SD (α = 0.85), and is again more than halved when
dropping α from 0.85 to 0.75, leading to an overall efficiency gain of a factor of 5. Of
course, this efficiency is gained at the cost of some loss of quality, but this loss of qual-
ity (the drop in completeness, the IA rate) is very modest: the twofold efficiency gain at
α = 0.85 is gained at a price of a drop of only 3 percentage points in completeness, and
the fivefold efficiency gain at α = 0.75 is gained at a price of a drop of only 7 percentage
points in completeness. (Remember that the soundness of the results, the IC rate, is not at

1and is even going significantly down in the proton studis 50 case.

54 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Ontology SelectionFunction ODP α Queries IA CA RA CIA
100 studis Syn FMC n/a 529 234 249 33 13
100 studis SynCon SD 1.00 529 189 309 22 9

Syn = The syntactic relevance based selection function, SynCon = The direct concept
relevance based selection function.

Figure 4.4: Selection Functions and Over-determined Processing: Quality of Query An-
swers

Ontology SelectionFunction ODP α TimeCost TimeRatio IA Change Rate
100 studis Syn FMC n/a 91.30 45.05 n/a
100 studis SynCon SD 1.00 94.14 28.11 1.62

Syn = The syntactic relevance based selection function, SynCon = The directly concept
relevance based selection function.

Figure 4.5: Selection Functions and Over-determined Processing: Time Performance

all affected). The chart of α Cutting-off and its time performance is shown in Figure 4.3.

An additional experiment on the comparison between the blind backtracking and the
informed backtracking is that we use the direct concept relevance based selection function
which is described in Chapter 2 to enhance the informed backtracking without the α cut-
ting off (i.e., α = 1.00). The test results are shown in Figure 4.4 and Figure 4.5. From the
tables we can see that the semantic approach for informed backtracking with the enhanced
direct concept relevance based selection function can reduce the amount of counter intu-
itive answers (CIA) significantly with a stable IC rate (94.14%) and a decreased amount
of intuitive answers (33.75% from 44.23%). Moreover, its time performance is improved
by 162%.

Summarizing, semantic backtracking with cut-off levels yields a very attractive
cost/quality trade-off between costs in terms of run-time, and the quality in terms of sound-
ness and completeness of the answers.

4.2 Linear extension versus Multi-step extension

In this experiment we want to see how k-extension with different k value may change
the quality of query answer and the time performance for reasoning with inconsistent
ontologies.

First we conduct three experiments on the ontology proton 50 rudis with different
k values in the syntactic relevance based selection function with the blind backtracking
approach (i.e., FMC). Note that the linear extension strategy is a k extension one with

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 55

4. BENCHMARKING EXPERIMENTS

Ontology Approach α k IA CA RA CIA IA Rate(%) IC Rate(%) TC
50 rudis FMC n/a 1 236 245 36 12 44.61 90.93 47.64
50 rudis FMC n/a 2 243 232 37 17 45.94 89.79 49.22
50 rudis FMC n/a 3 338 141 37 13 63.89 90.55 59.21
50 rudis SD 0.75 2 198 288 35 8 37.43 91.87 20.53
50 rudis SD 0.80 2 212 268 36 13 40.08 90.74 32.55
50 rudis SD 0.85 2 226 253 36 14 42.72 90.55 43.44
50 rudis SD 0.75 3 201 291 31 6 38.00 93.01 156.29

IA = Intended Answers, CA = Cautious Answers, RA = Reckless Answers, CIA =
Counter-Intuitive Answers, IA Rate = Intended Answers(%), IC Rate = IA+CA(%), FMC
= First Maximal Consistent subset, SD = Semantic Distance, α=Threshold, TC=Time cost
per query (second)

Figure 4.6: K extension and α cutting-off.

Figure 4.7: K extension and Performance

56 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Figure 4.8: K extension and Performance

k=1. The results are shown in the first three rows of Figure 4.6. Frow the data in the table
we know that the amount of intended answers (IA) increases (from 44.61% into 63.89%)
when the k-value grows up (from 1 into 3). However, its time performance increases(from
47.61 second per query into 59.21 second per query) when the k value is changed from 1
into 3.

