
D1.2.2.1.2 Benchmarking the

interoperability of ontology development

tools using OWL as interchange language

Raúl Garcı́a-Castro (UPM)
with contributions from:

Stefano David (UPM)
Jeśus Prieto-Gonźalez (UPM)

Abstract.
EU-IST Network of Excellence (NoE) FP6-507482 KWEB
Deliverable D1.2.2.1.2 (WP 1.2 & WP2.1)

This deliverable describes the benchmarking of the interoperability of ontology development tools
using OWL as interchange language that has taken place in Knowledge Web, including the anal-
ysis of the results obtained.
Keyword list: benchmarking, benchmark suite, interoperability, OWL

Copyright c© 2007 The contributors

Document Identifier KWEB/2007/D1.2.2.1.2/v1.3
Project KWEB FP6-507482
Version v1.3
Date 25. October, 2007
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

University of Aberdeen (UNIABDN)
Kings College
AB24 3FX Aberdeen
United Kingdom
Contact person: Jeff Pan
E-mail address: jpan@csd.abdn.ac.uk

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
Free University of Bozen-Bolzano
Universidad Politécnica de Madrid
University of Karlsruhe
University of Sheffield
Vrije Universiteit Amsterdam

Changes

Version Date Author Changes

0.1 08.08.07 Raúl Garcı́a-Castro First draft
0.2 13.08.07 Raúl Garcı́a-Castro Inserted the organization of the bench-

marking
0.3 05.09.07 Raúl Garcı́a-Castro Inserted the interoperability results for

SemTalk and WebODE
0.4 14.09.07 Raúl Garcı́a-Castro Improved the visualization of the inter-

operability results
0.5 16.09.07 Raúl Garcı́a-Castro Inserted the description of the IBSE tool
1.0 18.09.07 Raúl Garcı́a-Castro First version of the document sent to the

Quality Assessor (Asunción Gómez-
Pérez)

1.1 10.10.07 Raúl Garcı́a-Castro Included the comments from Rosario
Plaza

1.2 11.10.07 Raúl Garcı́a-Castro Removed the results of the NeOn
Toolkit

1.3 25.10.07 Raúl Garcı́a-Castro Included the comments from the Qual-
ity Controller (Sean Bechhofer)

Executive Summary

In 2006, an activity for benchmarking the interoperabilityof ontology development tools
using OWL as interchange language was started in Knowledge Web; its goal was to learn
about the actual interoperability between these tools and,if possible, to improve it.

This deliverable includes the work performed in workpackages 1.2 and 2.1 during the
benchmarking activity and presents an overview of the benchmarking and its main results;
it comprises the following topics:

• Instantiation of the Knowledge Web benchmarking methodology for carrying out
the benchmarking.

• Definition of the ontology dataset used in the benchmarking.

• Description of the evaluation infrastructure that automates the execution of the ex-
periments.

• Detailed analysis of the results obtained in the benchmarking.

Contents

1 Introduction 1

2 Benchmarking OWL interoperability 3
2.1 Plan phase . 4
2.2 Experiment phase . 9

3 Ontology dataset 14
3.1 Benchmarks that depend on the knowledge model 15
3.2 Benchmarks that depend on the syntax 25
3.3 Description of the benchmarks .. 27
3.4 Towards benchmark suites for OWL DL and OWL Full 28

4 The IBSE tool 32
4.1 IBSE requirements . 32
4.2 IBSE implementation . 33
4.3 Using IBSE . 38

5 OWL interoperability results and analysis 40
5.1 Analysis of the import and export operation 40
5.2 Analysis of the interoperability 60

6 Conclusion 75

A List of benchmarks of the OWL Lite Import Benchmark Suite 77

B Description of the ontologies in DL 90

C The benchmarkOntology and resultOntology ontologies 100

iii

Chapter 1

Introduction

by RAÚL GARCÍA-CASTRO

Ontologies enable interoperability among heterogeneous applications. Ideally, on-
tologies defined using the W3C recommended languages (RDF(S) and OWL) should be
correctly interchanged between the different tools that can manage these languages (i.e.,
one person should be able to develop one OWL ontology in his favourite ontology de-
velopment tool and then to use this ontology in a certain annotation tool to annotate his
personal web page).

Nevertheless, the current Semantic Web tools have problemsin interchanging ontolo-
gies, either when these ontologies come from other tools or when they are downloaded
from the web. Sometimes the problems arise because of the different representation for-
malisms used by the tools as not every tool natively supportsRDF(S) and OWL; other
times, however, the problems are caused by defects in the tools.

Not to be aware of these problems causes that the interoperability between the dif-
ferent Semantic Web technologies be unknown, and this is so mainly because the inter-
operability of the tools is not evaluated since there is no easy way of performing these
evaluations.

As a previous activity in Knowledge Web, the benchmarking ofthe interoperability
of ontology development tools was carried out using RDF(S) as interchange language
[Garcı́a-Castroet al., 2006]. As a result, we obtained a clear picture of the RDF(S)inter-
operability of the tools participating in the benchmarking, namely, Corese, Jena, KAON,
Sesame, Protégé, and WebODE.

In the RDF(S) Interoperability Benchmarking the experimentation and analysis of
the results were performed manually. This had the advantageof obtaining high detailed
results, being easier to diagnose problems in the tools and so to improve them. However,
the manual execution and analysis of the results also makes the experimentation costly.
Tools developers have often automated the execution of the benchmark suites but not
always. Furthermore, the results obtained may be influencedby human mistakes since
they depend on the people performing the experiments and on their expertise with the

1

1. INTRODUCTION

tools.

As a second step, in Knowledge Web we have organised the benchmarking of the
interoperability of Semantic Web technology using OWL as interchange language. This
time, the goals are similar to those of the previous benchmarking activity:

• To provide mechanisms for large-scale evaluation of the interoperability of Seman-
tic Web technology using OWL as interchange language.

• To assess and improve the current interoperability of the Semantic Web technology.
This will help to know the current state of the interoperability between the tools and
to correct their defects.

Although we have similar goals to those of the RDF(S) interoperability benchmarking,
our approach to the benchmarking is different. The main changes performed are intended
to broaden the scope of the benchmarking since we consider benchmarking any type of
Semantic Web technology instead of just ontology development tools, and to automate
the experiment execution and the analysis of the results.

By the time of writing this deliverable, nine tools are participating in the bench-
marking: one ontology-based annotation tool: GATE; three ontology repositories: Jena,
KAON2, and SWI-Prolog; and five ontology development tools:the NeOn toolkit, Protégé-
Frames, Protégé-OWL, Semtalk, and WebODE.

This deliverable originated from the joint work of WP 1.2 in the industry area and of
WP 2.1 in the research area. In the latter, the members of WP 2.1 developed the bench-
marking methodology for ontology tools, which we have followed in this benchmarking
activity [Garcı́a-Castroet al., 2004], and the benchmark suites used in the experimenta-
tion [Garcı́a-Castro, 2005], whereas the members of WP 1.2 have organised the bench-
marking activity, performed the experimentation over the tools, and analysed the results.

The benchmarking methodology proposes to produce two documents in the bench-
marking activity: theExperiment Reportwhich presents the analysis of the results of
the experiments; and theBenchmarking Reportwhich gives an understandable summary
of the benchmarking activity and its results and conclusions. These two documents are
included in the deliverable.

The document is structured as follows: Chapter 2 presents how the OWL Interop-
erability Benchmarking was conducted following the Knowledge Web benchmarking
methodology. Chapters 3 and 4 describe the ontology datasetused for the experimentation
and IBSE, the evaluation infrastructure that automates theexecution of the experiments,
respectively. Chapter 5 includes the analysis of the interoperability, using OWL as inter-
change language, of the Semantic Web tools that participated in the benchmarking. And,
finally, Chapter 6 draws some conclusions from the work presented in the deliverable.

2 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

Chapter 2

Benchmarking OWL interoperability

by RAÚL GARCÍA-CASTRO

This chapter presents how the OWL interoperability benchmarking was organized and
carried out following the methodology for benchmarking ontology tools developed by the
authors in the scope of Knowledge Web [Garcı́a-Castroet al., 2004].

The benchmarking methodology provides the general guidelines that have to be adapted
to this case. Figure 2.1 shows the three phases that compose the benchmarking method-
ology and the tasks to be performed in each phase. As we have already mentioned, this
document comprises both the experiment and the benchmarking reports. Therefore, this
chapter includes the instantiation of this methodology from the beginning of the bench-
marking activity to the end of theExperimentphase, which is the last task performed
before writing this deliverable.

Figure 2.1: The benchmarking methodology for ontology tools

3

2. BENCHMARKING OWL INTEROPERABILITY

2.1 Plan phase

Raúl Garcı́a Castro, from the UPM, assumed the role of the benchmarking initiator and
organised the benchmarking; he carried out the first tasks ofits process.

2.1.1 Benchmarking goals

According to the software benchmarking methodology, the first task to perform is to iden-
tify the benchmarking goals, benefits and costs.

The general goal of all the benchmarking activities that take place in Knowledge Web
is to support the industrial applicability of Semantic Web technology. Therefore, in the
benchmarking we consider any type of Semantic Web technology. In the case of the
RDF(S) Interoperability Benchmarking, the scope was limited to one type of technology,
namely ontology development tools.

We have focused on one problem that currently affects these tools, that of their interop-
erability. Achieving interoperability between Semantic Web technologies is not straight-
forward when these tools do not share a common knowledge model and their users do not
to know the effects of interchanging an ontology from one tool to another.

Therefore,our goal is to evaluate and improve the interoperability of Semantic
Web technology.

Other evaluation criteria could be considered when evaluating Semantic Web tech-
nology, i.e., performance, scalability, robustness, etc.In our case, we have contemplated
only interoperability. An approach for benchmarking the performance and scalability of
ontology development tools can be found in [Garcı́a-Castroand Gómez-Pérez, 2005].

The benefitspursued through this goal are related to the expected outcomes of the
benchmarking and involve different communities that are related to the Semantic Web
tools, namely, the research community, the industrial community, and the tool developers.
These benefits are:

• To create consensual processes and mechanisms for evaluating the interoperability
of these tools.

• To produce recommendations on the interoperability of these tools for users.

• To acquire a deep understanding of the practices used to develop these tools that
affect their interoperability.

• To extract from these practices those that can be consideredbest practices when
developing these tools.

Most of the benchmarkingexpenditure goes to the human resources needed to or-
ganise the benchmarking activity and to perform the experimentation on the tools. Other

4 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

minor expenditure goes to travelling and computers, but it is negligible when compared
to the aforementioned.

2.1.2 Tool and metrics identification

Once we have identified the goals, benefits and costs of the benchmarking, we have to
define its scope, by selecting which software from the organisation will participate in
the benchmarking, which of its functionalities will be measured, and which will be the
evaluation criteria to be used to assess these functionalities.

WebODE [Arpı́rezet al., 2003] is the ontology engineering platform developed by
the Ontology Engineering Group of the UPM and the tool chosento participate in the
benchmarking.

As the goal presented in the previous section is too general,we have refined the scope
of the benchmarking to cover a concrete interoperability scenario.

The most common way used by Semantic Web technology to interoperate and, there-
fore, the one that we have considered, is the indirect interchange of ontologies by storing
them in a shared resource. A direct interchange of ontologies would require developing
interchange mechanisms for each pair of tools, which would be very costly.

In our case, the representation formalism used for interchanging ontologies is OWL
[McGuiness and van Harmelen, 2004] and the shared resource is a local filesystem where
ontologies are stored in text files serialized using the RDF/XML syntax, since this is the
syntax most used by Semantic Web technology.

Also, we have considered that the Semantic Web tools have different knowledge rep-
resentation formalisms. In practice, it may occur that two Semantic Web tools use the
same formalism or that a Semantic Web tool uses the OWL formalism.

In this scenario, interoperability depends on two different tool functionalities, the one
that reads an ontology stored in the tool and writes it into anOWL file (OWL exporter
from now on) and the one that reads an OWL file with an ontology and stores this ontology
into the tool (OWL importer from now on).

If the evaluation criteria must describe in depth the interoperability between the tools,
the experiments to be performed in the benchmarking must provide data that inform how
the tools comply with these criteria. Therefore, to obtain detailed information about tool
interoperability using OWL as interchange language, we need to know:

• The components of the knowledge model of a tool that can be interchanged with
another.

• The secondary effects of interchanging these components, such as insertion or loss
of information.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 5

2. BENCHMARKING OWL INTEROPERABILITY

• The subset of the knowledge models of the tools that the toolscan use to correctly
interoperate.

• The problems that occur when interchanging ontologies between two tools and the
causes of these problems.

The delimited benchmarking scope guides when to identify the organisation members
that are related to the benchmarking and when to form the benchmarking team that will
be the responsible for continuing with the benchmarking in the organisation.

As WebODE is being developed by the Ontology Engineering Group at the UPM, it
was quite straightforward to identify and contact the members of the organisation involved
in WebODE’s RDF(S) importers and exporters and to select among them the members of
the benchmarking team.

2.1.3 Proposal writing

The next tasks to perform are to compile all the benchmarking-related information into a
benchmarking proposal, which will be a reference along the benchmarking, and to present
this proposal to the organisation management so as to obtaintheir approval and support.

To reach a broader audience, the benchmarking proposal did not take the form of a
paper document but of a publicly available web page1.

This web page includes all the relevant information about the benchmarking and is
updated as the benchmarking advances. Currently, the information included in the web
page is the following:

• Motivation.

• Goals.

• Benefits and costs.

• Tools and people involved.

• Description of the experimentation.

• Benchmark suite.

• Planning.

• Related events.

• Results and recommendations.
1http://knowledgeweb.semanticweb.org/benchmarking interoperability/

owl/

6 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

This benchmarking proposal was presented to the manager of the Ontology Engineer-
ing Group and, after her analysis, she agreed on the continuity of the benchmarking and
on the allocation of future resources both for performing the experimentation and for
improving the tool.

2.1.4 Partner selection

Participation in the benchmarking is open to any organisation irrespective of being a
Knowledge Web partner or not. To find other best-in-class organisations willing to partic-
ipate in the benchmarking, the following actions were taken:

• To research different ontology development tools, both freely available and com-
mercial ones, which could export and import to and from OWL and then, to contact
the organisations that develop them.

• To announce the interoperability benchmarking and to call for participation through
the main mailing lists of the Semantic Web area and through lists specific to ontol-
ogy development tools.

Table 2.1 presents the ontology development tools capable of importing and export-
ing OWL, which were found by the time of performing this task (April 2007). Their
developers were directly contacted.

Tool Institution URL
Altova Semanticworks Altova http://www.altova.com/products/semanticworks/
DOE Inst. National de l’Audiovisuel http://homepages.cwi.nl/t̃roncy/DOE/
DOME DERI http://dome.sourceforge.net/
GrOWL University of Vermont http://ecoinformatics.uvm.edu/technologies/index.html
Hozo Osaka University http://www.ei.sanken.osaka-u.ac.jp/hozo/eng/indexen.php
IBM IODT IBM http://www.alphaworks.ibm.com/tech/semanticstk
KAON2 Universitat Karlsruhe http://kaon2.semanticweb.org/
Linkfactory Workbench Language & Computing http://www.landcglobal.com/pages/linkfactory.php
m3t4 Studio Metatomix http://www.m3t4.com/
Medius Visual O. M. Sandpiper Software http://www.sandsoft.com/products.html
Model Futures OWL Editor Model Futures http://www.modelfutures.com/OwlEditor.html
The NeOn Toolkit The NeOn project http://www.neon-toolkit.org/
OntoTrack University of Ulm http://www.informatik.uni-ulm.de/ki/ontotrack/
Powl University of Leizpig http://aksw.informatik.uni-leipzig.de/Projects/Powl
Protégé-Frames Stanford University http://Protégé.stanford.edu/
Protégé-OWL University of Manchester http://Protégé.stanford.edu/
SemTalk Semtation http://www.semtalk.com/
SWOOP University of Maryland http://www.mindswap.org/2004/SWOOP/
Topbraid Composer TopQuadrant http://www.topbraidcomposer.com/
VisioOWL John Flynn http://mysite.verizon.net/jflynn12/VisioOWL/VisioOWL.htm
WebODE U. Politécnica de Madrid http://webode.dia.fi.upm.es/WebODEWeb/index.html

Table 2.1: Ontology development tools capable of importing/exporting OWL

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 7

2. BENCHMARKING OWL INTEROPERABILITY

Tool Version Developer Experimenter
GATE 4.0 Sheffield U. Sheffield U.
Jena 2.3 HP U. Politécnica de Madrid
KAON2 2006-09-22 Karlsruhe U. Karlsruhe U.
NeOn Toolkit 1.0 build 823 The NeOn project The NeOn project
Protégé 3.3 build 395 Stanford U. CERTH
Protégé-OWL 3.3 build 395 Manchester U. CERTH
SemTalk 2.3 Semtation Semtation
SWI-Prolog 5.6.35 U. of Amsterdam U. of Amsterdam
WebODE 2.0 build 140 U. Politécnica de Madrid U. Politécnica de Madrid

Table 2.2: Semantic Web tools participating in the benchmarking

Any Semantic Web tool capable of importing and exporting OWLcan participate in
the benchmarking. Table 2.2 shows the nine tools that are taking part in the benchmark-
ing when writing this deliverable: one ontology-based annotation tool: GATE2; three
ontology repositories: Jena3, KAON24, and SWI-Prolog5; and five ontology development
tools: the NeOn toolkit6, Protégé-Frames7, Protégé-OWL8, Semtalk9, and WebODE10.

The experimentation over the NeOn Toolkit has been performed in the scope of the
NeOn European project11 and the analysis of the NeOn Toolkit interoperability is pre-
sented in [Garcı́a-Castro, 2007]. The results of this interoperability are not included in
this deliverable as they are restricted to the NeOn partners.

The conclusions reached about some of these tools could be applied to other tools that
use the same mechanisms for managing ontologies as the ones used by these tools. For
instance, the KIM12 ontology-based annotation tool has the same representation formal-
ism and uses the same ontology management API as GATE. Hence,it is expected that the
interoperability results of KIM are identical to those of GATE and, therefore, experiments
have not been performed over KIM.

2http://gate.ac.uk/
3http://jena.sourceforge.net/
4http://kaon2.semanticweb.org/
5http://www.swi-prolog.org/packages/semweb.html
6http://www.neon-toolkit.org/
7http://protege.stanford.edu/
8http://protege.stanford.edu/overview/protege-owl.html
9http://www.semtalk.com/

10http://webode.dia.fi.upm.es/
11http://www.neon-project.org/
12http://www.ontotext.com/kim/

8 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

2.1.5 Planning and resource allocation

The main deadline of the benchmarking was imposed by the deadline of this Knowledge
Web deliverable. Therefore, we designed a plan that included thePlan andExperiment
phases, though it just included the first task of theImprovephase (Benchmarking report
writing).

This plan was developed and agreed by all the organisations participating in the bench-
marking; besides, every organisation had to assign a numberof people to perform the
benchmarking.

2.2 Experiment phase

2.2.1 Experiment definition

The design principles taken into account when developing the experimentation and the
benchmark suite are related to the main desirable properties that a benchmark suite must
have and that have been stated by many different authors [Simet al., 2003, Bullet al., 1999,
Shiraziet al., 1999, Stefaniet al., 2003]: accessibility, affordability, simplicity, represen-
tativity, portability, scalability, robustness, and consensus.

The experiments to be performed in the benchmarking must provide data informing
how the Semantic Web tools comply with the evaluation criteria defined in the previous
section:

• The components of the knowledge model of a tool that can be interchanged with
another.

• The secondary effects of interchanging these components, such as insertion or loss
of information.

• The subset of the knowledge models of the tools that these tools can use to correctly
interoperate.

• The problems that occur when interchanging ontologies between two tools and the
causes of these problems.

Interoperability using an interchange language depends onthe capabilities of the tools
to import ontologies from the language (to read one file with an ontology and to store this
ontology in the tool knowledge model) and to export ontologies to the language (to write
into a file an ontology stored in the tool knowledge model). Therefore, the experimenta-
tion provided data not only about the interoperability but also about the OWL importers
and exporters of the tools.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 9

2. BENCHMARKING OWL INTEROPERABILITY

As we mentioned before, participation in the benchmarking is open to any Semantic
Web tool. Nevertheless, the experimentation requires thatthe tools participating be able
to import and export OWL ontologies. This is because in the experimentation, we need
an automatic and uniform way of accessing the tools and the operations performed to
access the tools must be supported by most of the Semantic Webtools. Because of the
high heterogeneity in Semantic Web tools, ontology management APIs vary from one
tool to another. Therefore, the way chosen to automaticallyaccess the tools is through the
following two operations commonly supported by most Semantic Web tools: to import
one ontology from a file, and to export one ontology into a file.

During the experiment, a common group of benchmarks is executed and each bench-
mark describes one input ontology that has to be interchanged between a single tool and
the others (including itself).

Each benchmark execution comprises two sequential steps, shown in Figure 2.2. Start-
ing with a file that contains an ontology (O1), the first step (Step 1) consists in importing
the file with the ontology into the origin tool and then exporting the ontology into a file
using the interchange language (O1’’). The second step (Step 2) consists in importing the
file with the ontology exported by the origin tool (O1’’) into the destination tool and then
exporting the ontology into another file (O1’’’’).

