——
I

knowledgeweb

realizing the semantic web

D1.2.2.1.2 Benchmarking the
Interoperability of ontology development
tools using OWL as interchange language

Raul Garcia-Castro (UPM)

with contributions from:

Stefano David (UPM)
Jedis Prieto-Gonzalez (UPM)

Abstract.
EU-IST Network of Excellence (NoE) FP6-507482 KWEB
Deliverable D1.2.2.1.2 (WP 1.2 & WP2.1)

This deliverable describes the benchmarking of the interralpility of ontology developmenttools
using OWL as interchange language that has taken place iwlkédge Web, including the anal-
ysis of the results obtained.

Keyword list: benchmarking, benchmark suite, interop#itgpOWL

Document Identifier | KWEB/2007/D1.2.2.1.2/v1.3
Project KWEB FP6-507482

Version v1.3

Date 25. October, 2007

State final

Distribution public

Copyright(© 2007 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the I®§@mme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polytechnique derale de Lausanne (EPFL)

Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitat Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I'Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person: Jéerdme Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang NejdI
E-mail address: nejdi@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta

E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asuncion Gémez Pérez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Sheffield (USFD)

Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Aberdeen (UNIABDN)
Kings College

AB24 3FX Aberdeen

United Kingdom

Contact person: Jeff Pan

E-mail address: jpan@csd.abdn.ac.uk

University of Karlsruhe (UKARL)

Institut fur Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitat Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the wedding to the elaboration of this
document, even if they might not have directly contributeatiting parts of this document:

Centre for Research and Technology Hellas
Free University of Bozen-Bolzano
Universidad Politécnica de Madrid
University of Karlsruhe

University of Sheffield

Vrije Universiteit Amsterdam

Changes

h-

I
ol
he
Z_
io

N

=
]

| Version | Date | Author | Changes |

0.1 08.08.07| Raul Garcia-Castro First draft

0.2 13.08.07| Raul Garcia-Castro Inserted the organization of the beng
marking

0.3 05.09.07| Raul Garcia-Castro Inserted the interoperability results f
SemTalk and WebODE

0.4 14.09.07| Rall Garcia-Castro Improved the visualization of the inte
operability results

0.5 16.09.07| Rall Garcia-Castro Inserted the description of the IBSE to|

1.0 18.09.07| Rall Garcia-Castro First version of the document sent to t
Quality Assessor (Asuncibn Gome
Pérez)

1.1 10.10.07| Radl Garcia-Castro Included the comments from Rosar
Plaza

1.2 11.10.07| Rall Garcia-Castro Removed the results of the Ned
Toolkit

1.3 25.10.07| Raul Garcia-Castro Included the comments from the Qua
ity Controller (Sean Bechhofer)

Executive Summary

In 2006, an activity for benchmarking the interoperabitfyontology development tools
using OWL as interchange language was started in Knowledgg it¢ goal was to learn
about the actual interoperability between these toolsi&pdssible, to improve it.

This deliverable includes the work performed in workpaasad).2 and 2.1 during the
benchmarking activity and presents an overview of the beracking and its main results;
it comprises the following topics:

¢ Instantiation of the Knowledge Web benchmarking methogplimr carrying out
the benchmarking.

¢ Definition of the ontology dataset used in the benchmarking.

e Description of the evaluation infrastructure that auta@sdhe execution of the ex-
periments.

¢ Detailed analysis of the results obtained in the benchmgrki

Contents

O W >

Introduction

Benchmarking OWL interoperability

21 Planphase
2.2 Experimentphase

Ontology dataset

3.1 Benchmarks that depend on the knowledge model
3.2 Benchmarks thatdepend onthesyntax
3.3 Description of the benchmarks
3.4 Towards benchmark suites for OWL DL and OWL Full

The IBSE tool

4.1 IBSErequirements
4.2 IBSEimplementation
43 UsingIBSE

OWL interoperability results and analysis

5.1 Analysis of the import and export operation
5.2 Analysis of the interoperability

Conclusion
List of benchmarks of the OWL Lite Import Benchmark Suite
Description of the ontologies in DL

The benchmarkOntology and resultOntol ogy ontologies

75

77

90

100

Chapter 1

Introduction

by RAUL GARCIA-CASTRO

Ontologies enable interoperability among heterogenepptications. ldeally, on-
tologies defined using the W3C recommended languages (RRR(SOWL) should be
correctly interchanged between the different tools thatroanage these languages (i.e.,
one person should be able to develop one OWL ontology in kisufite ontology de-
velopment tool and then to use this ontology in a certain tatiom tool to annotate his
personal web page).

Nevertheless, the current Semantic Web tools have prokbtemterchanging ontolo-
gies, either when these ontologies come from other toolsh@mmvthey are downloaded
from the web. Sometimes the problems arise because of tieeait representation for-
malisms used by the tools as not every tool natively sup@E(S) and OWL; other
times, however, the problems are caused by defects in the too

Not to be aware of these problems causes that the interaligréletween the dif-
ferent Semantic Web technologies be unknown, and this isanlynbecause the inter-
operability of the tools is not evaluated since there is reyagay of performing these
evaluations.

As a previous activity in Knowledge Web, the benchmarkinghaf interoperability
of ontology development tools was carried out using RDF)néerchange language
[Garcia-Castret al,, 2006]. As a result, we obtained a clear picture of the RDK{®)-
operability of the tools participating in the benchmarkingmely, Corese, Jena, KAON,
Sesame, Protégé, and WebODE.

In the RDF(S) Interoperability Benchmarking the experita¢ion and analysis of
the results were performed manually. This had the advardhgbtaining high detailed
results, being easier to diagnose problems in the tools @talisnprove them. However,
the manual execution and analysis of the results also makesxiperimentation costly.
Tools developers have often automated the execution of énehmark suites but not
always. Furthermore, the results obtained may be influebgdtuman mistakes since
they depend on the people performing the experiments antendxpertise with the

1. INTRODUCTION

tools.

As a second step, in Knowledge Web we have organised the imamkimg of the
interoperability of Semantic Web technology using OWL aslichange language. This
time, the goals are similar to those of the previous benckimguactivity:

e To provide mechanisms for large-scale evaluation of theragerability of Seman-
tic Web technology using OWL as interchange language.

e To assess and improve the current interoperability of timeg¢ic Web technology.
This will help to know the current state of the interoperiplbetween the tools and
to correct their defects.

Although we have similar goals to those of the RDF(S) interapility benchmarking,
our approach to the benchmarking is different. The main ghaperformed are intended
to broaden the scope of the benchmarking since we consiagehberking any type of
Semantic Web technology instead of just ontology developrteols, and to automate
the experiment execution and the analysis of the results.

By the time of writing this deliverable, nine tools are pagating in the bench-
marking: one ontology-based annotation tool: GATE; thremlogy repositories: Jena,
KAON2, and SWI-Prolog; and five ontology development toth& NeOn toolkit, Protégé-
Frames, Protegé-OWL, Semtalk, and WebODE.

This deliverable originated from the joint work of WP 1.2 hretindustry area and of
WP 2.1 in the research area. In the latter, the members of WBe¥eloped the bench-
marking methodology for ontology tools, which we have foled in this benchmarking
activity [Garcia-Castret al., 2004], and the benchmark suites used in the experimenta-
tion [Garcia-Castro, 2005], whereas the members of WP 4v2 brganised the bench-
marking activity, performed the experimentation over tha¢, and analysed the results.

The benchmarking methodology proposes to produce two deotsnn the bench-
marking activity: theExperiment Reporwvhich presents the analysis of the results of
the experiments; and tigenchmarking Repowthich gives an understandable summary
of the benchmarking activity and its results and conclusiohhese two documents are
included in the deliverable.

The document is structured as follows: Chapter 2 presemsthe OWL Interop-
erability Benchmarking was conducted following the Knodge Web benchmarking
methodology. Chapters 3 and 4 describe the ontology datasdtfor the experimentation
and IBSE, the evaluation infrastructure that automategxeeution of the experiments,
respectively. Chapter 5 includes the analysis of the iprability, using OWL as inter-
change language, of the Semantic Web tools that partidpatihe benchmarking. And,
finally, Chapter 6 draws some conclusions from the work priegkin the deliverable.

2 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

Chapter 2

Benchmarking OWL interoperability

by RAUL GARCIA-CASTRO

This chapter presents how the OWL interoperability benaking was organized and
carried out following the methodology for benchmarkingadagyy tools developed by the
authors in the scope of Knowledge Web [Garcia-Castral., 2004].

The benchmarking methodology provides the general gumdglinat have to be adapted
to this case. Figure 2.1 shows the three phases that comtfpobenchmarking method-
ology and the tasks to be performed in each phase. As we haadglmentioned, this
document comprises both the experiment and the benchngamdquorts. Therefore, this
chapter includes the instantiation of this methodologyrfiithe beginning of the bench-
marking activity to the end of thExperimentphase, which is the last task performed
before writing this deliverable.

4)
BENCHMARKING ITERATION
4) 4) 4
PLAN PHASE EXPERIMENT PHASE IMPROVE PHASE
1. Goals identification 8. Experiment definition 11. Benchmarking
_| 2. Tool and metrics 9. Experiment execution report writing
identification 10. Experiment results 12. Findings
3. Participant identification analysis communication
4. Proposal writing 13. Improvement planning
5. Management involvement] 14. Improvement
6. Partner selection 15. Monitor
7. Planning and resource
allocation
O\ J - - oy,
]

J
Recalibration
task

Figure 2.1: The benchmarking methodology for ontologysgool

2. BENCHMARKING OWL INTEROPERABILITY

2.1 Plan phase

Rall Garcia Castro, from the UPM, assumed the role of tinehaarking initiator and
organised the benchmarking; he carried out the first tasks pfocess.

2.1.1 Benchmarking goals

According to the software benchmarking methodology, tist fask to perform is to iden-
tify the benchmarking goals, benefits and costs.

The general goal of all the benchmarking activities tha¢ fallace in Knowledge Web
is to support the industrial applicability of Semantic Welstinology. Therefore, in the
benchmarking we consider any type of Semantic Web techgoltg the case of the
RDF(S) Interoperability Benchmarking, the scope was kahito one type of technology,
namely ontology development tools.

We have focused on one problem that currently affects tloeds, that of their interop-
erability. Achieving interoperability between Semantiebtechnologies is not straight-
forward when these tools do not share a common knowledgelrandeheir users do not
to know the effects of interchanging an ontology from ond to@nother.

Therefore,our goal is to evaluate and improve the interoperability of mantic
Web technology

Other evaluation criteria could be considered when eviaga&emantic Web tech-
nology, i.e., performance, scalability, robustness, kt@ur case, we have contemplated
only interoperability. An approach for benchmarking thefpenance and scalability of
ontology development tools can be found in [Garcia-Camtich GOmez-Pérez, 2005].

The benefits pursued through this goal are related to the expected ogsanthe
benchmarking and involve different communities that afateel to the Semantic Web
tools, namely, the research community, the industrial camity, and the tool developers.
These benefits are:

e To create consensual processes and mechanisms for envglthaiinteroperability
of these tools.

e To produce recommendations on the interoperability ofelesls for users.

e To acquire a deep understanding of the practices used tdopetheese tools that
affect their interoperability.

e To extract from these practices those that can be considergtidpractices when
developing these tools.

Most of the benchmarkingxpenditure goes to the human resources needed to or-
ganise the benchmarking activity and to perform the expamtation on the tools. Other

4 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

minor expenditure goes to travelling and computers, b itdgligible when compared
to the aforementioned.

2.1.2 Tool and metrics identification

Once we have identified the goals, benefits and costs of thehbearking, we have to
define its scope, by selecting which software from the oggtion will participate in
the benchmarking, which of its functionalities will be meesd, and which will be the
evaluation criteria to be used to assess these functimsalit

WebODE [Arpirezet al,, 2003] is the ontology engineering platform developed by
the Ontology Engineering Group of the UPM and the tool chdseparticipate in the
benchmarking.

As the goal presented in the previous section is too geneedhave refined the scope
of the benchmarking to cover a concrete interoperabilignscio.

The most common way used by Semantic Web technology to preeate and, there-
fore, the one that we have considered, is the indirect ihgerge of ontologies by storing
them in a shared resource. A direct interchange of ontadogi®uld require developing
interchange mechanisms for each pair of tools, which woalddyy costly.

In our case, the representation formalism used for intenging ontologies is OWL
[McGuiness and van Harmelen, 2004] and the shared resaiadecal filesystem where
ontologies are stored in text files serialized using the RIAL syntax, since this is the
syntax most used by Semantic Web technology.

Also, we have considered that the Semantic Web tools hafexelit knowledge rep-
resentation formalisms. In practice, it may occur that tvean@ntic Web tools use the
same formalism or that a Semantic Web tool uses the OWL fasmal

In this scenario, interoperability depends on two diffétenl functionalities, the one
that reads an ontology stored in the tool and writes it int@&L file (OWL exporter
from now on) and the one that reads an OWL file with an ontolegi/stores this ontology
into the tool (OWL importer from now on).

If the evaluation criteria must describe in depth the inperability between the tools,
the experiments to be performed in the benchmarking musigeaata that inform how
the tools comply with these criteria. Therefore, to obtataded information about tool
interoperability using OWL as interchange language, welte&now:

e The components of the knowledge model of a tool that can leedhanged with
another.

e The secondary effects of interchanging these componerdl,as insertion or loss
of information.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 5

2. BENCHMARKING OWL INTEROPERABILITY

e The subset of the knowledge models of the tools that the taisuse to correctly
interoperate.

e The problems that occur when interchanging ontologies éetviwo tools and the
causes of these problems.

The delimited benchmarking scope guides when to ident&éyotiganisation members
that are related to the benchmarking and when to form thehmearking team that will
be the responsible for continuing with the benchmarkindnendrganisation.

As WebODE is being developed by the Ontology Engineeringu@ &t the UPM, it
was quite straightforward to identify and contact the mersbéthe organisation involved
in WebODE’s RDF(S) importers and exporters and to selectagntizem the members of
the benchmarking team.

2.1.3 Proposal writing

The next tasks to perform are to compile all the benchmarkéteted information into a
benchmarking proposal, which will be a reference along #vehmarking, and to present
this proposal to the organisation management so as to db&imapproval and support.

To reach a broader audience, the benchmarking proposalodliithke the form of a
paper document but of a publicly available web page

This web page includes all the relevant information aboatlianchmarking and is
updated as the benchmarking advances. Currently, themiatoon included in the web
page is the following:

e Motivation.

e Goals.

e Benefits and costs.

e Tools and people involved.

e Description of the experimentation.
e Benchmark suite.

e Planning.

e Related events.

e Results and recommendations.

Ihttp:// know edgeweb. semant i cweb. or g/ benchmar ki ng. nt er oper abi | i ty/
ow /

6 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

This benchmarking proposal was presented to the manadee afritology Engineer-
ing Group and, after her analysis, she agreed on the cotytioliihe benchmarking and
on the allocation of future resources both for performing éxperimentation and for
improving the tool.

2.1.4 Partner selection

Participation in the benchmarking is open to any orgarosatirespective of being a
Knowledge Web partner or not. To find other best-in-clasaoigations willing to partic-
ipate in the benchmarking, the following actions were taken

e To research different ontology development tools, botkljrevailable and com-
mercial ones, which could export and import to and from OWd #ren, to contact
the organisations that develop them.

e To announce the interoperability benchmarking and to ocalbarticipation through
the main mailing lists of the Semantic Web area and throwgib $fipecific to ontol-
ogy development tools.

Table 2.1 presents the ontology development tools capdbiepmrting and export-
ing OWL, which were found by the time of performing this tagkp(il 2007). Their
developers were directly contacted.

Tool Institution URL

Altova Semanticworks Altova http://www.altova.com/products/semanticworks/
DOE Inst. National de I'Audiovisuel| http://homepages.cwi.lbncy/DOE/

DOME DERI http://dome.sourceforge.net/

GrOWL University of Vermont http://ecoinformatics.uvm.edu/technologies/indexlht
Hozo Osaka University http://www.ei.sanken.osaka-u.ac.jp/hozo/eng/indexphp
IBM IODT IBM http://www.alphaworks.ibm.com/tech/semanticstk
KAON2 Universitat Karlsruhe http://kaon2.semanticweb.org/

Linkfactory Workbench Language & Computing http://www.landcglobal.com/pages/linkfactory.php
m3t4 Studio Metatomix http://www.m3t4.com/

Medius Visual O. M. Sandpiper Software http://www.sandsoft.com/products.html

Model Futures OWL Editor| Model Futures http://www.modelfutures.com/OwlEditor.html

The NeOn Toolkit The NeOn project http://www.neon-toolkit.org/

OntoTrack University of Ulm http://www.informatik.uni-ulm.de/ki/ontotrack/

Powl University of Leizpig http://aksw.informatik.uni-leipzig.de/Projects/Powl
Protegé-Frames Stanford University http://Protégé.stanford.edu/

Protegé-OWL University of Manchester http://Protégé.stanford.edu/

SemTalk Semtation http://www.semtalk.com/

SWOOP University of Maryland http://www.mindswap.org/2004/SWOOP/

Topbraid Composer TopQuadrant http://www.topbraidcomposer.com/

VisioOWL John Flynn http://mysite.verizon.net/jflynn12/VisioOWL/VisioOWhtm
WebODE U. Politecnica de Madrid http://webode.dia.fi.upm.es/WebODEWeb/index.html

Table 2.1: Ontology development tools capable of imporérgorting OWL

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007

2. BENCHMARKING OWL INTEROPERABILITY

Tool Version Developer Experimenter

GATE 4.0 Sheffield U. Sheffield U.

Jena 2.3 HP U. Politécnica de Madric
KAON2 2006-09-22 | Karlsruhe U. Karlsruhe U.

NeOn Toolkit | 1.0 build 823| The NeOn project The NeOn project
Protégé 3.3 build 395| Stanford U. CERTH

Protégé-OWL| 3.3 build 395| Manchester U. CERTH

SemTalk 2.3 Semtation Semtation

SWI-Prolog | 5.6.35 U. of Amsterdam U. of Amsterdam
WebODE 2.0 build 140| U. Politécnica de Madrid U. Politécnica de Madrig

Table 2.2: Semantic Web tools participating in the benchkimgr

Any Semantic Web tool capable of importing and exporting O¢éhn participate in
the benchmarking. Table 2.2 shows the nine tools that aregadart in the benchmark-
ing when writing this deliverable: one ontology-based aation tool: GATE; three
ontology repositories: JehaKAON2*, and SWI-Prolog and five ontology development
tools: the NeOn toolk? Protégé-FramésProtege-OWE, SemtalR, and WebODE’,

The experimentation over the NeOn Toolkit has been perfdrmehe scope of the
NeOn European projedtand the analysis of the NeOn Toolkit interoperability is-pre
sented in [Garcia-Castro, 2007]. The results of this agerability are not included in
this deliverable as they are restricted to the NeOn partners

The conclusions reached about some of these tools coulddliecfo other tools that
use the same mechanisms for managing ontologies as the sed$y these tools. For
instance, the KIN® ontology-based annotation tool has the same represanfatimal-
ism and uses the same ontology management API as GATE. Heisoexpected that the
interoperability results of KIM are identical to those of GAand, therefore, experiments
have not been performed over KIM.

’ht t p:
3ht t p:
“ht t p:
Sht t p:
Sht t p:
"ht t p:
8ht t p:
°ht t p:
©Ont t p:
Uht t p:
nt t p:

/] gate. ac. uk/

/1] ena. sourceforge. net/

/ / kaon2. semant i cweb. or g/

/I www. swi - prol og. or g/ packages/ semaeb. ht m
/I ww. neon-t ool kit. org/

/] prot ege. st anf ord. edu/

/| prot ege. st anford. edu/ overvi ew prot ege-ow . ht m
/I ww. sent al k. com

/I webode. di a. fi.upm es/

/ I ww. neon- proj ect . or g/

/I www. ont ot ext . comf ki nf

8 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

2.1.5 Planning and resource allocation

The main deadline of the benchmarking was imposed by thdideauf this Knowledge
Web deliverable. Therefore, we designed a plan that induldePlan and Experiment
phases, though it just included the first task of timprovephase (Benchmarking report
writing).

This plan was developed and agreed by all the organisatamtisipating in the bench-
marking; besides, every organisation had to assign a nuofogeople to perform the
benchmarking.

2.2 Experiment phase

2.2.1 Experiment definition

The design principles taken into account when developiegettperimentation and the
benchmark suite are related to the main desirable propeha a benchmark suite must
have and that have been stated by many different authorsqSai 2003, Bullet al,, 1999,
Shiraziet al, 1999, Stefanet al., 2003]: accessibility, affordability, simplicity, regen-
tativity, portability, scalability, robustness, and census.

The experiments to be performed in the benchmarking musigealata informing
how the Semantic Web tools comply with the evaluation dateefined in the previous
section:

e The components of the knowledge model of a tool that can lB@dnanged with
another.

e The secondary effects of interchanging these componerds,as insertion or loss
of information.

e The subset of the knowledge models of the tools that thesedaa use to correctly
interoperate.

e The problems that occur when interchanging ontologies éetviwo tools and the
causes of these problems.

Interoperability using an interchange language dependseocapabilities of the tools
to import ontologies from the language (to read one file witlbatology and to store this
ontology in the tool knowledge model) and to export ontodsgop the language (to write
into a file an ontology stored in the tool knowledge model)efEfore, the experimenta-
tion provided data not only about the interoperability bigbaabout the OWL importers
and exporters of the tools.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 9

2. BENCHMARKING OWL INTEROPERABILITY

As we mentioned before, participation in the benchmarksggen to any Semantic
Web tool. Nevertheless, the experimentation requiresttigatools participating be able
to import and export OWL ontologies. This is because in thgeementation, we need
an automatic and uniform way of accessing the tools and tleeatipns performed to
access the tools must be supported by most of the Semantiddbksh Because of the
high heterogeneity in Semantic Web tools, ontology managemPls vary from one
tool to another. Therefore, the way chosen to automatieakess the tools is through the
following two operations commonly supported by most Semcaieb tools: to import
one ontology from a file, and to export one ontology into a file.

During the experiment, a common group of benchmarks is eégdand each bench-
mark describes one input ontology that has to be interclthhgiveen a single tool and
the others (including itself).

Each benchmark execution comprises two sequential stepsngn Figure 2.2. Start-
ing with a file that contains an ontolog®(), the first step$tep } consists in importing
the file with the ontology into the origin tool and then exjpagtthe ontology into a file
using the interchange languad@@1(’). The second stefsfep 2 consists in importing the
file with the ontology exported by the origin todD{") into the destination tool and then
exporting the ontology into another fil®L"").

’»

RDF(S)/OWL RDF(S)/OWL

9999

RDF(S)/OWL

Step 1

Figure 2.2: The two steps of a benchmark execution

In these steps, there is not a common way for the tools to dhealesults of importing
the ontologies@1' andO1”"), we just have the results of combining the import and
export operations (the files exported by the tools), so weiden these two operations as
an atomic operation. It must be noted, therefore, that ifodol@m arises in one of these
steps, we cannot know whether the problem was originatedhvifn@orting or when
exporting the ontology since we do not know the state of ttielogy inside each tool.

After a benchmark execution, the results obtained from titelogy described in the
benchmark are three different states, namely, the origimi@logy ©1), the intermediate
ontology exported by the first tooD("), and the final ontology exported by the second
tool (01). From these results, we define the evaluation criteria feerachmark exe-
cution. These evaluation criteria will be consideredsiep 1 Step 2 and in the whole
interchange $tep 1+ Step 2; they are the following:

10 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

e Execution (OK/FAIL/C.E/N.E) informs of the correct execution of a step or the
whole interchange. Its value BK if the step or the whole interchange is carried
out with no execution problenfFAIL if the step or the whole interchange is carried
out with some execution probler@,E. (Comparer Error) if the comparer launches
an exception when comparing the original and the final ogiey and\.E. (Not
Executed) if the second step is not executed because thetexeon the first step
failed.

