
D1.2.2.1.1 Benchmarking the

interoperability of ontology development

tools using RDF(S) as interchange language

Raúl Garcı́a-Castro (UPM)
with contributions from:

York Sure (UKARL)
Markus Zondler (UKARL)

Olivier Corby (INRIA)
Jeśus Prieto-Gonźalez (UPM)

Elena Paslaru Bontas (FU Berlin)
Lyndon Nixon (FU Berlin)

Malgorzata Mochol (FU Berlin)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D1.2.2.1.1 (WP 1.2 & WP2.1)

This deliverable describes the benchmarking of the interoperability of ontology development tools
using RDF(S) as interchange language that has taken place inKnowledge Web, including the
analysis of the results obtained.
Keyword list: benchmarking, benchmark suite, interoperability, RDF(S)

Copyright c© 2006 The contributors

Document Identifier KWEB/2006/D1.2.2.1.1/v1.5
Project KWEB EU-IST-2004-507482
Version v1.5
Date 3. August, 2006
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
École Polytechnique Fédérale de Lausanne
Free University of Bozen-Bolzano
Institut National de Recherche en Informatique et en Automatique
Learning Lab Lower Saxony
National University of Ireland Galway
Universidad Politécnica de Madrid
University of Karlsruhe
University of Manchester
University of Sheffield
University of Trento
Vrije Universiteit Amsterdam
Vrije Universiteit Brussel

Changes

Version Date Author Changes

0.1 11.04.06 Raúl Garcı́a-Castro Created
0.2 03.05.06 Raúl Garcı́a-Castro Inserted the import and export results

for Protégé and WebODE
0.3 18.05.06 Raúl Garcı́a-Castro Inserted the interoperability results for

Protégé and WebODE
0.4 22.05.06 Raúl Garcı́a-Castro Inserted the instantiation of the method-

ology and the benchmark suites
0.5 23.06.06 Olivier Corby, Raúl

Garcı́a-Castro,
Jesús Prieto, York
Sure, and Markus
Zondler

Inserted the Corese, Jena and KAON re-
sults

0.6 27.06.06 Raúl Garcı́a-Castro Inserted the analysis of the results
0.7 29.06.06 Raúl Garcı́a-Castro Inserted the recommendations and con-

clusions
0.8 30.06.06 Elena Paslaru Bon-

tas, Lyndon Nixon
and Malgorzata
Mochol

Inserted the RDF(S) interoperability re-
quirements in the use cases

1.0 30.06.06 Raúl Garcı́a-Castro First version of the document sent to the
Quality Assessor (Holger Wache)

1.1 06.07.06 Raúl Garcı́a-Castro Included the comments from Rosario
Plaza

1.2 07.07.06 Raúl Garcı́a-Castro Included the comments from the Qual-
ity Assessor (Holger Wache)

1.3 17.07.06 Raúl Garcı́a-Castro
and Jesús Prieto

Inserted the Sesame results

1.4 26.07.06 Raúl Garcı́a-Castro Included the comments from the Qual-
ity Controller (Sean Bechhofer)

1.5 03.08.06 Raúl Garcı́a-Castro Included the comments from the Qual-
ity Assurance Coordinator (Francisco
Martin-Recuerda)

Executive Summary

In 2005, a new activity for benchmarking the interoperability of ontology development
tools using RDF(S) as interchange language was started in Knowledge Web; its goal was
to learn about the actual interoperability between these tools and, if possible, to improve
it.

This deliverable includes the work performed in workpackages 1.2 and 2.1 during this
benchmarking activity and presents an overview of the benchmarking and its main results;
it comprises the following topics:

• Instantiation of the Knowledge Web benchmarking methodology for carrying out
the benchmarking.

• Definition of the benchmark suites used in the benchmarking.

• Analysis of the results obtained in the benchmarking.

• Recommendations for users and developers based on this analysis.

• Analysis of the feasibility of RDF(S) interoperability in the business use cases.

• Detailed results of the benchmarking.

Contents

1 Introduction 1

2 Benchmarking RDF(S) interoperability 3
2.1 Plan phase . 4
2.2 Experiment phase . 8

3 Benchmark suites definition 10
3.1 RDF(S) Import Benchmark Suite .10
3.2 RDF(S) Export Benchmark Suite .21
3.3 RDF(S) Interoperability Benchmark Suite 24

4 RDF(S) import results and analysis 26
4.1 KAON results . 27
4.2 Protégé results .28
4.3 WebODE results . 30
4.4 RDF repositories: Corese, Jena and Sesame 32

5 RDF(S) export results and analysis 34
5.1 KAON results . 35
5.2 Protégé results .36
5.3 WebODE results . 38
5.4 RDF repositories: Corese, Jena and Sesame 39

6 RDF(S) interoperability results and analysis 41
6.1 KAON results . 44
6.2 Protégé results .47
6.3 WebODE results . 51

7 RDF(S) interoperability in the use cases 55
7.1 Use Case 1. Recruitment from Worldwidejobs 56
7.2 Use Case 3. News Aggregation from Neofonie 56
7.3 Use Case 4. Product Lifecycle Management from Semtation. 57

8 Recommendations 59

iii

CONTENTS

8.1 Recommendations for ontology developers 59
8.2 Recommendations for software developers 60
8.3 Feasibility of RDF(S) interoperability in the use cases. 63
8.4 Recommendations for benchmarking 64

9 Conclusion 65

iv 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Chapter 1

Introduction

by RAÚL GARCÍA-CASTRO

In Knowledge Web, different benchmarking activities are being (and will be) per-
formed to improve ontology tools and to offer recommendations on these tools for both
research and industry users. One of these benchmarking activities is the interoperability
of ontology development tools using RDF(S) as interchange language which started in
2005, and to which the content of this deliverable is related.

This deliverable originated from the joint work performed by WP 1.2 in the indus-
try area and by WP 2.1 in research. In the latter, the members of WP 2.1 developed the
benchmarking methodology for ontology tools, which we havefollowed in this bench-
marking activity [Garcı́a-Castroet al., 2004], and the benchmark suites used in the ex-
perimentation [Garcı́a-Castro, 2005], whereas the members of WP 1.2 have organised the
benchmarking activity, performed the experimentation over the tools, and analysed the
results.

By the time of writing this deliverable, six tools are participating in the benchmarking
three of which are ontology development tools: KAON, Protégé using its RDF backend,
and WebODE, and three are RDF repositories: Corese, Jena andSesame. Another on-
tology development tool, OntoStudio, is also taking part but it is not considered in this
deliverable because its complete evaluation results are not yet available.

The benchmarking methodology proposes to produce two documents in the bench-
marking activity: theExperiment Reportwhich presents the analysis of the results of
the experiments; and theBenchmarking Reportwhich gives an understandable summary
of the benchmarking activity and its results and conclusions. These two documents are
included in this deliverable.

The broad scope of the deliverable results in a large number of pages. To facilitate
its reading, we have divided it into two documents: one contains the chapters of the
deliverable whereas the other contains the appendixes withthe experimentation results in
detail.

The deliverable is composed of different chapters orientedto different audiences.

1

1. INTRODUCTION

Therefore, readers can just read the chapters of their interest following these guidelines:

• Chapter 2 is an extension of [Garcı́a-Castro and Gómez-Pérez, 2006a] and presents
how the RDF(S) interoperability benchmarking was conducted following the Knowl-
edge Web benchmarking methodology. It is intended to provide a summary of the
benchmarking activity to organisation managers, benchmarking teams, tool devel-
opers, and tool users both from academia and industry.

• Chapter 3 is an extension of [Garcı́a-Castro and Gómez-Pérez, 2005a] and states
the method followed to define the three benchmark suites usedin the benchmarking.
It can provide inspiration to tool developers for developing new benchmark suites
or it can be taken as a guide for executing the benchmarking experiments.

• Chapters 5, 4 and 6 summarize the results of executing the export, import and in-
teroperability benchmark suites respectively on the toolsparticipating in the bench-
marking. They present a brief overview of the results to tooldevelopers and users.
A detailed description of the results is included in the appendixes. The results of the
Protégé ontology editor will be presented in [Garcı́a-Castro and Gómez-Pérez, 2006b].

• Chapter 7 analyses the interoperability needs of the Knowledge Web industry use
cases.

• Chapter 8 provides recommendations for users on the interoperability of ontology
development tools, for developers on how to implement interoperability on the
tools, for industry on how to accomplish the Knowledge Web use cases, and for
anybody interested in this issue on how to organize a benchmarking activity.

• The appendixes, as mentioned above, offer detailed resultsof the execution of the
experiments; they can be consulted by users or developers whenever they have a
specific interoperability problem in their tools. They are located in a separate doc-
ument that can be downloaded from the Knowledge Web portal1.

1http://knowledgeweb.semanticweb.org/

2 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Chapter 2

Benchmarking RDF(S) interoperability

by RAÚL GARCÍA-CASTRO

This chapter presents how the RDF(S) interoperability benchmarking was organized
and carried out following the methodology for benchmarkingontology tools developed in
Knowledge Web [Garcı́a-Castroet al., 2004].