Figure 2.2: The two steps of a benchmark execution

In these steps, there is not a common way for the tools to checkthe results of importing
the ontologies (O1’ and O1’’’), we just have the results of combining the import and
export operations (the files exported by the tools), so we consider these two operations as
an atomic operation. It must be noted, therefore, that if a problem arises in one of these
steps, we cannot know whether the problem was originated when importing or when
exporting the ontology since we do not know the state of the ontology inside each tool.

After a benchmark execution, the results obtained from the ontology described in the
benchmark are three different states, namely, the originalontology (O1), the intermediate
ontology exported by the first tool (O1’’), and the final ontology exported by the second
tool (O1’’’’). From these results, we define the evaluation criteria for abenchmark exe-
cution. These evaluation criteria will be considered inStep 1, Step 2, and in the whole
interchange (Step 1+ Step 2); they are the following:

10 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• Execution (OK/FAIL/C.E./N.E.) informs of the correct execution of a step or the
whole interchange. Its value isOK if the step or the whole interchange is carried
out with no execution problem;FAIL if the step or the whole interchange is carried
out with some execution problem;C.E.(Comparer Error) if the comparer launches
an exception when comparing the original and the final ontologies; andN.E. (Not
Executed) if the second step is not executed because the execution on the first step
failed.

• Information added or lost informs of the information added to or lost from the on-
tology in terms of triples in each step or in the whole interchange. We can know the
triples added or lost inStep 1, in Step 2, and in the whole interchange by compar-
ing the original ontology with the intermediate one, then the intermediate ontology
with the final one, and the original with the final ontology, respectively.

• Interchange (SAME/DIFFERENT/NO) informs whether the ontology has been in-
terchanged correctly with no addition or loss of information. From the previous
basic measurements, we can defineInterchangeas a derived measurement that is
SAME if Executionis OK and Information addedand Information lostare void;
DIFFERENTif Executionis OK but Information addedor Information lostare not
void; andNO if Executionis FAIL, N.E.or C.E..

The experiment described above could use as input ontologies described in any for-
malism (RDF(S), OWL, etc.). Nevertheless, following the goals of the benchmarking, we
use OWL ontologies as input and as interchange. Also, these ontologies must be serialized
in the RDF/XML syntax, as this is the most commonly used by thetools for interchanging
ontologies.

Another issue is which ontologies to use for evaluating the interoperability of the
tools. Any group of ontologies could be used in the experimentation, but using real, large
or complex ontologies can be useless if we do not know whetherthe tools can interchange
simple ontologies correctly. Because one of the goals of thebenchmarking is to improve
the tools, the ontologies must be simple to isolate problem causes and to identify possible
problems.

Therefore, the OWL Lite Import Benchmark Suite13 was used for evaluating the in-
teroperability of the tools; this benchmark suite is commonfor all the tools and con-
tains ontologies with simple combinations of the OWL knowledge model. The complete
description and the procedure followed to define this benchmark suite can be found in
Section 3.

The quality of the benchmark suite to be used is essential forthe results of the bench-
marking. Therefore, once the benchmark suite was defined, itwas published on the bench-
marking web page so that they could be reviewed by the participants. It was also presented
and discussed in several Knowledge Web meetings.

13http://knowledgeweb.semanticweb.org/benchmarking interoperability/
owl/import.html

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 11

2. BENCHMARKING OWL INTEROPERABILITY

The experiments to perform in the benchmarking consist in interchanging each of the
ontologies of the OWL Lite Import Benchmark Suite between all the tools (including
interchanges from one tool to itself) and in collecting the results of these interchanges.

Although the results of the experiment described above could be obtained manually,
the goal of the benchmarking is to automate all the experimentation. Hence, we need
some software application that performs all the experiments automatically.

This software application is IBSE14 (Interoperability Benchmark Suite Executor) and
will be in charge of executing the experiments and of generating visualizations of the
results of these experiments. A description of the IBSE tooland the specific procedure to
follow for using it are detailed in Chapter 4.

2.2.2 Experimentation planning

The planning of the benchmarking was defined so as the deadlines would coincide with
the Knowledge Web deadline when the benchmarking results should be delivered. There-
fore, a plan was designed that included thePlan andExperimentphases, though it just
included the first task of theImprovephase (Benchmarking report writing).

This plan was developed and agreed by all the organisations participating in the bench-
marking; besides, every organisation had to assign a numberof people to perform the
benchmarking.

The planning for the experimentation included the following steps:

1. To develop the IBSE tool.

2. To adapt the IBSE tool to the tools participating in the benchmarking.

3. To execute the experiments.

4. To analyse the results.

2.2.3 Experiment execution and result analysis

Once the IBSE tool was adapted to include all the tools participating in the benchmark-
ing, the experiments were automatically performed. As mentioned in Section 2.1.4, we
obtained interoperability results for nine tools: GATE, Jena, KAON2, the NeOn Toolkit,
Protégé-Frames, Protégé-OWL, SemTalk, SWI-Prolog, and WebODE.

14http://knowledgeweb.semanticweb.org/benchmarking interoperability/
ibse/

12 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

Raúl Garcı́a-Castro compiled all the execution results, made them available in the
benchmarking web page15, and provided a general interpretation of them, shown in Chap-
ter 5.

15http://knowledgeweb.semanticweb.org/benchmarking interoperability/
owl/2007-08-12 Results/htmls/

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 13

Chapter 3

Ontology dataset

by STEFANO DAVID AND RAÚL GARCÍA CASTRO

As we mentioned in the previous chapter, any group of ontologies could be used as
input for the experiment. For example, we could employ a group of real ontologies in
a certain domain, such as ontologies synthetically generated such as the Lehigh Univer-
sity Benchmark (LUBM) [Guoet al., 2005], the University Ontology Benchmark (UOB)
[Ma et al., 2006], and the OWL Test Cases1 (developed by the W3C Web Ontology Work-
ing Group).

These ontologies were designed with specific goals and requirements. Real ontologies
are developed to represent knowledge in some application; the LUBM and the UOB aim
to evaluate the performance of the tools under certain circumstances, and the OWL Test
Cases check if a tool deals correctly with the OWL language, clarify the formal meaning
of the constructors and show examples of their use.

However, as our goal was to improve interoperability, theseontologies could comple-
ment our experiments even though they were designed with specific goals and require-
ments such as these of performance or correctness evaluation. In our case, we aim to
evaluate interoperability with simple OWL ontologies that, although they do not cover
exhaustively the OWL specification, allow highlighting problems in the tools.

To this end, we have defined the OWL Lite Import Benchmark Suite [Davidet al., 2006].
This benchmark suite was intended to evaluate the OWL importcapabilities of Semantic
Web tools, but we now use it to evaluate the interoperabilityof Semantic Web tools by
checking the interchange of ontologies with simple combinations of components of the
OWL Lite knowledge model.

The assumptions concerning the development of the OWL Lite Import Benchmark
Suite, are the following:

• The number of benchmarks should be small. Benchmarking is a process that con-
sumes a lot of resources, and any increase in the number of benchmarks leads to an

1http://www.w3.org/TR/owl-test/

14

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

increment in the time required for performing the experiments and for the subse-
quent analysis of the results.

• The use of OWL Lite to define the ontologies and so to limit the number of bench-
marks. Furthermore, we do not consider annotation, versioning and heading vocab-
ulary terms.

• To use the RDF/XML syntax2 for writing OWL ontologies since this syntax is the
most used by Semantic Web tools for importing and exporting ontologies.

• To define correct ontologies only. The ontologies defined in the benchmarks do not
contain syntactic or semantic errors and, in order to ensurethe syntactic correctness
of the ontologies, we decided to use an OWL validator3.

• To define simple ontologies only. This will allow to easily detecting problems in
the tools.

There are two different issues that affect the correct import of an ontology: a) which
combinations of components of the OWL knowledge model are present in the ontology;
and b) which of the different variants of the RDF/XML syntax are present in the ontology.
Therefore, to isolate each of these issues, we have defined separately the benchmarks that
depend on the OWL knowledge model and those that depend on theOWL syntax chosen.
To increase the usability of the benchmarks, they also have been divided in groups.

The next sections explain how these two types of benchmarks have been defined.

3.1 Benchmarks that depend on the knowledge model

The process we followed to define the ontologies contained inthe benchmarks was the fol-
lowing: we first defined the ontologies in natural language, then we expressed them in the
OWL abstract syntax using the productions, and finally we wrote them in the RDF/XML
syntax.

In the definition of the ontologies, we considered the different possibilities of defining
in OWL classes (with a class identifier, with a value or cardinality restriction on a property,
or with the intersection operator), properties (object anddatatype properties with range,
domain, and cardinality constraints, relations between properties, global cardinality con-
straints, and logical property characteristics), and instances (with named and anonymous
individuals, equivalence and differences among individuals).

Moreover, we decided to discard those vocabulary terms thatdo not contribute to the
OWL expressiveness; these are the annotation, versioning,and heading vocabulary terms.

2http://www.w3.org/TR/rdf-syntax-grammar/
3http://phoebus.cs.man.ac.uk:9999/OWL/Validator

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 15

3. ONTOLOGY DATASET

We considered at most one or two OWL vocabulary terms at a time, and then we
studied all the possible combinations of these terms with the remaining. When the number
of the ontologies defined was large, we pruned the benchmark suite. We also decided to
consider the combinations of the OWL vocabulary terms with acardinality of zero, one,
and two, assuming that the result for higher cardinalities equals the result for cardinality
two.

The reminder of this section presents the ontologies definedfor the benchmarks in
each group, along with the vocabulary terms and the productions (axioms) involved.

The conventions used in the productions are those used in theOWL specification4,
i.e., a start symbol of the language is capitalized, otherwise it is lowercase; terminals are
quoted; alternatives are separated by a colon (|) or given in different productions; square
brackets ([. . .]) indicate elements that occur at most once; and braces ({. . .}) indicate
elements that can occur any number of times, including zero.

3.1.1 Benchmarks for classes

In OWL Lite, classes can be described by a class identifier, bya value or a cardinality
restriction on a property, or by the intersection operator.From these building blocks,
we used the OWL Lite class and restriction axioms and defined the different ways of
describing a class in OWL Lite with these axioms.

We decided to group the benchmarks according to the following criteria: classes and
class hierarchies, class equivalences, and classes definedusing a set operator.

Group A: Classes and class hierarchies

The ontologies of this group describe classes and class hierarchies. This group includes
classes that are a subclass of value restrictions, cardinality restrictions on properties, and
class intersections.

In this group, we focus on vocabulary terms of both RDF(S) andOWL5:

rdfs:subClassOf, owl:Class, owl:Restriction, owl:onProperty,
owl:someValuesFrom, owl:allValuesFrom, owl:cardinality,
owl:maxCardinality, owl:minCardinality, owl:intersectionOf

The productions we used for defining the benchmarks are:

axiom ::= ’Class(’classID modality
{super}’)’

4http://www.w3.org/TR/owl-semantics/syntax.html
5In boldface we highlight the main vocabulary terms of the group.

16 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

modality ::= ’partial’
super ::= classID | restriction
restriction ::= ’restriction(’datavaluedPropertyID

dataRestrictionComponent ’)’
| ’restriction(’individualvaluedPropertyID

individualRestrictionComponent ’)’
dataRestrictionComponent ::= ’allValuesFrom(’ dataRange ’)’

| ’someValuesFrom(’ dataRange ’)’
| cardinality

individualRestrictionComponent ::= ’allValuesFrom(’ classID ’)’
| ’someValuesFrom(’ classID ’)’
| cardinality

cardinality ::= ’minCardinality(0)’ | ’minCardinality(1)’
| ’maxCardinality(0)’ | ’maxCardinality(1)’
| ’cardinality(0)’ | ’cardinality(1)’

dataRange ::= datatypeID | ’rdfs:Literal’
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference

To see how the productions of the OWL abstract syntax are usedin the definition
of the OWL ontologies, let’s consider the ontology of benchmark ISA07. This ontology
contains a class (e.g.,Driver), which is subclass of an anonymous class defined by an
owl:someValuesFromvalue restriction in the object propertyhasCar, which can have only
instances of classCar as range.

In the abstract syntax, we can express this ontology as follows:

Ontology(<http://www.example.org/ISA07.owl>
ObjectProperty(myNs:hasCar)
Class(myNs:Car partial)
Class(myNs:Driver partial
restriction(myNs:hasCar someValuesFrom(myNs:Car)))

)

The ontology is written in the RDF/XML syntax as follows:

<owl:Ontology rdf:about="#" />
<owl:ObjectProperty rdf:about="&myNs;hasCar"/>
<owl:Class rdf:about="&myNs;Driver">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&myNs;hasCar"/>
<owl:someValuesFrom>

<owl:Class rdf:about="&myNs;Car" />

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 17

3. ONTOLOGY DATASET

</owl:someValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Group B: Class equivalence

The ontologies of this group describe class equivalences. These are classes equivalent
to value and cardinality restrictions on properties and classes equivalent to intersection
of classes. Moreover, both this group and group A are intended to test the ability of the
tools in coping with the difference between a subclass relation and an equivalent class
relation. The benchmarks of this group are alike those in Group A; the only difference is
that Group A contains primitive classes (withmodality = ’partial’) and Group B contains
defined classes (withmodality = ’complete’).

In this group, the vocabulary terms concerned are:

owl:equivalentClass, owl:Class, owl:Restriction, owl:onProperty,
owl:someValuesFrom, owl:allValuesFrom, owl:cardinality,
owl:maxCardinality, owl:minCardinality, owl:intersectionOf

The productions we used for defining the benchmarks are:

axiom ::= ’Class(’classID modality
{super}’)’

axiom ::= ’EquivalentClasses(’classID classID {classID}’)’
modality ::= ’complete’
super ::= classID | restriction | description
restriction ::= ’restriction(’datavaluedPropertyID

dataRestrictionComponent’)’
| ’restriction(’individualvaluedPropertyID

individualRestrictionComponent’)’
dataRestrictionComponent ::= ’allValuesFrom(’dataRange’)’

| ’someValuesFrom(’dataRange’)’
| cardinality

individualRestrictionComponent ::= ’allValuesFrom(’classID’)’
| ’someValuesFrom(’classID’)’
| cardinality

cardinality ::= ’minCardinality(0)’ | ’minCardinality(1)’
| ’maxCardinality(0)’ | ’maxCardinality(1)’
| ’cardinality(0)’ | ’cardinality(1)’

dataRange ::= datatypeID | ’rdfs:Literal’
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference

18 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

Group C: Class defined with set operators

The ontologies defined in this group describe classes that are defined by set operators. Al-
though the OWL language has three vocabulary terms for expressing set operations (i.e.,
owl:unionOf, owl:intersectionOf, and owl:complementOf, which correspond to logical
disjunction, conjunction, and negation respectively), OWL Lite can only express classes
that are intersection of other classes.

In this group, the vocabulary terms concerned are:

owl:intersectionOf, owl:Class

The production we used for defining these benchmarks are:

axiom ::= ’Class(’classID modality {super}’)’
modality ::= ’complete’|’partial’
super ::= classID
classID ::= URIreference

3.1.2 Benchmarks for properties

In OWL Lite, properties can be either object properties (properties that link a class with
another class) or datatype properties (properties that link a class with a data value).

We grouped the benchmarks of this group according to the following criteria: descrip-
tion of properties and property hierarchies, properties with domain and range, relations
between properties, and global cardinality constraints and logical characteristics of prop-
erties.

Group D: Property and property hierarchies

The ontologies of this group describe properties and property hierarchies.

In this group, the vocabulary terms concerned are:

owl:ObjectProperty, owl:DatatypeProperty, rdfs:subPropertyOf.

The axioms of the abstract syntax used in this group are:

axiom ::= ’DatatypeProperty(’datavaluedPropertyID
{’super(’datavaluedPropertyID’)}’)’

| ’ObjectProperty(’individualvaluedPropertyID
{’super(’individualvaluedPropertyID’)’}’)’

datatypeID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 19

3. ONTOLOGY DATASET

Group E: Property with domain and range

The ontologies of this group describe properties that have from one to three domain and/or
range constraints. In this group we do not consider properties with no range and domain
constraint since they are included in Group D.

In this group, the vocabulary terms concerned are:

owl:Class, owl:ObjectProperty, owl:DatatypeProperty,
rdfs:range, rdfs:domain, rdfs:Literal.

The axioms of the abstract syntax are:

axiom ::= ’DatatypeProperty(’datavaluedPropertyID
{’domain(’classID’)’}{’range(’dataRange’)’}’)’

| ’ObjectProperty(’individualvaluedPropertyID
{’domain(’classID’)’}{’range(’classID’)’}’)’

datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference

Group F: Relation between properties

The ontologies of this group describe equivalences among object properties and among
datatype properties; they also describe object propertiesthat are inverse one from the
other. It is not possible to define the inverse of a datatype property, since the inverse
relation would have a literal (i.e., a data value) as its domain, and this is not allowed in
OWL Lite.

In this group, the vocabulary terms concerned are:

owl:Class, owl:ObjectProperty, owl:DatatypeProperty,
rdfs:range, rdfs:domain, rdfs:Literal,
owl:equivalentProperty, owl:inverseOf.

In this group we use the following axioms:

axiom ::= ’DatatypeProperty(’datavaluedPropertyID
{’domain(’classID’)’}{’range(’dataRange’)’}’)’

| ’ObjectProperty(’individualvaluedPropertyID
{’domain(’classID’)’}{’range(’classID’)’}’)’

[’inverseOf(’individualvaluedPropertyID’)’]
axiom ::= ’EquivalentProperties(’datavaluedPropertyID

datavaluedPropertyID

20 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

{datavaluedPropertyID}’)’
| ’EquivalentProperties(’individualvaluedPropertyID

individualvaluedPropertyID
{individualvaluedPropertyID}’)’

dataRange ::= datatypeID | ’rdfs:Literal’
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference

Group G: Global cardinality constraints and logical characteristics of properties

In OWL, object and datatype properties can be further described with more expressive
characteristics. The ontologies of this group describe properties with domain and range,
which are also symmetric, transitive, functional, or inverse functional. Datatype proper-
ties can be specified only as functional, since the other specifications would lead to have
literals in the domain of the datatype property, which is forbidden in OWL Lite.

In this group, the vocabulary terms concerned are:

owl:Class, owl:ObjectProperty, owl:DatatypeProperty,
rdfs:range, rdfs:domain, rdfs:Literal,
owl:SymmetricProperty, owl:TransitiveProperty,
owl:FunctionalProperty, owl:InverseFunctionalProperty.

The axiom used for generating ontologies in this group are:

axiom ::= ’DatatypeProperty(’datavaluedPropertyID {[’Functional’]
{’domain(’classID’’)’} {’range(’dataRange’)’}’)’

| ’ObjectProperty(’individualvaluedPropertyID
[’inverseOf(’individualvaluedPropertyID’)’]
[’Functional’ | ’InverseFunctional’ |

’Functional’ ’InverseFunctional’ |
’Transitive’] [’Symmetric’]

{’domain(’classID’)’} {’range(’classID’)’}’)’
dataRange ::= datatypeID | ’rdfs:Literal’
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference

3.1.3 Benchmarks for instances

In OWL Lite, individuals (named or anonymous) are instancesof classes related by prop-
erties to other individuals. There are also special built-in properties for asserting relation-

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 21

3. ONTOLOGY DATASET

ships among them.

Group H: Single individuals

The easiest way to describe an individual is to instantiate aclass: the ontologies of this
group define one or more classes with single or multiple individuals as instances.

In this group the only vocabulary terms concerned areowl:Classand rdf:type. The
OWL Lite axioms used in this group are:

axiom ::= ’Class(’classID’)’
fact ::= individual
individual ::= ’Individual(’[individualID] {’type(’type’)’}

{value}’)’
value ::= ’value(’individualvaluedPropertyID individualID ’)’

| ’value(’individualvaluedPropertyID individual ’)’
| ’value(’datavaluedPropertyID dataLiteral ’)’

type ::= classID
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference
individualID ::= URIreference

Group I: Named individual and properties

Individuals can be related one each other through user defined properties. In this group,
every ontology has one object or datatype property whose domain and range are classes,
and individuals as instance of these classes. Moreover, theobject and datatype properties
are simple (there are no logical characteristics of properties specified) and, in the case of
datatype properties, there are also data values (we only used strings).

The vocabulary terms are used for defining classes and properties with range and
domain constraints. The individuals are instances of theseclasses and properties.

owl:Class, rdf:type, owl:ObjectProperty, owl:DatatypeProperty,
rdfs:range, rdfs:domain, rdfs:Literal.

The axioms covered in this group are:

axiom ::= ’Class(’classID’)’
| ’DatatypeProperty(’ datavaluedPropertyID

{’domain(’ classID’ ’)’}{’range(’ dataRange ’)’}’)’
| ’ObjectProperty(’ individualvaluedPropertyID

{’domain(’ classID ’)’}{’range(’ classID ’)’}’)’

22 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

fact ::= individual
individual ::= ’Individual(’[individualID] {’type(’type’)’}

{value}’)’
value ::= ’value(’individualvaluedPropertyID individualID ’)’

| ’value(’individualvaluedPropertyID individual ’)’
| ’value(’datavaluedPropertyID dataLiteral ’)’

type ::= classID
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference
individualID ::= URIreference

Group J: Anonymous individuals and properties

Individuals in OWL can also be anonymous, i.e., we can refer to them without giving
them an explicit name, but they can be used in assertions.