The second group of the experiments on the multi-step extension is that we test the
same ontology with different k values in the informed backtracking approach (i.e., SD)
under different α cutting-off. The results are shown in the four rows in Figure 4.6. In the
experiments we observe the following facts:

• When the k value is fixed (i.e., k = 2), the amount of intended answers increases
(from 37.43% into 42.72%) when the α cutting off increases (from 0.75 into 0.85),
however, with an increased time cost (from 20.53 second per query into 43.44 sec-
ond per query).

• When the k value is changed (from k=2 into k=3), the amount of intended answers
decreases slightly (from 37.43% into 38%), however, the amount of counter intu-
itive answers also decreases (from 8 into 6) and the time cost increases significantly
(from 22.53 second per query into 156.29 second per second).

The first fact tells us that the amount of intended answers will be increased by decreasing

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 57

4. BENCHMARKING EXPERIMENTS

an α value. We observe that the same effect occurs in the experiment of the informed
backtracking in the linear extension. The second fact shows that a bigger k value would
be more expensive with respect to its time performance, although it may improve the
quality of query answers. The relationship among k values, α cutting off, the quality of
query answers, and the time performance is also shown as a chart in Figure 4.8.

Summarizing, when increases the k-value under FMC, the intended answers increases
with the increasing time cost slightly. When switching from FMC to SD with a non-trivial
k value (i.e., k > 1) under an α-cutting-off, the completeness of the algorithm (IA Rate)
gradually declines, while the soundness of the algorithm (IC rate) increases or stays
stable. That means that the multi-step extension does not help too much with the informed
backtracking.

4.3 Reasoning with Inconsistent Ontologies versus De-
bugging of Inconsistent Ontologies

In this section we want to compare the results obtained by using the approaches of reason-
ing with inconsistent ontologies with the results obtained by using debugging approaches,
although those two kinds of approaches are motivated by different application scenarios.
The former approach is designed as ones for run time, whereas the latter approach is de-
signed as ones for design time. Moreover, debugging approaches usually require some
intervention by human knowledge or a ranking on the results by manual. Therefore, it
does not make sense if we compare the results by those approaches with respect to time
performance. However, we still want to know what the differences between the reasoning
approach and the debugging approach are with respect to the quality of query answers.

The first difficulty we encounter for this comparison is that those two kinds of ap-
proaches use different answer values. The answer of the systems of reasoning with in-
consistent ontologies is a multi-value set: {accepted, rejected, undetermined, over −
determined}, whereas debugging inconsistent ontologies usually result in a set of con-
sistent ontologies. We use the standard reasoners on those repaired ontologies. Thus, the
answer value set of queries on ontologies which result from the debugging approach is
the standard boolean answers by most DL reasoners, i.e, {true, false}.

In order to compare the approach of reasoning with inconsistent ontologies with the
approach of debugging, we should build a mapping between those two different answer
value sets. It is clear that the answer ’true’ is interpreted as ’accepted’. However, the
answer ’false’ can be interpreted as ’rejected’, or as ’rejected or undetermined’. In this
document we consider both the interpretations. The interpretation I is defined as one in
which ’false’ is interpreted as ’rejected’, whereas The interpretation II is defined as one
in which ’false’ is interpreted as ’rejected or undetermined’.

We use the DION system to obtain the repair information (i.e., MUPS, MIPS, and

58 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

pinpoints, etc.) for the ontology ’proton 100 rudis.dig.xml’ and the ontology ’pro-
ton 50 studis.dig.xml’. That results in too many possibilities to repair the ontologies. We
remove some axioms from the ontologies manually by the intervene of human knowl-
edge. Finally, we pick up two consistent sub-ontologies for each repaired ontology:
{100 rudis 1.dig.xml, 100 rudis 2.dig.xml, 50 studis 1.dig.xml, 50 studis 2.dig.xml},
which are considered as the most intuitive results of the repair.

Meanwhile we also use the RepairTab and the RaDON to repair the ontology ’pro-
ton 100 rudis.dig.xml’ and the ontology ’proton 50 studis.dig.xml’2. We obtain a consis-
tent sub-ontology ’100 rudis abdn.dig.xml’ by using the RepairTab for the ontology ’pro-
ton 100 rudis.dig.xml’ However, the RepairTab fails to resolve the unsatisfiable concept
’Lock’ in the ontology ’proton 50 studis.dig.xml’. The RepairTab uses a set of heuris-
tics to rank the problematic axioms with respect to an unsatisfiable concept. The concept
”Lock” is unsatisfiable due to three axioms, which two of the axioms were ranked equally
by the system. It is because the set of heuristics failed to access the ranking of the two ax-
ioms. For the rest of the concepts, the heuristics were applied to rank the axioms, whose
value is ranged [-1, 1]. The axiom with the lowest ranking will be removed.