Figure 2.1 shows the three phases that compose the benchmarking methodology and
the tasks to be performed in each phase. As we have already mentioned, this document
comprises both the experiment and the benchmarking reports. Therefore, this chapter
includes the instantiation of this methodology from the beginning of the benchmarking
activity to the end of theExperimentphase, which is the last task performed before writing
this deliverable.

Figure 2.1: The benchmarking methodology for ontology tools

3

2. BENCHMARKING RDF(S) INTEROPERABILITY

2.1 Plan phase

2.1.1 Goals identification

Raúl Garcı́a Castro, from the UPM, took the role of the benchmarking initiator and pre-
pared the benchmarking, carrying out the first tasks of its process.

The goals for benchmarking the interoperability of ontology development tools are
related to the benefits pursued through it, and these are:

• To evaluate and improve the interoperability of these tools.

• To produce recommendations on the interoperability of these tools for users.

• To acquire a deep understanding of the practices used to develop the importers and
exporters of these tools.

• To extract from these practices those that can be consideredbest practices when
developing importers and exporters.

• To create consensual processes for evaluating the interoperability of these tools.

These benefits involve different communities that are related to the ontology devel-
opment tools, namely, the research community, the industrial community, and the tool
developers.

Most of the costs of the benchmarking go to the human resources needed for organis-
ing the benchmarking activity and for performing the experimentation on the tools. Other
minor costs go to travelling and computers, but they are negligible compared to the afore-
mentioned.

2.1.2 Tool and metrics identification

WebODE [Arpı́rezet al., 2003] is the ontology engineering platform developed by the
Ontology Engineering Group of the UPM and the tool chosen to participate in the bench-
marking.

Of the different evaluation criteria to consider when evaluating ontology development
tools, i.e., performance, scalability, interoperability, robustness, etc.; we have contem-
plated only interoperability. An approach for benchmarking the performance and scala-
bility of these tools can be found in [Garcı́a-Castro and Gómez-Pérez, 2005b].

Achieving interoperability between ontology developmenttools is not straightforward
when these tools do not share a common knowledge model, so their users need to know
the effects of interchanging an ontology from one tool to another.

4 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

Of the different ways that ontology development tools have to interoperate, either by
using an API for accessing ontologies in other tools or by translating the ontologies to an
interchange language, we have selected the latter approachas the former is not present in
current tools.

In the benchmarking activity that we present in this deliverable, the language used for
the interchange is RDF(S) [Brickley and Guha, 2004] and the syntax for serializing the
ontologies is the RDF/XML syntax, the syntax for RDF(S) thatthese tools employ most.
A future benchmarking activity inside Knowledge Web will cover the case of using OWL
as interchange language [D1.2.2.1.2, 2007].

Interoperability of ontology development tools using an interchange language depends
on the capabilities of the tools to import and export ontologies from/to this language.
Therefore, the functionalities relevant to the benchmarking are the RDF(S) importers and
exporters.

The evaluation criteria must describe in depth the interoperability between the tools,
whereas the experiments to be performed in the benchmarkingmust provide data that
inform how the tools comply with these criteria. Therefore,to obtain detailed information
about tool interoperability, we need to know:

• The components of the knowledge model of an ontology development tool that can
be interchanged with another tool using RDF(S) as interchange language.

• The secondary effects of interchanging these components, such as insertion or loss
of information.

• The subset of the components of the knowledge models of ontology development
tools that these tools can use to interoperate correctly.

2.1.3 Participant identification

As WebODE is being developed by the Ontology Engineering Group at the UPM, it was
quite straightforward to identify and contact the members of the organisation involved in
WebODE’s RDF(S) importers and exporters and to select amongthem the members of
the benchmarking team.

2.1.4 Proposal writing

The benchmarking proposal, which is being used as a reference along the benchmarking,
did not take the form of a paper document but of a web page1, which is publicly avail-
able and includes all the relevant information about the benchmarking: motivation, goals,

1http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 5

2. BENCHMARKING RDF(S) INTEROPERABILITY

benefits and costs, tools and people involved, planning, related events, and a complete
description of the experimentation and the benchmark suites.

2.1.5 Management involvement

The benchmarking proposal was presented to the managers of the Ontology Engineering
Group and, after their analysis, they agreed on the continuity of the benchmarking and on
the allocation of future resources both for performing the experimentation and improving
the tool.

2.1.6 Partner selection

Participation in the benchmarking is open to any organisation irrespective of being a
Knowledge Web partner or not. To find other best-in-class organisations willing to partic-
ipate in the benchmarking, the following actions were taken:

• To research different ontology development tools, both freely available and com-
mercial ones, which could export and import to and from RDF(S) and then, to
contact the organisations that develop them.

• To announce the interoperability benchmarking and to call for participation through
the main mailing lists of the Semantic Web area and through lists specific to ontol-
ogy development tools.

Table 2.1 presents the ontology development tools capable of importing and export-
ing RDF(S) found by the time of performing this task. Their developers were directly
contacted.

Tool Institution URL
Construct Network Inference http://www.networkinference.com/products/constructit.html
DOE Inst. National de l’Audiovisuel http://homepages.cwi.nl/t̃roncy/DOE/
InferEd Intellidimension http://www.intellidimension.com/pages/site/products/infered/
IsaViz W3C http://www.w3.org/2001/11/IsaViz/
KAON Universitat Karlsruhe http://kaon.semanticweb.org/
Linkfactory Workbench Language & Computing http://www.landcglobal.com/pages/linkfactory.php
OilEd University of Manchester http://oiled.man.ac.uk/
OntoEdit Free Ontoprise http://www.ontostudio.de/
Open Ontology Forge National Inst. of Informatics http://research.nii.ac.jp/c̃ollier/resources/OOF/
Protégé 2000 Stanford University http://protege.stanford.edu/
SemTalk Semtation http://www.semtalk.com/
SNOBASE IBM http://www.alphaworks.ibm.com/tech/snobase
Unicorn Workbench Unicorn Solutions http://www.unicorn.com/products/unicornsystem/workbench.htm
Visual Ontology Modeler Sandpiper Software http://www.sandsoft.com/products.html
WebODE U. Politécnica de Madrid http://webode.dia.fi.upm.es/WebODEWeb/index.html

Table 2.1: Ontology development tools capable of importing/exporting RDF(S)

6 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

Tool Version Developer Experimenter
Corese 2.1.2 INRIA INRIA
Jena 2.3 HP U. Politécnica de Madrid
KAON 1.2.9 U. Karlsruhe U. Karlsruhe
Sesame 2.0 alpha 3 Aduna U. Politécnica de Madrid
Protégé 3.2 beta build 230 Stanford U. U. Politécnica de Madrid
WebODE 2.0 build 109 U. Politécnica de Madrid U. Politécnica de Madrid

Table 2.2: Ontology development tools participating in thebenchmarking

Any tool capable of importing and exporting RDF can participate in the benchmark-
ing. For our part, not only ontology development tools are participating in it, but also
RDF repositories.

When writing this deliverable, six tools are taking part in the benchmarking, three
of which are ontology development tools: KAON, Protégé (using its RDF backend), and
WebODE; the other three are RDF repositories: Corese2, Jena3 and Sesame4. As Table 2.2
shows, benchmarking is not always performed by the tool developers.

Another ontology development tool, OntoStudio (the successor of OntoEdit), is also
participating but it is not considered in this deliverable because its execution of the bench-
mark suites has not finished yet, so its complete results are not available.

2.1.7 Planning and resource allocation

The main deadline of the benchmarking was imposed by the deadline of this Knowledge
Web deliverable. Therefore, a plan was designed that included thePlan andExperiment
phases, though it did not include theImprovephase.

This plan was developed and agreed by all the organisations participating in the bench-
marking; besides, every organisation had to assign a numberof people to perform the
benchmarking.

2http://www-sop.inria.fr/acacia/soft/corese/
3http://jena.sourceforge.net/
4http://www.openrdf.org/

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 7

2. BENCHMARKING RDF(S) INTEROPERABILITY

2.2 Experiment phase

2.2.1 Experiment definition

Evaluating the interoperability of ontology development tools using RDF(S) for ontology
interchange requires that the importers and exporters from/to RDF(S) of these tools work
accurately when interchanging ontologies. Therefore, theplanning for the experimenta-
tion includes three consecutive stages, shown in Figure 2.2:

• Agreement stage. The quality of the benchmark suites to be used is essential for
the results of the benchmarking. Therefore, the first step isto agree on the definition
of these benchmark suites, which will be common for all the tools. Chapter 3 deals
with the definition and use of these benchmark suites.

• Evaluation stage 1. The RDF(S) importers and exporters of the ontology develop-
ment tools are evaluated with the agreed versions of the benchmark suites.

• Evaluation stage 2. Once the RDF(S) importers and exporters are evaluated, this
stage will cover the evaluation of the ontology interchangebetween ontology de-
velopment tools.

Figure 2.2: Experimentation Phases

2.2.2 Experiment execution

Once the benchmark suites were defined, they were published on the benchmarking web
page so that they could be reviewed by the participants. Then, in Madrid, a meeting was
held, theInteroperability Working Days5, to discuss the benchmark suites and to improve
them with comments of the participants.

In that meeting, some improvements were made to the initial benchmark suites, whereas
some experiments were performed in the tools.