The vocabulary terms are used for defining classes and properties with range and
domain constraint.

owl:Class, rdfs:range, rdfs:domain, rdf:type, rdfs:Literal,
owl:ObjectProperty, owl:DatatypeProperty

In this group the OWL Lite axioms concerned are:

axiom ::= ’Class(’classID’)’
| ’DatatypeProperty(’datavaluedPropertyID

{’domain(’classID’)’}{’range(’dataRange’)’}’)’
| ’ObjectProperty(’individualvaluedPropertyID

{’domain(’classID’)’}{’range(’classID’)’}’)’
fact ::= individual
individual ::= ’Individual(’[individualID] {’type(’type’)’}

{value}’)’
value ::= ’value(’individualvaluedPropertyID individualID’)’

| ’value(’individualvaluedPropertyID individual’)’
| ’value(’datavaluedPropertyID dataLiteral’)’

type ::= classID
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference
individualID ::= URIreference

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 23

3. ONTOLOGY DATASET

Group K: Individual identity

The OWL vocabulary also contains built-in predicates (i.e., terms) that express basic rela-
tions among individuals. These terms can be used to state that two individuals can either
be the same or different and to state that in a set of individuals, each of them is different
from the others.

The vocabulary terms are used for defining classes and properties with range and
domain constraint.

owl:Class, owl:ObjectProperty, owl:DatatypeProperty, rdfs:range,
rdfs:domain, rdfs:Literal, rdf:type, owl:differentFrom,
owl:sameAs, owl:AllDifferent, owl:distinctMembers

In this group the axioms concerned are:

axiom ::= ’Class(’classID’)’
fact ::= ’SameIndividual(’individualID

individualID
{individualID}’)’

| ’DifferentIndividuals(’individualID
individualID

{individualID}’)’
fact ::= individual
individual ::= ’Individual(’[individualID] {’type(’type’)’}

{value}’)’
value ::= ’value(’individualvaluedPropertyID individualID’)’

| ’value(’individualvaluedPropertyID individual’)’
| ’value(’datavaluedPropertyID dataLiteral’)’

type ::= classID
datatypeID ::= URIreference
classID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference
individualID ::= URIreference

The reader can note that there is not a explicit production that generates the vocabulary
termsowl:AllDifferent and owl:distinctMembers. The abstract syntax of OWL allows
producing only pairwise disjoint individuals, and these two vocabulary terms are, indeed,
intended as a shortcut for expressing that, given a set of individuals, each of them is unique
and different from all the others in the set.

24 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

3.2 Benchmarks that depend on the syntax

These benchmarks check the correct import of OWL ontologieswith the different variants
of the RDF/XML syntax, as stated in the RDF/XML specification.

These syntactic variants are the same as those considered inthe RDF(S) Import Bench-
mark Suite. However, the ontologies defined in each benchmark suite are different since
in one case they are written in RDF(S) and in the other in OWL. The benchmarks that
depend on the syntax form a group on their own (Group L).

These benchmarks are arranged into different categories, each of which checks one
different aspect of the possible RDF/XML variants.

URI references. There are different possibilities, listed below, to refer to a resource on
the web. For each of them we have defined a benchmark.

• Using an absolute URI reference.

...
<rdf:Description

rdf:about="http://www.example.org/ontology#Man"/>
...

• Using an URI reference relative to a base URI.

...
xml:base="http://www.example.org/ontology#"
...
<rdf:Description rdf:about="#Man" />
...

• Using an URI reference transformed fromrdf:ID attribute values.

...
<rdf:Description rdf:ID="Man"/>
...

• Using an URI reference relative to anENTITYdeclaration.

...
<!ENTITY myNs "http://www.example.org/ontology#">
...
xmlns:myNs="http://example.org/ontology#">
...
<rdf:Description rdf:about="&myNs;Man" />
...

Abbreviations. There are cases in which the RDF/XML syntax allows grouping state-
ments with a same subject or shortening the RDF/XML code. We consider here bench-

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 25

3. ONTOLOGY DATASET

marks for empty nodes, multiple properties, typed nodes, string literals, and blank nodes.
For each subcategory we have defined two benchmarks.

• Empty nodes. The following two descriptions ofWoman define exactly the same
concept, but the second is written more compactly.

<rdf:Description rdf:about="#Woman">
<rdf:type>
<rdf:Description rdf:about="&owl;Class">
</rdf:Description>

</rdf:type>
</rdf:Description>

<rdf:Description rdf:about="#Woman">
<rdf:type rdf:resource="&owl;Class" />

</rdf:Description>

• Resources with multiple properties. The following exampleshows how to group
statements related to a resource.
<owl:DatatypeProperty rdf:about="#hasName">
<rdfs:domain rdf:resource="&myNs;Person"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#hasName">
<rdfs:range rdf:resource="&rdfs;Literal"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasName">
<rdfs:domain rdf:resource="&myNs;Person"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</owl:DatatypeProperty>

• Typed nodes. They can be expressed in two equivalent ways:
<rdf:Description rdf:about="#Man">
<rdf:type rdf:resource="&owl;Class"/>

</rdf:Description>

<owl:Class rdf:about="#Man"/>

• A string literal can be expressed as the object of an OWL statement or as XML
attribute.
<myNs:Person rdf:about="#JohnDoe">
<myNs:hasName>John</myNs:hasName>
<myNs:hasSurname>Doe</myNs:hasSurname>

</myNs:Person>

<myNs:Person rdf:about="&myNs;JohnDoe"
myNs:hasName="John" myNs:hasSurname="Doe"/>

• Blank nodes are used to identify unnamed individuals. The following two OWL
snippets identify the same resource.

26 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

<myNs:Person rdf:about="#John">
<myNs:hasChild rdf:nodeID="node1" />

</myNs:Person>
<myNs:Child rdf:nodeID="node1">
<myNs:hasName>Paul</myNs:hasName>

</myNs:Child>

<myNs:Person rdf:about="#John">
<myNs:hasChild rdf:parseType="Resource">
<rdf:type rdf:resource="#Child"/>
<myNs:hasName>Paul</myNs:hasName>

</myNs:hasChild>
</myNs:Person>

Language identification attributes. The language of a value can be defined with the
xml:langattribute in tags.

<owl:Class rdf:about="&myNs;Book">
<rdfs:label xml:lang="en">Book</rdfs:label>
<rdfs:label xml:lang="es">Libro</rdfs:label>

</owl:Class>

3.3 Description of the benchmarks

Each benchmark of the benchmark suite, as Table 3.1 shows, isdescribed by anidentifier
unique, adescription in natural language of the benchmark, aformal description in the
Description Logics notation of the ontology, agraphical representationof the ontology,
and afile with the ontology in the RDF/XML syntax6.

The OWL Lite Import Benchmark Suite is available in a public web page7 and is
composed of 82 benchmarks that are classified in 12 groups, each identified by one letter
(from A to L). The list of all the benchmarks composing the benchmark suite can be found
in Appendix A; the OWL files have not been included here, but they can be found in the
benchmark suite web page.

Moreover, since OWL Lite has an underlying Description Logics semantics, we have
also provided a description of all the benchmarks both in natural language and in Descrip-
tion Logics formalism. These descriptions can be found in Appendix B.

6All the files have been syntactically validated against the WonderWeb OWL Ontology Validator
(http://phoebus.cs.man.ac.uk:9999/OWL/Validator)

7http://knowledgeweb.semanticweb.org/benchmarking interoperability/
owl/import.html

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 27

3. ONTOLOGY DATASET

Identifier ISG03

Description
Import a single functional object property whose domain is
a class and whose range is another class

Formal de-
scription

⊤ ⊑≤ 1 hasHusband

⊤ ⊑ ∀hasHusband−.Woman
⊤ ⊑ ∀hasHusband.Man

Graphical
represen-

tation

RDF/XML
file

...
<owl:Class rdf:about="&ex;Woman"/>
<owl:Class rdf:about="&ex;Man"/>
<owl:ObjectProperty rdf:about="&ex;hasHusband">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="&ex;Woman"/>
<rdfs:range rdf:resource="&ex;Man"/>

</owl:ObjectProperty>
...

Table 3.1: The description of a benchmark of the OWL Lite Import Benchmark Suite

3.4 Towards benchmark suites for OWL DL and OWL
Full

Although the OWL Lite Import Benchmark Suite described in this chapter just deals with
the OWL Lite sublanguage, it could also be used for evaluating the importers from OWL
DL and OWL Full of Semantic Web tools.

However, the definition of the OWL Lite Import Benchmark Suite does not take into
account the OWL vocabulary terms whose use is not allowed in OWL Lite. In addition,
the use of the OWL vocabulary terms is restricted in both OWL Lite and OWL DL. Hence,
the benchmark suite defined for OWL Lite is incomplete for OWLDL and OWL Full.

The next Sections analyze the possibility of extending the OWL Lite Import Bench-
mark Suite to cover OWL DL and OWL Full, examining the differences between the three
species of OWL.

3.4.1 OWL DL

As we mentioned above, it is not necessary to develop from scratch a new benchmark
suite to evaluate the import of OWL DL ontologies; the OWL Lite Import Benchmark
Suite can be extended by implementing an OWL DL Import Benchmark Suite on top of
it.

As Figure 3.1 shows, to cover the OWL DL sublanguage of OWL, weshould also
need to consider:

• The different combinations of the OWL Lite vocabulary termsaccording to their

28 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

use in OWL DL, since OWL DL imposes fewer restrictions to their use. Table 3.2
shows the differences in the restrictions of use of the vocabulary terms for OWL
Lite and DL8.

• The different combinations of the OWL DL vocabulary terms not allowed in OWL
Lite, between themselves and between the OWL Lite vocabulary terms. The vo-
cabulary terms allowed in OWL DL and not allowed in OWL Lite are: owl:oneOf,
owl:disjointWith, owl:unionOf, owl:complementOf, owl:hasValue, andowl:DataRange.

Figure 3.1: The OWL DL Import Benchmark Suite

For example, if we wanted to extend the benchmarks forowl:equivalentClassand
rdfs:subClassOfwe should define new benchmarks that consider as the subject and object
of these properties all the different types of class descriptions allowed in OWL:

• A class identifier. These benchmarks are already defined for OWL Lite.

• An exhaustive enumeration of individuals. These benchmarks are not defined for
OWL Lite.

• Property restrictions with value and cardinality constraints. Benchmarks are de-
fined for OWL Lite considering restrictions in the object of the properties with 0
and 1 cardinality constraints. New benchmarks should be defined for cardinalities
greater than 1 in the object of the properties and for restrictions in the subject of the
properties.

• Set operators. Benchmarks are defined for OWL Lite by considering intersections
in the object of the properties. New benchmarks should be defined for intersections
in the subject of the properties and for union and complementin the subject and
object of the properties.

8http://www.w3.org/TR/owl-ref/#Sublanguages-def

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 29

3. ONTOLOGY DATASET

Vocabulary Terms OWL Lite restrictions OWL DL restrictions
owl:cardinality Object must be 0 or 1 Object must be any
owl:minCardinality integer≥ 0
owl:maxCardinality
owl:equivalentClass
rdfs:subClassOf

Subject must be class
names

No restriction

owl:equivalentClass
rdfs:subClassOf

Object must be class
names or restrictions

No restriction

rdf:type
rdfs:domain Object must be class

names
No restriction

owl:allValuesFrom
owl:someValuesFrom
rdfs:range

Object must be class
names or datatype
names

No restriction

owl:intersectionOf Used only with lists of
class names or
restrictions whose
length is greater than 1

No restriction

Table 3.2: Restrictions in the use of OWL Lite and OWL DL

Following this approach, a considerable part of the benchmarks could be reused with-
out any modification and, therefore, any tool that had already performed the experiments
of the OWL Lite Import Benchmark Suite would not need to repeat them.

Nevertheless, when relaxing the restrictions of use of the OWL vocabulary terms from
OWL Lite to OWL DL, a quite larger number of new benchmarks would be defined, which
would affect the usability of the whole benchmark suite.

3.4.2 OWL Full

OWL Full has the same vocabulary terms as OWL DL, but it placesno restrictions in their
use. In fact, OWL Full is a superset of RDF(S), that gives the user the freedom to extend
the RDF(S) vocabulary with the OWL constructors and to augment the meaning of both
vocabularies.

The main characteristics of the use of OWL Full that are relevant to our case are:

• All the RDF(S) vocabulary can be used within OWL Full.

• OWL Full has no separation between classes, datatypes, datatype properties, object
properties, annotation properties, individuals, data values, and the built-in vocabu-
lary.

• Axioms in OWL Full do not have to be well formed.

30 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

This lack of restrictions implies that the use and possible combinations of the vocab-
ulary terms in OWL DL and OWL Full is highly different. To develop a benchmark suite
for evaluating the import of OWL Full ontologies, it might not be sufficient to develop
some new benchmarks on top of the import benchmark suite for OWL DL, although it
might be necessary to create a whole new benchmark suite thatcovers all the differences
between OWL DL and OWL Full.

This import benchmark suite for OWL Full should consider allthe possible combi-
nations of the OWL and RDF(s) vocabularies terms and, because the number of these
combinations is high, it would be necessary to prune the generation of benchmarks as it
was done for the RDF(S) Import Benchmark Suite [Garcı́a-Castro et al., 2006].

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 31

Chapter 4

The IBSE tool

by RAÚL GARCÍA-CASTRO AND JEŚUS PRIETO-GONŹALEZ

IBSE (Interoperability Benchmark Suite Executor) is the evaluation infrastructure that
automates the execution of the experiments of the OWL Interoperability Benchmarking.
It offers a simple way of analysing the results, and permits smoothly including new tools
into the infrastructure.

The source code and binaries of IBSE can be downloaded from its web page1. The
latest version of the IBSE source code is located in a Subversion repository2.

This chapter starts by describing the requirements of the IBSE tool. Then, it presents
some details of its implementation and of how to use it. Finally, it presents an example of
the reports generated by IBSE.

4.1 IBSE requirements

The main requirements taken into account in the developmentof the IBSE tool are the
following:

• To be able to perform the experiments in as many tools as possible. The OWL
Interoperability Benchmarking considers any Semantic Webtool able to read and
write ontologies from/to OWL files as a potential participant. Therefore, the IBSE
tool should allow most of the existing tools to participate in the experiments (ontol-
ogy repositories, ontology merging and alignment tools, reasoners, ontology-based
annotation tools, etc.).

• To automate the experiment execution and the analysis of theresults. In the
OWL Interoperability Benchmarking we sacrifice a higher detail in results to avoid

1http://knowledgeweb.semanticweb.org/benchmarking interoperability/
ibse/

2http://delicias.dia.fi.upm.es/repos/interoperability benchmarking/

32

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

that the humans conducted the experiments. However, full automation of the result
analysis is not possible since this requires an individual to interpret them. Nev-
ertheless, the evaluation infrastructure should automatically generate different vi-
sualizations and summaries of the results in different formats (such as HTML or
SVG) to draw some conclusions at a glance. It is clear that an in-depth analysis of
these results will still be needed for extracting the cause of the problems encoun-
tered and learning the improvement recommendations and thepractices performed
by developers.

• To define benchmarks and results through ontologies. The automation men-
tioned above requires that both, the benchmarks and the results, be machine-processable;
therefore, we have represented them through ontologies. Instances of these ontolo-
gies will include the information needed to execute the benchmarks and the results
obtained in their execution. This way of defining benchmarksand results allows
having different predefined benchmark suites and executionresults available in the
Web, which can be used by anyone, for example, to classify andselect tools ac-
cording to their results, to execute the benchmarks in othertools or to process the
accumulated results of different benchmark executions over time.

• To use any group of ontologies as input for the experiments. Executing bench-
marks with no human effort can provide further advantages. The evaluation infras-
tructure should generate benchmark descriptions from any group of ontologies in
RDF(S) or OWL, and should execute these benchmarks. Thus, different experi-
ments could be easily performed with large numbers of ontologies, with domain-
specific ontologies, with systematically-generated ontologies, etc.

• To separate benchmark execution and report generation. As a practical require-
ment, the evaluation infrastructure should be able to perform benchmark execution
independently and to generate reports from one set of execution results, foresee-
ing experiment executions over a large number of tools, in different times, or by
different parties.

4.2 IBSE implementation

The IBSE tool has been implemented using Java. It uses thebenchmarkOntologyand
theresultOntology, respectively, to represent the benchmarks and the resultsthat are pre-
sented in Section 4.2.1.

A normal execution of the IBSE tool comprises three consecutive steps, although they
can also be executed independently. These steps are the following:

1. To generate machine-readable benchmark descriptions froma group of on-
tologies. In this step, a RDF file is generated; this file includes one benchmark

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 33

4. THE IBSE TOOL

for each ontology of a group of ontologies located in a URI andthe vocabulary of
the benchmarkOntologyontology. This description generation can be skipped if
benchmark descriptions are already available.

2. To execute the benchmarks. In this step, each benchmark described in the RDF
file is executed interchanging between each pair of tools theontology that it con-
tains, being one tool the origin of the interchange and the other the destination of
the interchange. The results are stored in a RDF file, employing the vocabulary of
theresultOntologyontology.

Once we have the original, intermediate and final files with their corresponding
ontologies, we extract the execution results by comparing each of these ontologies
as shown in Section 2.2.1. This comparison and its output depend on an external
ontology comparer. The current implementation uses thediff methods of a RDF(S)
comparer (rdf-utils3 version 0.3b) and of an OWL comparer (KAON2 OWL Tools4

version 0.27). This implementation, however, permits inserting other comparers.

3. To generate HTML files with different visualizations of the results. In this step,
different HTML files are generated with different visualizations, summaries and
statistics of the results.

4.2.1 Representation of benchmarks and results

This section describes the two OWL ontologies employed in the IBSE tool: thebench-
markOntology5 ontology, which defines the vocabulary that represents the benchmarks to
be executed, and theresultOntology6 ontology, which defines the vocabulary that repre-
sents the results of a benchmark execution.

These ontologies are lightweight since their main goal is tobe user-friendly; they are
described in Appendix C using the RDF/XML syntax.

Next, the section presents the classes and properties that these ontologies contain. All
the datatype properties have as rangexsd:stringwith the exception oftimestampwhose
range isxsd:dateTime.

benchmarkOntology. TheDocumentclass represents a document containing one ontol-
ogy. A document can be further described by the following properties, which have
Documentas domain:documentURL(the URL of the document),ontologyName

3http://wymiwyg.org/rdf-utils/
4http://owltools.ontoware.org/
5http://knowledgeweb.semanticweb.org/benchmarking interoperability/

owl/benchmarkOntology.owl
6http://knowledgeweb.semanticweb.org/benchmarking interoperability/

owl/resultOntology.owl

34 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(the ontology name),ontologyNamespace(the ontology namespace), andrepresen-
tationLanguage(the language used to implemented the ontology).

The Benchmarkclass represents a benchmark to be executed. A benchmark can
be further described with the following properties that haveBenchmarkas domain.
Such properties are:id (the benchmark identifier);usesDocument(the document
that contains one ontology used as input);interchangeLanguage(the interchange
language used);author (the benchmark author); andversion(the benchmark ver-
sion number).

resultOntology. TheTool class represents a tool that has participated as origin or desti-
nation of an interchange in a benchmark. A tool can be furtherdescribed with the
following properties that haveToolas domain. These properties are:toolName(the
tool name), andtoolVersion(the tool version number).

The Resultclass represents a result of a benchmark execution. A resultcan be
further described with the following properties that haveResultas domain. These
properties are:ofBenchmark(the benchmark to which the result corresponds);orig-
inTool (the tool origin of the interchange);destinationTool(the tool destination
of the interchange);execution, executionStep1, executionStep2(if the whole in-
terchange, the first and the second steps are carried out without any execution prob-
lem, respectively);interchange, interchangeStep1, interchangeStep2(if the ontol-
ogy has been interchanged correctly from the original tool to the destination tool,
in the first step, and in the second step with no addition or loss of information,
respectively);informationAdded, informationAddedStep1, informationAddedStep2
(the triples added in the whole interchange, in the first step, and in the second
step, respectively);informationRemoved, informationRemovedStep1, information-
RemovedStep2(the triples removed in the whole interchange, in the first step, and
the second step, respectively); and finally,timestamp(the date and time when the
benchmark is executed).

4.2.2 Inserting a new tool

As the experimentation requires no human intervention, we can only access tools through
application programming interfaces (APIs) or through batch executions. There are other
ways of executing an application automatically (i.e., Web Service executions) but these
are not present in the current tools. Nevertheless, to adaptthe IBSE tool for including
other types of executions should be quite straightforward.

The only operation that a tool has to perform to participate in the experiment, as seen
in Section 2.2.1, is to import an ontology from a file and to export the imported ontology
into another file.

To insert a new tool in the evaluation infrastructure only one method from theTool-
Managerinterface has to be implemented:void ImportExport(String importFile, String

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 35

4. THE IBSE TOOL

exportFile, String ontologyName, String namespace, String language). This method re-
ceives as input parameters the following: the location of the file with the ontology to be
imported; the location of the file where the exported ontology has to be written; the name
of the ontology; the namespace of the ontology; and the representation language of the
ontologies respectively.