Using the RaDON system, we obtain a consistent sub-ontology
’100 rudis radon.dig.xml’ for the ontology ’proton 100 rudis.dig.xml’ and a consistent
sub-ontology ’50 studis radon.dig.xml’ for the ontology ’proton 50 studis.dig.xml’.

The comparison between the approach of reasoning with inconsistent ontologies and
various systems of debugging inconsistent ontologies is show in Figure 4.9. The tests
show that the debugging approaches, the DION system, the RepairTab system, and the
RaDON system, can gain higher rates of intended answers (IA) for both the interpreta-
tions I and II (81.85% to 50.28% at least). However, if we consider the IC Rate, there
are no big differences between the debugging approaches and the reasoning approaches,
which depend on what kind of the interpretation we take. If we take the interpretation
I, the reasoning approaches gain higher IC rates (95.65% to 81.85% at least). If we
take the interpretation II, the debugging approaches may gain higher IC rates (96.41%
to 89.044%).

From the table we see that various debugging approaches, the DION system, the Re-
pairTab system, and the RaDON system, can gain almost the same quality of query an-
swers, although the RepairTab system fails to resolve the inconsistency of the ontology
’proton 50 studis’.

Summarizing, Debugging approach gains higher quality of answers than the ap-
proach of reasoning with inconsistent ontologies; however, it needs some intervention
by human knowledge.

2We will report this benchmarking experiment on the debugging approaches only with the systems
DION, RepairTab, and RaDON, because the other debugging systems are not available for public

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 59

4. BENCHMARKING EXPERIMENTS

Ontology System IA CA RA CIA IA Rate(%) IC Rate(%)
100 rudis 1 DION(I) 433 0 76 20 81.85 81.85
100 rudis 1 DION(II) 498 8 11 12 94.14 95.65
100 rudis 2 DION(I) 432 0 76 21 81.66 81.66
100 rudis 2 DION(II) 497 9 11 12 93.95 95.65
100 rudis RepairTab(I) 433 0 76 20 81.85 81.85
100 rudis RepairTab(II) 498 8 11 12 94.14 95.65
100 rudis RaDON(I) 433 0 76 20 81.85 81.85
100 rudis RaDON(II) 498 9 11 11 94.14 95.67
100 rudis PION(Syn) 266 219 32 12 50.28 91.68
50 studis 1 DION(I) 427 0 76 26 80.72 80.72
50 studis 1 DION(II) 495 15 8 11 93.57 96.41
50 studis 2 DION(I) 431 0 76 22 81.47 81.47
50 studis 2 DION(II) 499 11 8 11 94.33 96.41
50 studis RaDON(I) 431 0 76 22 81.47 81.47
50 studis RaDON(II) 499 11 8 11 94.33 96.41
50 studis PION(Syn) 292 179 44 14 55.20 89.04

DION(I)= Using DION as a system of debugging inconsistent ontologies with the in-
terpretation I(i.e., false =rejected). DION(II)= Using DION as a system of debugging
inconsistent ontologies with the interpretation II (i.e., false = rejected or undetermined).
RepairTab(I)=Using the RepairTab system with the interpretation I, RepairTab(II)=Using
the RepairTab system with the interpretation II, RaDON(I)=Using the RaDON system
with the interpretation I, RaDON(II)=Using the RaDON system with the interpretation
II, PION(Syn) = Using PION as a system of reasoning with inconsistent ontologies with
the syntactic approach. IA = Intended Answers, CA = Cautious Answers, RA = Reckless
Answers, CIA = Counter-Intuitive Answers, IA Rate = Intended Answers(%), IC Rate =
IA+CA(%)

Figure 4.9: Reasoning vs. Debugging

60 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

Ontology Concepts UC Axioms Racer Pellet FACT++
km1500 10 1 1787 0 1331 2.719 2.047 0.703
km1500 10 2 3665 0 2975 6.282 4.188 1.469
km1500 10 3 5527 0 4621 10.125 7.485 2.313
km1500 10 4 7351 0 6266 14.047 11.422 3.125
km1500 10 5 9127 0 7910 17.218 15.469 3.765
km1500 10 6 9573 2999 9218 296.391 17.813 4.188
km1500 10 7 9714 3660 10650 697.375 79.312 5.125
km1500 10 8 9725 3991 10930 368.781 132.344 4.875
km1500 10 9 9725 3991 10937 1019 135.797 4.813
km1500 10 10 9725 3991 10944 1843.77 135.515 4.968