The actual experiments performed are the following:

5http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/workingdays/

8 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Import, export and interoperability experiments were carried out on KAON, Protégé
and WebODE.

• Import and export experiments were carried out on the RDF repositories Corese,
Jena and Sesame.

• Initial import and export experiments were carried out on OntoStudio though not
with the agreed versions of the benchmark suites.

In the cases of Corese, Jena, Sesame, and WebODE, most of the experimentation was
automated. In the other tools, it was performed manually.

The experimentation results obtained are available in the benchmarking web page.

2.2.3 Experiment result analysis

Participants have analysed the results of the experimentation and identifyed the compo-
nents that the tools can import, export and interchange. They have also identified the
problems, as summarised in Chapters 5 to 6 and detailed in theappendixes.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 9

Chapter 3

Benchmark suites definition

by RAÚL GARCÍA CASTRO

This chapter deals with the definition of the three benchmarksuites used in the bench-
marking and explains how they were defined. For each of the benchmark suites it includes:

• The tools and functionalities that can be evaluated with it.

• The benchmarks that compose it.

• The criteria for evaluating the benchmark results.

• The tools or data needed to run the benchmarks.

• The procedure to follow for running the benchmarks.

3.1 RDF(S) Import Benchmark Suite

The RDF(S) Import Benchmark Suite can be used to evaluate theRDF(S) import func-
tionalities of Semantic Web tools. Although it was developed bearing in mind ontology
development tools, it can be used to evaluate any other tool capable of importing RDF(S).

Each benchmark in the benchmark suite defines a RDF(S) ontology serialized in a
RDF/XML file that must be loaded into the ontology development tool.

These benchmarks check the correct import of ontologies that model a simple combi-
nation of the components of the RDF(S) knowledge model (classes, properties, instances,
etc.) [Brickley and Guha, 2004]. To assess the import of real, large or complex ontologies
can be useless if we do not know whether the importer can deal with simple ones correctly.
Because one of the goals of the benchmarking is to improve thetools, the ontologies must
be simple in order to isolate problem causes and to identify possible problems.

There are two different issues that influence the correct import of an ontology. One
is which combinations of components of the RDF(S) knowledgemodel are present in the

10

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

ontology; the other is which of the different variants of theRDF/XML syntax are present
in the ontology. Therefore, in order to isolate each of theseissues, we have defined
separately the benchmarks that depend on the RDF(S) knowledge model and those that
depend on the RDF(S) syntax chosen. The next sections explain how these two types of
benchmarks have been defined.

3.1.1 Benchmarks that depend on the knowledge model

These benchmarks check the correct import of RDF(S) ontologies that model simple com-
binations of the RDF(S) knowledge model components.

Figure 3.1 shows the different components that form the RDF(S) knowledge model
and the different properties that relate them. Classes are defined as boxes in the figure,
whereas properties are defined as arrows with their domain and range represented by
the origin and destination of the arrow respectively. The figure does not show a full
description of the knowledge model; the components shown are instances ofrdfs:Class,
and some of them have predefined instances that do not appear here.

Figure 3.1: The components of the RDF(S) knowledge model

We have considered the import of all the possible combinations of the knowledge
model components to make the benchmark suite exhaustive. Three different types of
benchmarks depend on the knowledge model and these are:

• Benchmarks that import single components.

• Benchmarks that import all the possible combinations of twocomponents with a
property.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 11

3. BENCHMARK SUITES DEFINITION

• Benchmarks that import combinations of more than two components usually ap-
pearing together in RDF(S) graphs.

3.1.1.1 Benchmarks that import single components

For each component of the knowledge model of RDF(S), we have defined two bench-
marks that import:

• A single instance of a component.

• Several instances of a component.

3.1.1.2 Benchmarks that import combinations of two components

The method followed to define all the combinations of two components related through a
property was the following. For each of the RDF(S) components:

Step 1.We have identified the possible relations of the component with others: the prop-
erties whose domain can be the component and relate it to other components. These
properties are:

• RDF(S) predefined properties whose domain is the component or a superclass of
the component.

• User defined properties whose domain is the component.

Step 2.For each of these relations, we identify the ranges that the property can have and
we assign the cardinalities that correspond to each relation. These ranges are:

• The component defined in the RDF(S) specification as the rangeof the property and
the components that are subclass of this component.

• If rdfs:Classis one of the possible ranges of the property, the RDF(S) predefined
instances ofrdfs:Class.

• An unknown component that is not defined in the rest of the RDF(S) graph, even
though the component is a resource.

Step 3.The assigned cardinalities define the different number of benchmarks that will be
performed for each relation as follows: for two components (c1 and c2) related through a
property (p) (c1− p → c2), being the cardinality:

• 1:1 cardinality (c1 1− p →1 c2). Define 1 benchmark to import:

12 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

– One instance of a component related to an instance of anothercomponent
through a property.

• 1:N cardinality (c1 1− p →∗ c2). Define 2 benchmarks, the one defined for the 1:1
cardinality and another to import:

– One instance of a component related to several instances of another compo-
nent through the same property.

• N:1 cardinality (c1 ∗− p →1 c2). Define 2 benchmarks, the one defined for the 1:1
cardinality and another to import:

– Several instances of a component related to an instance of another component
through the same property.

• N:N cardinality (c1 ∗− p →∗ c2). Define 3 benchmarks, those defined for the 1:N
and N:1 cardinalities.

• N:N cardinality, being c1 and c2 the same component (c1 ∗− p →∗ c1). Define 4
benchmarks, the three defined for the N:N cardinality and oneto import:

– One instance of a component related to itself through a property.

• N:N cardinality, being c1 and c2 the same component and p a transitive property
(c1 ∗− p →∗ c1). Define 5 benchmarks, the four defined for the previous case and
one to import:

– One instance of a component related to an instance of anothercomponent
through a property, being the second instance related to an instance of a third
component with the same property.

For example, in the case ofrdfs:Class, the following properties can relate it to other
components:

• RDF(S) predefined properties whose domain isrdfs:Class(rdfs:subClassOf) or su-
perclass ofrdfs:Class(rdf:type, rdfs:label, rdfs:comment, rdfs:member, rdfs:seeAlso,
rdfs:isDefinedBy, andrdfs:value).

• User defined properties whose domain isrdfs:Class(some fictitious property ”prop-
erty”).

In the case ofrdfs:Classwith the propertyrdfs:subClassOf, the cardinalities of the
relations according to the possible ranges are the following:

• The predefined range of the property (rdfs:Class):

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 13

3. BENCHMARK SUITES DEFINITION

– rdfs:Class∗− rdfs:subClassOf→∗ rdfs:Class

• The subclasses of the predefined range of the property (rdfs:Datatype):

– rdfs:Class∗− rdfs:subClassOf→∗ rdfs:Datatype

• The predefined instances ofrdfs:Class(”rdfs:Resource”, ”rdf:Property” , ”rdf:List” ,
”rdfs:Datatype”, ”rdfs:Class” , ”rdfs:Container” , ”rdf:Bag” , ”rdf:Seq” , ”rdf:Alt” ,
”rdfs:ContainerMembershipProperty”, and”rdf:Statement”):

– rdfs:Class∗− rdfs:subClassOf→1 ”rdfs:Resource”

– rdfs:Class∗− rdfs:subClassOf→1 ”rdfs:Datatype”

– ...

• An unknown component:

– rdfs:Class∗− rdfs:subClassOf→∗ ”unknown”

For the relationrdfs:Class∗− rdfs:subClassOf→∗ ”rdfs:Class” , we can define 5
different benchmarks to import:

• One class that is a subclass of another.

• One class that is a subclass of several other classes.

• Several classes that are subclasses of another class.

• One class that is a subclass of itself.

• One class that is a subclass of another, being the second one asubclass of a third
one.

3.1.1.3 Benchmarks that import combinations of more than two components

We have identified the main combinations of RDF(S) components that involve more than
two components related through properties. These combinations are:

• Properties that have both domain and range (rdf:Property with rdfs:domainand
rdfs:range).

• Statements that have subject, predicate and object (rdf:Statementwith rdf:subject,
rdf:predicateandrdf:object).

• Definitions of lists (rdf:List with rdf:first, rdf:rest andrdf:nil).

14 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

The method to define the benchmarks is similar to the one described in the previous
section. The main difference resides in the number of benchmarks defined according to
the cardinalities. To clarify the explanation below, we aregoing to consider a cardinality
of 1 in the origin of the relation.

• If the cardinalities of the relations are
c1 1− p1→+ c2
c1 1− p2→+ c3
four benchmarks have been defined to import:

– One instance of a component related to an instance of anothercomponent
through a property and related to an instance of a third component through
another property.

– One instance of a component related to several instances of another com-
ponent through a property and related to an instance of another component
through another property.

– One instance of a component related to an instance of anothercomponent
through a property and related to several instances of another component
through another property.

– One instance of a component related to several instances of another compo-
nent through a property and related to several instances of another component
through another property.

If c2 and c3 are the same component, an additional benchmark has been defined to
import:

– One instance of a component related to an instance of anothercomponent
through the two properties.

• If the cardinalities of the relations are
c1 1− p1→1 c2
c1 1− p2→+ c3
or
c1 1− p1→+ c2
c1 1− p2→1 c3
two benchmarks have been defined to import:

– One instance of a component related to an instance of anothercomponent
through a property and also related to an instance of a third component through
another property.