¢ Information added or lost informs of the information added to or lost from the on-
tology in terms of triples in each step or in the whole intamge. We can know the
triples added or lost ilstep 1in Step 2 and in the whole interchange by compar-
ing the original ontology with the intermediate one, thea ititermediate ontology
with the final one, and the original with the final ontologyspectively.

¢ Interchange (SAMEDIFFERENTNO) informs whether the ontology has been in-
terchanged correctly with no addition or loss of informatid=rom the previous
basic measurements, we can definierchangeas a derived measurement that is
SAMEIf Executionis OK and Information addedand Information lostare void;
DIFFERENTIf Executionis OK butInformation addedr Information lostare not
void; andNOif Executionis FAIL, N.E.or C.E.

The experiment described above could use as input ontalaigiscribed in any for-
malism (RDF(S), OWL, etc.). Nevertheless, following thelyoof the benchmarking, we
use OWL ontologies as input and as interchange. Also, thaséogies must be serialized
in the RDF/XML syntax, as this is the most commonly used bytdlods for interchanging
ontologies.

Another issue is which ontologies to use for evaluating titeroperability of the
tools. Any group of ontologies could be used in the experiawgon, but using real, large
or complex ontologies can be useless if we do not know whéiieeiools can interchange
simple ontologies correctly. Because one of the goals ob#dmehmarking is to improve
the tools, the ontologies must be simple to isolate probla@nses and to identify possible
problems.

Therefore, the OWL Lite Import Benchmark Sditevas used for evaluating the in-
teroperability of the tools; this benchmark suite is comnf@nall the tools and con-
tains ontologies with simple combinations of the OWL knatge model. The complete
description and the procedure followed to define this beragkrsuite can be found in
Section 3.

The quality of the benchmark suite to be used is essentighéoresults of the bench-
marking. Therefore, once the benchmark suite was definedsipublished on the bench-
marking web page so that they could be reviewed by the paatts. It was also presented
and discussed in several Knowledge Web meetings.

Bnt t p: // know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er operabi i ty/
ow /inport.htm

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 11

2. BENCHMARKING OWL INTEROPERABILITY

The experiments to perform in the benchmarking consisttgr@manging each of the
ontologies of the OWL Lite Import Benchmark Suite betwedntla tools (including
interchanges from one tool to itself) and in collecting tbsults of these interchanges.

Although the results of the experiment described abovedcbelobtained manually,
the goal of the benchmarking is to automate all the experiatiem. Hence, we need
some software application that performs all the experisiantomatically.

This software application is IBSE (Interoperability Benchmark Suite Executor) and
will be in charge of executing the experiments and of gemegatisualizations of the
results of these experiments. A description of the IBSE amal the specific procedure to
follow for using it are detailed in Chapter 4.

2.2.2 Experimentation planning

The planning of the benchmarking was defined so as the deadkould coincide with
the Knowledge Web deadline when the benchmarking resudisidive delivered. There-
fore, a plan was designed that included Bian and Experimentphases, though it just
included the first task of thenprovephase Benchmarking report writing

This plan was developed and agreed by all the organisatamtisipating in the bench-
marking; besides, every organisation had to assign a nuofogeople to perform the
benchmarking.

The planning for the experimentation included the follogviteps:

1. To develop the IBSE tool.

2. To adapt the IBSE tool to the tools participating in thedtenarking.
3. To execute the experiments.

4. To analyse the results.

2.2.3 Experiment execution and result analysis

Once the IBSE tool was adapted to include all the tools pp#img in the benchmark-
ing, the experiments were automatically performed. As imeetl in Section 2.1.4, we
obtained interoperability results for nine tools: GATEndeKAON2, the NeOn Toolkit,
Protégé-Frames, Protéegé-OWL, SemTalk, SWI-Prolad,\&ebODE.

Ynt t p: // know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er operabi i ty/
i bse/

12 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

Rall Garcia-Castro compiled all the execution resultagenthem available in the
benchmarking web paéfe and provided a general interpretation of them, shown ipcha
ter 5.

Bnt t p: // know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er oper abi i ty/
ow / 2007- 08- 12_Resul t s/ ht m s/

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 13

Chapter 3

Ontology dataset

by STEFANO DAVID AND RAUL GARCIA CASTRO

As we mentioned in the previous chapter, any group of ontetogould be used as
input for the experiment. For example, we could employ a grofureal ontologies in
a certain domain, such as ontologies synthetically gee@rsuich as the Lehigh Univer-
sity Benchmark (LUBM) [Gucet al,, 2005], the University Ontology Benchmark (UOB)
[Ma et al, 2006], and the OWL Test Casdsleveloped by the W3C Web Ontology Work-
ing Group).

These ontologies were designed with specific goals andnergents. Real ontologies
are developed to represent knowledge in some applicathern;WBM and the UOB aim
to evaluate the performance of the tools under certain wistances, and the OWL Test
Cases check if a tool deals correctly with the OWL languatzeifg the formal meaning
of the constructors and show examples of their use.

However, as our goal was to improve interoperability, thes®logies could comple-
ment our experiments even though they were designed wittifgpgoals and require-
ments such as these of performance or correctness evaludtiour case, we aim to
evaluate interoperability with simple OWL ontologies thalthough they do not cover
exhaustively the OWL specification, allow highlighting ptems in the tools.

To this end, we have defined the OWL Lite Import BenchmarkeJiavidet al., 2006].
This benchmark suite was intended to evaluate the OWL ingagrébilities of Semantic
Web tools, but we now use it to evaluate the interoperahidit§femantic Web tools by
checking the interchange of ontologies with simple comtaoms of components of the
OWL Lite knowledge model.

The assumptions concerning the development of the OWL bigort Benchmark
Suite, are the following:

e The number of benchmarks should be small. Benchmarking re@ps that con-
sumes a lot of resources, and any increase in the number ofilvemks leads to an

lhttp://WWW.\/\B. org/ TR/ ow - test/

14

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

increment in the time required for performing the experitseand for the subse-
guent analysis of the results.

e The use of OWL Lite to define the ontologies and so to limit thenber of bench-
marks. Furthermore, we do not consider annotation, verrgjaamd heading vocab-
ulary terms.

e To use the RDF/XML syntaxfor writing OWL ontologies since this syntax is the
most used by Semantic Web tools for importing and exportimtglogies.

e To define correct ontologies only. The ontologies definetiéntenchmarks do not
contain syntactic or semantic errors and, in order to ertb@rsyntactic correctness
of the ontologies, we decided to use an OWL validator

e To define simple ontologies only. This will allow to easilyteleting problems in
the tools.

There are two different issues that affect the correct impban ontology: a) which
combinations of components of the OWL knowledge model aesqt in the ontology;
and b) which of the different variants of the RDF/XML syntar @resent in the ontology.
Therefore, to isolate each of these issues, we have defipadagely the benchmarks that
depend on the OWL knowledge model and those that depend @Mhesyntax chosen.
To increase the usability of the benchmarks, they also haea Hivided in groups.

The next sections explain how these two types of benchmarnkes Ibeen defined.

3.1 Benchmarks that depend on the knowledge model

The process we followed to define the ontologies containdteibenchmarks was the fol-
lowing: we first defined the ontologies in natural languabentwe expressed them in the
OWL abstract syntax using the productions, and finally wetgvtbem in the RDF/XML
syntax.

In the definition of the ontologies, we considered the d#fepossibilities of defining
in OWL classes (with a class identifier, with a value or caatity restriction on a property,
or with the intersection operator), properties (object dathtype properties with range,
domain, and cardinality constraints, relations betwe@pgities, global cardinality con-
straints, and logical property characteristics), andainsgs (with named and anonymous
individuals, equivalence and differences among indivisua

Moreover, we decided to discard those vocabulary termgiiaiot contribute to the
OWL expressiveness; these are the annotation, versicemaigieading vocabulary terms.

2ht t p: / / www. W3. or g/ TR/ r df - synt ax- gr ammar /
Sht t p: / / phoebus. cs. man. ac. uk: 9999/ OAL/ Val i dat or

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 15

3. ONTOLOGY DATASET

We considered at most one or two OWL vocabulary terms at a, tand then we
studied all the possible combinations of these terms wehi¢inaining. When the number
of the ontologies defined was large, we pruned the benchnugtek Ve also decided to
consider the combinations of the OWL vocabulary terms witda@inality of zero, one,
and two, assuming that the result for higher cardinalitogpsa¢s the result for cardinality
two.

The reminder of this section presents the ontologies defioethe benchmarks in
each group, along with the vocabulary terms and the proolig{iaxioms) involved.

The conventions used in the productions are those used i@\ specificatiof,
i.e., a start symbol of the language is capitalized, oth&wtiis lowercase; terminals are
quoted,; alternatives are separated by a colpar(given in different productions; square
brackets [..]) indicate elements that occur at most once; and brages}] indicate
elements that can occur any number of times, including zero.

3.1.1 Benchmarks for classes

In OWL Lite, classes can be described by a class identifiea kglue or a cardinality
restriction on a property, or by the intersection operaterom these building blocks,
we used the OWL Lite class and restriction axioms and defiheddifferent ways of
describing a class in OWL Lite with these axioms.

We decided to group the benchmarks according to the follgwiiteria: classes and
class hierarchies, class equivalences, and classes defimegda set operator.

Group A: Classes and class hierarchies

The ontologies of this group describe classes and clasarbiees. This group includes
classes that are a subclass of value restrictions, caitgtinedtrictions on properties, and
class intersections.

In this group, we focus on vocabulary terms of both RDF(S) @Wdl_°:

rdfs: subCl assOf, owl :Class, ow :Restriction, ow:onProperty,
ow : soneVal uesFrom ow : all Val uesFrom ow :cardinality,
ow : maxCardinality, ow:mnCardinality, ow:intersectionC

The productions we used for defining the benchmarks are:

axiom::= "Cass(’'classID nodality
{super}')’

“htt p: // ww. w3. or g/ TR/ owl - semant i cs/ synt ax. ht ni
5In boldface we highlight the main vocabulary terms of theugro

16 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

modal ity ::= "partial’
super ::= classID| restriction
restriction ::= "restriction(’dataval uedPropertylD

dat aRestri cti onConponent ')’
| 'restriction(’individualval uedPropertylD
i ndi vi dual Restricti onConponent ')’
dat aRestri cti onConmponent ::= "all Val uesFron(’ dataRange ')’
| ' soneVal uesFron(’ dataRange ')’
| cardinality
i ndi vi dual RestrictionConponent ::= "all ValuesFronm(’ classlID ")’
| *someVal uesFrom(’ classliD)’
| cardinality

cardinality ::="mnCardinality(0)’ | "mnCardinality(1)’
| 'maxCardinality(0)’ | 'maxCardinality(1)’
| 'cardinality(0)’ | 'cardinality(1)’

dat aRange ::= datatypelD | ’'rdfs:Literal’

datatypel D ::= URIreference

classID ::= URIreference

dat aval uedPropertyl D ::= URIreference

i ndi vi dual val uedPropertyl D ::= URIreference

To see how the productions of the OWL abstract syntax are uséte definition
of the OWL ontologies, let’s consider the ontology of benahnkiSAQ07 This ontology
contains a class (e.gQriver), which is subclass of an anonymous class defined by an
owl:someValuesFrowalue restriction in the object propettasCar which can have only
instances of clas8ar as range.

In the abstract syntax, we can express this ontology asasllo

Ont ol ogy(<http://ww. exanpl e. org/ | SAO7. ow >
bj ect Property(nyNs: hasCar)
Ol ass(nyNs: Car partial)
Cl ass(nyNs: Driver parti al
restriction(myNs: hasCar soneVal uesFron{nyNs: Car)))

)
The ontology is written in the RDF/XML syntax as follows:

<ow : Ont ol ogy rdf: about="#" />
<ow : Obj ect Property rdf: about="&nmyNs; hasCar"/ >
<ow : C ass rdf: about="&nyNs; Driver">
<rdfs: subC assCO >
<ow : Restriction>
<ow : onProperty rdf:resource="&nnyNs; hasCar"/ >
<ow : soneVal uesFr onpr
<ow : C ass rdf: about =" &nmyNs; Car" />

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 17

3. ONTOLOGY DATASET

</ ow : soneVal uesFronp
</ow : Restriction>
</rdfs:subC assCf >
</ ow : Cl ass>

Group B: Class equivalence

The ontologies of this group describe class equivalencé®sd are classes equivalent
to value and cardinality restrictions on properties ands#a equivalent to intersection
of classes. Moreover, both this group and group A are inténoléest the ability of the
tools in coping with the difference between a subclassiogladnd an equivalent class
relation. The benchmarks of this group are alike those iru@w; the only difference is
that Group A contains primitive classes (witfodality = 'partial’) and Group B contains
defined classes (wittmodality = 'complete).

In this group, the vocabulary terms concerned are:

ow : equi val entd ass, ow : Class, ow : Restriction, ow :onProperty,
ow : soneVal uesFrom ow : all Val uesFrom ow :cardinality,
ow : maxCardinality, ow:mnCardinality, ow:intersectionC

The productions we used for defining the benchmarks are:

axiom::= "Class(’'classID nodality
{super}")’
axi om :: = ' Equival ent Cl asses(’' cl assl D cl assI D {cl assI D})’
nodal ity ::="'conplete’
super ::= classID | restriction | description
restriction ::= "restriction(’ dataval uedPropertyl D

dat aRestri cti onConponent)’
| 'restriction(’individualval uedPropertylD
i ndi vi dual Restri cti onConponent’)
dat aRestri cti onConmponent ::= "all Val uesFron(’ dataRange’)’
| ’ sonmeVal uesFron(’ dat aRange’)’
| cardinality
i ndi vi dual RestrictionConponent ::= "all Val uesFron(’classlD)’
| *someVal uesFron(’ classl D)
| cardinality

cardinality ::="mnCardinality(0)’ | "mnCardinality(l)’
| 'maxCardinality(0)' | "maxCardinality(1)’
| "cardinality(0)’ | "cardinality(l)’

dat aRange ::= datatypelD | ’'rdfs:Literal’

datatypel D ::= URIreference

classID ::= URIreference

dat aval uedPropertyl D ::= URIreference

i ndi vi dual val uedPropertyl D ::= URIreference

18 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

Group C: Class defined with set operators

The ontologies defined in this group describe classes thatefined by set operators. Al-
though the OWL language has three vocabulary terms for egjg set operations (i.e.,
owl:unionOf owl:intersectionOf and owl:complementQfwhich correspond to logical
disjunction, conjunction, and negation respectively), IOWite can only express classes
that are intersection of other classes.

In this group, the vocabulary terms concerned are:
ow :intersectionO, ow:d ass

The production we used for defining these benchmarks are:

axiom::= "Class(’classID nodality {super})’
nmodal ity ::= "conplete’ |’ partial’

super ::= classlD

classID ::= URIreference

3.1.2 Benchmarks for properties

In OWL Lite, properties can be either object properties ferties that link a class with
another class) or datatype properties (properties thagliclass with a data value).

We grouped the benchmarks of this group according to theviirg criteria: descrip-
tion of properties and property hierarchies, propertigh womain and range, relations
between properties, and global cardinality constraintslagical characteristics of prop-
erties.

Group D: Property and property hierarchies

The ontologies of this group describe properties and ptgerarchies.
In this group, the vocabulary terms concerned are:

ow : Obj ect Property, ow : Dat atypeProperty, rdfs:subPropertyCf.
The axioms of the abstract syntax used in this group are:

axi om:: = 'DatatypeProperty(’ dataval uedPropertyl D
{’ super (' dat aval uedPropertyl D)})’
| ' ObjectProperty(’individualval uedPropertyl D
{" super (" i ndi vi dual val uedPropertyl D)’ }')’

datatypel D ::= URI reference
dat aval uedPropertyl D ::= URIreference
i ndi vi dual val uedPropertyl D ::= URIreference

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 19

3. ONTOLOGY DATASET

Group E: Property with domain and range

The ontologies of this group describe properties that hara bne to three domain and/or
range constraints. In this group we do not consider pragertith no range and domain
constraint since they are included in Group D.

In this group, the vocabulary terms concerned are:

ow : Cl ass, ow : Qbj ect Property, ow : Dat at ypeProperty,
rdf s: range, rdfs:domain, rdfs:Literal.

The axioms of the abstract syntax are:

axi om:: = 'DatatypeProperty(’ dataval uedPropertyl D
{"domai n(’classl D)’ }{ range(’ dataRange’)’ }')’
| * CbjectProperty(’individual val uedPropertyl D
{"domain(’classlD)’ }{"range(’classID)’})’

datatypel D ::= URIreference

classID ::= URIreference

dat aval uedPropertyl D ::= URIreference

i ndi vi dual val uedPropertyl D ::= URIreference

Group F: Relation between properties

The ontologies of this group describe equivalences amojegbproperties and among
datatype properties; they also describe object propettigsare inverse one from the
other. It is not possible to define the inverse of a datatypgegnty, since the inverse
relation would have a literal (i.e., a data value) as its domeand this is not allowed in

OWL Lite.

In this group, the vocabulary terms concerned are:

ow : Class, ow : Obj ect Property, ow : Dat at ypeProperty,
rdf s: range, rdfs:domain, rdfs:Literal,
ow : equi val ent Property, ow :inverseCf.

In this group we use the following axioms:

axi om :: = 'Dat at ypeProperty(’ dataval uedPropertyl D
{"domai n(’ classl D)’ }{ range(’ dataRange’)’ }')’
" Qbj ect Property(’individual val uedPropertyl D
{"domain(’classlID)’ }{'range(’'classID)’ }')’
["inverseO ('individual val uedPropertylD)’]
axi om::= "Equival ent Properties(’ dataval uedPropertyl D
dat aval uedPr opertyl D

20 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

{dat aval uedPropertyl D}’)’
| ' Equival ent Properties(’individual val uedPropertyl D
i ndi vi dual val uedPr opertyl D
{i ndi vi dual val uedPr opertyl D}’)’
dat aRange ::= datatypelD | ’'rdfs:Literal’
datatypel D ::= URIreference
classID ::= URIreference
dat aval uedPropertyl D ::= URIreference
i ndi vi dual val uedPropertyl D ::= URIreference

Group G: Global cardinality constraints and logical characteristics of properties

In OWL, object and datatype properties can be further desdrivith more expressive
characteristics. The ontologies of this group describ@gnttes with domain and range,
which are also symmetric, transitive, functional, or irseefunctional. Datatype proper-
ties can be specified only as functional, since the otherifsptons would lead to have
literals in the domain of the datatype property, which isfdden in OWL Lite.

In this group, the vocabulary terms concerned are:

ow : Class, ow : Qbj ect Property, ow : Dat at ypeProperty,
rdf s: range, rdfs:domain, rdfs:Literal,

ow : Synmetri cProperty, ow : TransitiveProperty,

ow : Functional Property, ow : I nverseFuncti onal Property.

The axiom used for generating ontologies in this group are:

axi om:: = 'Dat atypeProperty(’ dataval uedPropertyl D {[’ Functional ']
{"domain(’classID ")’} {"range(’ dataRange’)’ }')’
| ' ObjectProperty(’individualval uedPropertyl D
["inverseO (' individual val uedPropertyl D)’]
[Functional’ | 'lnverseFunctional’ |
"Functional’ ’InverseFunctional’ |
"Transitive'] ['Symmetric’]
{"domain(’classlID)’} {"range(’classlD)’ }')’
dat aRange ::= datatypelD | ’'rdfs:Literal’
datatypel D ::= URIreference
classID ::= URIreference
dat aval uedPropertyl D ::= URIreference
i ndi vi dual val uedPropertyl D ::= URIreference

3.1.3 Benchmarks for instances

In OWL Lite, individuals (hamed or anonymous) are instarafedasses related by prop-
erties to other individuals. There are also special buailtrioperties for asserting relation-

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 21

3. ONTOLOGY DATASET

ships among them.

Group H: Single individuals
The easiest way to describe an individual is to instantiatiass: the ontologies of this
group define one or more classes with single or multiple idd@&ls as instances.

In this group the only vocabulary terms concerned @t Classandrdf:type The
OWL Lite axioms used in this group are:

axiom::.="Cass(’'classID)’

fact ::= individual

individual ::="Individual ('[individuallD { type('type')’}
{val ue}")’

value ::= "value(’individual val uedPropertyl D individualID ")’

| *value(’individual val uedPropertyl D individual ")’
| ' val ue(’ dataval uedPropertyl D datalLiteral ')’

type ::= classlD

datatypel D ::= URI reference

classID ::= URIreference

dat aval uedPropertyl D :: = URIreference

i ndi vi dual val uedPropertyl D ::= URIreference

individual ID::= URI reference

Group I: Named individual and properties

Individuals can be related one each other through user digfiraperties. In this group,
every ontology has one object or datatype property whoseatdoand range are classes,
and individuals as instance of these classes. Moreoveoftjeet and datatype properties
are simple (there are no logical characteristics of progedpecified) and, in the case of
datatype properties, there are also data values (we ontlyaisegs).

The vocabulary terms are used for defining classes and piepavith range and
domain constraints. The individuals are instances of thizsses and properties.

ow : Class, rdf:type, ow: QbjectProperty, ow : DatatypeProperty,
rdf s: range, rdfs:domain, rdfs:Literal.

The axioms covered in this group are:

axiom::="Class(’'classID)’
| ’ DatatypeProperty(’ dataval uedPropertyl D
{"domain(’ classID ')’ }{’range(’ dataRange ')’})’
| * CbjectProperty(’ individualval uedPropertylD
{"domain(’ classID’')’ }{"range(’ classID')" }')’

22 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

fact ::= individual

individual ::="Individual ('[individuall D] { type('type')’}
{val ue}")’

value ::= "value(’individual val uedPropertyl D individualID ")’

| ' val ue(’individual val uedPropertyl D i ndividual ")’
| ' val ue(’ dataval uedPropertyl D dataLiteral ')’
type ::= classlD

datatypel D ::= URIreference

classID ::= URIreference

dat aval uedPropertyl D ::= URIreference

i ndi vi dual val uedPropertyl D ::= URIreference
individual ID::= URIreference

Group J: Anonymous individuals and properties

Individuals in OWL can also be anonymous, i.e., we can redehém without giving
them an explicit name, but they can be used in assertions.

The vocabulary terms are used for defining classes and piegpeavith range and
domain constraint.

ow : Cl ass, rdfs:range, rdfs:domain, rdf:type, rdfs:Literal,
ow : Qbj ect Property, ow : Dat at ypeProperty

In this group the OWL Lite axioms concerned are:

axiom::="Class(’'classID)’
| ' Dat atypeProperty(’ dataval uedPropertyl D
{"domai n(’classl D)’ }{ range(’ dataRange’)’ }')’
| ' ObjectProperty(’individualval uedPropertyl D
{"domain(’classlD)’ }{'range(’'classID)’ }')’
fact ::= individual

individual ::="Individual ('[individuallD { type('type')’}
{val ue})’

val ue ::= "val ue(’individual val uedPropertyl D individual ID)’
| ' val ue(’individual val uedPropertyl D i ndividual)’
| ' val ue(’ dataval uedPropertyl D datalLiteral’)’

type ::= classlD

datatypel D ::= URIreference

classID ::= URIreference

dat aval uedPropertyl D ::= URIreference

i ndi vi dual val uedPropertyl D ::= URIreference

individual ID::= URIreference

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 23

3. ONTOLOGY DATASET

Group K: Individual identity

The OWL vocabulary also contains built-in predicates,(terms) that express basic rela-
tions among individuals. These terms can be used to statentbandividuals can either
be the same or different and to state that in a set of indilsjeach of them is different
from the others.