UC=Unsatisfibale Concepts, km1500 10 n =km1500 10/ontology n

Figure 4.10: Reasoners and Performance

4.4 Inconsistency Processing and Reasoners

In this section we will report an experiment on various DL reasoners to see their per-
formance and scalability with respect to the detection of all unsatisfiable concepts. The
ontologies used for this experiment are obtained from the km1500 ontology, which was
divided into 10 different levels of subontologies, as described in the previous chapter. The
tested ontologies range from medium sized consistent ontology (with 1787 concepts and
1331 axioms) to large scale inconsistent ontologies (with 9726 concepts, 10944 axioms,
and 3991 unsatisifiable concepts).

The performance and the scalability of various DL reasoners (Racer, Pellet, and
FACT++3) is shown in Figure 4.10. The tests show that Racer behaves very well for
consistent ontologies, however, it goes worst when it encounters large scale inconsistent
ontologies. It takes only 2.719 second to detect a medium sized ontology (with 1787
concepts and 1331 axioms) to conclude that it is consistent. However, it takes 296.391
seconds (almost 100 times on the time cost) to handle a large scale inconsistent ontology
(with 9573 concepts, 9218 axioms, and 2999 unsatisfiable concepts). It behaves much
worse (it takes 1843.77 seconds) when it handles a larger scale inconsistent ontology
(with 3991 unsatisfiable concept). The FACT++ is the winner of the performance and
the scalability. It takes only 4.968 seconds to detect all of unsatisfiable concepts (3991
unsatisfiable concepts) in a large scale ontology (with 9725 concepts and 10944 axioms).
The Pellet behaves not too bad with respect to the performance and the scalability. It
takes 135.515 seconds to handle a large scale inconsistent ontology. The difference of the
performance and the scalability of those Dl reasoner is also shown as a chart in Figure
4.11.

3KAON2 fail to pass those tests. Therefore, it is absent from the table.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 61

4. BENCHMARKING EXPERIMENTS

Figure 4.11: Reasoners, Inconsistent Ontologies, and Time Cost per Query(second)

We considered the experiment described in this section as a black-box benchmarking
one, because we would not detect the internal structure and analyze the implementation
methods used in those DL reasoners to see the reasons why they behave so differently.

Summarizing, FACT++ is the best DL reasoner with inconsistent ontologies with re-
spect to its time performance and the scalability..

62 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

Chapter 5

Discussions and Conclusions

5.1 Discussions

We have performed a series of benchmarking experiments of processing inconsistent on-
tologies with realistic ontologies. In this chapter we discuss the implications of those
benchmarking experiments and its relation with the approaches used in other relevant ar-
eas, such as the similarity measure in linguistics and processing inconsistency in database
systems. Based on the analysis and the discussion, we suggest the future work of process-
ing inconsistent ontologies.

5.1.1 Semantic Approach for Reasoning with Inconsistent Ontologies

Research from a number of different areas is relevant to the current work
of the semantic approach proposed in this document. Semantic dis-
tances and similarity measures have been widely used in computational lin-
guistics [Budanitsky and Hirst, 2001, Lin, 1998] and ontology engineering
[Haase, 2006, Maedche and Staab, 2002]. [Gligorov et al., 2007] proposes the use
of a Google-based similarity measure to weigh approximate ontology matches. Our
research is the first attempt to introduce the Google Distance for reasoning with inconsis-
tent ontologies. In essence we are using the implicit knowledge hidden in the Web for
explicit reasoning purposes.

The main contributions of our semantic approach are: a) we investigated how a seman-
tic relevance-based selection function can be developed by using information provided by
a search engine, in particular, by using the Normalized Google Distance; b) we provided
variants of backtracking strategies for reasoning with inconsistent ontologies, and c) we
showed that semantic distances can be used for handling large scale ontologies through a
tradeoff between run-time and the degree of incompleteness of the algorithm.