– One instance of a component related to an instance of anothercomponent
through a property and also related to several instances of another component
through another property.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 15

3. BENCHMARK SUITES DEFINITION

• If the cardinalities of the relations are
c1 1− p1→1 c2
c1 1− p2→1 c3
one benchmark has been defined to import:

– One instance of a component related to an instance of anothercomponent
through a property and also related to an instance of a third component through
another property.

For example, for a property with domain and range and with thefollowing ranges and
cardinalities:
rdf:Property1− rdfs:domain→+ rdfs:Class
rdf:Property1− rdfs:range→+ rdfs:Class
5 benchmarks have been defined to import:

• One property that has as domain a class and as range another class.

• One property that has as domain a class and as range several classes.

• One property that has as domain several classes and as range another class.

• One property that has as domain several classes and as range other several classes.

• One property that has as domain and range the same class.

3.1.1.4 Pruning the benchmark suite

As RDF(S) does not impose any restriction on the combinations of its components, the
number of the resulting benchmarks is huge (more than 4000) and the benchmark suite
has to be pruned according to its intended use and the kind of tools that it is supposed
to evaluate, namely, ontology development tools. Therefore, we have only considered
the RDF(S) components that can be used for modelling ontologies in all these tools:
rdfs:Class, rdf:Property, rdfs:Literal, rdf:type, rdfs:domain, rdfs:range, rdfs:subClassOf,
andrdfs:subPropertyOf. The rest of the RDF(S) components have not been dealt with.

The benchmarks obtained are classified in the following categories:

• Class benchmarks

• Metaclass benchmarks

• Subclass benchmarks

• Class and property benchmarks

• Single property benchmarks

16 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Subproperty benchmarks

• Property with domain and range benchmarks

• Instance benchmarks

• Instance and property benchmarks

3.1.2 Benchmarks that depend on the RDF/XML syntax

These benchmarks check the correct import of RDF(S) ontologies with the different vari-
ants of the RDF/XML syntax, as stated in the RDF/XML specification.

We have defined benchmarks that take into account the following variants of the
RDF/XML syntax:

• Different syntax of URI references:

– Absolute URI references

– URI references relative to a base URI

– URI references transformed fromrdf:ID attribute values

– URI references relative to an ENTITY declaration

• Language identification attributes (xml:lang) in tags.

• Empty node abbreviations.

• Multiple properties abbreviations.

• Typed node abbreviations.

• String literal abbreviations.

• Blank node abbreviation.

• Container abbreviation.

• Collection abbreviation.

• Statement abbreviation.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 17

3. BENCHMARK SUITES DEFINITION

3.1.3 Benchmark definitions

Table 3.1 shows the categories of the RDF(S) Import Benchmark Suite, which contains
82 benchmarks, their number and the components used in each category. A detailed
description of these benchmarks can be found in the web page1. Besides, all the RDF(S)
files to be imported can be downloaded from a single file2. Templates are provided for
collecting the execution results3.

Table 3.1: Categories of the import benchmarks.
Category No. Components used
Class 2 rdfs:Class
Metaclass 5 rdfs:Class, rdf:type
Subclass 5 rdfs:Class, rdfs:subClassOf
Class and property 6 rdfs:Class, rdf:Property, rdfs:Literal
Property 2 rdf:Property
Subproperty 5 rdf:Property, rdfs:subPropertyOf
Property with domain and
range

24 rdfs:Class, rdf:Property, rdfs:Literal,
rdfs:domain, rdfs:range

Instance 4 rdfs:Class, rdf:type
Instance and property 14 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal
Syntax and abbreviation 15 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal

The definition of each benchmark in the benchmark suite, as Table 3.2 shows, includes
the following fields:

• An identifier for tracking the different benchmarks.

• A description of the benchmark in natural language.

• A graphical representationof the ontology to be imported in the benchmark.

• A file containing the ontology to be imported in the RDF/XML syntax.

3.1.4 Evaluation criteria

The evaluation criteria of the RDF(S) Import Benchmark Suite are defined as follows:

1http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/
rdfs import benchmarksuite.html

2http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/files/importfiles.zip
3http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/templates/

RDFS Import BenchmarkSuite Template.xls

18 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

Identifier I14
Description Import one class that has the same property with

several other classes
Graphical
representation

RDF/XML
file

<rdf:RDF xmlns="http://www.w3.org/2000/01/rdf-schema#"
xmlns:g1="http://www.test.org/graph14#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<Class rdf:about="http://www.test.org/graph14#class1">
<g1:prop1 rdf:resource="http://www.test.org/graph14#class2"/>
<g1:prop1 rdf:resource="http://www.test.org/graph14#class3"/>
</Class>
<Class rdf:about="http://www.test.org/graph14#class2"/>
<Class rdf:about="http://www.test.org/graph14#class3"/>

</rdf:RDF>

Table 3.2: An example of a benchmark definition.

Modelling (YES/NO). The ontology development tool can model the ontology compo-
nents described in the benchmark.

Execution (OK/FAIL). The execution of the benchmark is normally carried out without
any problem, and the tool always produces its expected result. In the case of a failed
execution, the following information is required:

• The reasons for failing the benchmark execution.

• If the tool was corrected to pass a benchmark, which it underwent.

Information added or lost. It refers to the information added or lost in the ontology
interchange when executing the benchmark.

Since ontology development tools have different knowledgemodels, there is noRight
or Wrongresult. Furthermore, different tools have different strategies for importing the
components not allowed in their knowledge models. For example, metaclasses can be
modelled in RDF(S), but a tool that cannot represent metaclasses has two alternatives
when importing a RDF(S) metaclass: either to import it as a class, or not to do it.

In addition, any combination of results can be possible since they depend on the de-
cisions taken by the tool developers. The only pattern that can be identified in the results
is that of the loss of information during the import of an ontology with a component that
does not belong to its knowledge model. This loss of information includes at least the
component that the tool cannot model.

Table 3.3 shows an example of the execution of the benchmark I46 (Import just one
property that has as domain a class and as range the XML Schemadatatype ”string”, with
the class defined in the ontology) in five fictitious ontology development tools identified
as A, B, C, D, and E.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 19

3. BENCHMARK SUITES DEFINITION

Tool ID Modelling Execution Information added Information lost

A I46 YES OK
A label in all the compo-
nents

-

B I46 YES FAIL - The property’s range
C I46 NO OK The rangeString The rangexsd:string
D I46 NO OK The rangerdfs:Literal The rangexsd:string
E I46 NO FAIL - The property

Table 3.3: Fictitious results of executing benchmark I46

In our example, tools A and B can model the XML Schema datatypestring as range
and, therefore, theirModellingresult isYES; tools C, D and E cannot model it and, there-
fore, theirModellingresult isNO.

The expected result of tools A and B is a property whose domainis a class and whose
range is the XML Schema datatypestring. Tool A imports all these components and adds
a label with the name of the component to all the components; therefore, itsExecution
result isOK, and it inserts new information into the ontology. Tool B imports the property,
but it does not import the range. As it does not produce the expected result, itsExecution
result isFAIL, and it loses information when importing the ontology.

Because tools C, D and E cannot model the XML Schema datatypestring as range
though they can model string ranges, the expected result of these tools is to have a property
whose domain is a class and whose range is string. Tools C and Dproduce this expected
result and theirExecutionresult isOK; both lose information about the range being the
XML Schema datatypestring, though tool C creates the range as its own datatypeString
and tool D creates the range asrdfs:Literal; therefore, these two tools insert new infor-
mation in the ontology. Tool E does not import the property atall, although its expected
result is to import it with a string range; itsExecutionresult isFAIL, and it loses all the
information about the property when it imports the ontology.

3.1.5 Procedure for executing the benchmark suite

If a tool developer wants to evaluate the RDF(S) importer of his tool, the steps he should
follow for executing each benchmark are:

1. To define the expected result of importing the file with the RDF(S) ontology into
the ontology development tool, either by modelling the expected ontology in the
tool or by defining it informally (i.e. in natural language).

2. To import into the ontology development tool the RDF(S) file that contains the
RDF(S) ontology defined in the benchmark.

20 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

3. To compare the expected ontology with the imported one andto check whether
there is some addition or loss of information.

Although these steps can be carried out manually, when dealing with many bench-
marks it is highly recommended to perform them (or part of them) automatically, espe-
cially to compare the expected with the imported ontologies.

3.2 RDF(S) Export Benchmark Suite

The RDF(S) Export Benchmark Suite can be used to evaluate theRDF(S) export func-
tionalities of Semantic Web tools. Although it was developed bearing in mind ontology
development tools, it can also be employed to evaluate any other tool capable of exporting
to RDF(S).

The benchmark suite is composed of benchmarks that check thecorrect export of on-
tologies to RDF(S). Each of these benchmarks defines an ontology that must be modelled
in the ontology development tool and saved to a RDF(S) file.

As in the case of the RDF(S) Import Benchmark Suite, we have defined two types of
benchmarks for isolating the two issues that influence the correct exporting of an ontology.
One is which combinations of components of the ontology development tool knowledge
model are present and the other issue is which restrictions RDF(S) imposes for naming
components. The next sections describe how these two types of benchmarks were defined.