The vocabulary terms are used for defining classes and piegpeavith range and
domain constraint.

ow : Cl ass, ow : Qbj ectProperty, ow : Dat at ypeProperty, rdfs:range,
rdfs: domain, rdfs:Literal, rdf:type, ow :differentFrom
ow : saneAs, ow :AllDi fferent, ow :distinctMenbers

In this group the axioms concerned are:

axiom::.="Cass('classID)’
fact ::="'Sanel ndividual ('individuallD
i ndi vidual ID
{i ndi vi dual I D})"’
| *Differentlndividual s(’individuallD
i ndi vidual ID
{i ndi vi dual 1 D}’)’

fact ::= individual

individual ::="Individual ('[individuall D] { type('type')’}
{val ue}")’

value ::= "value(’individual val uedPropertyl D individual D)’

| *value(’individual val uedPropertyl D individual)’
| ' val ue(’ dataval uedPropertyl D datalLiteral’)’

type ::= classlD

datatypel D :: = URIref erence

classID ::= URIreference

dat aval uedPropertyl D ::= URIreference

i ndi vi dual val uedPropertyl D ::= URIreference

individual ID::= URI reference

The reader can note that there is not a explicit productiangénerates the vocabulary
terms owl:AllDifferent and owl:distinctMembers The abstract syntax of OWL allows
producing only pairwise disjoint individuals, and these twocabulary terms are, indeed,
intended as a shortcut for expressing that, given a set nfichuls, each of them is unique
and different from all the others in the set.

24 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

3.2 Benchmarks that depend on the syntax

These benchmarks check the correct import of OWL ontolagigsthe different variants
of the RDF/XML syntax, as stated in the RDF/XML specification

These syntactic variants are the same as those consideéhedRDF(S) Import Bench-
mark Suite. However, the ontologies defined in each bendhmate are different since
in one case they are written in RDF(S) and in the other in OWhe benchmarks that
depend on the syntax form a group on their own (Group L).

These benchmarks are arranged into different categoied, @& which checks one
different aspect of the possible RDF/XML variants.

URI references. There are different possibilities, listed below, to refeatresource on
the web. For each of them we have defined a benchmark.

e Using an absolute URI reference.

<rdf: Description
rdf : about ="htt p://ww. exanpl e. or g/ ont ol ogy#Man"/ >

e Using an URI reference relative to a base URI.
xm : base="http://ww. exanpl e. or g/ ont ol ogy#"
<r af : Description rdf:about="#Man" />

e Using an URI reference transformed fradf:ID attribute values.
<rdf :Description rdf:|D="Man"/>

e Using an URI reference relative to &NTITY declaration.

<IENTITY nyNs "http://ww. exanpl e. or g/ ont ol ogy#" >
xm ns: myNs="http://exanpl e. or g/ ont ol ogy#" >

<rdf: Description rdf:about="&wNs; Man" />

Abbreviations. There are cases in which the RDF/XML syntax allows grouptages
ments with a same subject or shortening the RDF/XML code. @¥esider here bench-

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 25

3. ONTOLOGY DATASET

marks for empty nodes, multiple properties, typed nodesggliterals, and blank nodes.
For each subcategory we have defined two benchmarks.

e Empty nodes. The following two descriptionsidfornan define exactly the same
concept, but the second is written more compactly.

<rdf: Description rdf:about="#Wnan">
<rdf:type>
<rdf: Description rdf:about="&ow ; C ass" >
</rdf: Description>
</rdf:type>
</rdf: Description>

<rdf: Description rdf:about="#Wnan">
<rdf:type rdf:resource="&w ; Cl ass" />
</rdf: Description>

e Resources with multiple properties. The following examgi@ws how to group
statements related to a resource.
<ow : Dat at ypeProperty rdf: about ="#hasNane" >
<rdf s: domai n rdf:resource="&myNs; Person"/ >
</ ow : Dat at ypePr operty>
<ow : Dat at ypeProperty rdf: about ="#hasNanme" >
<rdfs:range rdf:resource="& dfs; Literal "/ >
</ owl : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#hasNanme" >
<rdfs: domai n rdf:resource="&myNs; Person"/ >
<rdfs:range rdf:resource="& dfs; Literal"/>
</ ow : Dat at ypePr operty>

e Typed nodes. They can be expressed in two equivalent ways:

<rdf: Description rdf:about="#Man">
<rdf:type rdf:resource="&ow ; Cl ass"/>
</rdf: Description>

<ow : Cl ass rdf: about =" #Man"/ >

e A string literal can be expressed as the object of an OWL rstatd or as XML
attribute.
<nyNs: Per son rdf: about ="#JohnDoe" >
<nyNs: hasNanme>John</ myNs: hasNanme>
<nyNs: hasSur nanme>Doe</ nyNs: hasSur nane>
</ myNs: Per son>

<nyNs: Per son rdf: about =" &myNs; JohnDoe"
myNs: hasNane="John" nyNs: hasSur nane="Doe"/ >

e Blank nodes are used to identify unnamed individuals. THhiewing two OWL
snippets identify the same resource.

26 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

<nyNs: Per son rdf: about ="#John" >
<nyNs: hasChi | d rdf: nodel D="nodel" />
</ myNs: Per son>
<nyNs: Chi | d rdf: nodel D="nodel" >
<nyNs: hasNanme>Paul </ myNs: hasNanme>
</ nyNs: Chi | d>

<nyNs: Per son rdf: about ="#John" >
<nyNs: hasChi | d rdf: parseType="Resource">
<rdf:type rdf:resource="#Child"/>
<nyNs: hasNane>Paul </ nyNs: hasNane>
</ nyNs: hasChi | d>
</ nmyNs: Per son>

Language identification attributes. The language of a value can be defined with the
xml:langattribute in tags.

<ow : Cl ass rdf: about =" &myNs; Book" >
<rdfs: | abel xm:Ilang="en">Book</rdfs: I abel >
<rdfs:label xm:Ilang="es">Libro</rdfs:|abel >
</ow : Cl ass>

3.3 Description of the benchmarks

Each benchmark of the benchmark suite, as Table 3.1 shodesdsibed by ardentifier
unique, adescription in natural language of the benchmarkpamal description in the
Description Logics notation of the ontologygeaphical representationof the ontology,
and afile with the ontology in the RDF/XML synt&x

The OWL Lite Import Benchmark Suite is available in a publiebwpagé and is
composed of 82 benchmarks that are classified in 12 grougpis i@entified by one letter
(fromAtoL). The list of all the benchmarks composing the benchmatik sain be found
in Appendix A; the OWL files have not been included here, baytban be found in the
benchmark suite web page.

Moreover, since OWL Lite has an underlying Description lasgiemantics, we have
also provided a description of all the benchmarks both innahtanguage and in Descrip-
tion Logics formalism. These descriptions can be found ip&mlix B.

6All the files have been syntactically validated against thendérweb OWL Ontology Validator
(http:// phoebus. cs. man. ac. uk: 9999/ ONL/ Val i dat or)

"ntt p: // know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er operabi i ty/
ow /inport.htm

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 27

3. ONTOLOGY DATASET

Identifier | ISGO3
Import a single functional object property whose domain is

Description a class and whose range is another class
Formal de- T E< 1 hasHusband
scription T C VhasHusband~ .\Woman
T C VhasHusband.Man
Graphical
represen-
tation

<owl : O ass rdf: about =" &ex; Woman"/ >
<owl : O ass rdf: about =" &ex; Man"/ >
RDF/XML <owl : bj ect Property rdf:about =" &ex; hasHusband" >
<rdf:type rdf:resource="&ow ; Functi onal Property"/>
f||e <rdfs: domain rdf:resource="3&ex; Wman"/ >

<rdf s:range rdf:resource="&ex; Man"/ >
</ ow : Obj ect Property>

Table 3.1: The description of a benchmark of the OWL Lite Im@anchmark Suite

3.4 Towards benchmark suites for OWL DL and OWL
Full

Although the OWL Lite Import Benchmark Suite described iis tthapter just deals with
the OWL Lite sublanguage, it could also be used for evalgdtie importers from OWL
DL and OWL Full of Semantic Web tools.

However, the definition of the OWL Lite Import Benchmark ®uitoes not take into
account the OWL vocabulary terms whose use is not allowedAfl Qite. In addition,
the use of the OWL vocabulary terms is restricted in both OWe and OWL DL. Hence,
the benchmark suite defined for OWL Lite is incomplete for OMLand OWL Full.

The next Sections analyze the possibility of extending tiéLQ.ite Import Bench-
mark Suite to cover OWL DL and OWL Full, examining the diffeces between the three
species of OWL.

3.41 OWLDL

As we mentioned above, it is not necessary to develop froretdta new benchmark
suite to evaluate the import of OWL DL ontologies; the OWLeLImport Benchmark
Suite can be extended by implementing an OWL DL Import BeratnSuite on top of

It.

As Figure 3.1 shows, to cover the OWL DL sublanguage of OWL,siveuld also
need to consider:

e The different combinations of the OWL Lite vocabulary teratzording to their

28 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

use in OWL DL, since OWL DL imposes fewer restrictions to these. Table 3.2
shows the differences in the restrictions of use of the voleap terms for OWL
Lite and DL8.

e The different combinations of the OWL DL vocabulary terms aliowed in OWL
Lite, between themselves and between the OWL Lite vocapwéams. The vo-
cabulary terms allowed in OWL DL and not allowed in OWL Liteeaowl:oneOf
owl:disjointWith owl:unionOf owl:complementQbwl:hasValugeandowl:DataRange

OWL DL Import Benchmark Suite

Different use of OWL Lite OWL DL
Vocabulary Terms Vocabulary Terms
r—— === === == = = = = = = — = I
I OWL Lite I
| Vocabulary Terms RDF/XML Syntax I

I owr Lite Import Benchmark Suite |

Figure 3.1: The OWL DL Import Benchmark Suite

For example, if we wanted to extend the benchmarksofelequivalentClassand
rdfs:subClassOfve should define new benchmarks that consider as the subptobgect
of these properties all the different types of class desonp allowed in OWL.:

e A class identifier. These benchmarks are already defined\t Oite.

e An exhaustive enumeration of individuals. These benchmark not defined for
OWL Lite.

e Property restrictions with value and cardinality consttai Benchmarks are de-
fined for OWL Lite considering restrictions in the object bktproperties with 0
and 1 cardinality constraints. New benchmarks should baekfior cardinalities
greater than 1 in the object of the properties and for regiris in the subject of the
properties.

e Set operators. Benchmarks are defined for OWL Lite by conisigéntersections
in the object of the properties. New benchmarks should beektfor intersections
in the subject of the properties and for union and complerretite subject and
object of the properties.

8ht t p: / / www. W3. or g/ TR/ owl - r ef / #Subl anguages- def

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 29

3. ONTOLOGY DATASET

Vocabulary Terms

OWL Lite restrictions

OWL DL restrictions

owl:cardinality
owl:minCardinality
owl:maxCardinality

Object must be O or 1

Object must be any
integer> 0

owl:equivalentClass

Subject must be class

No restriction

rdfs:subClassOf names

owl:equivalentClass Object must be class | No restriction
rdfs:subClassOf names or restrictions

rdf:type

rdfs:domain Object must be classNo restriction

names

owl:allValuesFrom
owl:someValuesFrom
rdfs:range

Object must be clas
names or datatyp
names

sNo restriction
e

owl:intersectionOf

Used only with lists of
class names or
restrictions whose

No restriction

length is greater than 1

Table 3.2: Restrictions in the use of OWL Lite and OWL DL

Following this approach, a considerable part of the bencksm@ould be reused with-
out any modification and, therefore, any tool that had alygrformed the experiments
of the OWL Lite Import Benchmark Suite would not need to regbam.

Nevertheless, when relaxing the restrictions of use of & ®ocabulary terms from
OWL Lite to OWL DL, a quite larger number of new benchmarks Widve defined, which
would affect the usability of the whole benchmark suite.

3.4.2 OWL Full

OWL Full has the same vocabulary terms as OWL DL, but it plaesestrictions in their
use. In fact, OWL Full is a superset of RDF(S), that gives ther the freedom to extend
the RDF(S) vocabulary with the OWL constructors and to augrttee meaning of both

vocabularies.

The main characteristics of the use of OWL Full that are @léto our case are:

¢ All the RDF(S) vocabulary can be used within OWL Full.

e OWL Full has no separation between classes, datatypesypaiaroperties, object
properties, annotation properties, individuals, dataes| and the built-in vocabu-

lary.

e Axioms in OWL Full do not have to be well formed.

30 25. October, 2007

KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

This lack of restrictions implies that the use and possiblaluinations of the vocab-
ulary terms in OWL DL and OWL Full is highly different. To dee@ a benchmark suite
for evaluating the import of OWL Full ontologies, it might e sufficient to develop
some new benchmarks on top of the import benchmark suite Wét. OL, although it
might be necessary to create a whole new benchmark suitedbeats all the differences
between OWL DL and OWL Full.

This import benchmark suite for OWL Full should considerth# possible combi-
nations of the OWL and RDF(s) vocabularies terms and, becthes number of these
combinations is high, it would be necessary to prune therg¢inae of benchmarks as it
was done for the RDF(S) Import Benchmark Suite [GarciatfOa al.,, 2006].

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 31

Chapter 4

The IBSE tool

by RAUL GARCIA-CASTRO AND JESJS PRIETO-GONALEZ

IBSE (Interoperability Benchmark Suite Executor) is thaleation infrastructure that
automates the execution of the experiments of the OWL Iptrability Benchmarking.
It offers a simple way of analysing the results, and permmteathly including new tools
into the infrastructure.

The source code and binaries of IBSE can be downloaded friomeb page The
latest version of the IBSE source code is located in a Sulmrerspository.

This chapter starts by describing the requirements of ti&EIBol. Then, it presents
some details of its implementation and of how to use it. Bndlpresents an example of
the reports generated by IBSE.

4.1 IBSE requirements

The main requirements taken into account in the developwfetite IBSE tool are the
following:

e To be able to perform the experiments in as many tools as posse. The OWL
Interoperability Benchmarking considers any Semantic Welb able to read and
write ontologies from/to OWL files as a potential participafnherefore, the IBSE
tool should allow most of the existing tools to participatehe experiments (ontol-
ogy repositories, ontology merging and alignment toolasomers, ontology-based
annotation tools, etc.).

e To automate the experiment execution and the analysis of theesults. In the
OWL Interoperability Benchmarking we sacrifice a higheraileh results to avoid

http:// know edgeweb. semant i cweb. or g/ benchmar ki ngi nt er oper abi | i ty/
i bse/
’http://delicias.dia.fi.upm es/repos/interoperabilitybenchmarking/

32

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

that the humans conducted the experiments. However, fidhaation of the result
analysis is not possible since this requires an individaahterpret them. Nev-
ertheless, the evaluation infrastructure should aut@ailigenerate different vi-
sualizations and summaries of the results in different &asnfsuch as HTML or
SVG) to draw some conclusions at a glance. Itis clear thahalepth analysis of
these results will still be needed for extracting the cadshe problems encoun-
tered and learning the improvement recommendations angr#ittices performed
by developers.

e To define benchmarks and results through ontologies The automation men-
tioned above requires that both, the benchmarks and thigs;dseimachine-processable;
therefore, we have represented them through ontologistarioes of these ontolo-
gies will include the information needed to execute the herarks and the results
obtained in their execution. This way of defining benchmamid results allows
having different predefined benchmark suites and executisuits available in the
Web, which can be used by anyone, for example, to classifysafett tools ac-
cording to their results, to execute the benchmarks in dtias or to process the
accumulated results of different benchmark executions tive.

e To use any group of ontologies as input for the experimentsExecuting bench-
marks with no human effort can provide further advantagés dvaluation infras-
tructure should generate benchmark descriptions from amypgof ontologies in
RDF(S) or OWL, and should execute these benchmarks. Thfisratit experi-
ments could be easily performed with large numbers of ogiek with domain-
specific ontologies, with systematically-generated agis, etc.

e To separate benchmark execution and report generationAs a practical require-
ment, the evaluation infrastructure should be able to perteenchmark execution
independently and to generate reports from one set of d@recrgsults, foresee-
ing experiment executions over a large number of tools, filer@int times, or by
different parties.

4.2 IBSE implementation

The IBSE tool has been implemented using Java. It usebeéhehmarkOntologgnd
theresultOntologyrespectively, to represent the benchmarks and the rekattare pre-
sented in Section 4.2.1.

A normal execution of the IBSE tool comprises three conseesteps, although they
can also be executed independently. These steps are thwifajt

1. To generate machine-readable benchmark descriptions frona group of on-
tologies In this step, a RDF file is generated; this file includes onechmark

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 33

4. THE IBSE TOOL

for each ontology of a group of ontologies located in a URI Hrelvocabulary of
the benchmarkOntologgntology. This description generation can be skipped if
benchmark descriptions are already available.

2. To execute the benchmarks In this step, each benchmark described in the RDF
file is executed interchanging between each pair of tool®ttielogy that it con-
tains, being one tool the origin of the interchange and therathe destination of
the interchange. The results are stored in a RDF file, emmipyie vocabulary of
theresultOntologyontology.

Once we have the original, intermediate and final files witkirtisorresponding

ontologies, we extract the execution results by comparauly ®f these ontologies
as shown in Section 2.2.1. This comparison and its outputrttpn an external

ontology comparer. The current implementation useslifieanethods of a RDF(S)

comparer (rdf-utild version 0.3b) and of an OWL comparer (KAON2 OWL Tdbls
version 0.27). This implementation, however, permitsiitisg other comparers.

3. To generate HTML files with different visualizations of the results In this step,
different HTML files are generated with different visualioms, summaries and
statistics of the results.

4.2.1 Representation of benchmarks and results

This section describes the two OWL ontologies employed enIBSE tool: thebench-
markOntology ontology, which defines the vocabulary that representséhelimarks to
be executed, and thresultOntolog$ ontology, which defines the vocabulary that repre-
sents the results of a benchmark execution.

These ontologies are lightweight since their main goal isdaser-friendly; they are
described in Appendix C using the RDF/XML syntax.

Next, the section presents the classes and propertiehtss tntologies contain. All
the datatype properties have as rangd:stringwith the exception ofimestampwvhose
range isxsd:dateTime

benchmarkOntology. The Documentlass represents a document containing one ontol-
ogy. A document can be further described by the followingpprties, which have
Documentas domain:documentURI(the URL of the documentpntologyName

Shttp://wym wyg.org/rdf-utils/

“http://ow t ool s. ont owar e. or g/

Shtt p: / / know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er operabi i ty/
owl / benchmar kOnt ol ogy. ow

ht t p: / / know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er operabi i ty/
ow / resul t Ont ol ogy. ow

34 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

(the ontology namepntologyNamespadghe ontology namespace), argpresen-
tationLanguagédthe language used to implemented the ontology).

The Benchmarkclass represents a benchmark to be executed. A benchmark can

be further described with the following properties thaténBenchmarkas domain.
Such properties arad (the benchmark identifieryisesDocumenthe document
that contains one ontology used as inputjerchangeLanguagéhe interchange
language usedputhor (the benchmark author); angrsion(the benchmark ver-
sion number).

resultOntology. The Tool class represents a tool that has participated as origingir- de
nation of an interchange in a benchmark. A tool can be furdlescribed with the
following properties that havéoolas domain. These properties at@INamethe
tool name), andoolVersion(the tool version number).

The Resultclass represents a result of a benchmark execution. A reanlbe
further described with the following properties that h&esultas domain. These
properties areofBenchmarkthe benchmark to which the result correspondsy-
inTool (the tool origin of the interchangejestinationToolthe tool destination
of the interchange)gxecution executionSteplexecutionStep#f the whole in-
terchange, the first and the second steps are carried owtuwwdahy execution prob-
lem, respectively)interchange interchangeStepinterchangeStepdf the ontol-
ogy has been interchanged correctly from the original todhe destination tool,
in the first step, and in the second step with no addition os tafsinformation,
respectively)informationAddedinformationAddedStepinformationAddedStep2
(the triples added in the whole interchange, in the first,stem in the second
step, respectively)nformationRemovednformationRemovedStepihformation-
RemovedStep@he triples removed in the whole interchange, in the firgpsand
the second step, respectively); and findiippnestamp(the date and time when the
benchmark is executed).

4.2.2 Inserting a new tool

As the experimentation requires no human intervention,aveanly access tools through
application programming interfaces (APIs) or through baigecutions. There are other
ways of executing an application automatically (i.e., Welvie executions) but these
are not present in the current tools. Nevertheless, to atlepBSE tool for including
other types of executions should be quite straightforward.

The only operation that a tool has to perform to participatde experiment, as seen
in Section 2.2.1, is to import an ontology from a file and to@xphe imported ontology
into another file.

To insert a new tool in the evaluation infrastructure onlg enethod from thdool-
Managerinterface has to be implementedoid ImportExport(String importFile, String

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 35

4. THE IBSE TOOL

exportFile, String ontologyName, String namespace, §tianguage) This method re-
ceives as input parameters the following: the location effile with the ontology to be
imported; the location of the file where the exported ontglbgs to be written; the name
of the ontology; the namespace of the ontology; and the septation language of the
ontologies respectively.

This method has already been implemented for the toolscgzating in the bench-
marking, which are: GATE, Jena, KAON2, the NeOn Toolkit, tBge-Frames, Protégé-
OWL, SemTalk, SWI-Prolog, and WebODE.

Most of these tools provide Java interfaces for performimgimport and export op-
erations. In the case of non-Java tools (SemTalk and SWo@xahese operations were
performed by executing their binaries using jirea.lang.Runtimelass.

As an example, the following lines show the implementatibtihe method for Jena:

public void InportExport(String inmportFile, String exportFile, String ontol ogyNane,
String nanespace, String | anguage) throws BadURI Excepti on{
Mbdel nodel = Mbddel Factory. creat eDef aul t Mbdel () ;
Model nodel _out = Model Factory. creat eDef aul t Model () ;

try {
/1 1nmport
FilelnputStreaminFile = new Fil el nput Strean{inportFile);
nmodel = nodel .read(inportFile,null,null);
inFile.close();
/'l Export

Fi | eQut put StreamoutFil e = new Fi |l eCut put Stream exportFile);
String queryString = "DESCRI BE ?x WHERE {?x ?y ?z}";
Query query = QueryFactory.create(queryString);
Quer yExecuti on gexec = QueryExecutionFactory. create(query, nodel);
nmodel _out = gexec. execDescri be();
nmodel _out.wite(outFile);
nmodel . cl ose();
nmodel _out. cl ose();
} catch (Fil eNot FoundException e) { e.printStackTrace();
} catch (1 OException e) { e.printStackTrace(); } }

4.2.3 Inserting and evaluating ontology comparers

We mentioned before that the IBSE tool uses external soét¥aarcomparing the ontolo-
gies resulting from the experiment. IBSE currently usesdiffemethods of a RDF(S)
comparer (rdf-utilé version 0.3b) and of an OWL comparer (KAON2 OWL Tdbler-
sion 0.27).

Nevertheless, other ontology comparers can also be inlsettethe IBSE tool by im-
plementing a method from th@omparerinterface:int CompareFiles(String origirfile,
String comparedile, String addedile, String deletedile, String language)This method
receives the following input parameters: the location efttho files to be compared; the
location of the two files in which the inserted and removeplés will be stored; and the
language in which the ontologies are written respectively.

"nttp://wmwyg.org/rdf-utils/
8htt p: // ow t ool s. ont owar e. or g/

36 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

The software used for comparing ontologies could have axetproblems when it
compares two ontologies. Therefore, we need a previousi&waih of this software to
ensure the validity of the benchmarking results.

The evaluation of the comparers, which consisted on detge@irors in them, was
performed in two steps:

1. The interoperability experiment was carried out with thels participating in the
benchmarking whose knowledge model is the same as that aitdrehange lan-
guage. In theory, these tools should interchange all th@@gites correctly because
no ontology translation is required for doing so. In thigpstee analysed the cases
where the interchanged ontology was different than tharmalgne.

2. The interoperability experiment was carried out withth# tools participating in
the benchmarking. In this step, we analysed the cases wieeoemparison of two
ontologies caused an execution error in the comparer.