In our experiment we applied our PION implementation to realistic test data. The

63

5. DISCUSSIONS AND CONCLUSIONS

experiment used a high-quality ontology that became inconsistent after adding disjoint-
ness statements that had the full support of a group of experts. The test showed that the
run-time of informed semantic backtracking is much better than that of blind syntactic
backtracking, while the quality remains comparable. Furthermore the semantic approach
can be parametrised so as to stepwise further improve the run-time with only a very small
drop in quality.

5.1.2 Integrating Reasoning with Inconsistent Ontologies with De-
bugging of Inconsistent Ontologies

In this document we have performed several experiments for the comparison between the
approaches of reasoning with inconsistent ontologies and the approaches of debugging
inconsistent ontologies. Various debugging systems, including DION (Amsterdam), Re-
pairTab (Aberdeen), and RaDON (Karlsruhe), have been examined and tested. The tests
show that debugging approaches can gain higher amount of intended answers with some
kinds of intervene by human knowledge, like picking up repaired axioms manually or
ranking on axioms.

From the experiments we also observe the fact that there are no big differences of the
quality of query answers by the three tested debugging systems (DION, Repair, RaDON).
One of the explanations for it is that they use the similar ideas, like MUPS and MIPS, for
the debugging.

One of the future work is to integrate a system of reasoning with inconsistent on-
tologies with a debugging system. Namely, we use a debugging system to attempt some
repair of inconsistent ontologies automatically or semi-automatically first. That may lead
to some part of inconsistent ontologies which are difficult to be repaired. Then we apply
a system of reasoning with inconsistent ontologies to get meaningful answers from this
partially repaired inconsistent ontologies.

5.1.3 Processing Inconsistencies in Database Systems

Processing Inconsistencies have been well studied in Database
systems[Arenas et al., 1999, Fuxman et al., 2005, Staworko et al., 2006,
Fuxman and Miller, 2007]. Integrity constraints have long been used to maintain
data consistency. Therefore, one of the main issues of resolving inconsistencies in
database systems is to maintain the integrity constraints. Namely, a data base system is
considered to be consistent one if it satisfies given integrity constraints.

In [Arenas et al., 1999], Arenas et al. consider the problem of the logical characteri-
zation of the notion of consistent answer in a relation data that may violate given integrity
constraints. A method for computing consistent answers is proposed with the minimal re-
pair on the inconsistent databases. The method is based on an iterative procedure whose

64 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

termination for several classes of constraints is proved. The idea of the minimal repair
in this approach is similar with that used in the approaches of debugging inconsistent
ontologies.

In [Fuxman et al., 2005], Fuxman et al. present ConQuer, a system for efficient and
scalable answering of SQL queries on databases that may violate a set of constraints.
ConQuer permits users to postulate a set of key constraints together with their queries.
The ConQuer system rewrites the queries to retrieve all data that is consistent with respect
to the constraints. In [Fuxman and Miller, 2007], Fuxman et al. concentrate on the first-
order query rewriting for inconsistent databases. They present an algorithm that computes
the consistent answers for a large and practical class of conjunctive queries by returning
a first-order query such that for every database, the consistent answers for a query can
be obtained by evaluating the first-order query directly on the database. This approach
suggests an interesting approach for reasoning with inconsistent ontologies, in which a
consistent sub-ontology for a given query is selected to obtain meaningful answers. The
similar idea can be used for reasoning with inconsistent ontologies is to allow users to
postulate a set of axioms together with their queries. Namely, users can claim a set of
axioms which are considered as a kernel of the ontology with respect to given queries, so
that meaningful answers can be obtained from this pre-selected set.

We should notice that application scenarios and environments between database sys-
tems and ontology engineering are quite different. The Closed World Assumption (CWA)
is usually accepted in database systems, whereas the Open World Assumption (OWA) is
usually assumed in ontology engineering. Furthermore, in database systems, given in-
tegrity constraints are supposed to be satisfiable. Namely, they are already known to be
consistent at design time. However, for inconsistent ontologies, we would not assume
that some consistent sub-ontologies have been known by users or systems without any
reasoning.

5.2 Future Work

As we discuss in Chapter 3, benchmarking is a continuous process for improving by
systematically evaluating tested systems, and comparing them to those considered to be
the best. Namely, benchmarking is a continuous processing of evaluation. What we
report in this document is just the first step of continuous evaluation of various methods
for processing inconsistent ontologies. That is the reason why develop the benchmarking
suite for its sustainability. We expect to use this benchmarking suite for further evaluation
of various methods/systems of processing inconsistent ontologies in other projects in the
future.