3.2.1 Benchmarks that depend on the knowledge model

These benchmarks check the correct export to RDF(S) of ontologies that model simple
combinations of the components of a common knowledge model.The components here
considered are the most frequently used for modelling ontologies in these tools, and are
present in their knowledge models. These are: classes and class hierarchies, object and
datatype properties, instances, and literals; the remainder of the components that are spe-
cific to each tool are not considered.

The composition of the RDF(S) Export Benchmark Suite is similar to the composi-
tion of the Import one. Instead of taking as input the knowledge model of RDF(S), we
have taken the common core of knowledge modelling components mentioned above. The
benchmarks obtained are classified in the following categories:

• Class benchmarks

• Metaclass benchmarks

• Subclass benchmarks

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 21

3. BENCHMARK SUITES DEFINITION

• Class and object property benchmarks

• Class and datatype property benchmarks

• Object property benchmarks

• Datatype property benchmarks

• Instance benchmarks

• Instance and object property benchmarks

• Instance and datatype property benchmarks

3.2.2 Benchmarks that depend on the component naming restric-
tions

These benchmarks check the correct export to RDF(S) of ontologies with concepts and
properties whose names include characters not allowed for representing RDF(S) or XML
URIs. They are classified in the following categories:

• Concepts and properties whose names start with a character other than a letter or
’ ’.

• Concepts and properties with spaces in their names.

• Concepts and properties with URI reserved characters in their names (’;’, ’/’, ’?’,
’:’, ’@’, ’&’, ’ =’, ’+’, ’$’, ’,’).

• Concepts and properties with XML delimiter characters in their names (’¡’, ’¿’, ’#’,
’%’, ’ ” ’).

3.2.3 Benchmark definitions

Table 3.4 shows the categories of the benchmark suite, whichcomprises 66 benchmarks.
The table contains the number of benchmarks and the components used in each category.
A detailed description of such benchmarks can be found in theweb page4. In addition,
templates are provided for collecting the execution results5.

The definition of each benchmark in the benchmark suite, as Table 3.5 shows, includes
the following fields:

4http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/
rdfs exportbenchmarksuite.html

5http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/templates/
RDFS Export BenchmarkSuite Template.xls

22 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

Table 3.4: Categories of the export benchmarks.
Category No. Components used
Class 2 class
Metaclass 5 class, instanceOf
Subclass 5 class, subClassOf
Class and object property 4 class, object property
Class and datatype property 2 class, datatype property, literal
Object property 14 object property
Datatype property 12 datatype property
Instance 4 class, instanceOf
Instance and object property 9 class, instanceOf, object property
Instance and datatype property 5 class, instanceOf, datatype property, literal
URI character restrictions 4 class, instanceOf, object property, datatype

property, literal

• An identifier for tracking the different benchmarks.

• A description of the benchmark in natural language.

• A graphical representationof the ontology to be exported by the tool.

• The instantiation of the ontology described in the benchmark for each of the par-
ticipating tools, using the vocabulary and components of these tools.

Table 3.5: An example of a benchmark definition.

Identifier E09
Description Export one class that is subclass of several classes
Graphical
representation

WebODE’s
instantiation

Export one concept that is subclass of several con-
cepts

Protéǵe’s
instantiation

Export one class that is subclass of several classes

... ...

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 23

3. BENCHMARK SUITES DEFINITION

3.2.4 Evaluation criteria

The evaluation criteria adopted for the export benchmark suite are the same as those for
the import benchmark suite, namely,Modelling, ExecutionandInformation added or lost.
The only difference with the import criteria is that, if a benchmark defines an ontology
that cannot be modelled in a certain tool, that benchmark cannot be executed in the tool,
being theExecutionresultN.E.(Non Executed). In the import benchmark suite, even if a
tool cannot model some components of the ontology, it shouldbe able to import correctly
the rest of the components.

3.2.5 Procedure for executing the benchmark suite

The steps to follow when executing each of the benchmarks are:

1. To define in RDF(S) the expected ontology that results fromexporting the ontology.

2. To model in the tool the ontology described in the benchmark.

3. To export the ontology modelled using the tool to RDF(S).

4. To compare the exported RDF(S) ontology with the expectedRDF(S) ontology,
examining whether there is some addition or loss of information.

Although these steps can be carried out manually, when dealing with many bench-
marks it is highly recommended to perform them (or part of them) automatically, espe-
cially for comparing the expected with exported ontologies.

3.3 RDF(S) Interoperability Benchmark Suite

The RDF(S) Interoperability Benchmark Suite can be used to evaluate the interoperability
of Semantic Web tools using RDF(S) as interchange language.It does so by testing
the interchange of ontologies from one source tool to a destination one and vice versa.
Although it was developed bearing in mind ontology development tools, it can be used to
evaluate any other tool capable of importing from and exporting to RDF(S).

The RDF(S) Interoperability Benchmark Suite is composed ofbenchmarks that check
the correct interchange of ontologies between two tools. The benchmark suite considers
the interchange of a common core of the knowledge modelling components most fre-
quently used for modelling ontologies: classes and class hierarchies, object and datatype
properties, instances, and literals. As these components are the same as those in the
RDF(S) Export Benchmark Suite, the ontologies defined in theRDF(S) Interoperability
Benchmark Suite are identical to those of the RDF(S) Export Benchmark Suite, as pre-
sented in the previous section.

24 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

The RDF(S) Interoperability Benchmark Suite definition is available in a public web
page6 and templates are provided for collecting the execution results7. In case of eval-
uating the interoperability from the tools that have already executed the RDF(S) Export
Benchmark Suite, a file containing the RDF(S) files exported by these tools can be down-
loaded8.

The evaluation criteria adopted here are the same as those for the export benchmark
suite, namely,Modelling, ExecutionandInformation added or lost.

3.3.1 Procedure for executing the benchmark suite

The main difference between the RDF(S) Export and Interoperability Benchmark Suites
is the procedure for executing the benchmarks. The steps to follow for executing them
are:

1. To define the expected ontology resulting from interchanging the ontology in the
destination tool.

2. To model the ontology described in the benchmark in the source tool.

3. To export the ontology modelled using the source tool to RDF(S).

4. To import the RDF(S) file (exported by the source tool) intothe destination tool.

5. To compare the interchanged ontology with the expected one, checking whether
there is some addition or loss of information.

If the tools have already executed the RDF(S) Export Benchmark Suite, then steps 2
and 3 can be ignored, as the RDF(S) exported files of all the tools will be available from
the export experiments. Participants will not have to export these ontologies again; they
will only have to import the exported files into their tools.

Although these steps can be carried out manually, it is highly recommended to perform
them (or part of them) automatically when dealing with many benchmarks, especially for
comparing the expected with the interchanged ontologies.

6http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/
rdfs interoperabilitybenchmarksuite.html

7http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/templates/
Interoperability Templates.xls

8http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/stage1 results/
RDFS Exported Files.zip

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 25

Chapter 4

RDF(S) import results and analysis

by RAÚL GARCÍA-CASTRO

This chapter presents the results of executing the RDF(S) Import Benchmark Suite in
all the tools participating in the benchmarking. First, we carry out a global analysis on
the RDF(S) import capabilities of the tools and then an in-depth analysis of each tool is
provided.

The results obtained when importing from RDF(S) depend mainly on the knowledge
model of the tool that executed the benchmark suite. The tools that natively support the
RDF(S) knowledge model do not need to perform any translation in the ontologies when
importing them from RDF(S). In the case of tools with non-RDFknowledge models, they
do need to translate ontologies from RDF(S) to their knowledge model.

In the benchmarking, the only RDF(S)-native participant tools are Corese, Jena and
Sesame, the RDF repositories. The ontology development tools (KAON, Protégé and
WebODE) have their own knowledge models, some of whose components can also be
represented in RDF(S) while some others cannot.

The RDF repositories import correctly from RDF(S) all the combinations of compo-
nents, as the import does not require any translation.

In general, the ontology development tools import correctly from RDF(S) most of
the combinations of components that they model, rarely adding or losing information. In
particular:

• KAON imports correctly all the combinations of components that it can model.

• Protégé only poses problems when importing classes or instances that are instances
of multiple classes.

• WebODE only poses problems when importing properties with aXML Schema
datatype as range.

When the ontology development tools import ontologies withcombinations of com-

26

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

ponents that they cannot model, they lose the information about these components. Nev-
ertheless, they usually try to represent partially these components using other components
from their knowledge models. In most cases, the importing isperformed correctly. The
only exceptions are:

• KAON poses problems when it imports class hierarchies with cycles.

• Protégé poses problems when it imports class and propertyhierarchies with cycles
and properties with multiple domains.

• WebODE poses problems when it imports properties with multiple domains or
ranges.

When dealing with the different variants of the RDF/XML syntax, ontology develop-
ment tools:

• Import correctly resources with the different URI reference syntaxes.

• Import correctly resources with the different syntaxes (shortened and unshortened)
of empty nodes, of multiple properties, of typed nodes, of string literals, and of
blank nodes. The only exceptions are KAON when it imports resources with mul-
tiple properties in the unshortened syntax, and Protégé when it imports resources
with empty and blank nodes in the unshortened syntax.