In the case of OWL, IBSE currently uses the KAON2 OWL Todif method for
comparing OWL ontologies. The problems found in this orggloomparer after carrying
out the previous steps were the following:

e When one of the ontologies is empty, the comparer returrisiiesontologies are
the same.

e The comparer returns complete definitions of the differefetween the ontologies
and not only the differing triples. For example, if two ordgies only differ in one

triple:
Ont ol ogy 1: Ont ol ogy 2:
nsl: Person rdfs:type ow : d ass; nsl: Person rdfs:type ow : d ass;

nsl: Person rdfs: | abel "Person";

the comparer returns not just the triple but also the whofmitien of the classes
or properties involved:

Diff:
nsl: Person rdfs:type ow : C ass
nsl: Person rdfs:|abel "Person";

e When the comparer compares two ontologies with blank nadgsnerates differ-
ent node identifiers and, therefore, it returns that thelogtes are different.

e When one of the ontologies is not a valid OWL ontology in theFREML syntax,
the comparer throws an exception.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 37

4. THE IBSE TOOL

e The comparer is not robust and throws an exception when cangpantologies
with unexpected inputs, as for example, the incorrect atassing produced by
some tool$, or the incorrect use of the OWL language constructors: fisi:®roperty
instead ofowl:ObjectPropertyor owl:DatatypeProperty use of a resource both
as an object and as a datatype property; use of endfgysubclassOftatements
(" <rdfs:subClassOf#”); or use of untyped object properties.

The first two problems were solved by adapting the output efdbmparer inside
IBSE. The behaviour of the ontology comparer in the rest efdgases was documented
to be taken into account when analysing the interoperghbégults.

This is not an exhaustive evaluation of the comparer, bet aftalysing all the cases
of the whole benchmarking results in which the interchangetblogies were not the
same, we found no more comparer errors.

4.3 Using IBSE

The only requirements for executing the evaluation inftagtire are to have a Java Run-
time Environment and the IBSE binartés To perform the experiments with SemTalk
and WebODE, these tools must also be installed in the system.

The steps to follow to perform the interoperability expegints using IBSE are the
following:

1. To download the IBSE binaries.
2. To edit thebse.conffile according to the user’s execution preferences.

3. To prepare the tools wanted for the experiment. Some tlmat®t need any prepara-
tion as IBSE accesses them through their jars; others, reswew need preparation.

4. To run IBSE from the command lin@va -jar IBSE.jar [config file]

Steps2. and 3. are optional for the default full execution of the experirtseand
for the generation of the reports. Nevertheless,lbise.conffile allows customizing the
execution by defining: a) the tools considered as the origiithe destination of the inter-
change QRIGIN.-TOOLSandDESTINATIONTOOLS; b) the language used in the input
ontologies and in the interchang@EPRESENTATIOMNANGUAGB; c) the steps to per-
form in the execution®ESCRIBEBENCHMARKSEXECUTEBENCHMARKSGEN-
ERATEREPORTFROM); and d) the location of the data needed or generated by IBSE

%.e., "#http.3A_ 2F_2Fwww.w3.0rg2F20022F07_2FowlL.23Thing
©nt t p: // know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er operabi lity/
i bse/files/1BSEvl. 0. zip

38 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

(ONTOLOGIESURL, BENCHMARKSURL, RESULTSURL, RESULTSHTML_URL, RE-
SULTSRDF_URL). Full use details of use can be found in the comments oitxbe conf
file.

A future improvement of the IBSE tool could be its integratieith testing infrastruc-
tures, such as JUnit.

After a full IBSE execution, the following files are geneta the results directory:

e One RDF file benchmarkDescriptions.rjlvith the description of the benchmarks
from the selected group of ontologies. The RDF file with theadiption of the
benchmarks to be executed in the OWL Interoperability Berantking can be gen-
erated or downloaded from the Weéb

e RDF files ResulkTooll><Tool2>.rdf) with the descriptions of the results for
each pair of tools.

e The ontologies resulting from executing the experimehtsjttermediate and final
ones inclusive.

e The following HTML files with different visualizations, sumaries and statistics of
the results:

— One index page to access all the reports.

— Five pages for each combination of tools (both as origin asdidation). One
of the pages shows some statistics of the results; otherssttmsvoriginal,
intermediate and final ontologies obtained in the benchreaecutions; and
the other three summarize tB&ecutioninterchangelnformation addegand
Information lostresults contained in the RDF result files. These three pages
show, for each benchmark, the results of the final interchamgl of the inter-
mediate stepsStep landStep 3, with different levels of detail.

— For each pair of tools, one page summarizesrherchangeesult considering
one tool as origin and the other as destination of the intargh and vice
versa.

— For each tool, one page with the results of every benchmag&ution, being
this tool the origin and the other tools the destination efititerchange.

Yt t p: // know edgeweb. semant i cweb. or g/ benchmar ki ngd nt er oper abi i ty/
ow / O BS. r df

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 39

Chapter 5

OWL interoperability results and
analysis

by RAUL GARCIA-CASTRO

In this chapter we present the analysis of the interopetabising OWL as the inter-
change language of the Semantic Web tools that participatde benchmarking.

For each of the tools, the analysis is divided in two conseetgteps (described in
detail below):

1. To analyse the behaviour of the tool in the combined imaidt export operation.

2. To analyse the interoperability of the tool with all thel participating in the
benchmarking (including itself).

With the analyses, we provide references to the ontologytmlogies that originated
the comment; their names appear in parentheseqI8&01-1ISA03)

5.1 Analysis of the import and export operation

Here we describe how the tool behaves in the combined operatimporting one OWL
ontology and exporting it again (a step of the experimengefsed in Section 2.2.1).
To analyse the behaviour of the tool in one step of the expamrinfa combined import
and export operation), we have considered the tool restesuch tool is the origin of
the interchangeStep 1}, irrespective of the tool that is the destination of therohange.
This step has as input an original ontology that is importgthle tool and then exported
into a resultant ontology. This analysis has been perfoitnyesbmparing the original and
the resultant ontologies.

The results of a step execution in a tool can be classifiedsintoategories:

40

D1.2.2.1.2 OWL Interoperability Benchmarking

IST Proj&sT-2004-507482

e The original and the resultant ontologies are the same.

information is sometimes inserted into the resultant mgypl

Table 5.1 presents a summary of the number of benchmarkadbrteot.

The execution fails in the import and export operation.

The execution fails when comparing the ontologies.

The resultant ontology includes more information than thgial one.

GA |JE | K2 | PF| PO | ST|SP|WE
Same 64| 67| 56 67| 30| 67
More 8
Less 2 3| 55 29 32
Tool fails 18
Comparer fails 1 8| 12 8 9

Table 5.1: Summary of the results of the import and exportatpe

Below, we present the detailed results of each of the tools.

5.1.1 GATE results in the import and export operation

The resultant ontology includes less information than tgimal one. In this case,

The different step executions usually produce the samdagyan GATE. In some cases,
the execution of the comparer fails with an ontology gererdty GATE (although the

ontology validates correctly).

The results of a step execution in GATE, as shown in Figurecan be classified into

three categories:

e The original and the resultant ontologies are the same. ddgsirs in 64 cases
(ISA01-17,1SB01-12, 1ISC01-02, ISD01-04, ISE01-10, ISFE® ISG01-05, ISI01-
05, 1SJ01-03, ISK01-03).

e The resultant ontology includes less information than tiigireal one. In this case,
information is sometimes inserted into the resultant gyl This occurs in 2 cases

(ISHO1, ISHO3).

e The execution fails when comparing the ontologies. Thisicet 1 case (ISH02).

KWEB/2007/D1.2.2.1.2/v1.3

25. October, 2007

41

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

70

60

40 +—

30

N° benchmarks

20

10

0 T T £ = T T T
Same More Less T. fails C.fails Not valid

Figure 5.1: Results of the import and export operation foTGA

Next we describe the behaviour of GATE in one step, focusmthe combination of
components present in the original ontology.

Class hierarchies

e Named class hierarchies without cycles (ISA01-04)When a class is a subclass
of several classes and of multiple classes that are a sghai@sclass, one of the
parent classes is not typed as a class. This converts thiegypiato OWL Full.

e Named class hierarchies with cycles (ISA05-06)The ontologies processed re-
main the same.

e Classes that are a subclass of a value constraint in an objeptoperty (ISA07-
08). The class defined inside the restriction is not typed as & ¢@@/L Full).

e Classes that are a subclass of a cardinality constraint in anbject or datatype
property (ISA09-16). The ontologies processed remain the same.

e Classes that are a subclass of a class intersection (ISA17Mhe ontologies pro-
cessed remain the same.

Class equivalences

e Classes equivalent to named classes (ISBOIDhe ontologies processed remain
the same.

e Classes equivalent to a value constraint in an object propgy (ISB02-03). The
class defined inside the restriction is not typed as a clagd (Bull).

1The tool names have been abbreviated in the table: GA=GAEE]eha, K2=KAON2, PF=Protégé
Frames, PO=Protégé OWL, ST=SemTalk, SP=SWI-PrologVéEdWebODE

42 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

e Classes equivalent to a cardinality constraint in an objecbr datatype property
(ISB04-11).The ontologies processed remain the same.

e Classes equivalent to a class intersection (ISB1ZJhe ontologies processed re-
main the same.

Classes defined with set operators

e Classes intersection of other classes (ISC01-02Jhe ontologies processed re-
main the same.

Properties

e Object and datatype property hierarchies (ISD01-04).The ontologies processed
remain the same.

e Object and datatype properties with or without domain or range, or with mul-
tiple domains or ranges (ISE01-10)The ontologies processed remain the same.

Relations between properties

e Equivalent object and datatype properties (ISF01-02)The ontologies processed
remain the same.

e Inverse object properties (ISF03).The ontologies processed remain the same.

Global cardinality constraints and logical property characteristics

e Transitive, symmetric, or inverse functional object propaties (ISG01-02,05).
The ontologies processed remain the same.

e Functional object and datatype properties (ISG03-04). The ontologies pro-
cessed remain the same.

Individuals

¢ Individuals of a single class (ISH01,03)One of the instances is lost.

¢ Individuals of multiple classes (ISH02).The comparer launches an exception but
the ontologies processed remain the same.

e Named individuals and object or datatype properties (ISI0205). The ontolo-
gies processed remain the same.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 43

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

e Anonymous individuals and object or datatype properties (5J01-03).The re-
sult shows that the ontologies are different, but this is mareof the comparer.
When the comparer compares two ontologies with blank nadgsnerates differ-
ent node identifiers and, therefore, this implies that thtelogies are different.

Individual identity

e Equivalent or different individuals (ISK01-03). The ontologies processed remain
the same.

5.1.2 Jenaresults in the import and export operation

The different step executions do not produce any executiogion in Jena; in all the
cases the original and the resultant ontologies are the,ssshown in Figure 5.2.

When there are anonymous individuals and object or datgiygeerties (1ISJ01-03),
the result shows that the ontologies are different, butighian error of the comparer.
When the comparer compares two ontologies with blank notegnerates different
node identifiers and, therefore, it shows that the ontokare different.

70

60

50 —

40

30+

N° benchmarks

20

10

0 I I I I
Same More Less T. fails C. fails Not valid

Figure 5.2: Results of the import and export operation foaJe

5.1.3 KAON2 results in the import and export operation

The different step executions usually produce the samdamyon KAON2. In some
cases, the execution of the comparer fails with an ontolagyetated by KAON2 (al-
though the ontology validates correctly).

The results of a step execution in KAON2, as shown in Figuse &an be classified
into three categories:

44 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

e The original and the resultant ontologies are the same. ddgsrs in 56 cases

(ISA02-08, ISA10-11, ISA14-15, ISA17, ISBO1-06, ISB09;18B12, ISC01-02,
ISD02, 1SD04, ISE01-10, ISF01-03, ISG01-05, ISHO1-030IS05, 1SJ01-03,
ISK01-03).

The resultant ontology includes less information than tgirmal one. In this case,
information is sometimes inserted into the resultant @yl This occurs in 3 cases
(ISA01, ISDO1, ISD03).

The execution fails when comparing the ontologies. Thisiccm 8 cases (ISA09,
ISA12-13, ISA16, ISBO4, ISB07-08, ISB11).

70
60

50

30 T

N° benchmarks

20—

10

0 T T E 2 T T T
Same More Less T. fails C.fails Not valid

Figure 5.3: Results of the import and export operation folO&2

Below, we describe the behaviour of KAON2 in one step, faogisin the combination
of components present in the original ontology.

Class hierarchies

A single class (ISA01)The class is lost.

Named class hierarchies with or without cycles (ISA02-06)The ontologies pro-
cessed remain the same.

Classes that are a subclass of a value constraint in an objeptoperty (ISA07-
08).

Classes that are a subclass of aowl:maxCardinality or owl:cardinality cardi-
nality constraint in an object or datatype property (ISA10-11,14-15).The on-
tologies processed remain the same.

Classes that are a subclass of aowl:minCardinality cardinality constraint in
an object or datatype property (ISA09,12-13,16).The class is created as a sub-
class of a blank node instead of being created as a subclab® o€striction.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 45

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

rdfs:subClassOfis used as a datatype property (OWL Full) and the class is con-
sidered an instancéndividual(a:Employee value(rdfs:subClassOf "))

e Classes that are a subclass of a class intersection (ISA17Mhe ontologies pro-
cessed remain the same.

Class equivalences

e Classes equivalent to named classes (ISBOIhe ontologies processed remain
the same.

e Classes equivalent to a value constraint in an object propgy (ISB02-03). The
ontologies processed remain the same.

e Classes equivalent to amwl:maxCardinality or owl:cardinality cardinality con-
straint in an object or datatype property (ISB05-06,09-10) The ontologies pro-
cessed remain the same.

e Classes equivalent to amwl:minCardinality cardinality constraint in an object
or datatype property (ISB04,07-08,11). The class is created as equivalent to a
blank node instead of being created as equivalent to theatest. owl:equivalentClass
is used as a datatype property (OWL Full), and the class isidered an instance
(Individual(a:Employee value(owl:equivalentClass "))

e Classes equivalent to a class intersection (ISB1ZJhe ontologies processed re-
main the same.

Classes defined with set operators

e Classes intersection of other classes (ISC01-02Jhe ontologies processed re-
main the same.

Properties

e Object and datatype property hierarchies (ISD01-04).When there is only one
object or datatype property, the property is lost

e Object and datatype properties with or without domain or range, or with mul-
tiple domains or ranges (ISE01-10)The ontologies processed remain the same.

46 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

Relations between properties

e Equivalent object and datatype properties (ISF01-02)The ontologies processed
remain the same.

¢ Inverse object properties (ISFO03).The ontologies processed remain the same.

Global cardinality constraints and logical property characteristics

e Transitive, symmetric, or inverse functional object propaties (ISG01-02,05).
The ontologies processed remain the same.

e Functional object and datatype properties (ISG03-04). The ontologies pro-
cessed remain the same.

Individuals

¢ Individuals of a single or multiple classes (ISH01-03)The ontologies processed
remain the same.

¢ Named individuals and object or datatype properties (ISI0105). The ontolo-
gies processed remain the same.

e Anonymous individuals and object or datatype properties (5§J01-03).The on-
tologies processed remain the same.

Individual identity

e Equivalent or different individuals (ISK01-03). The ontologies processed remain
the same.

5.1.4 Progge-Frames results in the import and export operation

The different step executions never produce the same gytatdProtégé-Frames. How-
ever, with the ontologies generated by Protégé-Framssrire cases the execution of the
comparer fails (although these ontologies validate ctyec

The results of a step execution in Protégé-Frames, asrshoWwigure 5.4, can be
classified into two categories:

e The resultant ontology includes less information than thgimal one. In this
case, information is sometimes inserted into the resuttatlogy. This occurs
in 55 cases (ISA01-12, ISA17, ISB01-07, ISB12, ISC01-0R0%-04, ISE01-06,
ISE08-10, ISF01-03, ISG01-05, ISH01-03, ISI01-03, IS0Q1+SK01-03).

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 a7

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

e The execution fails when comparing the ontologies. Thisicxmn 12 cases (ISA13-
16, ISB08-11, ISEQ7, 1S104-05, 1SJO3).

70

60
9 50 N
£ N
C 0y
o 30 \
2 N
Z 20 N
N
10 %
0 & =

T T T T
Same More Less T. fails C.fails Not valid

Figure 5.4: Results of the import and export operation fat&yé-Frames

Below, we describe the behaviour of Protégé-Frames insbep, focusing on the
combination of components present in the original ontalogy

Ontologies

e The name of the ontology is changed inkdt)://www.owl-ontologies.com/unnamed.twl

Class hierarchies

e Classes.Class names are changed fromclasshame>" to "ibs_<classname>".
A rdfs:labelis inserted into the classes with the valtigs: <classname>""xsd:string".
This occurs whenever classes appear.

e Named class hierarchies without cycles (ISA01-04)Classes are defined as a
subclass 0bwl: Thing

e Named class hierarchies with cycles (ISA05-06YVhen there are multiple classes,
the classes are defined as equivalent.

¢ Classes that are a subclass of a value constraint in an objeptoperty (ISA07-
08). Properties are created with a domain. In the case obwWesomeValuesFrom
constraint, the constraint is lost. In the case of dld:allValuesFromconstraint,
classes are defined as a subclassvwdfThing

e Classes that are a subclass of a cardinality constraint in almbject property
(ISA09-12). Properties are created with a domain. In the case aiwh#ninCardinality
constraint, the constraintis lost. In the case ofdivtmaxCardinalityandowl:cardinality
constraints, classes are defined as a subclasslofrhing

48 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

e Classes that are a subclass of a cardinality constraint in aatatype property
(ISA13-16). The datatype properties are changed irtbProperty. Properties
are created with a domain. In the case of dvd:minCardinality constraint, the
constraint is lost. In the case of tlwvl:maxCardinalityand owl:cardinality con-
straints, classes are defined as a subclass/bThing Whenowl:maxCardinality
andowl:minCardinalityconstrain the same class, classes are defined as a subclass
of owl:Thingand the domain of the property is defined as the union of ttescla

e Classesthat are a subclass of a class intersection (ISA1Theowl:intersectionOf
property is lost but the ontologies are equivalent.

Class equivalences

e Classes equivalent to named classes (ISBODlasses are defined as a subclass of
owl:Thing

¢ Classes equivalent to a value constraint in an object propgy (ISB02-03). Prop-
erties are created with a domain. In the case obtlilesomeValuesFromonstraint,
the value constraint is lost. In the case of tvel:allValuesFromvalue constraint,
classes are defined as a subclassrdfThingand of the restriction instead of being
defined as equivalent to the restriction.

e Classes equivalent to a cardinality constraint in an objectproperty (ISB04-
07). Properties are created with a domain. Classes are definedwasckass of
owl:Thing Classes are defined as a subclass of the restriction instdeihg de-
fined as equivalent to the restriction. Whmml:maxCardinalityandowl:minCardinality
constrain the same class, the domain of the property is defisehe union of the
class.

e Classes equivalent to a cardinality constraint in a datatyp property (ISB08-
11). The datatype properties are changed natfioProperty. Properties are created
with a domain. Classes are defined as a subclass of the tiestiitstead of being
defined as equivalent to the restriction. In the case obthleminCardinalitycon-
straint, the constraintis lost. In the case ofdlnd:maxCardinalityandowl:cardinality
constraints, classes are defined as a subclasgldofhing Whenowl:maxCardinality
andowl:minCardinalityconstrain the same class, classes are defined as a subclass
of owl:Thing and the domain of the property is defined as the union of tescl

e Classes equivalent to a class intersection (ISB1ZJhe owl:intersectionOfprop-
erty is lost. The classes of the intersection are defined ab@ass of the class.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 49

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

Classes defined with set operators

e Classes intersection of other classes (ISC01-0Z)he owl.intersectionOfprop-
erty is lost. The classes of the intersection are defined ab@ass of the class.

Properties

¢ Object and datatype properties.Property names are changed froapropertyname>"
to "ibs_<propertyname>". A rdfs:labelis inserted into the properties with the
value "ibs: <name>"""xsd:string”. This occurs whenever properties appear. When
there are object or datatype properties with range, theeranigst.

e Object property hierarchies (ISD01-02). The rdfs:subPropertyOfproperty is
lost.

e Datatype property hierarchies (ISD03-04).The datatype properties are changed
into rdf:Property. Therdfs:subPropertyOfproperty is lost.

e Object properties with or without domain or range (ISE01-04). No further
issues have been identified besides those mentioned fart aloie datatype proper-
ties.

e Object properties with multiple domains or ranges (ISE05-®). When there are
object properties with multiple domains, all domains exaeye are lost.

e Datatype properties without domain or range (ISE07-08).The datatype proper-
ties are changed intaf:Property.

e Datatype properties with domain and range (ISE09). The datatype properties
are changed into object properties.

e Datatype properties with multiple domains (ISE10). The datatype properties are
changed into object properties. All domains except oneast |

Relations between properties

e Equivalent object and datatype properties (ISF01-02)Theowl:equivalentProperty
property is lost.

¢ Inverse object properties (ISF03).No further issues have been identified besides
those mentioned for object and datatype properties.

50 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

Global cardinality constraints and logical property characteristics

e Transitive or symmetric object properties (ISG01-02). The transitivity and the
symmetry are lost.

e Functional object and datatype properties (ISG03-04).The datatype properties
are changed into object properties.

¢ Inverse functional object properties (ISG05).The inverse functionality is lost.

Individuals

¢ Individuals. The names of individuals are changed froriiridividualLname>"
to "ibs_<individualLname>". A rdfs:labelis inserted into the individuals with the
value ""xsd:string”. This occurs whenever individuals appear.

ibs: <name>
¢ Individuals of a single class (ISH01,03)The individuals remain the same.

¢ Individuals of multiple classes (ISHO02). All the type properties except one are
lost.

¢ Named individuals and object or datatype properties (ISI0205). When there
are named individuals and datatype properties, the dagusgperties are changed
into object properties.

e Anonymous individuals and object or datatype properties (5J01-03). The
anonymous individual is created as a named individual. Wthere are named
individuals and datatype properties, the datatype prigseatre changed into object
properties.

Individual identity

e Equivalent or different individuals (ISK01-03). The properties and classes that
define the equivalence or differenaan:sameAsowl:different owl:AllDifferent)
are lost.

5.1.5 Progege-OWL results in the import and export operation

The different step executions do not produce any exceptidProtégé-OWL; in all the
cases, the original and the resultant ontologies are the , sasrshown in Figure 5.5.

When there are anonymous individuals and object or datgiymeerties (1ISJ01-03),
the result shows that the ontologies are different, butighisn error of the comparer.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 51

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

When the comparer compares two ontologies with blank nodegnerates different
node identifiers and, therefore, it shows that the ontokare different.

On the other hand, when there are inverse object propettiesesult shows that the
ontologies are different, even though it is semanticaleygame. The only change is that
Protégé-OWL defines thmwl:.inverseOfproperty in both properties instead of in just one.

70

60 +—

50

40

30

N° benchmarks

20

10

0 I I I I
Same More Less T. fails C.fails Not valid

Figure 5.5: Results of the import and export operation fat&yé-OWL

5.1.6 SemTalk results in the import and export operation

The different step executions do not produce any executigeption in SemTalk; in
some cases the execution of the comparer fails with the ayits generated by SemTalk
(although these ontologies validate correctly).

The results of a step execution in SemTalk, as shown in Figuiecan be classified
into three categories:

e The original and the resultant ontologies are the same. dtusirs in 30 cases
(ISA01-04, ISAQ7, ISA17,1SC01-02, ISD01-03, ISE01-07%/ 08, ISG01-03, ISHO1-
03, IS101-03, ISK01-02).

e The resultant ontology includes less information than thgimal one. In this
case, information is sometimes inserted into the resuttatlogy. This occurs
in 29 cases (ISA05-06, ISA08, ISA13-16, ISB01-03, ISB084ED04, ISE08-10,
ISF02-04, ISGO05, 1S104-05, 1SJ01-03, ISK03).

e The execution fails when comparing the ontologies. Thisiocet 8 cases (ISA09-
12, ISB04-07).