Moreover, we will continue to improve the systems we have developed, including
the system PION and DION after this comprehensive evaluation with respect to vari-
ous benchmarking metrics (i.e., quality of query answers, performance, and scalability).

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 65

5. DISCUSSIONS AND CONCLUSIONS

There have been several main future work for the system PION and DION. One of the fu-
ture tasks is to make the NGD (Normalized Google Distance) component well integrated
with the architecture of PION, so that the NGD values can be dynamically obtained at run
time, rather than as the pre-loaded libraries, as it is done in the present implementation.

One of the future work for reasoning with inconsistent ontologies is to use other se-
mantic distance measure rather Google distance, like using WordNet or information pro-
vided by other search engines such as Yahoo. It is also interesting to see how the same
approach can be extended into the applications in which linguistic information or legacy
information are not available for a similarity/distance measure. As discussed previously,
the future work includes that the support for users to postulate a (consistent) set of ax-
ioms together with their queries and integrating a system of reasoning with inconsistent
ontologies with a debugging system.

5.3 Concluding Remarks

The work reported in this document is the first comprehensive evaluation of various meth-
ods for processing inconsistent ontologies. More work of benchmarking for the improve-
ment of various methods for processing inconsistent ontologies should be continued. The
benchmarking suite which is implemented in this task provides a nice infrastructure for
systematic evaluation of processing inconsistent ontologies. It is also very significant
for the sustainability. The semantic approach for reasoning with inconsistent ontolo-
gies by using Google distances deserves to be investigated deeply further, because the
benchmarking experiments reported in this document show that the semantic approach
can significantly improve reasoning performance over the syntactic approach. This meth-
ods allows to trade-off computational cost for inferential completeness, hence providing
attractive scalability.

66 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

Bibliography

[Arenas et al., 1999] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent
query answers in inconsistent databases. In ACM Symposium on Princiles of Database
System (PODS), pages 68–79, 1999.

[Baader and Hollunder, 1995] F. Baader and B. Hollunder. Embedding defaults into ter-
minological representation systems. J. Automated Reasoning, 14:149–180, 1995.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[Belnap, 1977] N. Belnap. A useful four-valued logic. In Modern Uses of Multiple-
Valued Logic, pages 8–37, Dordrecht, 1977. Reidel.

[Budanitsky and Hirst, 2001] Alexander Budanitsky and Graeme Hirst. Semantic dis-
tance in wordnet: An experimental, application-oriented evaluation of five measures.
In Workshop on WordNet and Other Lexical Resources, 2nd meeting of the North Amer-
ican Chapter of the Association for Computational Linguistics. Pittsburgh, PA., 2001.

[Chopra et al., 2000] Samir Chopra, Rohit Parikh, and Renata Wassermann. Approxi-
mate belief revision- prelimininary report. Journal of IGPL, 2000.

[Cilibrasi and Vitany, 2007] R. Cilibrasi and P. Vitany. The google similarity distance.
IEEE ACM Transactions on Knowledge and Data Engineering, 19:3:370–383, 2007.

[Cilibrasi and Vitanyi, 2004] Rudi Cilibrasi and Paul Vitanyi. Automatic meaning dis-
covery using google, 2004.

[Cimiano and Völker, 2005] Philipp Cimiano and Johanna Völker. Text2onto - a frame-
work for ontology learning and data-driven change discovery. In Andres Mon-
toyo, Rafael Munoz, and Elisabeth Metais, editors, Proceedings of the 10th Inter-
national Conference on Applications of Natural Language to Information Systems
(NLDB),volume 3513 of Lecture Notes in Computer Science, pages 227–238, 2005.

[Console and Dressler, 1999] Luca Console and Oskar Dressler. Model-based diagnosis
in the real world: Lessons learned and challenges remaining. In Proceedings of the

67

BIBLIOGRAPHY

sixteenth International Joint Conference on Artificial Intelligence, IJCAI’99, pages
1393–1400. 1999.

[d’Aquin et al., 2007] M. d’Aquin, C. Baldassarre, L. Gridinoc, S. Angeletou, M. Sabou,
and E. Motta. Characterizing knowledge on the semantic web with watson. In 5th
International EON Workshop at ISWC/ASWC07, 2007.

[de Kleer and Williams, 1987] J de Kleer and B C Williams. Diagnosing multiple faults.
Artificial Intelligence, 32(1):97–130, 1987.