• Do not import language identification attributes (xml:lang) in tags.

The next sections present a summary of the analysis of each ofthe tools. A detailed
analysis of the RDF(S) import results can be found in Appendix B.

4.1 KAON results
by YORK SURE AND MARKUS ZONDLER

This section presents the results of evaluating the RDF(S) import capabilities of KAON.

KAON imports correctly components (or combinations of them) of the RDF(S) knowl-
edge model, which are also present in its own knowledge model. These components are:

• Classes, metaclasses and class hierarchies without cycles.

• Properties with a single domain and range (even if the domainand range are the
same class), with multiple domains or ranges, or without domain or range.

• Property hierarchies.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 27

4. RDF(S) IMPORT RESULTS AND ANALYSIS

• Instances of one class or multiple classes and instances related through properties,
even if the property relates instances of the same class or aninstance to itself, or
if an instance is related through the same property (either as subject or object) to
several other instances or values.

KAON imports correctly the following components (or combinations of them) of the
RDF(S) knowledge model, although they are not present in itsown knowledge model:

• Classes related through properties supposed to be defined with a domain and range
of some metaclass of the classes.

• Properties with undefined resources as domain or range or with a XML Schema
datatype as range.

• Instances of undefined resources.

• Instances related through undefined properties or through properties whose range is
a XML Schema datatype.

KAON does not produce the expected result when importing from RDF(S):

• Class hierarchies with cycles because KAON presents an error message.

Regarding the import of the different variants of the RDF/XML syntax, KAON:

• Imports correctly resources with the different URI reference syntaxes.

• Imports correctly resources with the different syntaxes (shortened and unshortened)
of empty nodes, typed nodes, string literals, and blank nodes.

• Imports correctly resources with multiple properties in the shortened syntax, but it
crashes if they are in the unshortened.

• Does not import language identification attributes (xml:lang) in tags.

4.2 Protéǵe results
by RAÚL GARCÍA-CASTRO

This section presents the results of evaluating the RDF(S) import capabilities of Protégé.

Protégé imports correctly the following components (or combinations of them) of the
RDF(S) knowledge model, which are also present in its own knowledge model:

• Classes, metaclasses and classes that are instances of a single metaclass.

28 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Class hierarchies without cycles. If the resource object ofa rdfs:subClassOfprop-
erty is not defined as a class in the file ([Corese:In09-10]), the resource object is
created as a class.

• Properties with a single domain and range (even if the domainand range are the
same class) or without domain or range, or without both.

• Property hierarchies without cycles.

• Instances of a single class and instances related through properties, even if the prop-
erty relates instances of the same class or an instance to itself, or if an instance is
related through the same property (either as subject or object) to several other in-
stances or values.

Protégé imports correctly components (or combinations of them) of the RDF(S) knowl-
edge model, although they are not present in its own knowledge model. These compo-
nents are:

• Classes related through properties supposed to be defined with a domain and a range
of some metaclass of the classes. Protégé imports the property, but without domain
or range, and it does not relate the classes to the property.

• Properties with undefined resources as domain or range. Protégé creates the unde-
fined resource as a class.

• Properties with multiple ranges. Protégé creates the slot with a range ofAny, as
multiple ranges in RDF(S) and Protégé have different meanings.

• Properties withrdfs:Classas domain. Protégé does not define the domain as it
cannot create a template slot in:STANDARDCLASS.

• Properties with a XML Schema datatype as range. It creates the datatype as a class
with thexsdnamespace.

• Instances of undefined resources. Protégé creates the undefined resource as a class.

• Instances related through undefined properties. Protégécreates the property as a
template slot without domain and with a range ofAny and it does not relate the
instances to the property.

• Instances related through properties with XML Schema datatype as range. Protégé
creates the datatype as a class with thexsdnamespace, but it does not consider the
value related to the instance through the property to be an instance of the datatype
class and it does not import it.

• rdfs:Class.Protégé importsrdfs:Classas:STANDARDCLASS.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 29

4. RDF(S) IMPORT RESULTS AND ANALYSIS

• rdfs:Literal. Protégé importsrdfs:Literal as its ownStringdatatype.

Protégé does not produce the expected result when importing from RDF(S):

• Classes that are instances of multiple metaclasses becauseProtégé imports the class
as instance of only one metaclass. This includes the case in which a class appears in
the file as instance of a metaclass andrdfs:Class([Corese:In03-07],[KAON:In03-
07]).

• Class hierarchies with cycles because Protégé crashes when finding a cycle in a
class hierarchy, so it does not importing anything.

• Properties with multiple domains because Protégé imports the multiple domains,
but in RDF(S) and in Protégé multiple domains have different meanings.

• Property hierarchies with cycles because Protégé crashes when finding a cycle in a
property hierarchy, so it does not import anything.

• Instances of multiple classes because Protégé imports the instance as instance of
only one class.

Regarding the import of the different variants of the RDF/XML syntax, Protégé:

• Imports correctly resources with the different URI reference syntaxes.

• Imports correctly resources with the different syntaxes (shortened and unshortened)
of multiple properties, typed nodes, and string literals.

• Imports correctly resources with empty nodes in the shortened syntax, but Protégé
crashes when they are in the unshortened syntax, so it does not import anything.

• Imports correctly resources with blank nodes in the shortened syntax. However, if
they are in the unshortened syntax, whenever the blank node appears it is imported
as a new node.

• Does not import language identification attributes (xml:lang) in tags.

4.3 WebODE results
by RAÚL GARCÍA-CASTRO

This section includes the results of evaluating the RDF(S) import capabilities of WebODE.

WebODE imports correctly components (or combinations of them) of the RDF(S)
knowledge model that are also present in its own knowledge model. These components
are:

30 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Classes and class hierarchies without cycles.

• Properties with a single domain and range, even if the domainand range are the
same class.

• Instances of a single class and instances related through properties, even if the prop-
erty relates instances of the same class or relates an instance to itself, or if an in-
stance is related through the same property (either as subject or object) to several
other instances or values.

WebODE imports correctly the following components (or combinations of them) of
the RDF(S) knowledge model although they are not present in its own knowledge model:

• Metaclasses. WebODE imports them as concepts (if they are defined as classes in
the file) but it does not import that another concept is instance of them.

• Class hierarchies with cycles. WebODE does not import all the rdfs:subClassOf
properties to create a hierarchy without cycles.

• Classes related through properties supposed to be defined with a domain and range
of some metaclass of the classes. WebODE does not import the property.

• Properties without domain. WebODE createsrdfs:Resourceas an imported term;
if the range of the property isrdfs:Literal, it creates the property as an instance
attribute of rdfs:Resource; otherwise, it creates the property as a relation with
rdfs:Resourceas origin.

• Properties without range. WebODE createsrdfs:Resourceas an imported term and
creates the property as a relation withrdfs:Resourceas destination.

• Property hierarchies. WebODE does not import therdfs:subPropertyOfproperties.

• Properties with undefined resources as domain or range. WebODE creates the un-
defined resource as a concept.

• Instances of undefined resources. WebODE does not import theinstance.

• Instances of multiple classes. WebODE imports the instanceas instance of just one
concept.

• Instances related through undefined properties. WebODE does not create the prop-
erty and does not relate the instances to the property.

• rdfs:labelproperties in classes, properties and instances. WebODE inserts ”rdfs:label
-> name” in the description of the resource.

• rdfs:Class.WebODE importsrdfs:Classas an imported term.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 31

4. RDF(S) IMPORT RESULTS AND ANALYSIS

• rdfs:Literal. WebODE importsrdfs:Literal as its own datatypeString.

WebODE does not produce the expected result when importing from RDF(S):

• Properties with multiple domains. WebODE creates an anonymous concept as the
origin of the relation (or instance attribute) and as subclass of one of the domain
concepts, instead of as subclass of all the domain concepts.

• Properties with multiple ranges. WebODE creates an anonymous concept as the
destination of the relation and as subclass of one of the range concepts, instead of
as subclass of all the range concepts.

• Properties with XML Schema datatype as range. WebODE imports the datatype as
an imported term, instead of as a XML Schema datatype.

• Properties whose range is a XML Schema datatype and instances with values in
the properties. WebODE inserts its own datatypeStringas the type of the instance
attribute instead of the XML Schema datatype.

Regarding the import of the different variants of the RDF/XML syntax, WebODE:

• Imports correctly resources with the different URI reference syntaxes.

• Imports correctly resources with the different syntaxes (shortened and unshortened)
of empty nodes, multiple properties, typed nodes, string literals, and blank nodes.

• Does not import language identification attributes (xml:lang) in tags.

4.4 RDF repositories: Corese, Jena and Sesame
by OLIVIER CORBY, RAÚL GARCÍA-CASTRO AND JEŚUS PRIETO-GONŹALEZ

This section presents the results of evaluating the RDF(S) import capabilities of Corese,
Jena and Sesame, the RDF repositories that participated in the benchmarking.

The procedure for executing the RDF(S) Import Benchmark Suite in the RDF repos-
itories was different from the one proposed in the benchmarksuite. This is so because
some tasks proposed in the benchmark suite require functionalities that are available in
ontology development tools but not in RDF repositories, such as modelling the ontology
into the tool.