This method has already been implemented for the tools participating in the bench-
marking, which are: GATE, Jena, KAON2, the NeOn Toolkit, Protégé-Frames, Protégé-
OWL, SemTalk, SWI-Prolog, and WebODE.

Most of these tools provide Java interfaces for performing the import and export op-
erations. In the case of non-Java tools (SemTalk and SWI-Prolog), these operations were
performed by executing their binaries using thejava.lang.Runtimeclass.

As an example, the following lines show the implementation of the method for Jena:

public void ImportExport(String importFile, String exportFile, String ontologyName,
String namespace, String language) throws BadURIException{

Model model = ModelFactory.createDefaultModel();
Model model_out = ModelFactory.createDefaultModel();
try {

// Import
FileInputStream inFile = new FileInputStream(importFile);
model = model.read(importFile,null,null);
inFile.close();
// Export
FileOutputStream outFile = new FileOutputStream(exportFile);
String queryString = "DESCRIBE ?x WHERE {?x ?y ?z}";
Query query = QueryFactory.create(queryString);
QueryExecution qexec = QueryExecutionFactory.create(query, model);
model_out = qexec.execDescribe();
model_out.write(outFile);
model.close();
model_out.close();

} catch (FileNotFoundException e) { e.printStackTrace();
} catch (IOException e) { e.printStackTrace(); } }

4.2.3 Inserting and evaluating ontology comparers

We mentioned before that the IBSE tool uses external software for comparing the ontolo-
gies resulting from the experiment. IBSE currently uses thediff methods of a RDF(S)
comparer (rdf-utils7 version 0.3b) and of an OWL comparer (KAON2 OWL Tools8 ver-
sion 0.27).

Nevertheless, other ontology comparers can also be inserted into the IBSE tool by im-
plementing a method from theComparerinterface: int CompareFiles(String originfile,
String comparedfile, String addedfile, String deletedfile, String language). This method
receives the following input parameters: the location of the two files to be compared; the
location of the two files in which the inserted and removed triples will be stored; and the
language in which the ontologies are written respectively.

7http://wymiwyg.org/rdf-utils/
8http://owltools.ontoware.org/

36 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

The software used for comparing ontologies could have execution problems when it
compares two ontologies. Therefore, we need a previous evaluation of this software to
ensure the validity of the benchmarking results.

The evaluation of the comparers, which consisted on detecting errors in them, was
performed in two steps:

1. The interoperability experiment was carried out with thetools participating in the
benchmarking whose knowledge model is the same as that of theinterchange lan-
guage. In theory, these tools should interchange all the ontologies correctly because
no ontology translation is required for doing so. In this step, we analysed the cases
where the interchanged ontology was different than the original one.

2. The interoperability experiment was carried out with allthe tools participating in
the benchmarking. In this step, we analysed the cases where the comparison of two
ontologies caused an execution error in the comparer.

In the case of OWL, IBSE currently uses the KAON2 OWL Toolsdiff method for
comparing OWL ontologies. The problems found in this ontology comparer after carrying
out the previous steps were the following:

• When one of the ontologies is empty, the comparer returns that the ontologies are
the same.

• The comparer returns complete definitions of the differences between the ontologies
and not only the differing triples. For example, if two ontologies only differ in one
triple:

Ontology 1: Ontology 2:
ns1:Person rdfs:type owl:Class; ns1:Person rdfs:type owl:Class;
ns1:Person rdfs:label "Person";

the comparer returns not just the triple but also the whole definition of the classes
or properties involved:

Diff:
ns1:Person rdfs:type owl:Class
ns1:Person rdfs:label "Person";

• When the comparer compares two ontologies with blank nodes,it generates differ-
ent node identifiers and, therefore, it returns that the ontologies are different.

• When one of the ontologies is not a valid OWL ontology in the RDF/XML syntax,
the comparer throws an exception.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 37

4. THE IBSE TOOL

• The comparer is not robust and throws an exception when comparing ontologies
with unexpected inputs, as for example, the incorrect classnaming produced by
some tools9, or the incorrect use of the OWL language constructors: use of rdf:Property
instead ofowl:ObjectPropertyor owl:DatatypeProperty; use of a resource both
as an object and as a datatype property; use of emptyrdfs:subclassOfstatements
(”<rdfs:subClassOf/>”); or use of untyped object properties.

The first two problems were solved by adapting the output of the comparer inside
IBSE. The behaviour of the ontology comparer in the rest of the cases was documented
to be taken into account when analysing the interoperability results.

This is not an exhaustive evaluation of the comparer, but after analysing all the cases
of the whole benchmarking results in which the interchangedontologies were not the
same, we found no more comparer errors.

4.3 Using IBSE

The only requirements for executing the evaluation infrastructure are to have a Java Run-
time Environment and the IBSE binaries10. To perform the experiments with SemTalk
and WebODE, these tools must also be installed in the system.

The steps to follow to perform the interoperability experiments using IBSE are the
following:

1. To download the IBSE binaries.

2. To edit theibse.conffile according to the user’s execution preferences.

3. To prepare the tools wanted for the experiment. Some toolsdo not need any prepara-
tion as IBSE accesses them through their jars; others, however, do need preparation.

4. To run IBSE from the command line:java -jar IBSE.jar [config file].

Steps2. and 3. are optional for the default full execution of the experiments and
for the generation of the reports. Nevertheless, theibse.conffile allows customizing the
execution by defining: a) the tools considered as the origin and the destination of the inter-
change (ORIGIN TOOLSandDESTINATIONTOOLS); b) the language used in the input
ontologies and in the interchange (REPRESENTATIONLANGUAGE); c) the steps to per-
form in the execution (DESCRIBEBENCHMARKS, EXECUTEBENCHMARKS, GEN-
ERATEREPORTFROM); and d) the location of the data needed or generated by IBSE

9i.e., ”#http 3A 2F 2Fwww.w3.org2F20022F07 2Fowl 23Thing”
10http://knowledgeweb.semanticweb.org/benchmarking interoperability/

ibse/files/IBSEv1.0.zip

38 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(ONTOLOGIESURL, BENCHMARKSURL, RESULTSURL, RESULTSHTML URL, RE-
SULTSRDF URL). Full use details of use can be found in the comments of theibse.conf
file.

A future improvement of the IBSE tool could be its integration with testing infrastruc-
tures, such as JUnit.

After a full IBSE execution, the following files are generated in the results directory:

• One RDF file (benchmarkDescriptions.rdf) with the description of the benchmarks
from the selected group of ontologies. The RDF file with the description of the
benchmarks to be executed in the OWL Interoperability Benchmarking can be gen-
erated or downloaded from the Web11.

• RDF files (Result<Tool1><Tool2>.rdf) with the descriptions of the results for
each pair of tools.

• The ontologies resulting from executing the experiments, the intermediate and final
ones inclusive.

• The following HTML files with different visualizations, summaries and statistics of
the results:

– One index page to access all the reports.

– Five pages for each combination of tools (both as origin and destination). One
of the pages shows some statistics of the results; other shows the original,
intermediate and final ontologies obtained in the benchmarkexecutions; and
the other three summarize theExecution, Interchange, Information added, and
Information lostresults contained in the RDF result files. These three pages
show, for each benchmark, the results of the final interchange and of the inter-
mediate steps (Step 1andStep 2), with different levels of detail.

– For each pair of tools, one page summarizes theInterchangeresult considering
one tool as origin and the other as destination of the interchange and vice
versa.

– For each tool, one page with the results of every benchmark execution, being
this tool the origin and the other tools the destination of the interchange.

11http://knowledgeweb.semanticweb.org/benchmarking interoperability/
owl/OIBS.rdf

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 39

Chapter 5

OWL interoperability results and
analysis

by RAÚL GARCÍA-CASTRO

In this chapter we present the analysis of the interoperability using OWL as the inter-
change language of the Semantic Web tools that participatedin the benchmarking.

For each of the tools, the analysis is divided in two consecutive steps (described in
detail below):

1. To analyse the behaviour of the tool in the combined importand export operation.

2. To analyse the interoperability of the tool with all the tools participating in the
benchmarking (including itself).

With the analyses, we provide references to the ontology or ontologies that originated
the comment; their names appear in parentheses, i.e.,(ISA01-ISA03).

5.1 Analysis of the import and export operation

Here we describe how the tool behaves in the combined operation of importing one OWL
ontology and exporting it again (a step of the experiment, asdefined in Section 2.2.1).
To analyse the behaviour of the tool in one step of the experiment (a combined import
and export operation), we have considered the tool results when such tool is the origin of
the interchange (Step 1), irrespective of the tool that is the destination of the interchange.
This step has as input an original ontology that is imported by the tool and then exported
into a resultant ontology. This analysis has been performedby comparing the original and
the resultant ontologies.

The results of a step execution in a tool can be classified intosix categories:

40

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• The original and the resultant ontologies are the same.

• The resultant ontology includes more information than the original one.

• The resultant ontology includes less information than the original one. In this case,
information is sometimes inserted into the resultant ontology.

• The execution fails in the import and export operation.

• The execution fails when comparing the ontologies.

Table 5.1 presents a summary of the number of benchmarks for each tool1.

GA JE K2 PF PO ST SP WE
Same 64 67 56 67 30 67
More 8
Less 2 3 55 29 32
Tool fails 18
Comparer fails 1 8 12 8 9

Table 5.1: Summary of the results of the import and export operation

Below, we present the detailed results of each of the tools.

5.1.1 GATE results in the import and export operation

The different step executions usually produce the same ontology in GATE. In some cases,
the execution of the comparer fails with an ontology generated by GATE (although the
ontology validates correctly).

The results of a step execution in GATE, as shown in Figure 5.1, can be classified into
three categories:

• The original and the resultant ontologies are the same. Thisoccurs in 64 cases
(ISA01-17, ISB01-12, ISC01-02, ISD01-04, ISE01-10, ISF01-03, ISG01-05, ISI01-
05, ISJ01-03, ISK01-03).

• The resultant ontology includes less information than the original one. In this case,
information is sometimes inserted into the resultant ontology. This occurs in 2 cases
(ISH01, ISH03).

• The execution fails when comparing the ontologies. This occurs in 1 case (ISH02).

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 41

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

Figure 5.1: Results of the import and export operation for GATE

Next we describe the behaviour of GATE in one step, focusing on the combination of
components present in the original ontology.

Class hierarchies

• Named class hierarchies without cycles (ISA01-04).When a class is a subclass
of several classes and of multiple classes that are a subclass of a class, one of the
parent classes is not typed as a class. This converts the ontology into OWL Full.

• Named class hierarchies with cycles (ISA05-06).The ontologies processed re-
main the same.

• Classes that are a subclass of a value constraint in an objectproperty (ISA07-
08). The class defined inside the restriction is not typed as a class (OWL Full).

• Classes that are a subclass of a cardinality constraint in anobject or datatype
property (ISA09-16). The ontologies processed remain the same.

• Classes that are a subclass of a class intersection (ISA17).The ontologies pro-
cessed remain the same.

Class equivalences

• Classes equivalent to named classes (ISB01).The ontologies processed remain
the same.

• Classes equivalent to a value constraint in an object property (ISB02-03). The
class defined inside the restriction is not typed as a class (OWL Full).

1The tool names have been abbreviated in the table: GA=GATE, JE=Jena, K2=KAON2, PF=Protégé
Frames, PO=Protégé OWL, ST=SemTalk, SP=SWI-Prolog, andWE=WebODE

42 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• Classes equivalent to a cardinality constraint in an objector datatype property
(ISB04-11).The ontologies processed remain the same.

• Classes equivalent to a class intersection (ISB12).The ontologies processed re-
main the same.

Classes defined with set operators

• Classes intersection of other classes (ISC01-02).The ontologies processed re-
main the same.

Properties

• Object and datatype property hierarchies (ISD01-04).The ontologies processed
remain the same.

• Object and datatype properties with or without domain or range, or with mul-
tiple domains or ranges (ISE01-10).The ontologies processed remain the same.

Relations between properties

• Equivalent object and datatype properties (ISF01-02).The ontologies processed
remain the same.

• Inverse object properties (ISF03).The ontologies processed remain the same.

Global cardinality constraints and logical property characteristics

• Transitive, symmetric, or inverse functional object properties (ISG01-02,05).
The ontologies processed remain the same.

• Functional object and datatype properties (ISG03-04). The ontologies pro-
cessed remain the same.

Individuals

• Individuals of a single class (ISH01,03).One of the instances is lost.

• Individuals of multiple classes (ISH02).The comparer launches an exception but
the ontologies processed remain the same.

• Named individuals and object or datatype properties (ISI01-05). The ontolo-
gies processed remain the same.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 43

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

• Anonymous individuals and object or datatype properties (ISJ01-03).The re-
sult shows that the ontologies are different, but this is an error of the comparer.
When the comparer compares two ontologies with blank nodes,it generates differ-
ent node identifiers and, therefore, this implies that the ontologies are different.

Individual identity

• Equivalent or different individuals (ISK01-03). The ontologies processed remain
the same.

5.1.2 Jena results in the import and export operation

The different step executions do not produce any execution exception in Jena; in all the
cases the original and the resultant ontologies are the same, as shown in Figure 5.2.

When there are anonymous individuals and object or datatypeproperties (ISJ01-03),
the result shows that the ontologies are different, but thisis an error of the comparer.
When the comparer compares two ontologies with blank nodes,it generates different
node identifiers and, therefore, it shows that the ontologies are different.

Figure 5.2: Results of the import and export operation for Jena

5.1.3 KAON2 results in the import and export operation

The different step executions usually produce the same ontology in KAON2. In some
cases, the execution of the comparer fails with an ontology generated by KAON2 (al-
though the ontology validates correctly).

The results of a step execution in KAON2, as shown in Figure 5.3, can be classified
into three categories:

44 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• The original and the resultant ontologies are the same. Thisoccurs in 56 cases
(ISA02-08, ISA10-11, ISA14-15, ISA17, ISB01-06, ISB09-10, ISB12, ISC01-02,
ISD02, ISD04, ISE01-10, ISF01-03, ISG01-05, ISH01-03, ISI01-05, ISJ01-03,
ISK01-03).

• The resultant ontology includes less information than the original one. In this case,
information is sometimes inserted into the resultant ontology. This occurs in 3 cases
(ISA01, ISD01, ISD03).

• The execution fails when comparing the ontologies. This occurs in 8 cases (ISA09,
ISA12-13, ISA16, ISB04, ISB07-08, ISB11).

Figure 5.3: Results of the import and export operation for KAON2

Below, we describe the behaviour of KAON2 in one step, focusing on the combination
of components present in the original ontology.

Class hierarchies

• A single class (ISA01).The class is lost.

• Named class hierarchies with or without cycles (ISA02-06).The ontologies pro-
cessed remain the same.

• Classes that are a subclass of a value constraint in an objectproperty (ISA07-
08).

• Classes that are a subclass of anowl:maxCardinality or owl:cardinality cardi-
nality constraint in an object or datatype property (ISA10-11,14-15).The on-
tologies processed remain the same.

• Classes that are a subclass of anowl:minCardinality cardinality constraint in
an object or datatype property (ISA09,12-13,16).The class is created as a sub-
class of a blank node instead of being created as a subclass ofthe restriction.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 45

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

rdfs:subClassOfis used as a datatype property (OWL Full) and the class is con-
sidered an instance (Individual(a:Employee value(rdfs:subClassOf ””))).

• Classes that are a subclass of a class intersection (ISA17).The ontologies pro-
cessed remain the same.

Class equivalences

• Classes equivalent to named classes (ISB01).The ontologies processed remain
the same.

• Classes equivalent to a value constraint in an object property (ISB02-03). The
ontologies processed remain the same.

• Classes equivalent to anowl:maxCardinality or owl:cardinality cardinality con-
straint in an object or datatype property (ISB05-06,09-10). The ontologies pro-
cessed remain the same.

• Classes equivalent to anowl:minCardinality cardinality constraint in an object
or datatype property (ISB04,07-08,11).The class is created as equivalent to a
blank node instead of being created as equivalent to the restriction. owl:equivalentClass
is used as a datatype property (OWL Full), and the class is considered an instance
(Individual(a:Employee value(owl:equivalentClass ””))).

• Classes equivalent to a class intersection (ISB12).The ontologies processed re-
main the same.

Classes defined with set operators

• Classes intersection of other classes (ISC01-02).The ontologies processed re-
main the same.

Properties

• Object and datatype property hierarchies (ISD01-04).When there is only one
object or datatype property, the property is lost

• Object and datatype properties with or without domain or range, or with mul-
tiple domains or ranges (ISE01-10).The ontologies processed remain the same.

46 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

Relations between properties

• Equivalent object and datatype properties (ISF01-02).The ontologies processed
remain the same.

• Inverse object properties (ISF03).The ontologies processed remain the same.

Global cardinality constraints and logical property characteristics

• Transitive, symmetric, or inverse functional object properties (ISG01-02,05).
The ontologies processed remain the same.

• Functional object and datatype properties (ISG03-04). The ontologies pro-
cessed remain the same.

Individuals

• Individuals of a single or multiple classes (ISH01-03).The ontologies processed
remain the same.

• Named individuals and object or datatype properties (ISI01-05). The ontolo-
gies processed remain the same.

• Anonymous individuals and object or datatype properties (ISJ01-03).The on-
tologies processed remain the same.

Individual identity

• Equivalent or different individuals (ISK01-03). The ontologies processed remain
the same.

5.1.4 Prot́eǵe-Frames results in the import and export operation

The different step executions never produce the same ontology in Protégé-Frames. How-
ever, with the ontologies generated by Protégé-Frames insome cases the execution of the
comparer fails (although these ontologies validate correctly).

The results of a step execution in Protégé-Frames, as shown in Figure 5.4, can be
classified into two categories:

• The resultant ontology includes less information than the original one. In this
case, information is sometimes inserted into the resultantontology. This occurs
in 55 cases (ISA01-12, ISA17, ISB01-07, ISB12, ISC01-02, ISD01-04, ISE01-06,
ISE08-10, ISF01-03, ISG01-05, ISH01-03, ISI01-03, ISJ01-02, ISK01-03).

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 47

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

• The execution fails when comparing the ontologies. This occurs in 12 cases (ISA13-
16, ISB08-11, ISE07, ISI04-05, ISJ03).

Figure 5.4: Results of the import and export operation for Protégé-Frames

Below, we describe the behaviour of Protégé-Frames in onestep, focusing on the
combination of components present in the original ontology.

Ontologies

• The name of the ontology is changed into ”http://www.owl-ontologies.com/unnamed.owl”.

Class hierarchies

• Classes.Class names are changed from ”<classname>” to ”ibs <classname>”.
A rdfs:labelis inserted into the classes with the value ””ibs: <classname>”ˆˆxsd:string”.
This occurs whenever classes appear.

• Named class hierarchies without cycles (ISA01-04).Classes are defined as a
subclass ofowl:Thing.

• Named class hierarchies with cycles (ISA05-06).When there are multiple classes,
the classes are defined as equivalent.

• Classes that are a subclass of a value constraint in an objectproperty (ISA07-
08). Properties are created with a domain. In the case of theowl:someValuesFrom
constraint, the constraint is lost. In the case of theowl:allValuesFromconstraint,
classes are defined as a subclass ofowl:Thing.

• Classes that are a subclass of a cardinality constraint in anobject property
(ISA09-12).Properties are created with a domain. In the case of theowl:minCardinality
constraint, the constraint is lost. In the case of theowl:maxCardinalityandowl:cardinality
constraints, classes are defined as a subclass ofowl:Thing.

48 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• Classes that are a subclass of a cardinality constraint in a datatype property
(ISA13-16). The datatype properties are changed intordf:Property. Properties
are created with a domain. In the case of theowl:minCardinalityconstraint, the
constraint is lost. In the case of theowl:maxCardinalityandowl:cardinality con-
straints, classes are defined as a subclass ofowl:Thing. Whenowl:maxCardinality
andowl:minCardinalityconstrain the same class, classes are defined as a subclass
of owl:Thingand the domain of the property is defined as the union of the class.

• Classes that are a subclass of a class intersection (ISA17).Theowl:intersectionOf
property is lost but the ontologies are equivalent.

Class equivalences

• Classes equivalent to named classes (ISB01).Classes are defined as a subclass of
owl:Thing.

• Classes equivalent to a value constraint in an object property (ISB02-03).Prop-
erties are created with a domain. In the case of theowl:someValuesFromconstraint,
the value constraint is lost. In the case of theowl:allValuesFromvalue constraint,
classes are defined as a subclass ofowl:Thingand of the restriction instead of being
defined as equivalent to the restriction.

• Classes equivalent to a cardinality constraint in an objectproperty (ISB04-
07). Properties are created with a domain. Classes are defined as asubclass of
owl:Thing. Classes are defined as a subclass of the restriction insteadof being de-
fined as equivalent to the restriction. Whenowl:maxCardinalityandowl:minCardinality
constrain the same class, the domain of the property is defined as the union of the
class.

• Classes equivalent to a cardinality constraint in a datatype property (ISB08-
11). The datatype properties are changed intordf:Property. Properties are created
with a domain. Classes are defined as a subclass of the restriction instead of being
defined as equivalent to the restriction. In the case of theowl:minCardinalitycon-
straint, the constraint is lost. In the case of theowl:maxCardinalityandowl:cardinality
constraints, classes are defined as a subclass ofowl:Thing. Whenowl:maxCardinality
andowl:minCardinalityconstrain the same class, classes are defined as a subclass
of owl:Thing, and the domain of the property is defined as the union of the class.