Below, we describe the behaviour of SemTalk in one step singLon the combination
of components present in the original ontology.

52 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

70

60
50

40

30

N° benchmarks

20

10

s,
.

0 T T T ST
Same More Less T. fails C.fails Not valid

Figure 5.6: Results of the import and export operation fonsak

Ontologies

e Ontologies. The name of the ontology is lost; it only appearthe xml:ns at-
tribute as ontologies are created without tiieaboutattribute in theowl:Ontology
statement (i.e scowl:Ontology £). This occurs in all the ontologies.

Class hierarchies

e Named class hierarchies without cycles (ISA01-04Yhe named class hierarchies
remain he same.

e Named class hierarchies with cycles (ISA05-06YVhen there are cycles between
multiple classes, one of the subclass properties is remowaid the cycle. When
a class is a subclass of itself, the ontology processedferelift but semantically
the same. The statement that a class is a subclass of itseth/ed.

e Classes that are a subclass of a value constraint in an objeptoperty (ISA07-
08). In the case of th@wl:someValuesFromonstraint, the subclass of the con-
straint remains the same. In the case of thd:allValuesFromconstraint, the
owl:allValuesFronconstraint is changed intmwl:someValuesFrom

e Classes that are a subclass of a cardinality constraint in awbject property
(ISA09-12). The object property is defined both as an object property ana a
datatype property. The class is defined as a subclass of skrctien restric-
tion(a:hasName value ("""xsd:string)) In the case of the@wl:cardinality con-
straint, the constraint is replaced by oo&l:minCardinality constraint and one
owl:maxCardinalityconstraint.

e Classes that are a subclass of a cardinality constraint in aatatype property
(ISA13-16).The class is defined as a subclass of the restrigistniction(a:hasName
value ("""xsd:string)). In the case of thewl:cardinality constraint, the constraint

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 53

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

is replaced by onewl:minCardinalityconstraint and onewl:maxCardinalitycon-
straint.

e Classes that are a subclass of a class intersection (ISA17Mhe ontologies pro-
cessed remain the same.

Class equivalences

e Classes equivalent to named classes (ISBOTjhe owl:equivalentClasgroperty
is lost.

e Classes equivalentto a value constraintin an object propgy (ISB02-03). Classes
are defined as a subclass instead of being defined as equiieellba restriction. In
the case of thewl:someValuesFromonstraint, the subclass of the constraint re-
mains the same. In the case of thel:allValuesFromconstraint, the constraint is
changed intamwl:someValuesFrom

e Classes equivalent to a cardinality constraint in an objecproperty (ISB04-07).
Classes are defined as a subclass instead of being definediealet to the re-
striction. The object property is defined both as an objemperty and as a datatype
property. The class is defined as a subclass of the restrietstriction(a:hasName
value ("""xsd:string)). In the case of thewl:cardinality constraint, the constraint
is replaced by onewl:minCardinalityconstraint and onewl:maxCardinalitycon-
straint.

e Classes equivalent to a cardinality constraint in a datatye property (ISB0O8-
11). Classes are defined as a subclass instead of being definedive et to the
restriction. In the case of th@wl:cardinality constraint, the constraint is replaced
by oneowl:minCardinalityconstraint and onewl:maxCardinalityconstraint.

e Classes equivalent to a class intersection (ISB12Jhe owl:intersectionOfprop-
erty is lost.

Classes defined with set operators

e Classes intersection of other classes (ISC01-02Jhe ontologies processed re-
main the same.

Properties

e Object and datatype property hierarchies (ISD01-04).The ontologies processed
remain the same.

54 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

e Object properties with or without domain or range or with mul tiple domains
and ranges (ISE01-06)The ontologies processed remain the same.

e Datatype properties with or without domain or range or with m ultiple domains
(ISEQ07-10).The range is lost.

Relations between properties

e Equivalent object and datatype properties (ISFO1-02)When there are datatype
properties, the range is lost.

¢ Inverse object properties (ISFO3).Theowl:inverseOfproperty is lost.

Global cardinality constraints and logical property characteristics

e Transitive or symmetric object properties (ISG01-02).The ontologies processed
remain the same.

e Functional object and datatype properties (ISG03-04)When there are datatype
properties, the range is lost and also lost is the statenfienitahe property being
functional.

¢ Inverse functional object properties (ISG05). The statement about the property

being inverse functional is lost.

Individuals

¢ Individuals of a single or multiple classes (ISH01-03)The ontologies processed
remain the same.

e Named individuals and object or datatype properties (1ISI0205). When there
are datatype properties, the range is lost.

e Anonymous individuals and object or datatype properties (5§J01-03). The
anonymous individual is lost.

Individual identity
e Equivalent or different individuals (ISK01-03). Theowl:sameAsndow!:different

properties are lost. In the case of tlev(:AllDifferent) class, the individuals are
also instances ajwl:Thing even though it is semantically the same.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 55

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

5.1.7 SWI-Prolog results in the import and export operation

The different step executions do not produce any executoagion in SWI-Prolog; in
all the cases the original and the resultant ontologies@edame, as shown in Figure 5.7.

When there are anonymous individuals and object or datgiygeerties (1ISJ01-03),
the result shows that the ontologies are different, butighian error of the comparer.
When the comparer compares two ontologies with blank notegnerates different
node identifiers and, therefore, it shows that the ontokagre different.

70

60 +—

50

40

30

N° benchmarks

20

10

0 I I I I
Same More Less T. fails C.fails Not valid

Figure 5.7: Results of the import and export operation fol-8log

5.1.8 WebODE results in the import and export operation

The different step executions never produce the same @yatoWebODE. However,
in some cases, WebODE's execution fails, whereas in otitessthe execution of the
comparer that fails with the ontologies generated by Web@aEough these ontologies
validate correctly).

The results of a step execution in WebODE, as shown in Fig@ecan be classified
into four categories:

e The resultant ontology includes more information than tigiioal one. This occurs
in 8 cases (ISA01, ISA08, ISD01, ISE02-04, ISE07-08).

e The resultant ontology includes less information than thigimal one. In this
case, information is sometimes inserted into the resuttatlogy. This occurs
in 32 cases (ISA06-07, ISB01-03, ISB12, ISC01-02, ISD0O2}8&£09, ISF01-03,
ISG01-04, ISHO1, ISHO3, I1S101-05, 1SJ01-03, ISK01-03).

e The execution fails in the import and export operation. Tdgsurs in 18 cases
(ISA02-05, ISA13-17, ISB08-11, ISE05-06, ISE10, ISGOFI(R).

56 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

e The execution fails when comparing the ontologies. Thisioet 9 cases (ISA09-
12, 1ISB04-07, ISEQL).

70

60

g 50
()
{:E) 40
@ 30 \
Q0 o
£ 20 %

10 \

0 \ E j \ §: \ \

Same More Less T. fails C. fails Not valid

Figure 5.8: Results of the import and export operation fob@BE

Below, we describe the behaviour of WebODE in one step, fogusn the combina-
tion of components present in the original ontology.

Class hierarchies

e Classes.A rdfs:labelis inserted into the classes with the valueclassname>".
This occurs whenever classes appear.

e Named class hierarchies with or without cycles (ISA01-06)When a hierarchy
has multiple classes, execution fails. When a class is dasgof itself, the on-
tology processed is different but semantically the sames tnly removed the
statement about a class being a subclass of itself.

e Classes that are a subclass of a value constraint in an objeptoperty (ISA07-
08). A new property is created with a namepropertyname-_1" and with an
incorrect domain and range The restriction is created with the value constraint
owl:allValuesFrom(owl:Thing)In the case of thewl:someValuesFroroonstraint,
the constraint is lost.

e Classes that are a subclass of a cardinality constraint in awbject property
(ISA09-12). The property is created with a domain that is defined as thenuoii
the class and an incorrect naim@&he property is created with a range that is defined
as the union obwl:Thing and an incorrect name The restriction is created on
owl:Thinginstead of on the property; therefo@yl:Thingis defined as an object
property. The restriction is created with tbevl:allValuesFrom(owl:Thingyalue
constraint. In the case of thmvl:minCardinality constraint, the constraint in the

2#http.3A_2F_2Fwww.w3.0rg2F20022F07_2Fowl.23Thing

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 57

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

restriction is lost. In the case of tleevl:maxCardinalityconstraint, the value of the
constraint is "11” instead of "1”. In the case of tbevl:cardinality constraint, the
constraint is created amvl:maxCardinalityinstead of awl:cardinality and the
value of the constraint is "11” instead of "1".

e Classes that are a subclass of a cardinality constraint in aatatype property

(ISA13-16). The execution fails.

e Classes that are a subclass of a class intersection (ISA1The execution fails.

Class equivalences

58

e Classes equivalent to named classes (ISBOIjhe owl:equivalentClasproperty

is lost.

e Classes equivalent to a value constraint in an object propgy (ISB02-03). The

property is created with domain and range, being the donme@manymous concept
and not the class. A new property is created with namprbpertyname-_1”

and with incorrect domain and rarfgeThe anonymous concept is created as a
subclass of the restriction and not as equivalent to theicgsh. The restriction is
created with thewl:allValuesFrom(owl: Thingyalue constraint. In the case of the
owl:someValuesFroroonstraint, the constraint is lost.

Classes equivalent to a cardinality constraint in an objecproperty (ISB04-07).
The property is created with a domain that is defined as thenusfian anonymous
concept and an incorrect nafneThe property is created with a range that is de-
fined as the union adwl:Thingand an incorrect nameThe anonymous concept is
created as a subclass of the restriction and not as equivalére restriction. The
restriction is created ooawl:Thinginstead of on the property, thereforyl:Thing

is defined as an object property. The restriction is creatéutive value constraint
owl:allValuesFrom(owl:Thing) In the case of thewl:minCardinality constraint,
the constraint in the restriction is lost. In the case of dwd:maxCardinality
constraint, the value of the constraint is "11” instead of. "1In the case of the
owl:cardinality constraint, the constraint is createdawel:maxCardinalityinstead
of asowl:cardinality and the value of the constraintis "11” instead of "1".

Classes equivalent to a cardinality constraint in a datatye property (ISB0O8-
11). The execution fails.

Classes equivalent to a class intersection (ISB12Y.he owl:intersectionOfand
owl:equivalentClasgroperties are lost. An anonymous class is created.

25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

Classes defined with set operators

e Classes intersection of other classes (ISC01-0Z)he owl.intersectionOfprop-
erty is lost.

Properties

e Object and datatype properties. A rdfs:labelis inserted into the properties with
the value <property name>". This occurs whenever properties appeatr.

e Object and datatype property hierarchies (ISD01-04).The rdfs:subPropertyOf
properties are lost.

e Object properties without domain or range (ISE01-02). When there are object
properties without domain, the domain is created with aorirect namé& When
there are object properties without range, the range idemteaith an incorrect
namé and the class is created as a subclass of the restrietstriction(owl:Thing
owl:allValuesFrom(owl:Thing))

e Datatype properties without domain or range (ISE07-08) When there are datatype
properties without domain, the datatype property is losheWthere are datatype
properties without range, the class is created as a sulafléss restrictiorrestric-
tion(a:hasSSN owl:allValuesFrom(xsd:string})d the range is createdasl:string

e Object properties with domain and range (ISE03-04).The class is created as a
subclass of the restrictiaestriction(a:hasChild owl:allValuesFrom(a:Person))

e Object properties with domain and range (ISE09).The class is created as a sub-
class of the restrictiomestriction(a:hasSSN owl:allValuesFrom(xsd:string)jhe
range changes fromafs:Literal to xsd:string

e Object and datatype properties with multiple domains or ranges (ISE07-08,10).
The execution fails.

Relations between properties

e Equivalent object and datatype properties (ISF01-02)Theowl:equivalentProperty
property is lost.

e Inverse object properties (ISFO3).Theowl:inverseOfproperty is lost.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 59

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

Global cardinality constraints and logical property characteristics

e Transitive or symmetric object properties (ISG01-02). The transitivity and the
symmetry are lost.

e Functional object and datatype properties (ISG03-04)The class is created as a
subclass of the restrictiaestriction(a:hasHusband maxCardinality(1))

¢ Inverse functional object properties (ISG05).The execution fails.

Individuals

¢ Individuals. A rdfs:label property is inserted into the individuals with the value
" <individualLname>". This occurs whenever individuals appear.

¢ Individuals of a single class (ISH01,03)The individuals remain the same.
¢ Individuals of multiple classes (ISH02).The execution fails.

e Named individuals and object properties (ISI01-03).The property with the value
in the instance is lost.

e Named individuals and datatype properties (1SI04-05).The value in the prop-
erty is changed from <value>" to” <value>""xsd:string.

e Anonymous individuals and object or datatype properties (5J01-03). The
anonymous individual is created as a named individual.

Individual identity

e Equivalent or different individuals (ISK01-03). The properties and classes that
define the equivalence or differenaan:sameAsowl:different owl:AllDifferent)
are lost.

5.2 Analysis of the interoperability

With the previous information about the behaviour of thd to@ step of the experiment,
we provide the analysis of its interoperability with all to®ls participating in the bench-
marking (including itself). For performing such analysiss have considered the results
of its interoperability when this is the origin and the deation of the interchange with
the other tools.

First, we present a table summarizing the results of theaperability for each tool.
Then, we present some interoperability issues not detactdoe analysis of the import

60 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

and export operation. Finally, we highlight the ontologyngmnents that the tools are
able to interchange.

5.2.1 Summary of the interoperability results

In the tables below the results of the interoperability between two tools (iTd and T2)
have been grouped into categories, as in the previous seti® results also include the
interchange from one tool to another (from T1 to T2) and vieesa (from T2 to T1). The
results of the table are restrictive, i.e., when a singlecherark in a category has any
problem in one of the directions of the interchange, the wltategory states to have this
problem. The results for any category can be the following:

e SAME. When all the ontologies interchanged between two toolsteesame (all
the benchmarks in the category havdl[dMEROPERABILIT Yesult of SAMB.

e DIFF. When at least one ontology interchanged between two todligfesent and
no execution errors exist (any benchmark in the categorahH$TEROPERABIL-
ITY result of DIFFERENTand no benchmark with @aBXECUTIONresult ofN.E.
exists).

e N.E. When at least one ontology could not be interchanged betiveetools be-
cause of an execution error (any benchmark in the categayahBXECUTION
result ofN.E.- Non Executed).

Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9 show a suynaidhe results of the
interoperability of GATE, Jena, KAON2, Protégé-Franfestege-OWL, SemTalk, SWI-
Prolog, and WebODE with the other tools, respectively.

3Tool names have been shortened in the table: GA=GATE, JEsB&¥KAON2, PF=Protégé Frames,
PO=Protégé OWL, ST=SemTalk, SP=SWI-Prolog, and WE=W&HBO

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 61

29

L00Z 1990100 'S¢

€' TANCT'2'2’TA/L002/93aMM

Categories Benchmarks | GA-GA | JE-GA | K2-GA | PF-GA | PO-GA | SP-GA | ST-GA | WE-GA
Class hierarchies

Named class hierarchies without cycles ISA01-ISA04 | N.E. SAME | N.E. DIFF N.E. N.E. N.E. N.E.
Named class hierarchies with cycles ISA05-ISA06 | N.E. SAME | N.E. DIFF N.E. N.E. DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 | N.E SAME | N.E. DIFF N.E. N.E N.E N.E.
Classes subclass of a cardinality constraint in an objegerty ISA09-ISA12 | N.E N.E. N.E. DIFF N.E. N.E N.E N.E.
Classes subclass of a cardinality constraint in a datatyqeepty ISA13-1SA16 | N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a class intersection ISA17 N.E. SAME | SAME DIFF N.E. SAME | N.E. N.E.
Class equivalences

Equivalent named classes 1ISBO1 SAME SAME | N.E. DIFF SAME SAME | DIFF N.E.
Classes equivalent to a value constraint in an object ptpper ISB02-1SB03 | N.E SAME | N.E. N.E. N.E. N.E N.E N.E
Classes equivalent to a cardinality constraint in an olgemperty ISB04-1SB0O7 | N.E N.E. N.E. DIFF N.E. N.E N.E N.E
Classes equivalent to a cardinality constraint in a dagapypperty | 1ISB08-1ISB11 | N.E. SAME | N.E. N.E. SAME N.E. N.E. N.E
Classes equivalent to a class intersection 1ISB12 SAME SAME | SAME DIFF SAME N.E. N.E. N.E
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | N.E. SAME | N.E. DIFF SAME N.E. N.E. N.E.
Property hierarchies

Object property hierarchies ISD01-ISD02 | N.E. DIFF N.E. DIFF DIFF N.E. N.E. N.E.
Datatype property hierarchies ISD03-ISD04 | DIFF DIFF N.E. DIFF N.E N.E. DIFF N.E.
Properties with domain and range

Object properties without domain or range ISEO1-ISEO2 | N.E. SAME | N.E. DIFF N.E N.E. N.E. N.E.
Object properties with domain and range ISEO3-ISEO4 | N.E. SAME | N.E. DIFF N.E N.E. N.E. N.E.
Object properties with multiple domains or ranges ISEO5-ISE06 | N.E. N.E. N.E. DIFF N.E SAME | N.E. N.E.
Datatype properties without domain or range ISEO7-ISEO8 | N.E. SAME | N.E. N.E. N.E N.E. DIFF N.E.
Datatype properties with domain and range ISE09 N.E. SAME | SAME DIFF N.E SAME | N.E. N.E.
Datatype properties with multiple domains ISE10 SAME SAME | SAME DIFF N.E SAME | DIFF N.E
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | N.E. SAME | N.E. DIFF N.E. SAME | N.E. N.E.
Inverse object properties ISFO3 N.E. SAME | N.E. DIFF N.E. SAME | N.E. N.E.
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISG01 SAME SAME | SAME DIFF N.E. N.E. DIFF N.E.
Symmetric object properties 1ISG02 N.E. SAME | N.E. DIFF SAME SAME | N.E. N.E.
Functional object and datatype properties ISG03-1ISG04 | N.E. SAME | N.E. N.E. N.E. N.E. N.E. N.E.
Inverse functional object properties 1ISG05 SAME SAME | SAME DIFF SAME SAME | DIFF N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Instances of multiple classes ISHO2 DIFF DIFF N.E. N.E. DIFF N.E. N.E. N.E.
Named individuals and object properties 1SI101-1S103 N.E. SAME | N.E. DIFF N.E N.E. N.E. N.E.
Named individuals and datatype properties 1S104-1S105 N.E. SAME | N.E. N.E. N.E N.E. N.E. N.E.
Anonymous individuals and object properties 1SJ01-1SJ02 N.E. N.E. N.E. DIFF N.E N.E. N.E. N.E.
Anonymous individuals and datatype properties 1SJO3 DIFF DIFF DIFF N.E. N.E N.E. N.E. N.E
Individual identity

Equivalent individuals ISK01 N.E. N.E. N.E. DIFF SAME SAME | DIFF N.E.
Different individuals ISK02-1SK03 | N.E. DIFF N.E. N.E. SAME N.E. N.E. N.E.

Table 5.2: Summary of the results of the OWL interoperabdit GATE

SISATVNY ANV S1T1NS3H ALITIdVHIdOd3LNI TMO 'S

€ TANCT'2'2’TA/L002/aaMMI

L00¢ 1990100 'S¢

€9

Categories Benchmarks | GA-JE | JE-JE | K2-JE | PF-JE | POJE | SP-JE | ST-JE | WE-JE
Class hierarchies

Named class hierarchies without cycles ISA01-ISA04 | SAME | SAME | DIFF DIFF SAME | SAME | DIFF N.E
Named class hierarchies with cycles ISA05-ISA06 | SAME | SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISAO8 | SAME | SAME | SAME | DIFF SAME | SAME | N.E DIFF
Classes subclass of a cardinality constraint in an objegesty ISA09-ISA12 | N.E. SAME | N.E DIFF SAME | SAME | N.E N.E
Classes subclass of a cardinality constraint in a datatymeepty ISA13-ISA16 | N.E. SAME | N.E. N.E. SAME | SAME | N.E N.E
Classes subclass of a class intersection ISA17 SAME | SAME | SAME | DIFF SAME | SAME | N.E N.E
Class equivalences

Equivalent named classes 1ISBO1 SAME | SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Classes equivalent to a value constraint in an object ptpper ISB02-ISB03 | SAME | SAME | SAME | DIFF SAME | SAME | N.E DIFF
Classes equivalent to a cardinality constraint in an olgemperty ISB04-1SBO7 | N.E. SAME | N.E. DIFF SAME | SAME | N.E N.E
Classes equivalent to a cardinality constraint in a datappperty | ISB08-ISB11 | SAME | SAME | N.E. N.E. SAME | SAME | N.E N.E.
Classes equivalent to a class intersection ISB12 SAME | SAME | SAME | DIFF SAME | SAME | N.E DIFF
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | SAME | SAME | SAME | DIFF SAME | SAME | N.E. DIFF
Property hierarchies

Object property hierarchies ISD01-ISD02 | DIFF SAME | DIFF DIFF SAME | SAME | DIFF DIFF
Datatype property hierarchies ISD03-ISD04 | DIFF SAME | DIFF DIFF SAME | SAME | DIFF DIFF
Properties with domain and range

Object properties without domain or range ISEO1-ISEO2 | SAME | SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Object properties with domain and range ISEO03-ISEO4 | SAME | SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Object properties with multiple domains or ranges ISE05-ISEO06 | N.E. SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Datatype properties without domain or range ISEO7-ISEO8 | SAME | SAME | SAME | N.E. SAME | SAME | DIFF DIFF
Datatype properties with domain and range ISE09 SAME | SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Datatype properties with multiple domains ISE10 SAME | SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | SAME | SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Inverse object properties ISFO3 SAME SAME | SAME | DIFF DIFF SAME | DIFF DIFF
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISGO1 SAME | SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Symmetric object properties 1ISG02 SAME | SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Functional object and datatype properties ISG03-1SG04 | SAME | SAME | SAME | DIFF SAME | SAME | N.E. DIFF
Inverse functional object properties ISGO5 SAME | SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Instances of multiple classes ISHO2 DIFF SAME | SAME | DIFF SAME | SAME | SAME | DIFF
Named individuals and object properties I1SI01-1S103 SAME | SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Named individuals and datatype properties 1S104-1S105 SAME | SAME | SAME | N.E. SAME | SAME | DIFF DIFF
Anonymous individuals and object properties 1SJ01-1SJ02 N.E. DIFF DIFF DIFF DIFF DIFF N.E. DIFF
Anonymous individuals and datatype properties 1SJO3 DIFF DIFF DIFF N.E. DIFF DIFF N.E. DIFF
Individual identity

Equivalent individuals ISK01 N.E. SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Different individuals ISK02-1ISK03 | DIFF SAME | SAME | DIFF SAME | SAME | N.E. DIFF

Table 5.3: Summary of the results of the OWL interoperabditJena

Bupprewyouag Aujiqesadolaiul IMO 2122 Td

Z8Y.05-¥00z-13l0id 1S

9

L00Z 1990100 'S¢

€' TANCT'2'2’TA/L002/93aMM

Categories Benchmarks | GA-K2 | JE-K2 | K2-K2 | PF-K2 | PO-K2 | SP-K2 | ST-K2 | WE-K2
Class hierarchies

Named class hierarchies without cycles ISA01-ISA04 | N.E. DIFF DIFF DIFF DIFF DIFF DIFF N.E
Named class hierarchies with cycles ISA05-ISA06 | N.E. SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 | N.E. SAME | SAME | DIFF SAME | SAME | N.E DIFF
Classes subclass of a cardinality constraint in an objegerty ISA09-ISA12 | N.E. N.E. N.E. N.E N.E N.E N.E N.E
Classes subclass of a cardinality constraint in a datatyqeepty ISA13-1SA16 | N.E. N.E. N.E. N.E. N.E. N.E. N.E N.E
Classes subclass of a class intersection ISA17 SAME | SAME | SAME | DIFF SAME | SAME | N.E N.E
Class equivalences

Equivalent named classes 1ISBO1 N.E. SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Classes equivalent to a value constraint in an object ptpper ISB02-1SB03 | N.E SAME | SAME | DIFF SAME | SAME | N.E DIFF
Classes equivalent to a cardinality constraint in an olgemperty ISB04-1SB0O7 | N.E N.E. N.E. N.E N.E. N.E N.E N.E
Classes equivalent to a cardinality constraint in a dagapypperty | 1ISB08-1ISB11 | N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a class intersection 1ISB12 SAME SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | N.E. SAME | SAME | DIFF SAME | SAME | N.E. DIFF
Property hierarchies

Object property hierarchies ISD01-ISD02 | N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Datatype property hierarchies ISD03-ISD04 | N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Properties with domain and range

Object properties without domain or range ISEOQ1-ISEO2 | N.E. SAME | SAME | DIFF SAME | SAME | SAME | N.E.
Object properties with domain and range ISEO3-ISEO4 | N.E. SAME | SAME | DIFF SAME | SAME | SAME | DIFF
Object properties with multiple domains or ranges ISEO5-ISE06 | N.E. SAME | SAME | DIFF SAME | SAME | SAME | N.E.
Datatype properties without domain or range ISEO7-ISEO8 | N.E. SAME | SAME | N.E. SAME | SAME | DIFF DIFF
Datatype properties with domain and range ISE09 SAME SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Datatype properties with multiple domains ISE10 SAME SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | N.E. SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Inverse object properties ISFO3 N.E. SAME | SAME | DIFF DIFF SAME | DIFF DIFF
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISGO1 SAME SAME | SAME | DIFF SAME | SAME | SAME | DIFF
Symmetric object properties 1ISG02 N.E. SAME | SAME | DIFF SAME | SAME | SAME | DIFF
Functional object and datatype properties ISG03-1ISG04 | N.E. SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Inverse functional object properties 1ISG05 SAME SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. SAME | SAME | DIFF SAME | SAME | SAME | DIFF
Instances of multiple classes ISHO2 N.E. SAME | SAME | DIFF SAME | SAME | SAME | DIFF
Named individuals and object properties 1S101-1S103 N.E. SAME | SAME | DIFF SAME | SAME | SAME | DIFF
Named individuals and datatype properties 1S104-1S105 N.E. SAME | SAME | N.E. SAME | SAME | DIFF DIFF
Anonymous individuals and object properties 1SJ01-1SJ02 N.E. DIFF SAME | DIFF DIFF DIFF DIFF DIFF
Anonymous individuals and datatype properties 1SJO3 DIFF DIFF SAME | N.E. DIFF DIFF DIFF DIFF
Individual identity

Equivalent individuals ISK01 N.E. SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Different individuals ISK02-1SK03 | N.E. SAME | SAME | DIFF SAME | SAME | N.E. N.E.