The procedure followed in the RDF repositories was the following:

• To load the file with the RDF(S) ontology into the tool.

• To export the loaded ontology to a file using a generic query.

32 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• To compare the expected ontology with the imported one, checking whether there
is some addition or loss of information.

The RDF repositories import correctly all the combinationsof components. This is
so because RDF is the knowledge model of these tools, and importing ontologies to RDF
does not require any transformation.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 33

Chapter 5

RDF(S) export results and analysis

by RAÚL GARCÍA-CASTRO

This chapter includes the results of executing the RDF(S) Export Benchmark Suite in
all the tools participating in the benchmarking. For this, aglobal analysis of the tools on
the RDF(S) export capabilities has been performed; in the following sections, a specific
analysis of each tool is provided.

As with the import results, the export results also depend onthe knowledge model of
the tool. The tools that natively support the RDF(S) knowledge model (Corese, Jena and
Sesame) do not need to perform any translation when exporting ontologies, whereas the
non-RDF tools (KAON, Protégé and WebODE) do.

The RDF repositories export correctly all the combinationsof components to RDF(S),
as the export does not require any translation.

In general, the ontology development tools export correctly to RDF(S) most of the
combinations of components that they model without losing information. In particular:

• KAON poses problems only when exporting to RDF(S) datatype properties without
range and datatype properties with multiple domains and a XML Schema datatype
as range.

• Protégé poses problems only when exporting to RDF(S) classes or instances that
are instances of multiple classes and template slots with multiple domains.

• WebODE exports correctly to RDF(S) all the combinations of components.

When ontology development tools export components presentin their knowledge
model but which cannot be represented in RDF(S), such as their own datatypes, they
usually insert new information in the ontology though they lose some information.

When dealing with concepts and properties whose names do notfulfil URI character
restrictions, each ontology development tool behaves differently:

34

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• When names do not start with a letter or ””, some tools leave the name unchanged
and some replace the first character with ””.

• Spaces in names are replaced by ”-” or ””, depending on the tool.

• URI reserved characters and XML delimiter characters are left unchanged, replaced
by ” ”, or encoded, depending on the tool.

The next sections present a summary of the analysis of each ofthe tools. A detailed
analysis of the RDF(S) export results can be found in Appendix A.

5.1 KAON results
by YORK SURE AND MARKUS ZONDLER

This section includes the results of evaluating the RDF(S) export capabilities of KAON.

KAON exports correctly to RDF(S) some components (or combinations of them) of
its knowledge model, which are also present in the RDF(S) knowledge model. These are:

• Classes, metaclasses and class hierarchies without cycles.

• Datatype properties with a domain and range, without domainand with range, or
with multiple domains.

• Object properties with or without domain and range, or with multiple domains or
ranges.

• Instances.

• Instances related through object properties, even if the property relates instances of
the same class or relates an instance to itself, or if an instance is related through the
same property (either as subject or object) to several otherinstances.

• Instances related through datatype properties, even if an instance is related through
the same property to several values.

Although some components (or combinations of them) are not present in the RDF(S)
knowledge model, KAON exports correctly the following components of its knowledge
model:

• DatatypesStringandInteger. KAON exportsStringandIntegerdatatypes by mod-
elling extra concepts in the ontology or by importing them from other ontologies.

KAON does not produce the expected result when exporting to RDF(S):

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 35

5. RDF(S) EXPORT RESULTS AND ANALYSIS

• Datatype properties without range because it insertsrdfs:Literal as the range of the
datatype property.

• Datatype properties with multiple domains and XML Schema datatype as range
because the exported property contains just one domain.

KAON cannot model the following components (or combinations of them) that appear
in the benchmark definitions:

• Class hierarchies with cycles.

• Classes related through undefined object or datatype properties whose domain and
range are some metaclass of the classes.

• Object and datatype properties with undefined resources as domain or range.

• Instances of undefined resources.

• Instances related through undefined object or datatype properties.

• Instances related through datatype properties whose rangeis a XML Schema datatype.

Regarding the export of concepts and properties whose namesinclude URI character
restrictions, KAON:

• Does not modify the name of a concept, nor of an instance attribute, nor of a relation
when it does not start with a letter or ””.

• Encodes spaces in concept names, in instance attribute names, and in relation names
as ”-”.

• Encodes URI reserved characters and XML delimiter characters in class and prop-
erty names.

5.2 Protéǵe results
by RAÚL GARCÍA-CASTRO

This section presents the results of evaluating the RDF(S) export capabilities of Protégé.

Protégé exports correctly to RDF(S) components (or combinations of them) of its
knowledge model, also present in the RDF(S) knowledge model. These components are:

• Classes, metaclasses, and class hierarchies without cycles.

• Classes and instances that are instances of one class only.

36 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Template slots, with or without domain or range.

• Instances related through template slots, even if the slot relates instances of the
same class, relates an instance to itself, or an instance is related through the same
slot (either as subject or object) to several other instances.

Protégé exports correctly the following components (or combinations of them) of its
knowledge model, although they are not present in the RDF(S)knowledge model:

• Resource names. Protégé inserts ardfs:labelproperty with the name of the resource
when exporting classes, template slots and instances.

• Protégé datatypeString.Protégé exports its ownStringdatatype tordfs:Literal.

• Exports classes as subclass ofrdfs:Resource.

• Exports metaclasses as subclass ofrdfs:Class.

• Exports template slots whose range isInstancewith no allowed class or template
slots with multiple ranges as properties with a range ofrdfs:Resource.

Protégé does not produce the expected result when exporting to RDF(S):

• Classes or instances that are instances of multiple classesbecause it only exports
the resource as instance of one class.

• Template slots with multiple domains. Protégé exports the multiple domains but in
RDF(S) and in Protégé multiple domains have different meaning.

Protégé cannot model the following components (or combinations of them) that ap-
pear in the benchmark definitions:

• Class hierarchies with cycles.

• Classes related through undefined template slots whose domain and range are some
metaclass of the classes.

• Template slots with undefined resources as domain or range.

• Template slots with XML schema datatype as range.

• Instances of undefined resources.

• Instances related through undefined template slots.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 37

5. RDF(S) EXPORT RESULTS AND ANALYSIS

With regard to the export of concepts and properties whose names include URI char-
acter restrictions, Protégé:

• Inserts ” ” as the first character of the name of a class or a template slotwhen it
does not start with a letter or ””.

• Encodes spaces, most URI reserved characters, and XML delimiter characters in
class and property names as ””.

5.3 WebODE results
by RAÚL GARCÍA-CASTRO

This section presents the results of evaluating the RDF(S) export capabilities of WebODE.

WebODE exports correctly to RDF(S) components (or combinations of them) of its
knowledge model that are also present in the RDF(S) knowledge model. These compo-
nents are:

• Concepts and concept hierarchies without cycles.

• Instance attributes of a concept with either a WebODE datatype or a XML Schema
datatype.

• Relations between two concepts or a concept and itself.

• Instances of only one concept.

• Instances related through relations, even if the relation is held between instances of
the same concept or between an instance with itself, or if an instance has the same
relation (either as origin or destination) to several otherinstances.

• Instances with instance attributes, even if an instance hasseveral values in the in-
stance attribute, or if the instance attribute has an XML Schema datatype as type.

WebODE exports correctly components (or combinations of them) of its knowledge
model, although they are not present in the RDF(S) knowledgemodel. These components
are:

• WebODE datatypes. WebODE exports all its own datatypes (including String) to
rdfs:Literal.

• Resource names. WebODE inserts ardfs:label property with the name of the re-
source when exporting concepts, instance attributes, relations, and instances.

38 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

WebODE produces the expected result in all the benchmarks when exporting to RDF(S).

WebODE cannot model components (or combinations of them) that appear in the
benchmark definitions. These components are:

• Metaconcepts.

• Concept hierarchies with cycles.

• Concepts related through undefined relations whose origin and destination are some
metaconcept of the concepts.

• Concepts related through undefined instance attributes of some metaconcept of the
concepts.

• Instance attributes of an undefined resource, of multiple concepts, or instance at-
tributes not related to a concept or without a type.

• Relations without origin or destination, with multiple origins or destinations, or
with undefined resources as origin or destination.

• Instances of undefined or multiple concepts, instances related through undefined
relations, or instances with undefined instance attributes.

With regard to the export of concepts and properties whose names include URI char-
acter restrictions, WebODE:

• Does not modify the name of a concept, nor of an instance attribute, nor of a relation
when it does not start with a letter or ””.

• Encodes spaces in concept names, in instance attribute names, and in relation names
as ” ”.

• Does not modify the name of a concept, nor of an instance attribute, nor of a relation
when it includes URI reserved characters.

• Cannot model concepts and properties with the character ’” ’ in their names.

5.4 RDF repositories: Corese, Jena and Sesame
by OLIVIER CORBY, RAÚL GARCÍA-CASTRO AND JEŚUS PRIETO-GONŹALEZ

This section deals with the results of evaluating the RDF(S)export capabilities of
Corese, Jena and Sesame, the RDF repositories that participated in the benchmarking.