• Classes equivalent to a class intersection (ISB12).Theowl:intersectionOfprop-
erty is lost. The classes of the intersection are defined as a subclass of the class.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 49

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

Classes defined with set operators

• Classes intersection of other classes (ISC01-02).The owl:intersectionOfprop-
erty is lost. The classes of the intersection are defined as a subclass of the class.

Properties

• Object and datatype properties.Property names are changed from ”<propertyname>”
to ”ibs <propertyname>”. A rdfs:label is inserted into the properties with the
value ””ibs: <name>”ˆˆxsd:string”. This occurs whenever properties appear. When
there are object or datatype properties with range, the range is lost.

• Object property hierarchies (ISD01-02). The rdfs:subPropertyOfproperty is
lost.

• Datatype property hierarchies (ISD03-04).The datatype properties are changed
into rdf:Property. Therdfs:subPropertyOfproperty is lost.

• Object properties with or without domain or range (ISE01-04). No further
issues have been identified besides those mentioned for object and datatype proper-
ties.

• Object properties with multiple domains or ranges (ISE05-06). When there are
object properties with multiple domains, all domains except one are lost.

• Datatype properties without domain or range (ISE07-08).The datatype proper-
ties are changed intordf:Property.

• Datatype properties with domain and range (ISE09).The datatype properties
are changed into object properties.

• Datatype properties with multiple domains (ISE10).The datatype properties are
changed into object properties. All domains except one are lost.

Relations between properties

• Equivalent object and datatype properties (ISF01-02).Theowl:equivalentProperty
property is lost.

• Inverse object properties (ISF03).No further issues have been identified besides
those mentioned for object and datatype properties.

50 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

Global cardinality constraints and logical property characteristics

• Transitive or symmetric object properties (ISG01-02). The transitivity and the
symmetry are lost.

• Functional object and datatype properties (ISG03-04).The datatype properties
are changed into object properties.

• Inverse functional object properties (ISG05).The inverse functionality is lost.

Individuals

• Individuals. The names of individuals are changed from ”<individual name>”
to ”ibs <individual name>”. A rdfs:label is inserted into the individuals with the
value ””ibs: <name>”ˆˆxsd:string”. This occurs whenever individuals appear.

• Individuals of a single class (ISH01,03).The individuals remain the same.

• Individuals of multiple classes (ISH02). All the type properties except one are
lost.

• Named individuals and object or datatype properties (ISI01-05). When there
are named individuals and datatype properties, the datatype properties are changed
into object properties.

• Anonymous individuals and object or datatype properties (ISJ01-03). The
anonymous individual is created as a named individual. Whenthere are named
individuals and datatype properties, the datatype properties are changed into object
properties.

Individual identity

• Equivalent or different individuals (ISK01-03). The properties and classes that
define the equivalence or difference (owl:sameAs, owl:different, owl:AllDifferent)
are lost.

5.1.5 Prot́eǵe-OWL results in the import and export operation

The different step executions do not produce any exception in Protégé-OWL; in all the
cases, the original and the resultant ontologies are the same, as shown in Figure 5.5.

When there are anonymous individuals and object or datatypeproperties (ISJ01-03),
the result shows that the ontologies are different, but thisis an error of the comparer.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 51

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

When the comparer compares two ontologies with blank nodes,it generates different
node identifiers and, therefore, it shows that the ontologies are different.

On the other hand, when there are inverse object properties,the result shows that the
ontologies are different, even though it is semantically the same. The only change is that
Protégé-OWL defines theowl:inverseOfproperty in both properties instead of in just one.

Figure 5.5: Results of the import and export operation for Protégé-OWL

5.1.6 SemTalk results in the import and export operation

The different step executions do not produce any execution exception in SemTalk; in
some cases the execution of the comparer fails with the ontologies generated by SemTalk
(although these ontologies validate correctly).

The results of a step execution in SemTalk, as shown in Figure5.6, can be classified
into three categories:

• The original and the resultant ontologies are the same. Thisoccurs in 30 cases
(ISA01-04, ISA07, ISA17, ISC01-02, ISD01-03, ISE01-07, ISF01, ISG01-03, ISH01-
03, ISI01-03, ISK01-02).

• The resultant ontology includes less information than the original one. In this
case, information is sometimes inserted into the resultantontology. This occurs
in 29 cases (ISA05-06, ISA08, ISA13-16, ISB01-03, ISB08-12, ISD04, ISE08-10,
ISF02-04, ISG05, ISI04-05, ISJ01-03, ISK03).

• The execution fails when comparing the ontologies. This occurs in 8 cases (ISA09-
12, ISB04-07).

Below, we describe the behaviour of SemTalk in one step, focusing on the combination
of components present in the original ontology.

52 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

Figure 5.6: Results of the import and export operation for SemTalk

Ontologies

• Ontologies. The name of the ontology is lost; it only appearsin the xml:ns at-
tribute as ontologies are created without therdf:aboutattribute in theowl:Ontology
statement (i.e.,<owl:Ontology />). This occurs in all the ontologies.

Class hierarchies

• Named class hierarchies without cycles (ISA01-04).The named class hierarchies
remain he same.

• Named class hierarchies with cycles (ISA05-06).When there are cycles between
multiple classes, one of the subclass properties is removedto avoid the cycle. When
a class is a subclass of itself, the ontology processed is different but semantically
the same. The statement that a class is a subclass of itself isremoved.

• Classes that are a subclass of a value constraint in an objectproperty (ISA07-
08). In the case of theowl:someValuesFromconstraint, the subclass of the con-
straint remains the same. In the case of theowl:allValuesFromconstraint, the
owl:allValuesFromconstraint is changed intoowl:someValuesFrom.

• Classes that are a subclass of a cardinality constraint in anobject property
(ISA09-12). The object property is defined both as an object property and as a
datatype property. The class is defined as a subclass of the restriction restric-
tion(a:hasName value (””ˆˆxsd:string)). In the case of theowl:cardinality con-
straint, the constraint is replaced by oneowl:minCardinality constraint and one
owl:maxCardinalityconstraint.

• Classes that are a subclass of a cardinality constraint in a datatype property
(ISA13-16).The class is defined as a subclass of the restrictionrestriction(a:hasName
value (””ˆˆxsd:string)). In the case of theowl:cardinalityconstraint, the constraint

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 53

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

is replaced by oneowl:minCardinalityconstraint and oneowl:maxCardinalitycon-
straint.

• Classes that are a subclass of a class intersection (ISA17).The ontologies pro-
cessed remain the same.

Class equivalences

• Classes equivalent to named classes (ISB01).Theowl:equivalentClassproperty
is lost.

• Classes equivalent to a value constraint in an object property (ISB02-03).Classes
are defined as a subclass instead of being defined as equivalent to the restriction. In
the case of theowl:someValuesFromconstraint, the subclass of the constraint re-
mains the same. In the case of theowl:allValuesFromconstraint, the constraint is
changed intoowl:someValuesFrom.

• Classes equivalent to a cardinality constraint in an objectproperty (ISB04-07).
Classes are defined as a subclass instead of being defined as equivalent to the re-
striction. The object property is defined both as an object property and as a datatype
property. The class is defined as a subclass of the restriction restriction(a:hasName
value (””ˆˆxsd:string)). In the case of theowl:cardinalityconstraint, the constraint
is replaced by oneowl:minCardinalityconstraint and oneowl:maxCardinalitycon-
straint.

• Classes equivalent to a cardinality constraint in a datatype property (ISB08-
11). Classes are defined as a subclass instead of being defined as equivalent to the
restriction. In the case of theowl:cardinality constraint, the constraint is replaced
by oneowl:minCardinalityconstraint and oneowl:maxCardinalityconstraint.

• Classes equivalent to a class intersection (ISB12).Theowl:intersectionOfprop-
erty is lost.

Classes defined with set operators

• Classes intersection of other classes (ISC01-02).The ontologies processed re-
main the same.

Properties

• Object and datatype property hierarchies (ISD01-04).The ontologies processed
remain the same.

54 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• Object properties with or without domain or range or with mul tiple domains
and ranges (ISE01-06).The ontologies processed remain the same.

• Datatype properties with or without domain or range or with m ultiple domains
(ISE07-10).The range is lost.

Relations between properties

• Equivalent object and datatype properties (ISF01-02).When there are datatype
properties, the range is lost.

• Inverse object properties (ISF03).Theowl:inverseOfproperty is lost.

Global cardinality constraints and logical property characteristics

• Transitive or symmetric object properties (ISG01-02).The ontologies processed
remain the same.

• Functional object and datatype properties (ISG03-04).When there are datatype
properties, the range is lost and also lost is the statement about the property being
functional.

• Inverse functional object properties (ISG05).The statement about the property
being inverse functional is lost.

Individuals

• Individuals of a single or multiple classes (ISH01-03).The ontologies processed
remain the same.

• Named individuals and object or datatype properties (ISI01-05). When there
are datatype properties, the range is lost.

• Anonymous individuals and object or datatype properties (ISJ01-03). The
anonymous individual is lost.

Individual identity

• Equivalent or different individuals (ISK01-03). Theowl:sameAsandowl:different
properties are lost. In the case of the (owl:AllDifferent) class, the individuals are
also instances ofowl:Thing, even though it is semantically the same.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 55

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

5.1.7 SWI-Prolog results in the import and export operation

The different step executions do not produce any execution exception in SWI-Prolog; in
all the cases the original and the resultant ontologies are the same, as shown in Figure 5.7.

When there are anonymous individuals and object or datatypeproperties (ISJ01-03),
the result shows that the ontologies are different, but thisis an error of the comparer.
When the comparer compares two ontologies with blank nodes,it generates different
node identifiers and, therefore, it shows that the ontologies are different.

Figure 5.7: Results of the import and export operation for SWI-Prolog

5.1.8 WebODE results in the import and export operation

The different step executions never produce the same ontology in WebODE. However,
in some cases, WebODE’s execution fails, whereas in others,it is the execution of the
comparer that fails with the ontologies generated by WebODE(although these ontologies
validate correctly).

The results of a step execution in WebODE, as shown in Figure 5.8, can be classified
into four categories:

• The resultant ontology includes more information than the original one. This occurs
in 8 cases (ISA01, ISA08, ISD01, ISE02-04, ISE07-08).

• The resultant ontology includes less information than the original one. In this
case, information is sometimes inserted into the resultantontology. This occurs
in 32 cases (ISA06-07, ISB01-03, ISB12, ISC01-02, ISD02-04, ISE09, ISF01-03,
ISG01-04, ISH01, ISH03, ISI01-05, ISJ01-03, ISK01-03).

• The execution fails in the import and export operation. Thisoccurs in 18 cases
(ISA02-05, ISA13-17, ISB08-11, ISE05-06, ISE10, ISG05, ISH02).

56 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• The execution fails when comparing the ontologies. This occurs in 9 cases (ISA09-
12, ISB04-07, ISE01).

Figure 5.8: Results of the import and export operation for WebODE

Below, we describe the behaviour of WebODE in one step, focusing on the combina-
tion of components present in the original ontology.

Class hierarchies

• Classes.A rdfs:label is inserted into the classes with the value ”<classname>”.
This occurs whenever classes appear.

• Named class hierarchies with or without cycles (ISA01-06).When a hierarchy
has multiple classes, execution fails. When a class is a subclass of itself, the on-
tology processed is different but semantically the same. Itis only removed the
statement about a class being a subclass of itself.

• Classes that are a subclass of a value constraint in an objectproperty (ISA07-
08). A new property is created with a name ”<propertyname> 1” and with an
incorrect domain and range2. The restriction is created with the value constraint
owl:allValuesFrom(owl:Thing). In the case of theowl:someValuesFromconstraint,
the constraint is lost.

• Classes that are a subclass of a cardinality constraint in anobject property
(ISA09-12). The property is created with a domain that is defined as the union of
the class and an incorrect name2. The property is created with a range that is defined
as the union ofowl:Thing and an incorrect name2. The restriction is created on
owl:Thing instead of on the property; therefore,owl:Thing is defined as an object
property. The restriction is created with theowl:allValuesFrom(owl:Thing)value
constraint. In the case of theowl:minCardinalityconstraint, the constraint in the

2#http 3A 2F 2Fwww.w3.org2F20022F07 2Fowl 23Thing

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 57

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

restriction is lost. In the case of theowl:maxCardinalityconstraint, the value of the
constraint is ”11” instead of ”1”. In the case of theowl:cardinality constraint, the
constraint is created asowl:maxCardinalityinstead of asowl:cardinality and the
value of the constraint is ”11” instead of ”1”.

• Classes that are a subclass of a cardinality constraint in a datatype property
(ISA13-16).The execution fails.

• Classes that are a subclass of a class intersection (ISA17).The execution fails.

Class equivalences

• Classes equivalent to named classes (ISB01).Theowl:equivalentClassproperty
is lost.

• Classes equivalent to a value constraint in an object property (ISB02-03). The
property is created with domain and range, being the domain an anonymous concept
and not the class. A new property is created with name ”<propertyname> 1”
and with incorrect domain and range2. The anonymous concept is created as a
subclass of the restriction and not as equivalent to the restriction. The restriction is
created with theowl:allValuesFrom(owl:Thing)value constraint. In the case of the
owl:someValuesFromconstraint, the constraint is lost.

• Classes equivalent to a cardinality constraint in an objectproperty (ISB04-07).
The property is created with a domain that is defined as the union of an anonymous
concept and an incorrect name2. The property is created with a range that is de-
fined as the union ofowl:Thingand an incorrect name2. The anonymous concept is
created as a subclass of the restriction and not as equivalent to the restriction. The
restriction is created onowl:Thing instead of on the property, therefore,owl:Thing
is defined as an object property. The restriction is created with the value constraint
owl:allValuesFrom(owl:Thing). In the case of theowl:minCardinalityconstraint,
the constraint in the restriction is lost. In the case of theowl:maxCardinality
constraint, the value of the constraint is ”11” instead of ”1”. In the case of the
owl:cardinality constraint, the constraint is created asowl:maxCardinalityinstead
of asowl:cardinalityand the value of the constraint is ”11” instead of ”1”.

• Classes equivalent to a cardinality constraint in a datatype property (ISB08-
11). The execution fails.

• Classes equivalent to a class intersection (ISB12).The owl:intersectionOfand
owl:equivalentClassproperties are lost. An anonymous class is created.

58 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

Classes defined with set operators

• Classes intersection of other classes (ISC01-02).The owl:intersectionOfprop-
erty is lost.

Properties

• Object and datatype properties. A rdfs:label is inserted into the properties with
the value ”<propertyname>”. This occurs whenever properties appear.

• Object and datatype property hierarchies (ISD01-04).The rdfs:subPropertyOf
properties are lost.

• Object properties without domain or range (ISE01-02).When there are object
properties without domain, the domain is created with an incorrect name2. When
there are object properties without range, the range is created with an incorrect
name2 and the class is created as a subclass of the restrictionrestriction(owl:Thing
owl:allValuesFrom(owl:Thing)).

• Datatype properties without domain or range (ISE07-08).When there are datatype
properties without domain, the datatype property is lost. When there are datatype
properties without range, the class is created as a subclassof the restrictionrestric-
tion(a:hasSSN owl:allValuesFrom(xsd:string))and the range is created asxsd:string.

• Object properties with domain and range (ISE03-04).The class is created as a
subclass of the restrictionrestriction(a:hasChild owl:allValuesFrom(a:Person)).

• Object properties with domain and range (ISE09).The class is created as a sub-
class of the restrictionrestriction(a:hasSSN owl:allValuesFrom(xsd:string)). The
range changes fromrdfs:Literal to xsd:string.

• Object and datatype properties with multiple domains or ranges (ISE07-08,10).
The execution fails.

Relations between properties

• Equivalent object and datatype properties (ISF01-02).Theowl:equivalentProperty
property is lost.

• Inverse object properties (ISF03).Theowl:inverseOfproperty is lost.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 59

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

Global cardinality constraints and logical property characteristics

• Transitive or symmetric object properties (ISG01-02). The transitivity and the
symmetry are lost.

• Functional object and datatype properties (ISG03-04).The class is created as a
subclass of the restrictionrestriction(a:hasHusband maxCardinality(1)).

• Inverse functional object properties (ISG05).The execution fails.

Individuals

• Individuals. A rdfs:label property is inserted into the individuals with the value
”<individual name>”. This occurs whenever individuals appear.

• Individuals of a single class (ISH01,03).The individuals remain the same.

• Individuals of multiple classes (ISH02).The execution fails.

• Named individuals and object properties (ISI01-03).The property with the value
in the instance is lost.

• Named individuals and datatype properties (ISI04-05).The value in the prop-
erty is changed from” <value>” to ” <value>”ˆˆxsd:string.

• Anonymous individuals and object or datatype properties (ISJ01-03). The
anonymous individual is created as a named individual.

Individual identity

• Equivalent or different individuals (ISK01-03). The properties and classes that
define the equivalence or difference (owl:sameAs, owl:different, owl:AllDifferent)
are lost.

5.2 Analysis of the interoperability

With the previous information about the behaviour of the tool in a step of the experiment,
we provide the analysis of its interoperability with all thetools participating in the bench-
marking (including itself). For performing such analysis,we have considered the results
of its interoperability when this is the origin and the destination of the interchange with
the other tools.

First, we present a table summarizing the results of the interoperability for each tool.
Then, we present some interoperability issues not detectedin the analysis of the import

60 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

and export operation. Finally, we highlight the ontology components that the tools are
able to interchange.

5.2.1 Summary of the interoperability results

In the tables below3, the results of the interoperability between two tools (i.e., T1 and T2)
have been grouped into categories, as in the previous section; the results also include the
interchange from one tool to another (from T1 to T2) and vice versa (from T2 to T1). The
results of the table are restrictive, i.e., when a single benchmark in a category has any
problem in one of the directions of the interchange, the whole category states to have this
problem. The results for any category can be the following:

• SAME. When all the ontologies interchanged between two tools are the same (all
the benchmarks in the category have anINTEROPERABILITYresult ofSAME).

• DIFF. When at least one ontology interchanged between two tools isdifferent and
no execution errors exist (any benchmark in the category hasanINTEROPERABIL-
ITY result ofDIFFERENTand no benchmark with anEXECUTIONresult ofN.E.
exists).

• N.E. When at least one ontology could not be interchanged betweentwo tools be-
cause of an execution error (any benchmark in the category has anEXECUTION
result ofN.E.- Non Executed).

Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9 show a summary of the results of the
interoperability of GATE, Jena, KAON2, Protégé-Frames,Protégé-OWL, SemTalk, SWI-
Prolog, and WebODE with the other tools, respectively.

3Tool names have been shortened in the table: GA=GATE, JE=Jena, K2=KAON2, PF=Protégé Frames,
PO=Protégé OWL, ST=SemTalk, SP=SWI-Prolog, and WE=WebODE

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 61

5.
O

W
L

IN
T

E
R

O
P

E
R

A
B

IL
IT

Y
R

E
S

U
LT

S
A

N
D

A
N

A
LY

S
IS

Categories Benchmarks GA-GA JE-GA K2-GA PF-GA PO-GA SP-GA ST-GA WE-GA
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 N.E. SAME N.E. DIFF N.E. N.E. N.E. N.E.
Named class hierarchies with cycles ISA05-ISA06 N.E. SAME N.E. DIFF N.E. N.E. DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 N.E. SAME N.E. DIFF N.E. N.E. N.E. N.E.
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 N.E. N.E. N.E. DIFF N.E. N.E. N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a class intersection ISA17 N.E. SAME SAME DIFF N.E. SAME N.E. N.E.
Class equivalences
Equivalent named classes ISB01 SAME SAME N.E. DIFF SAME SAME DIFF N.E.
Classes equivalent to a value constraint in an object property ISB02-ISB03 N.E. SAME N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 N.E. N.E. N.E. DIFF N.E. N.E. N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 N.E. SAME N.E. N.E. SAME N.E. N.E. N.E.
Classes equivalent to a class intersection ISB12 SAME SAME SAME DIFF SAME N.E. N.E. N.E.
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 N.E. SAME N.E. DIFF SAME N.E. N.E. N.E.
Property hierarchies
Object property hierarchies ISD01-ISD02 N.E. DIFF N.E. DIFF DIFF N.E. N.E. N.E.
Datatype property hierarchies ISD03-ISD04 DIFF DIFF N.E. DIFF N.E. N.E. DIFF N.E.
Properties with domain and range
Object properties without domain or range ISE01-ISE02 N.E. SAME N.E. DIFF N.E. N.E. N.E. N.E.
Object properties with domain and range ISE03-ISE04 N.E. SAME N.E. DIFF N.E. N.E. N.E. N.E.
Object properties with multiple domains or ranges ISE05-ISE06 N.E. N.E. N.E. DIFF N.E. SAME N.E. N.E.
Datatype properties without domain or range ISE07-ISE08 N.E. SAME N.E. N.E. N.E. N.E. DIFF N.E.
Datatype properties with domain and range ISE09 N.E. SAME SAME DIFF N.E. SAME N.E. N.E.
Datatype properties with multiple domains ISE10 SAME SAME SAME DIFF N.E. SAME DIFF N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 N.E. SAME N.E. DIFF N.E. SAME N.E. N.E.
Inverse object properties ISF03 N.E. SAME N.E. DIFF N.E. SAME N.E. N.E.
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 SAME SAME SAME DIFF N.E. N.E. DIFF N.E.
Symmetric object properties ISG02 N.E. SAME N.E. DIFF SAME SAME N.E. N.E.
Functional object and datatype properties ISG03-ISG04 N.E. SAME N.E. N.E. N.E. N.E. N.E. N.E.
Inverse functional object properties ISG05 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Individuals
Instances ISH01, ISH03 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Instances of multiple classes ISH02 DIFF DIFF N.E. N.E. DIFF N.E. N.E. N.E.
Named individuals and object properties ISI01-ISI03 N.E. SAME N.E. DIFF N.E. N.E. N.E. N.E.
Named individuals and datatype properties ISI04-ISI05 N.E. SAME N.E. N.E. N.E. N.E. N.E. N.E.
Anonymous individuals and object properties ISJ01-ISJ02 N.E. N.E. N.E. DIFF N.E. N.E. N.E. N.E.
Anonymous individuals and datatype properties ISJ03 DIFF DIFF DIFF N.E. N.E. N.E. N.E. N.E.
Individual identity
Equivalent individuals ISK01 N.E. N.E. N.E. DIFF SAME SAME DIFF N.E.
Different individuals ISK02-ISK03 N.E. DIFF N.E. N.E. SAME N.E. N.E. N.E.