[de la Banda et al., 2003] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny.
Finding all minimal unsatisfiable subsets. In Fifth ACM-SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming, ACM-SGPLAN’03,
pages 32–43. ACM, 2003.

[Flouris et al., 2006] Giorgos Flouris, Zhisheng Huang, Jeff Z. Pan, Dimitris Plex-
ousakis, and Holger Wache. Inconsistencies, negations and changes in ontologies.
In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06),
2006.

[Friedrich and Shchekotykhin, 2005] Gerhard Friedrich and Kostyantyn M. Shcheko-
tykhin. A general diagnosis method for ontologies. In Proceedings of the 4th Inter-
national Semantic Web Conference, ISWC’05, volume 3729 of LNCS, pages 232–246,
2005.

[Fuxman and Miller, 2007] Ariel Fuxman and Renée J. Miller. First-order query rewrit-
ing for inconsistent databases. Journal of Comput. Syst. Sci, 73(4):610–635, 2007.

[Fuxman et al., 2005] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: Efficient man-
agement of inconsistent databases. In ACM SIGMOD International Conference on
Management of Data, 2005.

[Garcı́a-Castro et al., 2005] Raúl Garcı́a-Castro, Diana Maynard, Holger Wache, Doug
Foxvog, and Rafael González Cabero. Specification of a methodology, general crite-
ria, and benchmark suites for benchmarking ontology tools. Project Report D2.1.4,
KnowledgeWeb, 2005.

[Gligorov et al., 2007] Risto Gligorov, Zharko Aleksovski, Warner ten Kate, and Frank
van Harmelen. Using google distance to weight approximate ontology matches. In
Proceedings of WWW 2007, 2007.

[Greiner et al., 1989] R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction to the
algorithm in reiters theory of diagnosis. Artificial Intelligence, 41(1):79–88, 1989.

[Haase and Völker, 2005] Peter Haase and Johanna Völker. Ontology learning and
reasoning - dealing with uncertainty and inconsistency. In Paulo C. G. da Costa,
Kathryn B. Laskey, Kenneth J. Laskey, and Michael Pool, editors, Proceedings of

68 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

the Workshop on Uncertainty Reasoning for the Semantic Web (URSW), pages 45–55,
2005.

[Haase et al., 2005] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stuck-
enschmidt, and York Sure. A framework for handling inconsistency in changing on-
tologies. In Proceedings of ISWC2005, 2005.

[Haase, 2006] Peter Haase. Semantic Technologies for Distributed Information Systems.
PhD thesis at the Universitat Karlsruhe, 2006.

[Hameed et al., 2003] A. Hameed, A. Preece, and D. Sleeman. Ontology reconciliation.
In S. Staab and R. Studer, editors, Handbook on Ontologies in Information Systems,
pages 231–250. Springer Verlag, 2003.

[Huang and van Harmelen, 2006] Z. Huang and F. van Harmelen. Reasoning with incon-
sistent ontologies: Evaluation. Project Report D3.4.2, SEKT, 2006.

[Huang and van Harmelen, 2007] Z. Huang and F. van Harmelen. Pion2: A system of
reasoning with inconsistent ontologies. Project Report D3.4.3, SEKT, 2007.

[Huang and Visser, 2004] Zhisheng Huang and Cees Visser. Extended DIG description
logic interface support for Prolog. Deliverable D3.4.1.2, SEKT, 2004.

[Huang et al., 2004] Z. Huang, F. van Harmelen, A. ten Teije, P. Groot, and C. Visser.
Reasoning with inconsistent ontologies: a general framework. Project Report D3.4.1,
SEKT, 2004.

[Huang et al., 2005] Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with incon-
sistent ontologies. In Proceedings of the International Joint Conference on Artificial
Intelligence - IJCAI’05, 2005.

[Huang et al., 2006] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije. Rea-
soning with inconsistent ontologies: Framework, prototype, and experiment. In John
Davies, Rudi Studer, and Paul Warren, editors, Semantic Web Technologies: Trends
and Research in Ontology-based Systems, pages 71–93. John Wiley and Sons, Ltd.,
2006.

[Kalyanpur et al., 2005] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging
unsatisfiable concepts in owl ontologies. Journal of Web Semantics, 3(4), 2005.

[Kalyanpur et al., 2006] A. Kalyanpur, B. Parsia, B. Cuenca-Grau, and E. Sirin. Beyond
axioms: Fine-grained justifications for arbitrary entailments in owl-dl. In Description
Logic workshop (DL’06), 2006.