Table 5.4: Summary of the results of the OWL interoperabdit KAON2

SISATVNY ANV S1T1NS3H ALITIdVHIdOd3LNI TMO 'S

€ TANCT'2'2’TA/L002/aaMMI

L00¢ 1990100 'S¢

G9

Categories Benchmarks | GA-PF | JE-PF | K2-PF | PF-PF | PO-PF | SP-PF | ST-PF | WE-PF
Class hierarchies

Named class hierarchies without cycles ISA01-ISA04 | DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E
Named class hierarchies with cycles ISA05-ISA06 | DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 | DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Classes subclass of a cardinality constraint in an objegerty ISA09-ISA12 | DIFF DIFF N.E DIFF DIFF N.E. N.E. N.E
Classes subclass of a cardinality constraint in a datatyqeepty ISA13-1SA16 | N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E
Classes subclass of a class intersection ISA17 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E
Class equivalences

Equivalent named classes 1ISBO1 DIFF DIFF DIFF DIFF DIFF N.E. N.E DIFF
Classes equivalent to a value constraint in an object ptpper ISB02-1SB03 | N.E. DIFF DIFF DIFF DIFF N.E N.E DIFF
Classes equivalent to a cardinality constraint in an olgeaperty ISB04-1SB07 | DIFF DIFF N.E DIFF DIFF N.E N.E N.E
Classes equivalent to a cardinality constraint in a dagapypperty | 1ISB08-ISB11 | N.E. N.E. N.E. N.E. N.E. N.E. N.E N.E.
Classes equivalent to a class intersection 1ISB12 DIFF DIFF DIFF DIFF DIFF N.E. N.E DIFF
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | DIFF DIFF DIFF DIFF DIFF N.E. N.E DIFF
Property hierarchies

Object property hierarchies ISD01-ISD02 | DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Datatype property hierarchies ISD03-ISD04 | DIFF DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Properties with domain and range

Object properties without domain or range ISEOQ1-ISEO2 | DIFF DIFF DIFF DIFF DIFF N.E N.E N.E.
Object properties with domain and range ISEO3-ISEO4 | DIFF DIFF DIFF DIFF DIFF N.E N.E DIFF
Object properties with multiple domains or ranges ISEO5-ISEO6 | DIFF DIFF DIFF DIFF DIFF N.E. N.E N.E.
Datatype properties without domain or range ISEO7-ISEO8 | N.E. N.E. N.E. N.E. N.E. N.E. N.E N.E.
Datatype properties with domain and range ISE09 DIFF DIFF DIFF DIFF DIFF N.E. N.E DIFF
Datatype properties with multiple domains ISE10 DIFF DIFF DIFF DIFF DIFF N.E. N.E N.E.
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Inverse object properties ISFO3 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISG01 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Symmetric object properties 1ISG02 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Functional object and datatype properties ISG03-1ISG04 | N.E. DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Inverse functional object properties 1ISG05 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. DIFF DIFF DIFF DIFF N.E. N.E N.E.
Instances of multiple classes ISHO2 N.E. DIFF DIFF DIFF DIFF N.E. N.E DIFF
Named individuals and object properties 1S101-1S103 DIFF DIFF DIFF DIFF DIFF N.E. N.E DIFF
Named individuals and datatype properties 1S104-1S105 N.E. N.E. N.E. N.E. N.E. N.E. N.E N.E.
Anonymous individuals and object properties 1SJ01-1SJ02 DIFF DIFF DIFF DIFF DIFF N.E. N.E DIFF
Anonymous individuals and datatype properties 1SJO3 N.E. N.E. N.E. N.E. N.E. N.E. N.E N.E.
Individual identity

Equivalent individuals ISK01 DIFF DIFF DIFF DIFF DIFF N.E. N.E DIFF
Different individuals ISK02-1SK03 | N.E. DIFF DIFF DIFF DIFF N.E. N.E DIFF

Table 5.5: Summary of the results of the OWL interoperabditProtegé-Frames

Bupprewyouag Aujiqesadolaiul IMO 2122 Td

Z8Y.05-¥00z-13l0id 1S

99

L00Z 1990100 'S¢

€' TANCT'2'2’TA/L002/93aMM

Categories Benchmarks | GA-PO | JE-PO | K2-PO | PF-PO | PO-PO | SP-PO | ST-PO | WE-PO
Class hierarchies

Named class hierarchies without cycles ISA01-ISAO4 | N.E. SAME | DIFF DIFF SAME SAME | DIFF N.E
Named class hierarchies with cycles ISA05-ISA06 | N.E. SAME | SAME | DIFF SAME SAME | DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 | N.E. SAME | SAME | DIFF SAME SAME | N.E DIFF
Classes subclass of a cardinality constraint in an objegigrty ISA09-ISA12 | N.E. SAME | N.E DIFF SAME SAME | N.E N.E
Classes subclass of a cardinality constraint in a datatymeepty ISA13-1SA16 | N.E. SAME | N.E. N.E. SAME SAME | N.E N.E
Classes subclass of a class intersection ISA17 N.E. SAME | SAME | DIFF SAME | SAME | N.E N.E
Class equivalences

Equivalent named classes 1ISBO1 SAME SAME | SAME | DIFF SAME SAME | DIFF DIFF
Classes equivalent to a value constraint in an object ptpper ISB02-1SB03 | N.E. SAME | SAME | DIFF SAME SAME | N.E DIFF
Classes equivalent to a cardinality constraint in an olgemperty ISB04-1SBO7 | N.E. SAME | N.E. DIFF SAME SAME | N.E N.E
Classes equivalent to a cardinality constraint in a datapmpperty | ISB08-ISB11 | SAME SAME | N.E. N.E. SAME SAME | N.E N.E.
Classes equivalent to a class intersection 1ISB12 SAME SAME | SAME | DIFF SAME SAME | N.E DIFF
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | SAME SAME | SAME | DIFF SAME SAME | N.E. DIFF
Property hierarchies

Object property hierarchies ISD01-ISD02 | DIFF SAME | DIFF DIFF SAME SAME | DIFF DIFF
Datatype property hierarchies ISD03-ISD04 | N.E. SAME | DIFF DIFF SAME SAME | DIFF DIFF
Properties with domain and range

Object properties without domain or range ISEO1-ISEO2 | N.E. SAME | SAME | DIFF SAME SAME | DIFF N.E.
Object properties with domain and range ISEO3-ISEO4 | N.E. SAME | SAME | DIFF SAME SAME | DIFF DIFF
Object properties with multiple domains or ranges ISEO5-ISE06 | N.E. SAME | SAME | DIFF SAME SAME | DIFF N.E.
Datatype properties without domain or range ISEO7-ISEO8 | N.E. SAME | SAME | N.E. SAME SAME | DIFF DIFF
Datatype properties with domain and range ISE09 N.E. SAME | SAME | DIFF SAME SAME | DIFF DIFF
Datatype properties with multiple domains ISE10 N.E. SAME | SAME | DIFF SAME SAME | DIFF N.E.
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | N.E. SAME | SAME | DIFF SAME SAME | DIFF DIFF
Inverse object properties ISFO3 N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISG01 N.E. SAME | SAME | DIFF SAME SAME | DIFF DIFF
Symmetric object properties 1ISG02 SAME SAME | SAME | DIFF SAME SAME | DIFF DIFF
Functional object and datatype properties ISG03-1ISG04 | N.E. SAME | SAME | DIFF SAME SAME | DIFF DIFF
Inverse functional object properties 1ISG05 SAME SAME | SAME | DIFF SAME SAME | DIFF N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. SAME | SAME | DIFF SAME | SAME | DIFF N.E.
Instances of multiple classes ISHO2 DIFF SAME | SAME | DIFF SAME SAME | SAME | DIFF
Named individuals and object properties 1SI101-1S103 N.E. SAME | SAME | DIFF SAME SAME | DIFF DIFF
Named individuals and datatype properties 1S104-1S105 N.E. SAME | SAME | N.E. SAME SAME | DIFF DIFF
Anonymous individuals and object properties 1SJ01-1SJ02 N.E. DIFF DIFF DIFF DIFF DIFF N.E. DIFF
Anonymous individuals and datatype properties 1SJO3 N.E. DIFF DIFF N.E. DIFF DIFF N.E. DIFF
Individual identity

Equivalent individuals ISK01 SAME SAME | SAME | DIFF SAME | SAME | DIFF DIFF
Different individuals ISK02-ISK03 | SAME SAME | SAME | DIFF SAME | SAME | N.E. DIFF

Table 5.6: Summary of the results of the OWL interoperabditProtégé-OWL

SISATVNY ANV S1T1NS3H ALITIdVHIdOd3LNI TMO 'S

€ TANCT'2'2’TA/L002/aaMMI

L00¢ 1990100 'S¢

L9

Categories Benchmarks | GA-ST | JE-ST | K2-ST | PF-ST | PO-ST | SP-ST | ST-ST | WE-ST
Class hierarchies

Named class hierarchies without cycles ISA01-ISA04 | N.E. DIFF DIFF N.E. DIFF SAME | SAME | N.E
Named class hierarchies with cycles ISA05-ISA06 | DIFF DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 | N.E. N.E. N.E N.E. N.E DIFF DIFF DIFF
Classes subclass of a cardinality constraint in an objegesty ISA09-ISA12 | N.E. N.E. N.E N.E. N.E N.E N.E. N.E
Classes subclass of a cardinality constraint in a datatygeepty ISA13-ISA16 | N.E. N.E. N.E N.E. N.E. N.E. DIFF N.E
Classes subclass of a class intersection ISA17 N.E. N.E. N.E N.E. N.E. SAME | SAME | N.E
Class equivalences

Equivalent named classes 1ISBO1 DIFF DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Classes equivalent to a value constraint in an object ptpper ISB02-1ISB03 | N.E. N.E. N.E N.E N.E DIFF DIFF DIFF
Classes equivalent to a cardinality constraint in an olgemperty ISB04-1SBO7 | N.E. N.E. N.E N.E N.E N.E N.E. N.E
Classes equivalent to a cardinality constraint in a dagapmoperty | ISB08-1SB11 | N.E. N.E. N.E. N.E N.E. N.E. DIFF N.E.
Classes equivalent to a class intersection ISB12 N.E. N.E. DIFF N.E N.E. DIFF DIFF DIFF
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | N.E. N.E. N.E. N.E N.E. SAME | SAME | DIFF
Property hierarchies

Object property hierarchies ISD01-ISD02 | N.E. DIFF DIFF N.E. DIFF SAME | SAME | DIFF
Datatype property hierarchies ISD03-ISD04 | DIFF DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Properties with domain and range

Object properties without domain or range ISEO1-ISEO2 | N.E. DIFF SAME | N.E DIFF SAME | SAME | N.E.
Object properties with domain and range ISE03-ISEO4 | N.E. DIFF SAME | N.E DIFF SAME | SAME | DIFF
Object properties with multiple domains or ranges ISE05-ISEO06 | N.E. DIFF SAME | N.E DIFF SAME | SAME | N.E.
Datatype properties without domain or range ISEO7-ISEO8 | DIFF DIFF DIFF N.E DIFF DIFF DIFF DIFF
Datatype properties with domain and range ISE09 N.E. DIFF DIFF N.E DIFF DIFF DIFF DIFF
Datatype properties with multiple domains ISE10 DIFF DIFF DIFF N.E DIFF DIFF DIFF N.E.
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | N.E. DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Inverse object properties ISFO3 N.E. DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISGO1 DIFF DIFF SAME | N.E. DIFF SAME | SAME | DIFF
Symmetric object properties 1ISG02 N.E. DIFF SAME | N.E. DIFF SAME | SAME | DIFF
Functional object and datatype properties ISG03-1SG04 | N.E. N.E. DIFF N.E. DIFF DIFF DIFF DIFF
Inverse functional object properties ISGO5 DIFF DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. SAME | SAME | N.E. SAME SAME | SAME | N.E.
Instances of multiple classes ISHO2 N.E. DIFF SAME | N.E DIFF SAME | SAME | DIFF
Named individuals and object properties I1SI01-1S103 N.E. DIFF SAME | N.E DIFF SAME | SAME | DIFF
Named individuals and datatype properties 1S104-1S105 N.E. DIFF DIFF N.E DIFF DIFF DIFF DIFF
Anonymous individuals and object properties 1SJ01-1SJ02 N.E. N.E. DIFF N.E N.E. DIFF DIFF DIFF
Anonymous individuals and datatype properties 1SJO3 N.E. N.E. DIFF N.E N.E. DIFF DIFF DIFF
Individual identity

Equivalent individuals ISKO1 DIFF DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Different individuals ISK02-ISK03 | N.E. N.E. N.E. N.E. N.E. DIFF DIFF N.E.

Table 5.7: Summary of the results of the OWL interoperabditSemTalk

Bupprewyouag Aujiqesadolaiul IMO 2122 Td

Z8Y.05-¥00z-13l0id 1S

89

L00Z 1990100 'S¢

€' TANCT'2'2’TA/L002/93aMM

Categories Benchmarks | GA-SP | JE-SP | K2-SP | PF-SP | PO-SP | SP-SP | ST-SP | WE-SP
Class hierarchies

Named class hierarchies without cycles ISA01-ISA04 | N.E. SAME | DIFF N.E. SAME | SAME | SAME | N.E.
Named class hierarchies with cycles ISA05-ISA06 | N.E. SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 | N.E SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Classes subclass of a cardinality constraint in an objegerty ISA09-ISA12 | N.E SAME | N.E N.E. SAME | SAME | N.E N.E.
Classes subclass of a cardinality constraint in a datatymeepty ISA13-1SA16 | N.E. SAME | N.E. N.E. SAME | SAME | N.E. N.E.
Classes subclass of a class intersection ISA17 SAME | SAME | SAME | N.E. SAME | SAME | SAME | N.E.
Class equivalences

Equivalent named classes 1ISBO1 SAME | SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Classes equivalent to a value constraint in an object ptpper ISB02-1SB03 | N.E SAME | SAME | N.E. SAME | SAME | DIFF N.E
Classes equivalent to a cardinality constraint in an olgemperty ISB04-1SB0O7 | N.E SAME | N.E N.E. SAME | SAME | N.E N.E
Classes equivalent to a cardinality constraint in a dagapoperty | ISB08-ISB11 | N.E. SAME | N.E. N.E. SAME | SAME | N.E. N.E.
Classes equivalent to a class intersection 1ISB12 N.E. SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | N.E. SAME | SAME | N.E. SAME | SAME | SAME | N.E.
Property hierarchies

Object property hierarchies ISD01-ISD02 | N.E. SAME | DIFF N.E. SAME | SAME | SAME | N.E.
Datatype property hierarchies ISD03-ISD04 | N.E. SAME | DIFF N.E. SAME | SAME | DIFF DIFF
Properties with domain and range

Object properties without domain or range ISEOQ1-ISEO2 | N.E. SAME | SAME | N.E. SAME | SAME | SAME | N.E
Object properties with domain and range ISEO3-ISEO4 | N.E. SAME | SAME | N.E. SAME | SAME | SAME | N.E
Object properties with multiple domains or ranges ISEO5-ISEO6 | SAME | SAME | SAME | N.E. SAME | SAME | SAME | N.E
Datatype properties without domain or range ISEO7-ISEO8 | N.E. SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Datatype properties with domain and range ISE09 SAME | SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Datatype properties with multiple domains ISE10 SAME | SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | SAME | SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Inverse object properties ISFO3 SAME | SAME | SAME | N.E. DIFF SAME | DIFF N.E.
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISGO1 N.E. SAME | SAME | N.E. SAME | SAME | SAME | N.E.
Symmetric object properties 1ISG02 SAME | SAME | SAME | N.E. SAME | SAME | SAME | N.E.
Functional object and datatype properties ISG03-1ISG04 | N.E. SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Inverse functional object properties 1ISG05 SAME | SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. SAME | SAME | N.E. SAME | SAME | SAME | N.E.
Instances of multiple classes ISHO2 N.E. SAME | SAME | N.E. SAME | SAME | SAME | N.E.
Named individuals and object properties 1SI101-1S103 N.E. SAME | SAME | N.E. SAME | SAME | SAME | N.E.
Named individuals and datatype properties 1S104-1S105 N.E. SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Anonymous individuals and object properties 1SJ01-1SJ02 N.E. DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Anonymous individuals and datatype properties 1SJO3 N.E. DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Individual identity

Equivalent individuals ISK01 SAME SAME | SAME | N.E. SAME | SAME | DIFF N.E.
Different individuals ISK02-ISK03 | N.E. SAME | SAME | N.E. SAME | SAME | DIFF N.E.

Table 5.8: Summary of the results of the OWL interoperabdit SWI-Prolog

SISATVNY ANV S1T1NS3H ALITIdVHIdOd3LNI TMO 'S

€ TANCT'2'2’TA/L002/aaMMI

L00¢ 1990100 'S¢

69

Categories Benchmarks | GA-WE | JE-WE | K2-WE | PF-WE | PO-WE | SP-WE | ST-WE | WE-WE
Class hierarchies

Named class hierarchies without cycles ISA01-ISAO4 | N.E. N.E. N.E. N.E. N.E N.E. N.E N.E
Named class hierarchies with cycles ISA05-ISA06 | N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 | N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Classes subclass of a cardinality constraint in an objegerty ISA09-ISA12 | N.E. N.E. N.E N.E N.E N.E. N.E N.E
Classes subclass of a cardinality constraint in a datatyqeepty ISA13-1SA16 | N.E. N.E. N.E. N.E. N.E N.E. N.E N.E
Classes subclass of a class intersection ISA17 N.E. N.E. N.E. N.E. N.E N.E. N.E N.E
Class equivalences

Equivalent named classes 1ISBO1 N.E. DIFF DIFF DIFF DIFF N.E DIFF DIFF
Classes equivalent to a value constraint in an object ptpper ISB02-1SB03 | N.E DIFF DIFF DIFF DIFF N.E DIFF DIFF
Classes equivalent to a cardinality constraint in an olgeaperty ISB04-1SB0O7 | N.E N.E. N.E N.E N.E N.E N.E N.E
Classes equivalent to a cardinality constraint in a dagapmpperty | 1ISB08-1ISB11 | N.E. N.E. N.E. N.E. N.E. N.E N.E. N.E.
Classes equivalent to a class intersection 1ISB12 N.E. DIFF DIFF DIFF DIFF N.E DIFF DIFF
Classes defined with set operators

Classes intersection of other classes ISC01-ISC02 | N.E. DIFF DIFF DIFF DIFF N.E DIFF DIFF
Property hierarchies

Object property hierarchies ISD01-ISD02 | N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Datatype property hierarchies ISD03-ISD04 | N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Properties with domain and range

Object properties without domain or range ISEOQ1-ISEO2 | N.E. N.E. N.E. N.E. N.E. N.E N.E. N.E.
Object properties with domain and range ISEO3-ISEO4 | N.E. DIFF DIFF DIFF DIFF N.E DIFF DIFF
Object properties with multiple domains or ranges ISEO5-ISEO6 | N.E. N.E. N.E. N.E. N.E. N.E N.E. N.E.
Datatype properties without domain or range ISEO7-ISEO8 | N.E. DIFF DIFF N.E. DIFF N.E DIFF N.E.
Datatype properties with domain and range ISE09 N.E. DIFF DIFF DIFF DIFF N.E DIFF N.E.
Datatype properties with multiple domains ISE10 N.E. N.E. N.E. N.E. N.E. N.E N.E. N.E.
Relations between properties

Equivalent object and datatype properties ISFO1-ISFO2 | N.E. DIFF DIFF DIFF DIFF N.E. DIFF N.E.
Inverse object properties ISFO3 N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Global cardinality constraints & logical property charact eristics

Transitive object properties 1ISG01 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Symmetric object properties 1ISG02 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Functional object and datatype properties ISG03-1ISG04 | N.E. DIFF DIFF DIFF DIFF N.E. DIFF N.E.
Inverse functional object properties 1ISG05 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Individuals

Instances ISHO1, ISHO3 | N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Instances of multiple classes ISHO2 N.E. DIFF DIFF DIFF DIFF N.E DIFF DIFF
Named individuals and object properties 1SI101-1S103 N.E. DIFF DIFF DIFF DIFF N.E DIFF DIFF
Named individuals and datatype properties 1S104-1S105 N.E. DIFF DIFF N.E. DIFF N.E DIFF N.E.
Anonymous individuals and object properties 1SJ01-1SJ02 N.E. DIFF DIFF DIFF DIFF N.E DIFF DIFF
Anonymous individuals and datatype properties 1SJO3 N.E. DIFF DIFF N.E. DIFF N.E DIFF N.E.
Individual identity

Equivalent individuals ISK01 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Different individuals ISK02-1SK03 | N.E. DIFF N.E. DIFF DIFF N.E. N.E. DIFF

Table 5.9: Summary of the results of the OWL interoperabditWebODE

Bupprewyouag Aujiqesadolaiul IMO 2122 Td

Z8Y.05-¥00z-13l0id 1S

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

5.2.2 Interoperability issues

The results of the interoperability of the tools participgtin the benchmarking depend
not just on the behaviour of the tools during the import angbeoperation (as described
in each section that deals with the tools) but also on theviolig issues identified in the
results:

70

In the case of interchang&®m KAON2 to GATE , when GATE uses ontologies
generated by KAON2, it produces ontologies that make thepewer execution
fail. This is sometime because the ontologies are not vaill @ntologies in the
RDF/XML syntax.