Table 5.2: Summary of the results of the OWL interoperability of GATE

62
25.

O
ctober,2007

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

D
1.2.2.1.2

O
W

L
Interoperability

B
enchm

arking
IS

T
P

roject
IS

T-2004-507482

Categories Benchmarks GA-JE JE-JE K2-JE PF-JE PO JE SP-JE ST-JE WE-JE
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 SAME SAME DIFF DIFF SAME SAME DIFF N.E.
Named class hierarchies with cycles ISA05-ISA06 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 SAME SAME SAME DIFF SAME SAME N.E. DIFF
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 N.E. SAME N.E. DIFF SAME SAME N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. SAME N.E. N.E. SAME SAME N.E. N.E.
Classes subclass of a class intersection ISA17 SAME SAME SAME DIFF SAME SAME N.E. N.E.
Class equivalences
Equivalent named classes ISB01 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Classes equivalent to a value constraint in an object property ISB02-ISB03 SAME SAME SAME DIFF SAME SAME N.E. DIFF
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 N.E. SAME N.E. DIFF SAME SAME N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 SAME SAME N.E. N.E. SAME SAME N.E. N.E.
Classes equivalent to a class intersection ISB12 SAME SAME SAME DIFF SAME SAME N.E. DIFF
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 SAME SAME SAME DIFF SAME SAME N.E. DIFF
Property hierarchies
Object property hierarchies ISD01-ISD02 DIFF SAME DIFF DIFF SAME SAME DIFF DIFF
Datatype property hierarchies ISD03-ISD04 DIFF SAME DIFF DIFF SAME SAME DIFF DIFF
Properties with domain and range
Object properties without domain or range ISE01-ISE02 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Object properties with domain and range ISE03-ISE04 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Object properties with multiple domains or ranges ISE05-ISE06 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Datatype properties without domain or range ISE07-ISE08 SAME SAME SAME N.E. SAME SAME DIFF DIFF
Datatype properties with domain and range ISE09 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Datatype properties with multiple domains ISE10 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Inverse object properties ISF03 SAME SAME SAME DIFF DIFF SAME DIFF DIFF
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Symmetric object properties ISG02 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Functional object and datatype properties ISG03-ISG04 SAME SAME SAME DIFF SAME SAME N.E. DIFF
Inverse functional object properties ISG05 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Individuals
Instances ISH01, ISH03 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Instances of multiple classes ISH02 DIFF SAME SAME DIFF SAME SAME SAME DIFF
Named individuals and object properties ISI01-ISI03 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Named individuals and datatype properties ISI04-ISI05 SAME SAME SAME N.E. SAME SAME DIFF DIFF
Anonymous individuals and object properties ISJ01-ISJ02 N.E. DIFF DIFF DIFF DIFF DIFF N.E. DIFF
Anonymous individuals and datatype properties ISJ03 DIFF DIFF DIFF N.E. DIFF DIFF N.E. DIFF
Individual identity
Equivalent individuals ISK01 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Different individuals ISK02-ISK03 DIFF SAME SAME DIFF SAME SAME N.E. DIFF

Table 5.3: Summary of the results of the OWL interoperability of Jena

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

25.
O

ctober,2007
63

5.
O

W
L

IN
T

E
R

O
P

E
R

A
B

IL
IT

Y
R

E
S

U
LT

S
A

N
D

A
N

A
LY

S
IS

Categories Benchmarks GA-K2 JE-K2 K2-K2 PF-K2 PO-K2 SP-K2 ST-K2 WE-K2
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 N.E. DIFF DIFF DIFF DIFF DIFF DIFF N.E.
Named class hierarchies with cycles ISA05-ISA06 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 N.E. SAME SAME DIFF SAME SAME N.E. DIFF
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a class intersection ISA17 SAME SAME SAME DIFF SAME SAME N.E. N.E.
Class equivalences
Equivalent named classes ISB01 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Classes equivalent to a value constraint in an object property ISB02-ISB03 N.E. SAME SAME DIFF SAME SAME N.E. DIFF
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a class intersection ISB12 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 N.E. SAME SAME DIFF SAME SAME N.E. DIFF
Property hierarchies
Object property hierarchies ISD01-ISD02 N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Datatype property hierarchies ISD03-ISD04 N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Properties with domain and range
Object properties without domain or range ISE01-ISE02 N.E. SAME SAME DIFF SAME SAME SAME N.E.
Object properties with domain and range ISE03-ISE04 N.E. SAME SAME DIFF SAME SAME SAME DIFF
Object properties with multiple domains or ranges ISE05-ISE06 N.E. SAME SAME DIFF SAME SAME SAME N.E.
Datatype properties without domain or range ISE07-ISE08 N.E. SAME SAME N.E. SAME SAME DIFF DIFF
Datatype properties with domain and range ISE09 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Datatype properties with multiple domains ISE10 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Inverse object properties ISF03 N.E. SAME SAME DIFF DIFF SAME DIFF DIFF
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 SAME SAME SAME DIFF SAME SAME SAME DIFF
Symmetric object properties ISG02 N.E. SAME SAME DIFF SAME SAME SAME DIFF
Functional object and datatype properties ISG03-ISG04 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Inverse functional object properties ISG05 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Individuals
Instances ISH01, ISH03 N.E. SAME SAME DIFF SAME SAME SAME DIFF
Instances of multiple classes ISH02 N.E. SAME SAME DIFF SAME SAME SAME DIFF
Named individuals and object properties ISI01-ISI03 N.E. SAME SAME DIFF SAME SAME SAME DIFF
Named individuals and datatype properties ISI04-ISI05 N.E. SAME SAME N.E. SAME SAME DIFF DIFF
Anonymous individuals and object properties ISJ01-ISJ02 N.E. DIFF SAME DIFF DIFF DIFF DIFF DIFF
Anonymous individuals and datatype properties ISJ03 DIFF DIFF SAME N.E. DIFF DIFF DIFF DIFF
Individual identity
Equivalent individuals ISK01 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Different individuals ISK02-ISK03 N.E. SAME SAME DIFF SAME SAME N.E. N.E.

Table 5.4: Summary of the results of the OWL interoperability of KAON2

64
25.

O
ctober,2007

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

D
1.2.2.1.2

O
W

L
Interoperability

B
enchm

arking
IS

T
P

roject
IS

T-2004-507482

Categories Benchmarks GA-PF JE-PF K2-PF PF-PF PO-PF SP-PF ST-PF WE-PF
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Named class hierarchies with cycles ISA05-ISA06 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 DIFF DIFF N.E. DIFF DIFF N.E. N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a class intersection ISA17 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Class equivalences
Equivalent named classes ISB01 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Classes equivalent to a value constraint in an object property ISB02-ISB03 N.E. DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 DIFF DIFF N.E. DIFF DIFF N.E. N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a class intersection ISB12 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Property hierarchies
Object property hierarchies ISD01-ISD02 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Datatype property hierarchies ISD03-ISD04 DIFF DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Properties with domain and range
Object properties without domain or range ISE01-ISE02 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Object properties with domain and range ISE03-ISE04 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Object properties with multiple domains or ranges ISE05-ISE06 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Datatype properties without domain or range ISE07-ISE08 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Datatype properties with domain and range ISE09 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Datatype properties with multiple domains ISE10 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Inverse object properties ISF03 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Symmetric object properties ISG02 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Functional object and datatype properties ISG03-ISG04 N.E. DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Inverse functional object properties ISG05 DIFF DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Individuals
Instances ISH01, ISH03 N.E. DIFF DIFF DIFF DIFF N.E. N.E. N.E.
Instances of multiple classes ISH02 N.E. DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Named individuals and object properties ISI01-ISI03 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Named individuals and datatype properties ISI04-ISI05 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Anonymous individuals and object properties ISJ01-ISJ02 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Anonymous individuals and datatype properties ISJ03 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Individual identity
Equivalent individuals ISK01 DIFF DIFF DIFF DIFF DIFF N.E. N.E. DIFF
Different individuals ISK02-ISK03 N.E. DIFF DIFF DIFF DIFF N.E. N.E. DIFF

Table 5.5: Summary of the results of the OWL interoperability of Protégé-Frames

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

25.
O

ctober,2007
65

5.
O

W
L

IN
T

E
R

O
P

E
R

A
B

IL
IT

Y
R

E
S

U
LT

S
A

N
D

A
N

A
LY

S
IS

Categories Benchmarks GA-PO JE-PO K2-PO PF-PO PO-PO SP-PO ST-PO WE-PO
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 N.E. SAME DIFF DIFF SAME SAME DIFF N.E.
Named class hierarchies with cycles ISA05-ISA06 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 N.E. SAME SAME DIFF SAME SAME N.E. DIFF
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 N.E. SAME N.E. DIFF SAME SAME N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. SAME N.E. N.E. SAME SAME N.E. N.E.
Classes subclass of a class intersection ISA17 N.E. SAME SAME DIFF SAME SAME N.E. N.E.
Class equivalences
Equivalent named classes ISB01 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Classes equivalent to a value constraint in an object property ISB02-ISB03 N.E. SAME SAME DIFF SAME SAME N.E. DIFF
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 N.E. SAME N.E. DIFF SAME SAME N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 SAME SAME N.E. N.E. SAME SAME N.E. N.E.
Classes equivalent to a class intersection ISB12 SAME SAME SAME DIFF SAME SAME N.E. DIFF
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 SAME SAME SAME DIFF SAME SAME N.E. DIFF
Property hierarchies
Object property hierarchies ISD01-ISD02 DIFF SAME DIFF DIFF SAME SAME DIFF DIFF
Datatype property hierarchies ISD03-ISD04 N.E. SAME DIFF DIFF SAME SAME DIFF DIFF
Properties with domain and range
Object properties without domain or range ISE01-ISE02 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Object properties with domain and range ISE03-ISE04 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Object properties with multiple domains or ranges ISE05-ISE06 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Datatype properties without domain or range ISE07-ISE08 N.E. SAME SAME N.E. SAME SAME DIFF DIFF
Datatype properties with domain and range ISE09 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Datatype properties with multiple domains ISE10 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Inverse object properties ISF03 N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Symmetric object properties ISG02 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Functional object and datatype properties ISG03-ISG04 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Inverse functional object properties ISG05 SAME SAME SAME DIFF SAME SAME DIFF N.E.
Individuals
Instances ISH01, ISH03 N.E. SAME SAME DIFF SAME SAME DIFF N.E.
Instances of multiple classes ISH02 DIFF SAME SAME DIFF SAME SAME SAME DIFF
Named individuals and object properties ISI01-ISI03 N.E. SAME SAME DIFF SAME SAME DIFF DIFF
Named individuals and datatype properties ISI04-ISI05 N.E. SAME SAME N.E. SAME SAME DIFF DIFF
Anonymous individuals and object properties ISJ01-ISJ02 N.E. DIFF DIFF DIFF DIFF DIFF N.E. DIFF
Anonymous individuals and datatype properties ISJ03 N.E. DIFF DIFF N.E. DIFF DIFF N.E. DIFF
Individual identity
Equivalent individuals ISK01 SAME SAME SAME DIFF SAME SAME DIFF DIFF
Different individuals ISK02-ISK03 SAME SAME SAME DIFF SAME SAME N.E. DIFF

Table 5.6: Summary of the results of the OWL interoperability of Protégé-OWL

66
25.

O
ctober,2007

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

D
1.2.2.1.2

O
W

L
Interoperability

B
enchm

arking
IS

T
P

roject
IS

T-2004-507482

Categories Benchmarks GA-ST JE-ST K2-ST PF-ST PO-ST SP-ST ST-ST WE-ST
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 N.E. DIFF DIFF N.E. DIFF SAME SAME N.E.
Named class hierarchies with cycles ISA05-ISA06 DIFF DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 N.E. N.E. N.E. N.E. N.E. DIFF DIFF DIFF
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. N.E. N.E. N.E. N.E. N.E. DIFF N.E.
Classes subclass of a class intersection ISA17 N.E. N.E. N.E. N.E. N.E. SAME SAME N.E.
Class equivalences
Equivalent named classes ISB01 DIFF DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Classes equivalent to a value constraint in an object property ISB02-ISB03 N.E. N.E. N.E. N.E. N.E. DIFF DIFF DIFF
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 N.E. N.E. N.E. N.E. N.E. N.E. DIFF N.E.
Classes equivalent to a class intersection ISB12 N.E. N.E. DIFF N.E. N.E. DIFF DIFF DIFF
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 N.E. N.E. N.E. N.E. N.E. SAME SAME DIFF
Property hierarchies
Object property hierarchies ISD01-ISD02 N.E. DIFF DIFF N.E. DIFF SAME SAME DIFF
Datatype property hierarchies ISD03-ISD04 DIFF DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Properties with domain and range
Object properties without domain or range ISE01-ISE02 N.E. DIFF SAME N.E. DIFF SAME SAME N.E.
Object properties with domain and range ISE03-ISE04 N.E. DIFF SAME N.E. DIFF SAME SAME DIFF
Object properties with multiple domains or ranges ISE05-ISE06 N.E. DIFF SAME N.E. DIFF SAME SAME N.E.
Datatype properties without domain or range ISE07-ISE08 DIFF DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Datatype properties with domain and range ISE09 N.E. DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Datatype properties with multiple domains ISE10 DIFF DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 N.E. DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Inverse object properties ISF03 N.E. DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 DIFF DIFF SAME N.E. DIFF SAME SAME DIFF
Symmetric object properties ISG02 N.E. DIFF SAME N.E. DIFF SAME SAME DIFF
Functional object and datatype properties ISG03-ISG04 N.E. N.E. DIFF N.E. DIFF DIFF DIFF DIFF
Inverse functional object properties ISG05 DIFF DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Individuals
Instances ISH01, ISH03 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Instances of multiple classes ISH02 N.E. DIFF SAME N.E. DIFF SAME SAME DIFF
Named individuals and object properties ISI01-ISI03 N.E. DIFF SAME N.E. DIFF SAME SAME DIFF
Named individuals and datatype properties ISI04-ISI05 N.E. DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Anonymous individuals and object properties ISJ01-ISJ02 N.E. N.E. DIFF N.E. N.E. DIFF DIFF DIFF
Anonymous individuals and datatype properties ISJ03 N.E. N.E. DIFF N.E. N.E. DIFF DIFF DIFF
Individual identity
Equivalent individuals ISK01 DIFF DIFF DIFF N.E. DIFF DIFF DIFF DIFF
Different individuals ISK02-ISK03 N.E. N.E. N.E. N.E. N.E. DIFF DIFF N.E.

Table 5.7: Summary of the results of the OWL interoperability of SemTalk

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

25.
O

ctober,2007
67

5.
O

W
L

IN
T

E
R

O
P

E
R

A
B

IL
IT

Y
R

E
S

U
LT

S
A

N
D

A
N

A
LY

S
IS

Categories Benchmarks GA-SP JE-SP K2-SP PF-SP PO-SP SP-SP ST-SP WE-SP
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 N.E. SAME DIFF N.E. SAME SAME SAME N.E.
Named class hierarchies with cycles ISA05-ISA06 N.E. SAME SAME N.E. SAME SAME DIFF N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 N.E. SAME SAME N.E. SAME SAME DIFF N.E.
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 N.E. SAME N.E. N.E. SAME SAME N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. SAME N.E. N.E. SAME SAME N.E. N.E.
Classes subclass of a class intersection ISA17 SAME SAME SAME N.E. SAME SAME SAME N.E.
Class equivalences
Equivalent named classes ISB01 SAME SAME SAME N.E. SAME SAME DIFF N.E.
Classes equivalent to a value constraint in an object property ISB02-ISB03 N.E. SAME SAME N.E. SAME SAME DIFF N.E.
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 N.E. SAME N.E. N.E. SAME SAME N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 N.E. SAME N.E. N.E. SAME SAME N.E. N.E.
Classes equivalent to a class intersection ISB12 N.E. SAME SAME N.E. SAME SAME DIFF N.E.
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Property hierarchies
Object property hierarchies ISD01-ISD02 N.E. SAME DIFF N.E. SAME SAME SAME N.E.
Datatype property hierarchies ISD03-ISD04 N.E. SAME DIFF N.E. SAME SAME DIFF DIFF
Properties with domain and range
Object properties without domain or range ISE01-ISE02 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Object properties with domain and range ISE03-ISE04 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Object properties with multiple domains or ranges ISE05-ISE06 SAME SAME SAME N.E. SAME SAME SAME N.E.
Datatype properties without domain or range ISE07-ISE08 N.E. SAME SAME N.E. SAME SAME DIFF N.E.
Datatype properties with domain and range ISE09 SAME SAME SAME N.E. SAME SAME DIFF N.E.
Datatype properties with multiple domains ISE10 SAME SAME SAME N.E. SAME SAME DIFF N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 SAME SAME SAME N.E. SAME SAME DIFF N.E.
Inverse object properties ISF03 SAME SAME SAME N.E. DIFF SAME DIFF N.E.
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Symmetric object properties ISG02 SAME SAME SAME N.E. SAME SAME SAME N.E.
Functional object and datatype properties ISG03-ISG04 N.E. SAME SAME N.E. SAME SAME DIFF N.E.
Inverse functional object properties ISG05 SAME SAME SAME N.E. SAME SAME DIFF N.E.
Individuals
Instances ISH01, ISH03 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Instances of multiple classes ISH02 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Named individuals and object properties ISI01-ISI03 N.E. SAME SAME N.E. SAME SAME SAME N.E.
Named individuals and datatype properties ISI04-ISI05 N.E. SAME SAME N.E. SAME SAME DIFF N.E.
Anonymous individuals and object properties ISJ01-ISJ02 N.E. DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Anonymous individuals and datatype properties ISJ03 N.E. DIFF DIFF N.E. DIFF DIFF DIFF N.E.
Individual identity
Equivalent individuals ISK01 SAME SAME SAME N.E. SAME SAME DIFF N.E.
Different individuals ISK02-ISK03 N.E. SAME SAME N.E. SAME SAME DIFF N.E.

Table 5.8: Summary of the results of the OWL interoperability of SWI-Prolog

68
25.

O
ctober,2007

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

D
1.2.2.1.2

O
W

L
Interoperability

B
enchm

arking
IS

T
P

roject
IS

T-2004-507482

Categories Benchmarks GA-WE JE-WE K2-WE PF-WE PO-WE SP-WE ST-WE WE-WE
Class hierarchies
Named class hierarchies without cycles ISA01-ISA04 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Named class hierarchies with cycles ISA05-ISA06 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a value constraint in an object property ISA07-ISA08 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Classes subclass of a cardinality constraint in an object property ISA09-ISA12 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a cardinality constraint in a datatype property ISA13-ISA16 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes subclass of a class intersection ISA17 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Class equivalences
Equivalent named classes ISB01 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Classes equivalent to a value constraint in an object property ISB02-ISB03 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Classes equivalent to a cardinality constraint in an objectproperty ISB04-ISB07 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a cardinality constraint in a datatype property ISB08-ISB11 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Classes equivalent to a class intersection ISB12 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Classes defined with set operators
Classes intersection of other classes ISC01-ISC02 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Property hierarchies
Object property hierarchies ISD01-ISD02 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Datatype property hierarchies ISD03-ISD04 N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Properties with domain and range
Object properties without domain or range ISE01-ISE02 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Object properties with domain and range ISE03-ISE04 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Object properties with multiple domains or ranges ISE05-ISE06 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Datatype properties without domain or range ISE07-ISE08 N.E. DIFF DIFF N.E. DIFF N.E. DIFF N.E.
Datatype properties with domain and range ISE09 N.E. DIFF DIFF DIFF DIFF N.E. DIFF N.E.
Datatype properties with multiple domains ISE10 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Relations between properties
Equivalent object and datatype properties ISF01-ISF02 N.E. DIFF DIFF DIFF DIFF N.E. DIFF N.E.
Inverse object properties ISF03 N.E. DIFF DIFF DIFF DIFF DIFF DIFF DIFF
Global cardinality constraints & logical property charact eristics
Transitive object properties ISG01 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Symmetric object properties ISG02 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Functional object and datatype properties ISG03-ISG04 N.E. DIFF DIFF DIFF DIFF N.E. DIFF N.E.
Inverse functional object properties ISG05 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Individuals
Instances ISH01, ISH03 N.E. N.E. N.E. N.E. N.E. N.E. N.E. N.E.
Instances of multiple classes ISH02 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Named individuals and object properties ISI01-ISI03 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Named individuals and datatype properties ISI04-ISI05 N.E. DIFF DIFF N.E. DIFF N.E. DIFF N.E.
Anonymous individuals and object properties ISJ01-ISJ02 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Anonymous individuals and datatype properties ISJ03 N.E. DIFF DIFF N.E. DIFF N.E. DIFF N.E.
Individual identity
Equivalent individuals ISK01 N.E. DIFF DIFF DIFF DIFF N.E. DIFF DIFF
Different individuals ISK02-ISK03 N.E. DIFF N.E. DIFF DIFF N.E. N.E. DIFF

Table 5.9: Summary of the results of the OWL interoperability of WebODE

K
W

E
B

/2007/D
1.2.2.1.2/v1.3

25.
O

ctober,2007
69

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

5.2.2 Interoperability issues

The results of the interoperability of the tools participating in the benchmarking depend
not just on the behaviour of the tools during the import and export operation (as described
in each section that deals with the tools) but also on the following issues identified in the
results:

• In the case of interchangesfrom KAON2 to GATE , when GATE uses ontologies
generated by KAON2, it produces ontologies that make the comparer execution
fail. This is sometime because the ontologies are not valid OWL ontologies in the
RDF/XML syntax.