[Kalyanpur, 2006] A. Kalyanpur. Debugging and Repair of OWL Ontologies. PhD thesis,
Univ. of Maryland, June 2006.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 69

BIBLIOGRAPHY

[Lam et al., 2006] Joey Sik Chun Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vas-
concelos. Ontology inconsistency handling: ranking and rewriting axioms. Technical
report aucs/tr0603, University of Aberdeen, 2006.

[Lam, 2007] Joey Sik Chun Lam. Methods for Resolving Inconsistencies in Ontologies.
PhD thesis, Dept. of Computing Science, University of Aberdeen, 2007.

[Lin, 1998] Dekang Lin. An information-theoretic definition of similarity. In Proceed-
ings of International Conference on Machine Learning, Madison, Wisconsin, July,
1998.

[Maedche and Staab, 2002] Alexander Maedche and Steen Staab. Measuring similarity
between ontologies. In Proceedings of the European Conference on Knowledge Ac-
quisition and Management(EKAW-2002), pages 251–263, 2002.

[Meyer et al., 2006] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Finding
maximally satisfiable terminologies for the description logic alc. In Proceedings of the
21st National Conference on Artificial Intelligence, AAAI’06, 2006.

[Nebel, 1990] B. Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235–249, 1990.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[Schaerf and Cadoli, 1995] Marco Schaerf and Marco Cadoli. Tractable reasoning via
approximation. Artificial Intelligence, 74:249–310, 1995.

[Schlobach and Cornet, 2003a] S. Schlobach and R. Cornet. Non-standard reasoning ser-
vices for the debugging of description logic terminologies. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence - IJCAI’03, Acapulco, Mexico,
2003. Morgan Kaufmann.

[Schlobach and Cornet, 2003b] S. Schlobach and R. Cornet. Non-standard reasoning
services for the debugging of description logic terminologies. In Proceedings of the
eighteenth International Joint Conference on Artificial Intelligence, IJCAI’03. Morgan
Kaufmann, 2003.

[Schlobach and Huang, 2005] Stefan Schlobach and Zhisheng Huang. Inconsistent on-
tology diagnosis: Framework and prototype. Project Report D3.6.1, SEKT, 2005.

[Schlobach and Huang, 2007] Stefan Schlobach and Zhisheng Huang. Inconsistent on-
tology diagnosis and repair. Project Report D3.6.3, SEKT, 2007.

[Schlobach et al., 2006] Stefan Schlobach, Ronald Cornet, and Zhisheng Huang. Incon-
sistent ontology diagnosis: Evaluation. Project Report D3.6.2, SEKT, 2006.

70 January 3rd, 2008 KWEB/2007/D1.2.2.1.4/v1.0.0

D1.2.2.1.4 Benchmarcking of Processing Inconsistent Ontologies IST Project IST-2004-507482

[Schlobach et al., 2007] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank
van Harmelen. Debugging incoherent terminologies. Journal of Automated Reasoning,
39:317–349, 2007.

[Schlobach, 2005a] Stefan Schlobach. Debugging and semantic clarification by pinpoint-
ing. In ESWC, pages 226–240, 2005.

[Schlobach, 2005b] Stefan Schlobach. Diagnosing terminologies. In Proceedings of
the twentieth National Conference on Artificial Intelligence, AAAI’05, pages 670–675,
2005.

[Staworko et al., 2006] Slawomir Staworko, Jan Chomicki, and Jerzy Marcinkowski.
Preference-driven querying of inconsistent relational databases. In EDBT Workshops,
pages 318–335, 2006.

[Volker et al., 2007a] Johanna Volker, Denny Vrandecic, York Sure, and Andreas Hotho.
Learning disjointness. In Proceedings of ESWC2007, 2007.

[Völker et al., 2007b] Johanna Völker, Denny Vrandecic, York Sure, and Andreas Hotho.
Learning disjointness. In Proceedings of the 4th European Semantic Web Conference
(ESWC’07). Springer, 2007.

[Wielemaker et al., to appear] Jan Wielemaker, Zhisheng Huang, and Lourens van der
Meij. Swi-prolog and the web. Journal of Theory and Practice of Logic Programming,
to appear.

KWEB/2007/D1.2.2.1.4/v1.0.0 January 3rd, 2008 71