In the case of interchangdsom GATE to Jena, KAON2 and Protége-OWL,
when Jena, KAON2 and Protégé-OWL use ontologies gertetateGATE, they
produce ontologies that make the comparer execution fail.

In the case of interchangdom Protége-Frames to GATE, when GATE uses
ontologies generated by Protégé-Frames, when the gi¢slinclude classes with
multiple instances, GATE produces ontologies that makectmparer execution
fail.

In the case of interchangdsom Protége-Frames to SemTalk when SemTalk
uses ontologies generated by Protégé-Frames, it preduntelogies that make the
comparer execution fail.

In the case of interchangem SemTalk and SWI-Prolog to GATE, when GATE
uses ontologies generated by SemTalk and SWI-Prolog, diyzes ontologies that
make the comparer execution fail.

In the case of interchangdom SemTalk to Jena when Jena uses ontologies
generated by SemTalk, it loses the datatype property loiaes.

In the case of interchangé®m SemTalk to KAON2, when KAON2 uses ontolo-
gies generated by SemTalk, it produces ontologies that riekeomparer execu-
tion fail.

In the case of interchangdé®m GATE, Jena and Protege-OWL to SemTalk,
when SemTalk uses ontologies generated by these tootssés thedfs:subClassOf
and rdfs:subPropertyOfproperties; loses the domain and the range in object or
datatype properties with domain or range; its executids faith classes that are a
subclass or equivalent to value constraints, cardinatitystraints, or class intersec-
tions; its execution fails with classes intersection oeottlasses; and its execution
fails with anonymous individuals with object or datatypemperties.

25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

In the case of interchangé®m Prot ége-Frames and WebODE to SWI-Prolog

SWI-Prolog generates OWL ontologies that are not valid e RDF/ XML syntax
from most of the ontologies produced by WebODE and from ail @htologies
produced by Protégé-Frames.

5.2.3 Components that can be interchanged between the tools

Taking into account these issues, we present a summary gbthbinations of compo-
nents that can only be interchanged between the tools jpatiig in the benchmarking.

Jena - Protege-OWL - SWI-Prolog

These tools can interchange any combination of components.

KAON2 - KAON2, KAON2 - Jena, KAON2 - Prot ége-OWL, and KAON2 - SWI-
Prolog

Named class hierarchies with cycles.

Classes that are a subclass of a value constraint in an qifgurty.
Classes that are a subclass of a class intersection.

Equivalent named classes.

Classes equivalent to a value constraint in an object ptpper
Classes equivalent to a class intersection.

Classes intersection of other classes.

Object and datatype properties with or without domain ogearor with multiple
domains or ranges.

Equivalent object and datatype properties.

Inverse, transitive, symmetric and inverse functionakobproperties.
Functional datatype properties.

Instances of single and multiple classes.

Named and anonymous individuals and object or datatypesptiep.

Equivalent and different individuals.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 71

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

SemTalk - SemTalk and SemTalk - SWI-Prolog

Named class hierarchies without cycles.

Classes that are a subclass of a class intersection.
Classes intersection of other classes.

Object property hierarchies.

Object properties with or without domain or range or with tipké domains and
ranges.

Transitive and symmetric object properties.
Instances of single and multiple classes.

Named individuals and object properties.

GATE - SWI-Prolog

Classes that are a subclass of a class intersection.
Equivalent named classes.

Object properties with multiple domains or ranges.
Datatype properties with domain and range.
Datatype properties with multiple domains.
Symmetric and inverse functional object properties.

Equivalent individuals.

GATE - JENA

72

Equivalent named classes.

Classes equivalent to a cardinality constraint in a dagaprpperty.
Classes equivalent to a class intersection.

Classes intersection of other classes.

Inverse and inverse functional object properties.

Equivalent and different individuals.

25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

GATE - Protége-OWL

e Equivalent named classes.

Classes equivalent to a cardinality constraint in a datapypperty.

Classes equivalent to a class intersection.

Classes intersection of other classes.

Symmetric and inverse functional object properties.

Equivalent and different individuals.

GATE - GATE

e Equivalent named classes.
e Classes equivalent to a class intersection.
e Datatype properties with multiple domains.

¢ Transitive and inverse functional object properties.

KAONZ2 - SemTalk

e Object properties with or without domain or range or with tipiéé domains and
ranges.

e Transitive and symmetric object properties.
¢ Instances of single and multiple classes.

e Named individuals and object properties.

GATE - KAON2

e Classes that are a subclass or equivalent to a class irtersec
e Datatype properties with domain and range or with multigdendins.

¢ Transitive and inverse functional object properties.

SemTalk - Jena and SemTalk - Progége-OWL

¢ Instances of multiple classes.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 73

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

SemTalk - GATE

These tools cannot interchange any combination of compenen

Protége-Frames - all

These tools cannot interchange any combination of compenen

WebODE - all

Taking into account these issues, WebODE cannot interehaiiitp the other tools any
combination of components.

74 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

Chapter 6

Conclusion

by RAUL GARCIA-CASTRO

This document is intended to serve not just as a summary @Wike interoperability
benchmarking, but as a guide for people who want to perfonmctu@arking activities or
interoperability evaluations over the Semantic Web tetimo

The main goal fulfilled with this work is the assessment ofdterent interoperability
of nine best-in-class Semantic Web tools. The assessmergrbaided us with results
about the detailed behaviour of the tools not just when apterating with other tools but
also when importing and exporting OWL ontologies. We hage aeveloped the IBSE
tool, an easy-to-use tool for large-scale evaluationsefriteroperability of the Semantic
Web technology when using an interchange language.

As in the case of the RDF(S) Interoperability Benchmarkihg, benchmarking pro-
cess has been long. And as a result, we have discovered ¢hateéhoperability between
the tools is very low and that real interoperability in therfaamtic Web requires the in-
volvement of tool developers. In some cases, this is duegtogpresentation formalisms
managed by the tools, but in other cases it is due to defet¢k®itools or to the way of
serializing the ontologies, which has a high impact in ioparability.

This panoramic, although disappointing, can serve to pteri® second of our goals:
the improvement of the tools. Although this goal is out of sewpe just now because each
tool is developed by independent organizations, we hopertieeless, that the results we
provide may help in their improvement.

The benchmarking results are now publicly available in tledo\W machine-processable
format. Thus, anyone can use them for comparing them witih ¢lnan results or for rea-
soning about them.

The tool developers that have participated in this benckimgmwill receive the final
version of this document, although they are already infarai@out the recommendations
proposed for improving their tools.

Any developer of Semantic Web tools can benefit from this wayrkearning the cor-

75

6. CONCLUSION

rect or incorrect behaviour of the other tools. They can ats®the IBSE tool to evaluate
their tools, either in the early stages of their developnoenwhen the development has
finished, and to monitor their improvement.

The results of the benchmarking can also be used by ontoleggiabers that have
problems when interchanging ontologies between toolsaintfant to foresee the results
of a future interchange.

The IBSE tool can also be used in other scenarios. It can be fesesvaluating
the interoperability of tools using other languages asrafi@nge. Right now the tool
allows performing experiments using RDF(S) as interchdagguage. Other tools should
have to implement the corresponding method in the IBSE todlthen use the RDF(S)
Import Benchmark Suifeas ontology dataset. The IBSE tool can also be used to eealuat
the importers and exporters of any tool because the intembpity results (even of one
tool with itself) provide useful insights about the behavi@f the tool importers and
exporters.

Ihttp:// know edgeweb. semant i cweb. or g/ benchmar ki ng. nt er oper abi | i ty/
rdf s/ rdf s_i nport benchmark_suite. htn

76 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

Appendix A

List of benchmarks of the OWL Lite
Import Benchmark Suite

This appendix contains a list of the benchmarks that compges©WL Import Bench-
mark Suite, which are described by:

A unique identifier (i.e.l1SA01 wherelS denotes the OWL import benchmark suite,
A is the group to which the benchmark belongs to, @hé a number)

A description of the ontology in natural language (eligpport a single class

The description of the ontology in the Description Logicsnfalism. All these
descriptions can be found in Appendix B.

A graphical representation of the ontology, that uses thatiom shown in Figure
Al

77

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

LEGEND

Crame ,

is-a

owlClass, owl.ObjectProperty John | —_— —_—
o owt. DatatypeProperty instance rdfsrange rdftype
i d inv
el
homsimins: rdfs:domain owkinverseOf
cardinality constraint |
hasCar/ anlonrumom
owls\VF(Car
walue constrasnt
sC, sP
rdfssubllassOf or

owlF P = owl FunctionalProparty, owl FP = owl irversefunctionalPropearty

wifsabivoperylr owlSF = owlSimmetricProperty, owl.TF = owt TransitiveProperty
eC, eP
——
owlequvaientDiass ot aiDitferent = owkallDitferent and owldistinctMember,
R roperty different = owldifferentFrom, sameds = owl:samehs,
owlaVF = owl-allValuesFrom, owlisVF = owl:someValuesFrom,
hasName minCard = owl:minCardinality, maxCard = owl:maxCardinality,
hasChild Card = owl:cardinality,
—_—
relations

Figure A.1: Notation used in the benchmarks

Class benchmarks

Group A: Class hierarchies

ID Description Graphical representation

ISAO1 Import a single class

Import a single class, subclass of » = =
ISA02 second class which is subclass of Gﬂ@ ?'Cv@j) “ch@jgﬁ}
third one
_ Cr
ISAD3 Import a class that is subclass o

two classes

Import several classes subclass qf

Ctn >
ISA04 single class @
Import two classes, each subclasg « .
ISAOS | e Chen DD

sC

(continued on next page)

78 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking

IST Proj&sT-2004-507482

(continued from previous page)

. r“\sc

ISA06 Import a class, subclass of itself

Import a class which is subclass

of an anonymous class defined p .cag ; sC wasBorn /

. ellanc —- "

ISAO7 an owl:someValuesFrom value coh - WEEVFSpain)

straint in an object property

Import a class which is subclass p*

an anonymous class defined by ja , sC wasBorn /
| A . Italian — :
SA08 owl:allValuesFrom value constraimt owkalFialy)

in an object property

Import a class which is subclass

of an anonymous class defined p .m,w sC worksin /
ISAQ9 an owl:minCardinality=0 cardinal- - minCaniC)

ity constraint in an object property

Import a class which is subclass

of an anonymous class defined p .mm, _SC _ (hasAffiliation
ISAL0 an owl:maxCardinality=1 cardinal- - macans

ity constraint in an object property

Import a class which is subclass pf

an anonymous class defined by ja 4 sC hasMother /
ISALL owl:cardinality=1 cardinality cont Card(1)

straint in an object property

Import a class which is subclass sC hasAffiliation /

of an anonymous class define(- minCard(0)
ISA12 by an owl:minCardinality=0 and

an owl:maxCardinality=1 cardinal- hasAffiliation /

ity constraints in an object property IDEECAIN

Import a class which is subclass

of an anonymous class defined b~ sC hasName /

: rson —_— .

ISAL3 an owl:minCardinality=0 cardinalf minCard(Q)

ity constraint in a datatype property

Import a class which is subclass

of an anonymous class defined b 4 _SC wrotePhDThesis
ISAL4 an owl:maxCardinality=1 cardinal- manCani(l)

ity constraint in a datatype property

Import a class which is subclass p*

; sC hasSSN,

ISALS an anonymous class defined by a

owl:cardinality=1 cardinality cont

straint in a datatype property

Card(1)

KWEB/2007/D1.2.2.1.2/v1.3

(continued on next page)

25. October, 2007 79

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

(continued from previous page)

Import a class which is subclas
of an anonymous class defing
by an owl:minCardinality=0 anc

c rotePhdThesis
minCard(Q)

B wrotePhdThesis

D- maxCard(1)

ISAL6 an owl:maxCardinality=1 cardina
ity constraints in a datatype proj
erty
Import a class which is subclass

ISA17 an anonymous class defined by t

intersection of two other classes

Group B: Class equivalences

ID Description Graphical representation
ISBO1 Import several classes which are a j.;// &c

of them equivalent

—

Import a class which is equivalent

to an anonymous class defined b —__— _¢€C wasBorn /
SBO2 an owl:someValuesFrom value cop G owisViSpain)

straint in an object property

Import a class which is equivalent

to an anonymous class defined b ——— eC wasBorn /
ISBO3 an owl:allValuesFrom value cor- owl:aVFltaly)

straint in an object property

Import a class which is equivalent

to an anonymous class defined p - _eC worksin /
1SBO4 an owl:minCardinality=0 cardinal- - MinCari(0}

ity constraint in an object property

Import a class which is equivalent

to an anonymous class defined p Gy
ISBOS an owl:maxCardinality=1 cardinal- ey

ity constraint in an object property

Import a class which is equiva-

lent to an anonymous class defing eC hasMother /
=D

by an owl:cardinality=1 cardinality

Card(1)

constraint in an object property

80

25. October, 2007

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking

IST Proj&sT-2004-507482

(continued from previous page)

Import a class which is equiva- eC hasAffiliation /
lent to an anonymous class defing T minCard(0)
ISBO7 by an owl:minCardinality=0 and
an owl:maxCardinality=1 cardinal- hasAffiliation /
ity constraints in an object property maxCani(1)
Import a class which is equivalent
to an anonymous class defined p ~— eC hasName /
ISBO8 an owl:minCardinality=0 cardinalt G minCara,
ity constraint in a datatype property
Import a class which is equivalent
to an anonymous class defined p .mmr eC wrotePhDThesis
ISBO9 an owl:maxCardinality=1 cardinal- - manCard(1)
ity constraint in a datatype property
Import a class which is equiva-
ISB10 lent to an anonymous class defing —_— eC hasSSN/
by an owl:cardinality=1 cardinality Card(1)
constraint in a datatype property
Import a class which is equiva- .
lent to an anonymous class de) <20,
) 7 N -
ISB11 fined by an owl.mln(_:ard_lnallty 0 ‘e\
and an owl:maxCardinality=1 caf- e hThas
dinality constraints in a datatype
property
Import a class which is equivalent oC
ISB12 to an anonymous class defined @

the intersection of two other class

Group C: Classes defined with set operators

of several other classes

ID Description Graphical representation
talianMan __ :
Import a class which is intersectigr T— e
ISCO1
of two other classes
1SC0?2 Import a class which is intersectig

KWEB/2007/D1.2.2.1.2/v1.3

25. October, 2007

81

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

Property benchmarks

Group D: Property hierarchies

ID Description Graphical representation
ISDO1 Import a single object property
Import an object property that is
subproperty of another object prop e i rs— F—
ISD02 erty that is subproperty of a thirdC*— T N C
one
ISDO3 Import a single datatype property
Import a datatype property that
is subproperty of another datatyp¢ -, glmw& sP smtm 8P ™
1SD04 property that is subproperty of (a) k‘ C— =7
third one

Group E: Properties with domain and range

ID Description Graphical representation

ISEOL Import a single object property with d
domain a class

ISE02 Import a single object property with r
range a class

Import a single object property with ./"-

ISEO3 domain a class and range anotlne
class }\-.

ﬂ
ISE04 Import a single object property with _,,-?

domain and range the same class \-

P Pen

(continued on next page)

82 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking

IST Proj&sT-2004-507482

(continued from previous page)

Import a single object property wit

=

/-

ranger df s: Li t er al

ISEO5 domain multiple classes and range @ -
class \
Import a single object property with

ISE06 domain a class and range muIt||: hﬂﬁch”d —*
classes \S

ISEO7 Import a single datatype property d
with domain a class

ISE0B Import a single datatype property r @
with ranger df s: Li t er al

- 1o

Import a single datatype property e

ISEQ9 with domain a class and range
rdfs: Literal r\a.
Import a single datatype property /

ISE10 with domain multiple classes anc

hasChildNamed -

Group F: Relations between properties

[1D

| Description

| Graphical representation |

KWEB/2007/D1.2.2.1.2/v1.3

25. October, 2007

(continued on next page)

83

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

(continued from previous page)

grit) o (_Pern
Import several object properties r
with domain a class and range an P
ISFO1 : e d
other class, which are all of them /
. r
equivalent
S D,
-
Import several datatype properti
. . r
ISEO2 with domain a class and range Epl’)
rdf s: Li teral , which are all of
them equivalent /r/

14

Import an object property with do

ISFO3 main a class and range anotre r Porson
class, which is inverse of anothel \

hasChild

object property inv

Group G: Global cardinality constraints andlogical property charac-
teristics

ID Description Graphical representation

Import a single transitive objec @ -
ISGO1 property with domain and range the \

same class

dr

. . . hasFriend — =
Import a single symmetric obje¢
"'\

ISG02 property with domain and range th
(continued on next page)

m

same class

84 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking

IST Proj&sT-2004-507482

(continued from previous page)

Import a single functional objeg

/-

—

ISG03 property with domain a class arc -
range another class \
Import a single functional datatype /

ISG04 property with domain a class arc
ranger df s: Li ter al \
Import a single inverse functional /

ISGO05 object property with domain a clas

and range another class

;s\-

Individual benchmarks

Group H: Single individuals

ID Description Graphical representation
ISHOL Import one class and one individug is-a

that is instance of the class

KWEB/2007/D1.2.2.1.2/v1.3 25.

(continued on next page)

October, 2007 85

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

(continued from previous page)

vidual that is instance of all of then

<>
bd

ISHO2 Importseveralclassesandoneln?] is-a
™~

G

=2, (Person
Import one class and several indi -3

ISHO3 viduals that are instance of the clas Paul

Group I: Named individuals and properties

ID Description Graphical representation
Import one class, one object prop B
erty with domain and range the —
ISI01 class, and one individual of the JMW arl
class that has the object propert
with another individual of the same

class

Import one class, one object prop sa_
erty with domain and range thel knows

1S102 class, and one individual of the
class that has the object propert @

with himself

Import two classes, one objeg is-a

property with domain one class anc >

range the other class, and one ind - — -
i ; hasChild
IS103 vidual of one class that has the op has& T

ject property with an individual of is-3
the other class

(continued on next page)

86 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

(continued from previous page)

Import one class, one datatypt [Mansmin] Isa_
property with domain the class anc
ISI04 range rdfs:Literal, and one individ- M*,,,H ‘r'-

ual of the class that has the dataty|p
property with a literal

Hmarr
Import one class, one datatype "

property with domain the class anc -
ISI05 range rdfs:Literal, and one individ-

ual of the class that has the dataty|p __isa
property with several literals “Mary” | =@

Group J: Anonymous individuals and properties

ID Description Graphical representation

Import one class, one object prop . isa
. . — Pe
erty with domain and range the I—I reon
-
L

1SJ01 class, and one anonymous indiyi;d hm}_ﬁ E‘:_

ual of the class that has the objec r
property with another individual o
the same class

Import two classes, one objeg is-a -
: . X — Parent
property with domain one classl: 5
and range the other class, and ar . il
1SJO2 o | hasChild U
anonymous individual of one class r
that has the object property with ar| John Isa_ Person
individual of the other class _'

13

Person

Import one class, one datatype[= L. Person
property with domain the class anc d o
1ISJO3 range rdfs:Literal, and one anony: pasw ?L_

mous individual of the class that has
the datatype property with a litera Petor |

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 87

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

Group K: Individual identity

ID Description Graphical representation
Maryh e Person
Import one class and two named in -
ISKO1 dividuals of the class that are the “::h\ isa
_\‘ _.'
s [[Mary_]
Mary |
- is-a
Import one class and two named in [Ma88mn | —
ISK02 dividuals of the class that are the ~ -
different different~_ M&.r
ry
ECERTY
Import one class and three namg , “"'*
S Joan — .
ISKO3 individuals of the class that are gl : rsa,--

of them different

=

e

| Ann
allDifferent

Syntax and abbreviation benchmarks

Group L: Syntax and abbreviation benchmarks

[0 a

ID Description
ISLO1 Import several resources with absolute URI references
Import several resources with URI references relative
ISLO2
base URI
Import several resources with URI references transformed
ISLO3 i .
from rdf:ID attribute values
ISLO4 Import several resources with URI references relative t¢ an
ENTITY declaration
Empty node benchmarks
ISLO5 Import several resources with empty nodes
ISLO6 Import several resources with empty nodes shortened
Multiple properties benchmarks
ISLO7 Import several resources with multiple properties
ISLO8 Import several resources with multiple properties shaten
Empty node benchmarks

88

25. October, 2007 KWEB/2007/D1.2.

2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking

ISLO9 Import several resources with typed nodes
ISL10 Import several resources with typed nodes shortened
Empty node benchmarks
ISL11 Import several resources with properties with string éter
ISL12 Import several resources with properties with string #te
as XML attributes
Empty node benchmarks
ISL13 Import several resources with blank nodes with identifie
ISL14 Import several resources with blank nodes shortened
Language identification benchmarks
Import several resources with properties with xml:lang
ISL15 :
tributes

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007

=

at-

IST Proj&sT-2004-507482

89

Appendix B

Description of the ontologies in DL

This appendix provides a formal description of the ontaéedghat compose the OWL Lite

Import Benchmark Suifein the Description Logics formalism.

The formalism presented in this appendix adopts the folgweionventional notation,
presented in [Volz, 2004], to map the OWL axioms in the alesgntax to Description

Logics concepts.

Axiom

DL

Class (C partial

SubC assOf (C1C5)

Di...Dy)

Cass (C conplete D;...D,)
Di sj oi nt G asses(C;...C,)
Equi val ent Cl asses(C;...C,)

CC(Din...MDy)
C=(Dyn...MNDy,)
Ci C =G,
(C’lzcn)
(C1 C Cy)

Property(P
domain D, ...D,)
rangéD; ... D,)
supet@Qs . .. Q)
inverseO¢f)
Symmetric
Transitive
Functional
InverseFunctional

)

TEVP .D;; V1i<i<n
TEVPD; V1<i<n
PEQ; Vi<i<n
P=Q"
P=P
PtrCP
TLCVP
TCEVP™

Sanel ndi vi dual s((o;...0,))
Di fferentl ndividual s((D;...D,))

lhttp:// know edgeweb. semanti cweb. or g/ benckmar ki ngd nt er operabi lity/
p g g g p y

ow /inport.htm

90

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

On the left side it appears the abstract syntax of an OWL axinchon the right side
the corresponding axiom expressed in the Description lsafgianalism.

Table B.1 shows a sample description of an ontology defingéddrOWL Lite Import
Benchmark Suite: each entry comes with a description in hatbral language and in
the Description Logics formalism.

Here there is the description in natural language...
...and here the one in the Description Logics formalism.