• In the case of interchangesfrom GATE to Jena, KAON2 and Prot éǵe-OWL,
when Jena, KAON2 and Protégé-OWL use ontologies generated by GATE, they
produce ontologies that make the comparer execution fail.

• In the case of interchangesfrom Prot éǵe-Frames to GATE, when GATE uses
ontologies generated by Protégé-Frames, when the ontologies include classes with
multiple instances, GATE produces ontologies that make thecomparer execution
fail.

• In the case of interchangesfrom Prot éǵe-Frames to SemTalk, when SemTalk
uses ontologies generated by Protégé-Frames, it produces ontologies that make the
comparer execution fail.

• In the case of interchangesfrom SemTalk and SWI-Prolog to GATE, when GATE
uses ontologies generated by SemTalk and SWI-Prolog, it produces ontologies that
make the comparer execution fail.

• In the case of interchangesfrom SemTalk to Jena, when Jena uses ontologies
generated by SemTalk, it loses the datatype property hierarchies.

• In the case of interchangesfrom SemTalk to KAON2 , when KAON2 uses ontolo-
gies generated by SemTalk, it produces ontologies that makethe comparer execu-
tion fail.

• In the case of interchangesfrom GATE, Jena and Protéǵe-OWL to SemTalk,
when SemTalk uses ontologies generated by these tools, it: loses therdfs:subClassOf
and rdfs:subPropertyOfproperties; loses the domain and the range in object or
datatype properties with domain or range; its execution fails with classes that are a
subclass or equivalent to value constraints, cardinality constraints, or class intersec-
tions; its execution fails with classes intersection of other classes; and its execution
fails with anonymous individuals with object or datatype properties.

70 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

• In the case of interchangesfrom Prot éǵe-Frames and WebODE to SWI-Prolog,
SWI-Prolog generates OWL ontologies that are not valid in the RDF/XML syntax
from most of the ontologies produced by WebODE and from all the ontologies
produced by Protégé-Frames.

5.2.3 Components that can be interchanged between the tools

Taking into account these issues, we present a summary of thecombinations of compo-
nents that can only be interchanged between the tools participating in the benchmarking.

Jena - Prot́eǵe-OWL - SWI-Prolog

These tools can interchange any combination of components.

KAON2 - KAON2, KAON2 - Jena, KAON2 - Prot éǵe-OWL, and KAON2 - SWI-
Prolog

• Named class hierarchies with cycles.

• Classes that are a subclass of a value constraint in an objectproperty.

• Classes that are a subclass of a class intersection.

• Equivalent named classes.

• Classes equivalent to a value constraint in an object property.

• Classes equivalent to a class intersection.

• Classes intersection of other classes.

• Object and datatype properties with or without domain or range, or with multiple
domains or ranges.

• Equivalent object and datatype properties.

• Inverse, transitive, symmetric and inverse functional object properties.

• Functional datatype properties.

• Instances of single and multiple classes.

• Named and anonymous individuals and object or datatype properties.

• Equivalent and different individuals.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 71

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

SemTalk - SemTalk and SemTalk - SWI-Prolog

• Named class hierarchies without cycles.

• Classes that are a subclass of a class intersection.

• Classes intersection of other classes.

• Object property hierarchies.

• Object properties with or without domain or range or with multiple domains and
ranges.

• Transitive and symmetric object properties.

• Instances of single and multiple classes.

• Named individuals and object properties.

GATE - SWI-Prolog

• Classes that are a subclass of a class intersection.

• Equivalent named classes.

• Object properties with multiple domains or ranges.

• Datatype properties with domain and range.

• Datatype properties with multiple domains.

• Symmetric and inverse functional object properties.

• Equivalent individuals.

GATE - JENA

• Equivalent named classes.

• Classes equivalent to a cardinality constraint in a datatype property.

• Classes equivalent to a class intersection.

• Classes intersection of other classes.

• Inverse and inverse functional object properties.

• Equivalent and different individuals.

72 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

GATE - Prot éǵe-OWL

• Equivalent named classes.

• Classes equivalent to a cardinality constraint in a datatype property.

• Classes equivalent to a class intersection.

• Classes intersection of other classes.

• Symmetric and inverse functional object properties.

• Equivalent and different individuals.

GATE - GATE

• Equivalent named classes.

• Classes equivalent to a class intersection.

• Datatype properties with multiple domains.

• Transitive and inverse functional object properties.

KAON2 - SemTalk

• Object properties with or without domain or range or with multiple domains and
ranges.

• Transitive and symmetric object properties.

• Instances of single and multiple classes.

• Named individuals and object properties.

GATE - KAON2

• Classes that are a subclass or equivalent to a class intersection.

• Datatype properties with domain and range or with multiple domains.

• Transitive and inverse functional object properties.

SemTalk - Jena and SemTalk - Prot́eǵe-OWL

• Instances of multiple classes.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 73

5. OWL INTEROPERABILITY RESULTS AND ANALYSIS

SemTalk - GATE

These tools cannot interchange any combination of components.

Protéǵe-Frames - all

These tools cannot interchange any combination of components.

WebODE - all

Taking into account these issues, WebODE cannot interchange with the other tools any
combination of components.

74 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

Chapter 6

Conclusion

by RAÚL GARCÍA-CASTRO

This document is intended to serve not just as a summary of theOWL interoperability
benchmarking, but as a guide for people who want to perform benchmarking activities or
interoperability evaluations over the Semantic Web technology.

The main goal fulfilled with this work is the assessment of thecurrent interoperability
of nine best-in-class Semantic Web tools. The assessment has provided us with results
about the detailed behaviour of the tools not just when interoperating with other tools but
also when importing and exporting OWL ontologies. We have also developed the IBSE
tool, an easy-to-use tool for large-scale evaluations of the interoperability of the Semantic
Web technology when using an interchange language.

As in the case of the RDF(S) Interoperability Benchmarking,the benchmarking pro-
cess has been long. And as a result, we have discovered that the interoperability between
the tools is very low and that real interoperability in the Semantic Web requires the in-
volvement of tool developers. In some cases, this is due to the representation formalisms
managed by the tools, but in other cases it is due to defects inthe tools or to the way of
serializing the ontologies, which has a high impact in interoperability.

This panoramic, although disappointing, can serve to promote the second of our goals:
the improvement of the tools. Although this goal is out of ourscope just now because each
tool is developed by independent organizations, we hope, nevertheless, that the results we
provide may help in their improvement.

The benchmarking results are now publicly available in the Web in machine-processable
format. Thus, anyone can use them for comparing them with their own results or for rea-
soning about them.

The tool developers that have participated in this benchmarking will receive the final
version of this document, although they are already informed about the recommendations
proposed for improving their tools.

Any developer of Semantic Web tools can benefit from this workby learning the cor-

75

6. CONCLUSION

rect or incorrect behaviour of the other tools. They can alsouse the IBSE tool to evaluate
their tools, either in the early stages of their developmentor when the development has
finished, and to monitor their improvement.

The results of the benchmarking can also be used by ontology developers that have
problems when interchanging ontologies between tools or that want to foresee the results
of a future interchange.

The IBSE tool can also be used in other scenarios. It can be used for evaluating
the interoperability of tools using other languages as interchange. Right now the tool
allows performing experiments using RDF(S) as interchangelanguage. Other tools should
have to implement the corresponding method in the IBSE tool and then use the RDF(S)
Import Benchmark Suite1 as ontology dataset. The IBSE tool can also be used to evaluate
the importers and exporters of any tool because the interoperability results (even of one
tool with itself) provide useful insights about the behaviour of the tool importers and
exporters.

1http://knowledgeweb.semanticweb.org/benchmarking interoperability/
rdfs/rdfs import benchmark suite.html

76 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

Appendix A

List of benchmarks of the OWL Lite
Import Benchmark Suite

This appendix contains a list of the benchmarks that composethe OWL Import Bench-
mark Suite, which are described by:

• A unique identifier (i.e.,ISA01 whereIS denotes the OWL import benchmark suite,
A is the group to which the benchmark belongs to, and01 is a number)

• A description of the ontology in natural language (e.g.,Import a single class).

• The description of the ontology in the Description Logics formalism. All these
descriptions can be found in Appendix B.

• A graphical representation of the ontology, that uses the notation shown in Figure
A.1

77

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

Figure A.1: Notation used in the benchmarks

Class benchmarks

Group A: Class hierarchies

ID Description Graphical representation

ISA01 Import a single class

ISA02
Import a single class, subclass of a
second class which is subclass of a
third one

ISA03
Import a class that is subclass of
two classes

ISA04
Import several classes subclass of a
single class

ISA05
Import two classes, each subclass of
the other

(continued on next page)

78 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(continued from previous page)

ISA06 Import a class, subclass of itself

ISA07

Import a class which is subclass
of an anonymous class defined by
an owl:someValuesFrom value con-
straint in an object property

ISA08

Import a class which is subclass of
an anonymous class defined by an
owl:allValuesFrom value constraint
in an object property

ISA09

Import a class which is subclass
of an anonymous class defined by
an owl:minCardinality=0 cardinal-
ity constraint in an object property

ISA10

Import a class which is subclass
of an anonymous class defined by
an owl:maxCardinality=1 cardinal-
ity constraint in an object property

ISA11

Import a class which is subclass of
an anonymous class defined by an
owl:cardinality=1 cardinality con-
straint in an object property

ISA12

Import a class which is subclass
of an anonymous class defined
by an owl:minCardinality=0 and
an owl:maxCardinality=1 cardinal-
ity constraints in an object property

ISA13

Import a class which is subclass
of an anonymous class defined by
an owl:minCardinality=0 cardinal-
ity constraint in a datatype property

ISA14

Import a class which is subclass
of an anonymous class defined by
an owl:maxCardinality=1 cardinal-
ity constraint in a datatype property

ISA15

Import a class which is subclass of
an anonymous class defined by an
owl:cardinality=1 cardinality con-
straint in a datatype property

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 79

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

(continued from previous page)

ISA16

Import a class which is subclass
of an anonymous class defined
by an owl:minCardinality=0 and
an owl:maxCardinality=1 cardinal-
ity constraints in a datatype prop-
erty

ISA17
Import a class which is subclass of
an anonymous class defined by the
intersection of two other classes

Group B: Class equivalences

ID Description Graphical representation

ISB01
Import several classes which are all
of them equivalent

ISB02

Import a class which is equivalent
to an anonymous class defined by
an owl:someValuesFrom value con-
straint in an object property

ISB03

Import a class which is equivalent
to an anonymous class defined by
an owl:allValuesFrom value con-
straint in an object property

ISB04

Import a class which is equivalent
to an anonymous class defined by
an owl:minCardinality=0 cardinal-
ity constraint in an object property

ISB05

Import a class which is equivalent
to an anonymous class defined by
an owl:maxCardinality=1 cardinal-
ity constraint in an object property

ISB06

Import a class which is equiva-
lent to an anonymous class defined
by an owl:cardinality=1 cardinality
constraint in an object property

(continued on next page)

80 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(continued from previous page)

ISB07

Import a class which is equiva-
lent to an anonymous class defined
by an owl:minCardinality=0 and
an owl:maxCardinality=1 cardinal-
ity constraints in an object property

ISB08

Import a class which is equivalent
to an anonymous class defined by
an owl:minCardinality=0 cardinal-
ity constraint in a datatype property

ISB09

Import a class which is equivalent
to an anonymous class defined by
an owl:maxCardinality=1 cardinal-
ity constraint in a datatype property

ISB10

Import a class which is equiva-
lent to an anonymous class defined
by an owl:cardinality=1 cardinality
constraint in a datatype property

ISB11

Import a class which is equiva-
lent to an anonymous class de-
fined by an owl:minCardinality=0
and an owl:maxCardinality=1 car-
dinality constraints in a datatype
property

ISB12
Import a class which is equivalent
to an anonymous class defined by
the intersection of two other classes

Group C: Classes defined with set operators

ID Description Graphical representation

ISC01
Import a class which is intersection
of two other classes

ISC02
Import a class which is intersection
of several other classes

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 81

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

Property benchmarks

Group D: Property hierarchies

ID Description Graphical representation

ISD01 Import a single object property

ISD02

Import an object property that is
subproperty of another object prop-
erty that is subproperty of a third
one

ISD03 Import a single datatype property

ISD04

Import a datatype property that
is subproperty of another datatype
property that is subproperty of a
third one

Group E: Properties with domain and range

ID Description Graphical representation

ISE01
Import a single object property with
domain a class

ISE02
Import a single object property with
range a class

ISE03
Import a single object property with
domain a class and range another
class

ISE04
Import a single object property with
domain and range the same class

(continued on next page)

82 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(continued from previous page)

ISE05
Import a single object property with
domain multiple classes and range a
class

ISE06
Import a single object property with
domain a class and range multiple
classes

ISE07
Import a single datatype property
with domain a class

ISE08
Import a single datatype property
with rangerdfs:Literal

ISE09
Import a single datatype property
with domain a class and range
rdfs:Literal

ISE10
Import a single datatype property
with domain multiple classes and
rangerdfs:Literal

Group F: Relations between properties

ID Description Graphical representation
(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 83

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

(continued from previous page)

ISF01

Import several object properties
with domain a class and range an-
other class, which are all of them
equivalent

ISF02

Import several datatype properties
with domain a class and range
rdfs:Literal, which are all of
them equivalent

ISF03

Import an object property with do-
main a class and range another
class, which is inverse of another
object property

Group G: Global cardinality constraints andlogical property charac-
teristics

ID Description Graphical representation

ISG01
Import a single transitive object
property with domain and range the
same class

ISG02
Import a single symmetric object
property with domain and range the
same class

(continued on next page)

84 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(continued from previous page)

ISG03
Import a single functional object
property with domain a class and
range another class

ISG04
Import a single functional datatype
property with domain a class and
rangerdfs:Literal

ISG05
Import a single inverse functional
object property with domain a class
and range another class

Individual benchmarks

Group H: Single individuals

ID Description Graphical representation

ISH01
Import one class and one individual
that is instance of the class

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 85

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

(continued from previous page)

ISH02
Import several classes and one indi-
vidual that is instance of all of them

ISH03
Import one class and several indi-
viduals that are instance of the class

Group I: Named individuals and properties

ID Description Graphical representation

ISI01

Import one class, one object prop-
erty with domain and range the
class, and one individual of the
class that has the object property
with another individual of the same
class

ISI02

Import one class, one object prop-
erty with domain and range the
class, and one individual of the
class that has the object property
with himself

ISI03

Import two classes, one object
property with domain one class and
range the other class, and one indi-
vidual of one class that has the ob-
ject property with an individual of
the other class

(continued on next page)

86 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(continued from previous page)

ISI04

Import one class, one datatype
property with domain the class and
range rdfs:Literal, and one individ-
ual of the class that has the datatype
property with a literal

ISI05

Import one class, one datatype
property with domain the class and
range rdfs:Literal, and one individ-
ual of the class that has the datatype
property with several literals

Group J: Anonymous individuals and properties

ID Description Graphical representation

ISJ01

Import one class, one object prop-
erty with domain and range the
class, and one anonymous individ-
ual of the class that has the object
property with another individual of
the same class

ISJ02

Import two classes, one object
property with domain one class
and range the other class, and one
anonymous individual of one class
that has the object property with an
individual of the other class

ISJ03

Import one class, one datatype
property with domain the class and
range rdfs:Literal, and one anony-
mous individual of the class that has
the datatype property with a literal

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 87

A. LIST OF BENCHMARKS OF THE OWL LITE IMPORT BENCHMARK SUITE

Group K: Individual identity

ID Description Graphical representation

ISK01
Import one class and two named in-
dividuals of the class that are the
same

ISK02
Import one class and two named in-
dividuals of the class that are the
different

ISK03
Import one class and three named
individuals of the class that are all
of them different

Syntax and abbreviation benchmarks

Group L: Syntax and abbreviation benchmarks

ID Description
ISL01 Import several resources with absolute URI references

ISL02
Import several resources with URI references relative to a
base URI

ISL03
Import several resources with URI references transformed
from rdf:ID attribute values

ISL04
Import several resources with URI references relative to an
ENTITY declaration

Empty node benchmarks
ISL05 Import several resources with empty nodes
ISL06 Import several resources with empty nodes shortened

Multiple properties benchmarks
ISL07 Import several resources with multiple properties
ISL08 Import several resources with multiple properties shortened

Empty node benchmarks

88 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

ISL09 Import several resources with typed nodes
ISL10 Import several resources with typed nodes shortened

Empty node benchmarks
ISL11 Import several resources with properties with string literals

ISL12
Import several resources with properties with string literals
as XML attributes

Empty node benchmarks
ISL13 Import several resources with blank nodes with identifier
ISL14 Import several resources with blank nodes shortened

Language identification benchmarks

ISL15
Import several resources with properties with xml:lang at-
tributes

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 89

Appendix B

Description of the ontologies in DL

This appendix provides a formal description of the ontologies that compose the OWL Lite
Import Benchmark Suite1, in the Description Logics formalism.

The formalism presented in this appendix adopts the following conventional notation,
presented in [Volz, 2004], to map the OWL axioms in the abstract syntax to Description
Logics concepts.

Axiom DL
Class (C partial D1 . . .Dn) C ⊑ (D1 ⊓ . . . ⊓ Dn)
Class (C complete D1 . . .Dn) C ≡ (D1 ⊓ . . . ⊓ Dn)
DisjointClasses(C1 . . . Cn) C1 ⊑ ¬Cn

EquivalentClasses(C1 . . . Cn) (C1 ≡ Cn)
SubClassOf(C1C2) (C1 ⊑ C2)

Property(P
domain(D1 . . .Dn) ⊤ ⊑ ∀P−.Di; ∀ 1 ≤ i ≤ n

range(D1 . . .Dn) ⊤ ⊑ ∀P.Di; ∀ 1 ≤ i ≤ n

super(Q1 . . . Qn) P ⊑ Qi; ∀ 1 ≤ i ≤ n

inverseOfQ P ≡ Q−

Symmetric P ≡ P−

Transitive P+ ⊑ P

Functional ⊤ ⊑ ∀P

InverseFunctional ⊤ ⊑ ∀P−

)

SameIndividuals((o1 . . . on)) (o1 = oi); ∀ 1 ≤ i ≤ n

DifferentIndividuals((D1 . . .Dn)) ¬(oi = oj); ∀ 1 ≤ i ≤ j ≤ n

1http://knowledgeweb.semanticweb.org/benckmarking interoperability/
owl/import.html

90

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

On the left side it appears the abstract syntax of an OWL axiomand on the right side
the corresponding axiom expressed in the Description Logics formalism.

Table B.1 shows a sample description of an ontology defined inthe OWL Lite Import
Benchmark Suite: each entry comes with a description in bothnatural language and in
the Description Logics formalism.

ID
Here there is the description in natural language...

...and here the one in the Description Logics formalism.

ISE06

Import a single object property with domain a class and range
multiple classes

⊤ ⊑ ∀hasChild−.Person
⊤ ⊑ ∀hasChild.Person
⊤ ⊑ ∀hasChild.Human
⊤ ⊑ ∀hasChild.Child

Table B.1: Structure of the tables and a sample instantiation

Class benchmarks

Group A: Class hierarchies

ISA01
Import a single class

Person

ISA02
Import a single class, subclass of a second class which is

subclass of a third one
Child⊑Man⊑Person

ISA03
Import a class that is subclass of two classes

Child⊑ Man
Child⊑ Person

ISA04
Import several classes subclass of a single class

Woman⊑ Person
Man⊑ Person

ISA05
Import two classes, each subclass of the other

Male⊑ Man
Man⊑ Male

ISA06
Import a class, subclass of itself

Woman⊑ Woman

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 91

B. DESCRIPTION OF THE ONTOLOGIES IN DL

(continued from previous page)

ISA07

Import a class which is subclass of an anonymous class defined
by anowl:someValuesFrom value constraint in an object

property
Driver⊑ ∃hasCar.Car

ISA08

Import a class which is subclass of an anonymous class defined
by anowl:allValuesFrom value constraint in an object

property
Italian⊑ ∀wasBorn.Italy

ISA09

Import a class which is subclass of an anonymous class defined
by anowl:minCardinality=0 cardinality constraint in an

object property
Employee⊑ ≥0worksIn

ISA10

Import a class which is subclass of an anonymous class defined
by anowl:maxCardinality=1 cardinality constraint in an

object property
Researcher⊑ ≤1hasAffiliation

ISA11

Import a class which is subclass of an anonymous class defined
by anowl:cardinality=1 cardinality constraint in an object

property
Man⊑ = 1hasMother

ISA12

Import a class which is subclass of an anonymous class defined
by anowl:minCardinality=0 and an

owl:maxCardinality=1 cardinality constraints in an object
property

Researcher⊑ ≥0hasAffiliation

Researcher⊑ ≤1hasAffiliation

ISA13

Import a class which is subclass of an anonymous class defined
by anowl:minCardinality=0 cardinality constraint in a

datatype property
Person ⊑ ≥0hasName

ISA14

Import a class which is subclass of an anonymous class defined
by anowl:maxCardinality=1 cardinality constraint in a

datatype property
Researcher ⊑ ≤1wrotePhDThesis

ISA15

Import a class which is subclass of an anonymous class defined
by anowl:cardinality=1 cardinality constraint in a

datatype property
Person ⊑= 1hasSSN

(continued on next page)

92 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(continued from previous page)

ISA16

Import a class which is subclass of an anonymous class defined
by anowl:minCardinality=0 and an

owl:maxCardinality=1 cardinality constraints in a
datatype property

Researcher ⊑ ≥0wrotePhDThesis

Researcher ⊑ ≤1wrotePhDThesis

ISA17
Import a class which is subclass of a class defined by the

intersection of two other classes
ItalianMan⊑ (Italian ⊓ Male)

Group B: Class Equivalences

ISB01
Import several classes which are all of them equivalent

Italian ≡ Italiano ≡ Italienne

ISB02

Import a class which is equivalent to an anonymous class defined
by anowl:someValuesFrom value constraint in an object

property
Driver≡ ∃hasCar.Car

ISB03

Import a class which is equivalent to an anonymous class defined
by anowl:allValuesFrom value constraint in an object

property
Italian≡ ∀wasBorn.Italy

ISB04

Import a class which is equivalent to an anonymous class defined
by anowl:minCardinality=1 cardinality constraint in an

object property
Employee≡ ≥1worksIn

ISB05

Import a class which is equivalent to an anonymous class defined
by anowl:maxCardinality=1 cardinality constraint in an

object property
Researcher≡ ≤1hasAffiliation

ISB06

Import a class which is equivalent to an anonymous class defined
by anowl:cardinality=1 cardinality constraint in an object

property
Man≡ = 1hasMother

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 93

B. DESCRIPTION OF THE ONTOLOGIES IN DL

(continued from previous page)

ISB07

Import a class which is equivalent to an anonymous class defined
by anowl:minCardinality=0 and an

owl:maxCardinality=1 cardinality constraints in an object
property

Researcher≡ (≤1hasAffiliation ⊓ ≥0hasAffiliation)

ISB08

Import a class which is equivalent to an anonymous class defined
by anowl:minCardinality=0 cardinality constraint in a

datatype property
Person ≡ ≥0hasName

ISB09

Import a class which is equivalent to an anonymous class defined
by anowl:maxCardinality=1 cardinality constraint in a

datatype property
Researcher ≡ ≤1wrotePhDThesis

ISB10

Import a class which is equivalent to an anonymous class defined
by anowl:cardinality=1 cardinality constraint in a

datatype property
Person ≡= 1hasSSN

ISB11

Import a class which is equivalent to an anonymous class defined
by anowl:minCardinality=0 and an

owl:maxCardinality=1 cardinality constraints in a
datatype property

Researcher ≡ ≥0wrotePhDThesis

Researcher ≡ ≤1wrotePhDThesis

ISB12
Import a class which is equivalent to an anonymous class defined

by the intersection of two other classes
ItalianMan≡(Italian ⊓ Male)

Group C: Class defined by set operators

ISC01
Import a class which is intersection of two other classes

ItalianMan ≡(Italian ⊓ Male)

ISC02
Import a class which is intersection of several other classes

ItalianMan ≡(Italian ⊓ Male ⊓ Person)

Property benchmarks

Group D: Property hierarchies

94 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

ISD01
Import a single object property

hasChild

ISD02
Import an object property that is subproperty of another object

property that is subproperty of a third one
isFatherOf ⊑ isGrandFatherOf ⊑ isAncestorOf

ISD03
Import a single datatype property

hasAge

ISD04
Import a datatype property that is subproperty of another

datatype property that is subproperty of a third one
isInteger ⊑ isRational ⊑ isReal

Group E: Properties with domain and range

ISE01
Import a single object property with domain a class

⊤ ⊑ ∀hasChild−.Person

ISE02
Import a single object property with range a class

⊤ ⊑ ∀hasChild.Person

ISE03

Import a single object property with domain a class and range
another class

⊤ ⊑ ∀hasChild−.Father
⊤ ⊑ ∀hasChild.Person

ISE04

Import a single object property with domain and range the same
class

⊤ ⊑ ∀hasChild−.Person
⊤ ⊑ ∀hasChild.Person

ISE05

Import a single object property with domain multiple classes and
range a class

⊤ ⊑ ∀hasChild−.Mother
⊤ ⊑ ∀hasChild−.Woman
⊤ ⊑ ∀hasChild−.Person
⊤ ⊑ ∀hasChild.Person

ISE06

Import a single object property with domain a class and range
multiple classes

⊤ ⊑ ∀hasChild−.Person
⊤ ⊑ ∀hasChild.Person
⊤ ⊑ ∀hasChild.Human
⊤ ⊑ ∀hasChild.Child

ISE07
Import a single datatype property with domain a class

⊤ ⊑ ∀hasSSN−.Person

(continued on next page)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 95

B. DESCRIPTION OF THE ONTOLOGIES IN DL

(continued from previous page)

ISE08
Import a single datatype property with rangerdfs:Literal

⊤ ⊑ ∀hasName.rdfs:Literal

ISE09

Import a single datatype property with domain a class and range
rdfs:Literal

⊤ ⊑ ∀hasName−.Person
⊤ ⊑ ∀hasName.rdfs:Literal

ISE10

Import a single datatype property with domain multiple classes
and rangerdfs:Literal

⊤ ⊑ ∀hasChildNamed−.Mother
⊤ ⊑ ∀hasChildNamed−.Woman

⊤ ⊑ ∀hasChildNamed.rdfs:Literal

Group F: Property equivalences

ISF01

Import several object properties with domain a class and range
another class, which are all of them equivalent

⊤ ⊑ ∀livesIn−.Person
⊤ ⊑ ∀livesIn.City

livesIn ≡ isResdentIn

ISF02

Import several datatype properties with domain a class and range
rdfs:Literal, which are all of them equivalent

⊤ ⊑ ∀hasName−.City
⊤ ⊑ ∀hasName.rdfs:Literal
hasName ≡ hasSpanishName

ISF03

Import an object property with domain a class and range another
class, which is inverse of another object property

⊤ ⊑ ∀hasParent−.Child
⊤ ⊑ ∀hasParent.Person
hasChild ≡ hasParent−

Group G: Logical characteristics of properties

ISG01

Import a single transitive object property with domain and range
the same class

hasFriend+ ⊑ hasFriend

⊤ ⊑ ∀hasFriend−.Person
⊤ ⊑ ∀hasFriend.Person

(continued on next page)

96 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

(continued from previous page)

ISG02

Import a single symmetric object property with domain and
range the same class

hasFriend ≡ hasFriend−

⊤ ⊑ ∀hasFriend−.Person
⊤ ⊑ ∀hasFriend.Person

ISG03

Import a single functional object property with domain a class
and range another class
⊤ ⊑ ∀hasHusband

⊤ ⊑ ∀hasHusband−.Woman
⊤ ⊑ ∀hasHusband.Man

ISG04

Import a single functional datatype property with domain a class
and rangerdfs:Literal

⊤ ⊑ ∀hasAge

⊤ ⊑ ∀hasAge−.Person
⊤ ⊑ ∀hasAge.rdfs:Literal

ISG05

Import a single inverse functional object property with domain a
class and range another class

⊤ ⊑ ∀hasTutor−

⊤ ⊑ ∀hasTutor−.Professor
⊤ ⊑ ∀hasTutor.Student

Individual benchmarks

Group H: Single individuals

ISH01
Import one class and one individual that is instance of the class

Person(PETER)

ISH02

Import several classes and one individual that is instance of all of
them

Person(PETER)
Father(PETER)

Student(PETER)

ISH03

Import one class and several individuals that are instance of the
class

Person(PETER)
Person(PAUL)
Person(MARY)

Group I: Named individuals and properties

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 97

B. DESCRIPTION OF THE ONTOLOGIES IN DL

ISI01

Import one class, one object property with domain and range the
class, and one individual of the class that has the object property

with another individual of the same class
⊤ ⊑ ∀hasChild−.Person
⊤ ⊑ ∀hasChild.Person

Person(MARY)
Person(PAUL)

hasChild(MARY, PAUL)

ISI02

Import one class, one object property with domain and range the
class, and one individual of the class that has the object property

with himself
⊤ ⊑ ∀hasChild−.Person
⊤ ⊑ ∀hasChild.Person

Person(PAUL)
knows(PAUL, PAUL)

ISI03

Import two classes, one object property with domain one class
and range the other class, and one individual of one class that has

the object property with an individual of the other class
⊤ ⊑ ∀hasChild−.Mother
⊤ ⊑ ∀hasChild.Child

Mother(MARY)
Child(PAUL)

hasChild(MARY, PAUL)

ISI04

Import one class, one datatype property with domain the class
and rangerdfs:Literal, and one individual of the class that

has the datatype property with a literal
⊤ ⊑ ∀hasName−.Person

⊤ ⊑ ∀hasName.rdfs:Literal
Person(MARYSMITH)

hasName(MARYSMITH, “Mary”)

ISI05

Import one class, one datatype property with domain the class
and rangerdfs:Literal, and one individual of the class that

has the datatype property with several literals
⊤ ⊑ ∀hasName−.Person

⊤ ⊑ ∀hasName.rdfs:Literal
Person(MARYANN)

hasName(MARYANN, “Mary”)
hasName(MARYANN, “Ann”)

Group J: Anonymous individuals and properties

98 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

ISJ01

Import one class, one object property with domain and range the
class, and one anonymous individual of the class that has the

object property with another individual of the same class
⊤ ⊑ ∀hasChild−.Person
⊤ ⊑ ∀hasChild.Person

Person(JOHN)
hasChild(ANONa, JOHN)

aThis denotes ananonymous individual

ISJ02

Import two classes, one object property with domain one class
and range the other class, and one anonymous individual of one

class that has the datatype property with an individual of the
other class

⊤ ⊑ ∀hasChild−.Parent
⊤ ⊑ ∀hasChild.Person

Person(JOHN)
hasChild(ANON, JOHN)

ISJ03

Import one class, one datatype property with domain the class
and range rdfs:Literal, and one anonymous individual of the

class that has the datatype property with a literal
⊤ ⊑ ∀hasName−.Person

⊤ ⊑ ∀hasName.rdfs:Literal
hasName(ANON, “Peter”)

Group K: Individual identity

ISK01
Import one class and two named individuals of the class that are

the same
Person(MARYANN) = Person(MARY)

ISK02

Import one class and two named individuals of the class that are
different

¬
(

Person(MARYANN) = Person(MARY)
)

ISK03

Import one class and three named individuals of the class that are
all of them different

¬
(

Person(MARY) = Person(ANN)
)

¬
(

Person(MARY) = Person(JOAN)
)

¬
(

Person(JOAN) = Person(ANN)
)

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 99

Appendix C

The benchmarkOntology and
resultOntology ontologies

The benchmarkOntology ontology

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:bo="http://knowledgeweb.semanticweb.org/owl/benchmarkOntology#"
xml:base="http://knowledgeweb.semanticweb.org/owl/benchmarkOntology#">

<owl:Ontology rdf:about="http://knowledgeweb.semanticweb.org/owl/benchmarkOntology#">
<rdfs:comment>This ontology contains a description
of the benchmark suite inputs.</rdfs:comment>
<owl:versionInfo>24 October 2006</owl:versionInfo>

</owl:Ontology>

<!-- classes -->

<owl:Class rdf:about="#Benchmark">
</owl:Class>

<owl:Class rdf:about="#Document">
</owl:Class>

<!-- properties -->

<owl:ObjectProperty rdf:about="#usesDocument">
<rdfs:domain rdf:resource="#Benchmark"/>
<rdfs:range rdf:resource="#Document"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="#interchangeLanguage">
<rdfs:domain rdf:resource="#Benchmark"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#id">
<rdfs:domain rdf:resource="#Benchmark"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

100

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#author">
<rdfs:domain rdf:resource="#Benchmark"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#version">
<rdfs:domain rdf:resource="#Benchmark"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#documentURL">
<rdfs:domain rdf:resource="#Document"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#ontologyName">
<rdfs:domain rdf:resource="#Document"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#ontologyNamespace">
<rdfs:domain rdf:resource="#Document"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#representationLanguage">
<rdfs:domain rdf:resource="#Document"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
</rdf:RDF>

The resultOntology ontology

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:ro ="http://knowledgeweb.semanticweb.org/owl/resultOntology#"
xml:base="http://knowledgeweb.semanticweb.org/owl/resultOntology#">

<owl:Ontology rdf:about="http://knowledgeweb.semanticweb.org/owl/resultOntology#">
<rdfs:comment>This ontology contains a description of
the benchmark suite results.</rdfs:comment>
<owl:versionInfo>24 October 2006</owl:versionInfo>

</owl:Ontology>

<!-- classes -->

<owl:Class rdf:about="#Tool">
</owl:Class>

<owl:Class rdf:about="#BenchmarkExecution">
</owl:Class>

<owl:Class rdf:about="#Result">
</owl:Class>

<!-- subclasses -->

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 101

C. THEBENCHMARKONTOLOGYAND RESULTONTOLOGYONTOLOGIES

<owl:Class rdf:about="#Step1Result">
<rdfs:subClassOf rdf:resource="#Result"/>

</owl:Class>

<owl:Class rdf:about="#Step2Result">
<rdfs:subClassOf rdf:resource="#Result"/>

</owl:Class>

<owl:Class rdf:about="#FinalResult">
<rdfs:subClassOf rdf:resource="#Result"/>

</owl:Class>

<!-- properties -->

<owl:ObjectProperty rdf:about="#hasStep1Result">
<rdfs:domain rdf:resource="#BenchmarkExecution"/>
<rdfs:range rdf:resource="#Result"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasStep2Result">
<rdfs:domain rdf:resource="#BenchmarkExecution"/>
<rdfs:range rdf:resource="#Result"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasFinalResult">
<rdfs:domain rdf:resource="#BenchmarkExecution"/>
<rdfs:range rdf:resource="#Result"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="#toolName">
<rdfs:domain rdf:resource="#Tool"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#toolVersion">
<rdfs:domain rdf:resource="#Tool"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="#originTool">
<rdfs:domain rdf:resource="#BenchmarkExecution"/>
<rdfs:range rdf:resource="#Tool"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#destinationTool">
<rdfs:domain rdf:resource="#BenchmarkExecution"/>
<rdfs:range rdf:resource="#Tool"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#ofBenchmark">
<rdfs:domain rdf:resource="#BenchmarkExecution"/>
<rdfs:range rdf:resource="#Benchmark"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="#interchange">
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#informationAdded">
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

102 25. October, 2007 KWEB/2007/D1.2.2.1.2/v1.3

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

<owl:DatatypeProperty rdf:about="#informationRemoved">
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#execution">
<rdfs:domain rdf:resource="#Result"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#timestamp">
<rdfs:domain rdf:resource="#BenchmarkExecution"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#datetime"/>

</owl:DatatypeProperty>

</rdf:RDF>

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 103

Bibliography

[Arpı́rez et al., 2003] J.C. Arpı́rez, O. Corcho, M. Fernández-López, andA. Gómez-
Pérez. WebODE in a nutshell.AI Magazine, 24(3):37–47, Fall 2003.

[Bull et al., 1999] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, andR. A. Davey.
A methodology for benchmarking java grande applications. In Proceedings of the ACM
1999 conference on Java Grande, pages 81–88, 1999.

[David et al., 2006] S. David, R. Garcı́a-Castro, and A. Gómez-Pérez. Defining a bench-
mark suite for evaluating the import of OWL lite ontologies.In Proceedings of the
OWL: Experiences and Directions 2006 workshop (OWL2006), Athens, Georgia, USA,
November 10-11 2006.

[Garcı́a-Castro and Gómez-Pérez, 2005] R. Garcı́a-Castro and A. Gómez-Pérez. A
method for performing an exhaustive evaluation of RDF(S) importers. InProceedings
of the Workshop on Scalable Semantic Web Knowledge Based Systems (SSWS2005),
number 3807 in LNCS, pages 199–206, New York, USA, November 2005. Springer-
Verlag.

[Garcı́a-Castroet al., 2004] R. Garcı́a-Castro, D. Maynard, H. Wache, D. Foxvog, and
R. González-Cabero. D2.1.4 specification of a methodology, general criteria and
benchmark suites for benchmarking ontology tools. Technical report, Knowledge Web,
December 2004.

[Garcı́a-Castroet al., 2006] R. Garcı́a-Castro, Y. Sure, M. Zondler, O. Corby, J. Prieto-
González, E. Paslaru Bontas, L. Nixon, and M. Mochol. D1.2.2.1.1 benchmarking the
interoperability of ontology development tools using rdf(s) as interchange language.
Technical report, Knowledge Web, June 2006.

[Garcı́a-Castro, 2005] R. Garcı́a-Castro. D2.1.5 prototypes of tools and benchmark suites
for benchmarking ontology building tools. Technical report, Knowledge Web, Decem-
ber 2005.

[Garcı́a-Castro, 2007] R. Garcı́a-Castro. D6.8.1 testingthe neon toolkit interoperability.
Technical report, NeOn, September 2007.

104

D1.2.2.1.2 OWL Interoperability Benchmarking IST ProjectIST-2004-507482

[Guo et al., 2005] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowl-
edge Base Systems.Journal of Web Semantics 3(2), (2):158–182, 2005.

[Ma et al., 2006] Li Ma, Yang Yang, Zhaoming Qiu, GuoTong Xie, Yue Pan, and Sheng-
ping Liu. Towards a complete OWL ontology benchmark. In Y. Sure and J. Domingue,
editors,Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), vol-
ume 4011 ofLNCS, pages 125–139, Budva, Montenegro, June 11-14 2006.

[McGuiness and van Harmelen, 2004] D.L. McGuiness and F. vanHarmelen. OWL web
ontology language overview. Technical report, W3C, 10 February 2004.

[Shiraziet al., 1999] B. Shirazi, L.R. Welch, B. Ravindran, C. Cavanaugh, B. Yana-
mula, R. Brucks, and E. Huh. Dynbench: A dynamic benchmark suite for distributed
real-time systems. InProc. of the 11 IPPS/SPDP’99 Workshops, pages 1335–1349.
Springer-Verlag, 1999.

[Sim et al., 2003] S. Sim, S. Easterbrook, and R. Holt. Using benchmarking to advance
research: A challenge to software engineering. InProceedings of the 25th International
Conference on Software Engineering (ICSE’03), pages 74–83, Portland, OR, 2003.

[Stefaniet al., 2003] F. Stefani, D. Macii, A. Moschitta, and D. Petri. FFT Benchmark-
ing for Digital Signal Processing Technologies. In17th IMEKO World Congress,
Dubrovnik, Croatia, 22-27 June 2003.

[Volz, 2004] Rapahel Volz.Web ontology reasoning with logic databases. PhD thesis,
AIFB Karlsruhe, 2004.

KWEB/2007/D1.2.2.1.2/v1.3 25. October, 2007 105

Acknowledgments

Thanks to all the people that have participated in the OWL interoperability benchmark-
ing by adapting the IBSE tool for some best-in-class Semantic Web tools: Stamatia Da-
siopoulou, Danica Damljanovic, Michael Erdmann, Christian Fillies, Roman Korf, Diana
Maynard, York Sure, Jan Wielemaker, and Philipp Zaltenbach. Without their effort, this
could have not been possible.

Thanks to Rosario Plaza for reviewing the grammar of this deliverable.

106

Related deliverables

A number of Knowledge web deliverables are clearly related to this one:

Project Number Title and relationship
KW D2.1.4 Specification of a methodology, general criteria and bench-

mark suites for benchmarking ontology tools presented the
benchmarking methodology that has been used for benchmarking
the interoperability of ontology development tools using RDF(S)
and OWL as interchange languages.

KW D1.2.2.1.1 Benchmarking the interoperability of ontology development
tools using RDF(S) as interchange languagedescribed the
benchmarking of the interoperability of ontology development
tools using RDF(S) as interchange language that took place in
Knowledge Web, including the analysis of the results obtained.

107