Import a single object property with domain a class and range
multiple classes

ISE06 TC VhasC’hz’l.d_.Person

T C VhasChild.Person

T C VhasChild.Human
T C YhasChild.Child

Table B.1: Structure of the tables and a sample instantiatio

ID

Class benchmarks

Group A: Class hierarchies

Import a single class

ISAOL | Person |
Import a single class, subclass of a second class which is
ISA02 subclass of a third one

‘ ChildCEManCPerson ‘

Import a class that is subclass of two classes
ISAO3 ChildC Man

ChildC Person
Import several classes subclass of a single class
ISA04 WomanC Person

ManC Person
Import two classes, each subclass of the other
ISAO5 MaleC Man
ManC Male

Import a class, subclass of itself
ISA06 ‘

WomanC Woman

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 91

B. DESCRIPTION OF THE ONTOLOGIES IN DL

(continued from previous page)

Import a class which is subclass of an anonymous class defjned
by anow : soneVal uesFr omvalue constraint in an object
ISAQ7 property
‘ DriverC JhasCar.Car ‘
Import a class which is subclass of an anonymous class defjned
by anow : al | Val uesFr om val ue constraint in an object
ISA08 property
‘ ItalianC YwasBorn.ltaly ‘
Import a class which is subclass of an anonymous class defined
by anow : m nCar di nal i t y=0 cardinality constraint in an
ISAQ9 object property
‘ EmployeeC >0 worksIn ‘
Import a class which is subclass of an anonymous class defjned
by anow : maxCar di nal i t y=1 cardinality constraint in an
ISA10 object property
‘ ResearcherC <1 hasAf filiation ‘
Import a class which is subclass of an anonymous class defjned
by anowl : car di nal i t y=1 cardinality constraint in an object
ISA11 property
‘ ManC = 1 hasMother ‘
Import a class which is subclass of an anonymous class defjned
by anow : m nCardi nal i t y=0and an
ISAL2 ow : maxCar di nal i t y=1 cardinality constraints in an object
property
ResearcherC >0 hasAf filiation
ResearcherC <1 hasAf filiation
Import a class which is subclass of an anonymous class defjned
by anow : m nCar di nal i t y=0 cardinality constraint in a
ISAL3 datatype property
‘ Person C >0 hasName ‘
Import a class which is subclass of an anonymous class defjned
by anow : maxCar di nal i t y=1 cardinality constraintin a
ISA14 datatype property
‘ Researcher C <1 wrotePhDThesis ‘
Import a class which is subclass of an anonymous class defjned
by anow : car di nal i t y=1 cardinality constraintin a
ISALS datatype property
| Person C= 1hasSSN |

(continued on next page)

25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

(continued from previous page)
Import a class which is subclass of an anonymous class defjned
by anow : m nCardi nal i t y=0and an
ow : maxCar di nal i t y=1 cardinality constraints in a
datatype property
Researcher C >0wrotePhDThesis
Researcher C <1 wrotePhDThesis
Import a class which is subclass of a class defined by the
ISA17 intersection of two other classes
ItalianManC (Italian 11 Male)

ISA16

Group B: Class Equivalences

Import several classes which are all of them equivalent
ISBO1 | ltalian = Italiano = Italienne |
Import a class which is equivalent to an anonymous classetkfin
by anow : soneVal uesFr omvalue constraint in an object
ISBO2 property
\ Driver= JhasCar.Car \
Import a class which is equivalent to an anonymous classetkfin
by anow : al | Val uesFr omvalue constraint in an object
ISBO3 property
‘ Italian= YwasBorn.ltaly ‘
Import a class which is equivalent to an anonymous classetgfin
by anow : m nCar di nal i t y=1 cardinality constraint in an
1SBO4 object property
‘ Employee= >1 worksIn ‘
Import a class which is equivalent to an anonymous classetgfin
by anow : maxCar di nal i t y=1 cardinality constraint in an
ISBOS object property
| Researcher= <1 hasAf filiation |
Import a class which is equivalent to an anonymous classetgfin
by anowl : car di nal i t y=1 cardinality constraint in an object
ISBO6 property
‘ Man= = 1 hasMother ‘

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 93

B. DESCRIPTION OF THE ONTOLOGIES IN DL

(continued from previous page)
Import a class which is equivalent to an anonymous classetgfin
by anow : m nCardi nal i t y=0and an

ISBO7 | ow : maxCar di nal i t y=1 cardinality constraints in an object

property

‘ Researcher= (<1 hasAf filiation 11 >0 hasAf filiation) ‘
Import a class which is equivalent to an anonymous classetgfin
by anow : m nCar di nal i t y=0 cardinality constraintin a

ISBO8 datatype property
‘ Person = >0 hasName ‘
Import a class which is equivalent to an anonymous classetgfin
by anow : maxCar di nal i t y=1 cardinality constraintin a
ISBO9 datatype property
‘ Researcher = <1 wrotePhDThesis ‘
Import a class which is equivalent to an anonymous classetgfin
by anow : car di nal i t y=1 cardinality constraintin a
ISB10 datatype property
| Person == 1hasSSN |
Import a class which is equivalent to an anonymous classetgfin
by anow : mi nCardi nal i t y=0and an
ISB11 ow : maxCar di nal i t y=1 cardinality constraints in a

datatype property
Researcher = >0wrotePhDThesis
Researcher = <1wrotePhDThesis
Import a class which is equivalent to an anonymous classetgfin
ISB12 by the intersection of two other classes
| ltalianMan=(Italian r1 Male)

Group C: Class defined by set operators

ISCOL Import a class which is intersection of two other classes
‘ ItalianMan =(ltalian 1 Male) ‘
1SC02 Import a class which is intersection of several other classe
‘ ItalianMan =(Italian 1 Male 1 Person) ‘

Property benchmarks

Group D: Property hierarchies

94 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking

IST Proj&sT-2004-507482

ISDO1

Import a single object property
\ hasChild |

1ISD02

Import an object property that is subproperty of anotheedbj
property that is subproperty of a third one
‘ isFatherOf C isGrandFatherO f C isAncestorO f ‘

ISDO3

Import a single datatype property
‘ hasAge ‘

ISD0O4

Import a datatype property that is subproperty of another
datatype property that is subproperty of a third one
‘ isInteger C isRational C isReal ‘

Group E: Properties with domain and range

ISEO1

Import a single object property with domain a class
| T C YhasChild~ .Person |

ISEO2

Import a single object property with range a class
| T C VhasChild.Person |

ISEO3

Import a single object property with domain a class and ran
another class

T C VhasChild~ .Father
T C VhasChild.Person

ge

ISEO4

Import a single object property with domain and range theesg

class
T C VhasChild™.Person
T C VhasChild.Person

Am

ISEOS

Import a single object property with domain multiple classad
range a class
T C VYhasChild~ .Mother
T C VhasChild~.Woman
T C VhasChild~ .Person
T C VhasChild.Person

ISEO6

Import a single object property with domain a class and ran
multiple classes

T C VhasChild™.Person

T C VhasChild.Person

T C VhasChild.Human
T C YhasChild.Child

ge

ISEOQ7

Import a single datatype property with domain a class
T C VhasSSN~.Person ‘

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007

95

B. DESCRIPTION OF THE ONTOLOGIES IN DL

(continued from previous page)

ISEO8

Import a single datatype property with rangef s: Li t er al
| T C VhasName.r df s: Li t er al |

ISEO9

Import a single datatype property with domain a class angean
rdfs: Literal
T C YhasName™ .Person
T C VhasName.r df s: Li t er al

ISE10

Import a single datatype property with domain multiple sks
and range df s: Li t er al
T C VhasChildNamed— .Mother
T C VhasChildNamed— .Woman
T C VhasChildNamed.r df s: Li t er al

Group F: Property equivalences

ISFO1

Import several object properties with domain a class andgear
another class, which are all of them equivalent

T C ViivesIn™ .Person
T C ViivesIn.City

livesIn = isResdentIn

=

ISFO2

Import several datatype properties with domain a class ange
rdf s: Li teral ,which are all of them equivalent
T C VhasName™.City
T C VhasName.rdf s: Li t er al
hasName = hasSpanishlName

ISFO3

Import an object property with domain a class and range a&ngth
class, which is inverse of another object property

T C VhasParent~.Child

T C VhasParent.Person

hasChild = hasParent™

Group G: Logical characteristics of properties

ISGO1

Import a single transitive object property with domain aadge
the same class
hasFriend™ C hasFriend
T C VhasFriend~ .Person
T C VhasF'riend.Person

96

(continued on next page)

25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking

(continued from previous page)

1SG02

Import a single symmetric object property with domain and

range the same class

hasFriend = hasFriend™
T C VhasFriend™ .Person
T C VhasFriend.Person

ISGO3

Import a single functional object property with domain assla

and range another class

T C VhasHusband
T C YhasHusband~ .WWoman

T C VhasHusband.Man

1ISG04

Import a single functional datatype property with domairess
and range df s: Li t er al

T E VhasAge
T E VhasAge™.Person
T C VhasAge.rdfs: Literal

1ISGO5

Import a single inverse functional object property with doma
class and range another class

T C YhasTutor™
T C VhasTutor~ .Professor

T C VhasTutor.Student

Individual benchmarks

Group H: Single individuals

ISHO1

Import one class and one individual that is instance of the<t|

Person(PETER)

ISHO2

mport several classes and one individual that is instaheé of
them

Person(PETER)
Father(PETER)
Student(PETER)

ISHO3

Import one class and several individuals that are instahtieeo
class

Person(PETER)
Person(PAUL)
Person(MARY)

Group I: Named individuals and properties

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007

IST Proj&sT-2004-507482

97

B. DESCRIPTION OF THE ONTOLOGIES IN DL

ISI01

Import one class, one object property with domain and rahge
class, and one individual of the class that has the objegigptp
with another individual of the same class
T E VYhasChild—.Person
T C VhasChild.Person
Person(MARY)
Person(PAUL)
hasChild(MARY, PAUL)

1S102

Import one class, one object property with domain and rahge
class, and one individual of the class that has the objegigpty
with himself
T C VhasChild~.Person
T C VhasChild.Person
Person(PAUL)
knows(PAUL, PAUL)

ISI03

Import two classes, one object property with domain onescla
and range the other class, and one individual of one clasb#isz
the object property with an individual of the other class

T C VhasChild~ .Mother
T C VhasChild.Child
Mother(MARY)
Child(PAUL)
hasChild(MARY, PAUL)

1S104

Import one class, one datatype property with domain thescle
and range df s: Li t er al , and one individual of the class thg
has the datatype property with a literal

T E VhasName™.Person
T C VhasName.rdf s: Li teral
Person(MARYSMITH)
hasName(MARYSMITH, “Mary”)

1S

AS
At

ISI05

Import one class, one datatype property with domain thescle
and range df s: Li t er al , and one individual of the class thg
has the datatype property with several literals

T E VhasName™.Person
T C VhasName.rdf s: Li teral
Person(MARYANN)
hasN ame(MARYANN, “Mary”)

AS
At

hasName(MARYANN, “Ann”)

Group J: Anonymous individuals and properties

98

25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-5

07482

1SJO1

Import one class, one object property with domain and rahge
class, and one anonymous individual of the class that has t
object property with another individual of the same class

T C VhasChild~ .Person
T C VhasChild.Person
Person(JOHN)
hasChild(ANON?, JOHN)

aThis denotes annonymous individual

1SJO2

Import two classes, one object property with domain onesclas

and range the other class, and one anonymous individualeof
class that has the datatype property with an individual ef th
other class
T C VhasChild~ .Parent
T E VhasChild.Person
Person(JOHN)
hasChild(ANON, JOHN)

1ISJO3

Import one class, one datatype property with domain thesclas
and range rdfs:Literal, and one anonymous individual of the

class that has the datatype property with a literal
T C YhasName™ .Person
T C VhasName.r df s: Li t er al
hasName(ANON, “Peter”)

Group K: Individual identity

ISKO1

Import one class and two named individuals of the class tieat
the same
Person(MARYANN) = Person(MARY)

ISKO2

Import one class and two named individuals of the class tieat
different

ﬁ(Person(MARYANN) = Person(MARY))

he

on

ISKO3

Import one class and three named individuals of the classitha
all of them different

ﬂ(Person(MARY) = Person(ANN))
ﬂ(Person(MARY) = Person(JOAN))

= (Person(JOAN) = Person(AN N))

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007

99

Appendix C

The benchmarkOntology and
resultOntology ontologies

The benchmarkOntology ontology

<rdf : RDF
xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. org/ 2000/ 01/ r df - schema#"
xm ns: ow ="http://ww. w3. or g/ 2002/ 07/ ow #"
xm ns: xsd="http://wwmw. w3. or g/ 2001/ XM_Schenma#"
xm ns: bo="http://know edgeweb. semant i cweb. or g/ owl / benchmar kOnt ol ogy#"
xm : base="http://know edgeweb. semant i cweb. or g/ owl / benchmar kOnt ol ogy#" >

<ow : Ont ol ogy rdf:about="http://know edgeweb. semanti cweb. or g/ ow / benchmar kOnt ol ogy#" >
<rdf s: commrent >Thi s ontol ogy contains a description
of the benchmark suite inputs.</rdfs:conment>
<ow : versi onl nf 0>24 Cct ober 2006</ ow : ver si onl nf 0>

</ owl : Ont ol ogy>

<!-- classes -->

<ow : d ass rdf: about ="#Benchnmar k" >
</ ow : Cl ass>

<ow : d ass rdf: about ="#Docunent ">
</ow : Cl ass>

<l-- properties -->

<ow : Obj ect Property rdf: about ="#usesDocunent " >
<rdf s: domai n rdf:resource="#Benchmark"/>
<rdf s: range rdf:resource="#Docunment"/>

</ owl : Obj ect Property>

<ow : Dat at ypeProperty rdf: about ="#i nt erchangeLanguage" >

<rdf s: donai n rdf: resource="#Benchnark"/>

<rdf s:range rdf:resource="http://ww. w3. or g/ 2001/ XM_.Schema#stri ng"/>
</ ow : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf:about ="#id">

<rdf s: domai n rdf:resource="#Benchmark"/>
<rdf s:range rdf:resource="http://ww. w3. or g/ 2001/ XM_.Schema#stri ng"/>

100

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

</ ow : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf:about ="#aut hor">

<rdf s: domai n rdf:resource="#Benchmark"/>

<rdf s:range rdf:resource="http://ww. w3. or g/ 2001/ XM_.Schema#stri ng"/>
</ ow : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#version">

<rdf s: domai n rdf:resource="#Benchmark"/>

<rdf s:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schenma#stri ng"/>
</ owl : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#docunent URL" >

<rdf s: domai n rdf:resource="#Docunent"/>

<rdfs:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schenma#stri ng"/>
</ owl : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#ont ol ogyNane" >

<rdf s: domai n rdf:resource="#Docunent"/>

<rdfs:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schema#stri ng"/>
</ owl : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#ont ol ogyNanespace" >

<rdfs: donai n rdf:resource="#Docunent"/ >

<rdfs:range rdf:resource="http://ww. w3. or g/ 2001/ XM_.Schema#stri ng"/>
</ ow : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#representati onLanguage" >
<rdfs: donai n rdf:resource="#Docunent"/ >
<rdf s:range rdf:resource="http://ww. w3. or g/ 2001/ XM_.Schema#stri ng"/>
</ ow : Dat at ypePr operty>
</ rdf : RDF>

The resultOntology ontology

<rdf : RDF
xm ns: rdf =" http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. org/ 2000/ 01/ r df - schema#"
xm ns: owl ="http://ww. w3. or g/ 2002/ 07/ ow #"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma#"
xm ns:ro ="http://know edgeweb. semanti cweb. org/ ow / r esul t Ont ol ogy#"
xm : base="http://know edgeweb. semanti cweb. or g/ ow /r esul t Ont ol ogy#" >

<ow : Ont ol ogy rdf:about="http://know edgeweb. semanti cweb. org/ ow / r esul t Ont ol ogy#" >
<rdf s: comrent >Thi s ont ol ogy contai ns a description of
the benchmark suite results. </rdfs: coment >
<ow : versi onl nf 0>24 Cct ober 2006</ ow : ver si onl nf 0>

</ owl : Ont ol ogy>

<l-- classes -->

<ow : d ass rdf: about ="#Tool ">
</ ow : Cl ass>

<ow : O ass rdf: about ="#Benchnmar kExecut i on" >
</ow : Cl ass>

<ow : 0 ass rdf: about ="#Result">
</ow : Cl ass>

<l-- subcl asses -->

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 101

C. THEBENCHMARKONTOLOGXND RESULTONTOLOGWOWNTOLOGIES

<ow : 0 ass rdf: about ="#St eplResul t">
<rdfs: subd assOf rdf:resource="#Result"/>
</ ow : Cl ass>

<ow : d ass rdf: about ="#St ep2Resul t ">
<rdfs:subC assOf rdf:resource="#Result"/>
</ ow : Cl ass>

<ow : d ass rdf: about ="#Fi nal Resul t ">
<rdfs:subC assOf rdf:resource="#Result"/>
</ ow : Cl ass>

<l-- properties -->

<ow : Obj ect Property rdf: about ="#hasSt eplResul t">
<rdf s: donai n rdf:resource="#Benchnar kExecuti on"/>
<rdf s:range rdf:resource="#Result"/>

</ owl : Obj ect Property>

<ow : Obj ect Property rdf: about ="#hasSt ep2Resul t" >
<rdf s: domai n rdf:resource="#Benchmar kExecuti on"/>
<rdf s:range rdf:resource="#Result"/>

</ owl : Obj ect Property>

<ow : Obj ect Property rdf: about ="#hasFi nal Resul t">
<rdf s: domai n rdf:resource="#Benchmar kExecuti on"/>
<rdf s: range rdf:resource="#Result"/>

</ owl : Obj ect Property>

<ow : Dat at ypeProperty rdf: about ="#t ool Nane" >

<rdf s: domai n rdf:resource="#Tool "/ >

<rdfs:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schenma#stri ng"/>
</ owl : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#t ool Versi on">

<rdf s: domai n rdf:resource="#Tool "/ >

<rdfs:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schenma#stri ng"/>
</ owl : Dat at ypePr operty>

<ow : Obj ect Property rdf: about ="#ori gi nTool ">
<rdf s: domai n rdf:resource="#Benchmar kExecuti on"/>
<rdf s: range rdf:resource="#Tool "/>

</ owl : Obj ect Property>

<ow : Obj ect Property rdf: about ="#desti nati onTool ">
<rdf s: domai n rdf:resource="#Benchmar kExecuti on"/>
<rdf s: range rdf:resource="#Tool "/>

</ owl : Obj ect Property>

<ow : Obj ect Property rdf: about ="#of Benchnmar k" >
<rdf s: domai n rdf:resource="#Benchmar kExecuti on"/>
<rdf s: range rdf:resource="#Benchmark"/>

</ owl : Obj ect Property>

<ow : Dat at ypeProperty rdf: about ="#i nt erchange" >

<rdf s: domai n rdf:resource="#Result"/>

<rdfs:range rdf:resource="http://ww. w3. or g/ 2001/ XM_.Schema#stri ng"/>
</ ow : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#i nf or mati onAdded" >

<rdf s: domai n rdf:resource="#Result"/>

<rdfs:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schenma#stri ng"/>
</ owl : Dat at ypePr operty>

102 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

<ow : Dat at ypeProperty rdf:about="#i nf ormati onRenobved" >

<rdf s: domai n rdf:resource="#Result"/>

<rdfs:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schenma#stri ng"/>
</ ow : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf: about ="#execution">

<rdf s: domai n rdf:resource="#Result"/>

<rdf s:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schema#stri ng"/>
</ owl : Dat at ypePr operty>

<ow : Dat at ypeProperty rdf:about="#ti nmestanmp">

<rdf s: domai n rdf:resource="#Benchmar kExecuti on"/>

<rdf s:range rdf:resource="http://ww. w3. org/ 2001/ XM_Schena#dat eti me"/ >
</ owl : Dat at ypePr operty>

</ rdf : RDF>

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 103

Bibliography

[Arpirez et al,, 2003] J.C. Arpirez, O. Corcho, M. Fernandez-Lopez, Andsbmez-
Pérez. WebODE in a nutshelAl Magazine 24(3):37-47, Fall 2003.

[Bull etal, 1999] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, d&RdA. Davey.
A methodology for benchmarking java grande application®rbceedings of the ACM
1999 conference on Java Grangmges 81-88, 1999.

[David et al, 2006] S. David, R. Garcia-Castro, and A. Gomez-Pérefinihg a bench-
mark suite for evaluating the import of OWL lite ontologiek Proceedings of the
OWL.: Experiences and Directions 2006 workshop (OWL2088)ens, Georgia, USA,
November 10-11 2006.

[Garcia-Castro and Gomez-Pérez, 2005] R. Garciar€amtd A. Gomez-Pérez. A
method for performing an exhaustive evaluation of RDF()anters. InProceedings
of the Workshop on Scalable Semantic Web Knowledge BasthSy«$SSWS20Q5)
number 3807 in LNCS, pages 199-206, New York, USA, Novemb8b62Springer-
Verlag.

[Garcia-Castret al,, 2004] R. Garcia-Castro, D. Maynard, H. Wache, D. Foxvagl a
R. Gonzalez-Cabero. D2.1.4 specification of a methodolggyeral criteria and
benchmark suites for benchmarking ontology tools. Teaimeport, Knowledge Web,
December 2004.

[Garcia-Castret al,, 2006] R. Garcia-Castro, Y. Sure, M. Zondler, O. Corby,rietB-
Gonzalez, E. Paslaru Bontas, L. Nixon, and M. Mochol. DA 21 benchmarking the
interoperability of ontology development tools using sjifas interchange language.
Technical report, Knowledge Web, June 2006.

[Garcia-Castro, 2005] R. Garcia-Castro. D2.1.5 praes$yof tools and benchmark suites
for benchmarking ontology building tools. Technical rep&nowledge Web, Decem-
ber 2005.

[Garcia-Castro, 2007] R. Garcia-Castro. D6.8.1 tegtiegneon toolkit interoperability.
Technical report, NeOn, September 2007.

104

D1.2.2.1.2 OWL Interoperability Benchmarking IST Proj&eT-2004-507482

[Guoet al, 2005] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWhawl-
edge Base System3ournal of Web Semantics 3(Z2):158-182, 2005.

[Ma et al, 2006] Li Ma, Yang Yang, Zhaoming Qiu, GuoTong Xie, Yue Pamj &heng-
ping Liu. Towards a complete OWL ontology benchmark. In Yteésand J. Domingue,
editors,Proceedings of the 3rd European Semantic Web Conferent®@(EX®06) vol-
ume 4011 oLNCS pages 125-139, Budva, Montenegro, June 11-14 2006.

[McGuiness and van Harmelen, 2004] D.L. McGuiness and FHaimelen. OWL web
ontology language overview. Technical report, W3C, 10 &abr 2004.

[Shiraziet al, 1999] B. Shirazi, L.R. Welch, B. Ravindran, C. Cavanaugh,YBna-
mula, R. Brucks, and E. Huh. Dynbench: A dynamic benchmaitie $or distributed
real-time systems. IRroc. of the 11 IPPS/SPDP’99 Workshopsges 1335-1349.
Springer-Verlag, 1999.

[Sim et al, 2003] S. Sim, S. Easterbrook, and R. Holt. Using benchmgrto advance
research: A challenge to software engineeringroceedings of the 25th International
Conference on Software Engineering (ICSE,Q8)ges 74-83, Portland, OR, 2003.

[Stefaniet al,, 2003] F. Stefani, D. Macii, A. Moschitta, and D. Petri. FFéri@hmark-
ing for Digital Signal Processing Technologies. 1idth IMEKO World Congress
Dubrovnik, Croatia, 22-27 June 2003.

[Volz, 2004] Rapahel Volz.Web ontology reasoning with logic databasézhD thesis,
AIFB Karlsruhe, 2004.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 105

Acknowledgments

Thanks to all the people that have participated in the OWeroyerability benchmark-
ing by adapting the IBSE tool for some best-in-class Sernaib tools: Stamatia Da-
siopoulou, Danica Damljanovic, Michael Erdmann, Christdllies, Roman Korf, Diana
Maynard, York Sure, Jan Wielemaker, and Philipp Zaltenb&ghhout their effort, this
could have not been possible.

Thanks to Rosario Plaza for reviewing the grammar of thisrdedble.

106

Related deliverables

A number of Knowledge web deliverables are clearly relateithis one:

Project| Number | Title and relationship
KW D2.1.4 | Specification of a methodology, general criteria and bencht
mark suites for benchmarking ontology tools presented the
benchmarking methodology that has been used for benchnggrki
the interoperability of ontology development tools usingrgS)
and OWL as interchange languages.
KW | D1.2.2.1.1] Benchmarking the interoperability of ontology developmen
tools using RDF(S) as interchange languagélescribed the
benchmarking of the interoperability of ontology develaporh
tools using RDF(S) as interchange language that took place i
Knowledge Web, including the analysis of the results olgtdin

107