The procedure for executing the RDF(S) Export Benchmark Suite in the RDF repos-
itories was different from the one proposed in the benchmarksuite. This is so because

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 39

5. RDF(S) EXPORT RESULTS AND ANALYSIS

some tasks proposed in the benchmark suite require functionalities available in ontology
development tools, such as modelling the ontology into the tool, but not in RDF reposito-
ries.

The procedure followed in the RDF repositories was the following:

• To define a fictitious ontology that covered all the combinations of components
present in the benchmark suite.

• To define queries for extracting the combinations of components required in each
benchmark from the ontology to a RDF file. In the case of Corese, Jena and Sesame
the queries were defined in the SPARQL query language1.

• To export the combinations of components by running the queries against the on-
tology and saving the results in separate files.

• To compare the exported RDF(S) ontologies with the expectedones, checking
whether there is some addition or loss of information.

The RDF repositories export correctly all the combinationsof components. This is
so because RDF is the knowledge model of these tools, and exporting ontologies to RDF
does not require any transformation.

1http://www.w3.org/TR/rdf-sparql-query/

40 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Chapter 6

RDF(S) interoperability results and
analysis

by RAÚL GARCÍA-CASTRO

This chapter presents the results of executing the RDF(S) Interoperability Benchmark
Suite in the ontology development tools participating in the benchmarking. In the first
section, a global analysis on the interoperability of the tools is performed, and in the
following sections a thorough analysis of each tool is provided.

As the ontology development tools participating in the benchmarking have different
knowledge models, both the experimentation and the analysis of the results are based on
a common group of ontology components that is present in these tools. Therefore, the
knowledge models of the tools participating in the benchmarking cover more or less this
common group.

The import and export results presented in the previous chapters showed few prob-
lems when importing and exporting ontologies but in this chapter we present quite a few
interoperability problems.

As a general comment, interoperability between the tools depends on:

a. The correct working of their RDF(S) importers and exporters.

b. The way chosen for serializing the exported ontologies inthe RDF/XML syntax.

Furthermore, we have observed that some problems in any of these factors affect the
results of not just one but several benchmarks. This means that in some cases correcting
a single import or export problem or changing the way of serializing ontologies can cause
significant interoperability improvements.

Next, we list the components that can be interchanged between the tools. These com-
ponents are summarized in Table 6.1, where each column showsif the combination of

41

6. RDF(S) INTEROPERABILITY RESULTS AND ANALYSIS

components can be interchanged between a group of tools or not1. The ”-” character
means that the component cannot be modelled in some of the tools and therefore cannot
be interchanged between them.

Interoperability using the same tool

When the source and the destination of an ontology interchange are the same tool, no
problem occurs in this interchange. The only exception resides in Protégé, as shown
below.

WhenKAON interoperates with itself, it interchanges correctly all the common com-
ponents that it can model.

WhenProtéǵe interoperates with itself, it also interchanges correctlyalmost all the
common components that it can model. The exception occurs when Protégé interchanges
classes that are instances of multiple metaclasses and instances of multiple classes, be-
cause it does not import resources that are instances of multiple metaclasses.

WhenWebODE interoperates with itself, it interchanges correctly all the common
components that it can model.

Interoperability between each pair of tools

Interoperability between different tools varies depending on the tools. Besides, as the de-
tailed interoperability results show, in some cases the tools are able to interchange certain
components from one tool to another, but not the other way round.

WhenKAON interoperates withProtéǵe, they can interchange correctly some of the
common components that these tools are able to model. But problems occur with classes
that are instance of a single metaclass or of multiple metaclasses, with datatype properties
without domain or range, with datatype properties whose range isString, with instances
of multiple classes, and with instances related through datatype properties.

WhenKAON interoperates withWebODE, they can interchange correctly almost all
the common components that these tools can model. The only exception occurs when
they interchange datatype properties with domain and whoserange isString.

WhenProtéǵe interoperates withWebODE, they can interchange correctly all the
common components that these tools can model.

1The names of the tools have been shortened in the heading of the table: KAON=K, Protégé=P and
WebODE=W

42 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

Combination of components K-K P-P W-W K-P K-W P-W K-P-W
Classes Y Y Y Y Y Y Y
Classes instance of a single
metaclass

Y Y - N - - -

Classes instance of a multiple
metaclasses

Y N - N - - -

Class hierarchies without cy-
cles

Y Y Y Y Y Y Y

Datatype properties without
domain or range

Y Y - N - - -

Datatype properties with mul-
tiple domains

Y - - - - - -

Datatype properties whose
range is String

Y Y Y N N Y N

Datatype properties whose
range is a XML Schema
datatype

Y - Y - Y - -

Object properties without do-
main or range

Y Y - Y - - -

Object properties with multi-
ple domains or ranges

Y - - - - - -

Object properties with a do-
main and range

Y Y Y Y Y Y Y

Instances of a single class Y Y Y Y Y Y Y
Instances of multiple classes Y N - N - - -
Instances related through ob-
ject properties

Y Y Y Y Y Y Y

Instances related through
datatype properties

Y Y Y N Y Y N

Instances related through
datatype properties whose
range is a XML Schema
datatype

- - Y - - - -

Table 6.1: Components interchanged between the tools

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 43

6. RDF(S) INTEROPERABILITY RESULTS AND ANALYSIS

Interoperability between all the tools

Interoperability betweenKAON , Protéǵe andWebODE can be achieved by means of
nearly all the common components that these tools can model.The only common com-
ponents that these tools cannot use are datatype propertieswith domain and whose range
is Stringand instances related through datatype properties.

Interoperability regarding URI character restrictions

Interoperability is low when tools interchange ontologiescontaining URI character re-
strictions in class and property names. This is mainly due tothe fact that tools usually
encode some or all the characters that do not comply with these restrictions, which pro-
vokes changes in class and property names.

KAON can interchange with itself ontologies having URI character restrictions in
class and property names.

Protéǵe can interchange neither with itself nor withKAON nor with WebODE on-
tologies having URI character restrictions in class and property names.

WebODE can interchange with itself ontologies having class and property names that
do not start with a letter or ”” and with spaces in their names.

KAON and WebODE can only interchange ontologies having class and property
names that do not start with a letter or ””.

The next sections present a summary of the analysis carried out on each tool. A
detailed analysis of the RDF(S) interoperability results can be found in Appendix C.

6.1 KAON results
by YORK SURE AND MARKUS ZONDLER

This section includes the results of evaluating the RDF(S) interoperability capabilities
of KAON.

Table 6.2 shows the combinations of components that can be modelled in KAON and
explains whether these combinations can be interchanged from the tools to KAON or not.
The cells in this table (and in the rest of the tables of this chapter) include:

• OK when theExecutionresults of all the benchmarks where the combination of
components appears isOK.

• FAIL when theExecutionresult of some benchmark where the combination of

44 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

components appears isFAIL.

• ’-’ when the combination of components cannot be modelled in thesource tool.

Combination of components Corese KAON Protéǵe WebODE
Classes OK OK OK OK
Classes instance of a single metaclass OK OK OK -
Classes instance of a multiple metaclassesOK OK FAIL -
Class hierarchies without cycles OK OK OK OK
Datatype properties without domain and
range

OK OK OK -

Datatype properties with domain but with-
out range

OK OK OK -

Datatype properties without domain but
with range

OK OK FAIL -

Datatype properties with multiple domainsOK OK - -
Datatype properties whose range is StringOK OK FAIL FAIL
Datatype properties with domain and whose
range is a XML Schema datatype

OK OK - OK

Object properties without domain and rangeOK OK OK -
Object properties with domain but without
range

OK OK OK -

Object properties without domain but with
range

OK OK OK -

Object properties with multiple domains OK OK - -
Object properties with multiple ranges OK OK - -
Object properties with a domain and rangeOK OK OK OK
Instances of a single class OK OK OK OK
Instances of multiple classes OK OK OK -
Instances related through object propertiesOK OK OK OK
Instances related through datatype proper-
ties

FAIL OK FAIL OK

Table 6.2: Components modelled in KAON interchanged correctly

In Table 6.2 we can see the combinations of components that can be interchanged
among the tools that can model the combination of componentsand KAON. These com-
binations are:

• Classes, classes that are instances of a single metaclass, and class hierarchies
without cycles.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 45

6. RDF(S) INTEROPERABILITY RESULTS AND ANALYSIS

• Datatype properties without domain and range, with domain and without range,
or with multiple domains .

• Object properties with a domain and a range, without domain or range, or
with multiple domains or ranges.

• Instances of a single class or of multiple classes, and instances related through
object properties.

The other combinations of components are not interchanged,though KAON can model
them, for the following reasons:

• Classes that are instances of multiple metaclasses.KAON cannot receive classes
that are instances of multiple metaclasses from Protégé.

• Datatype properties without domain and with range. KAON cannot receive
datatype properties without domain and with range from Protégé because the infor-
mation about the range is lost.

• Datatype properties whose range isString. KAON cannot receive datatype prop-
erties whose range isString from Protégé and WebODE because the information
about the range is lost.

• Instances related through datatype properties.KAON cannot receive instances
related through datatype properties from Protégé because the information about the
range is lost.

The combinations of components of the common knowledge model of the tools that
cannot be modelled and, therefore, cannot be interchanged with KAON are the following:

• Class hierarchies with cycles.

• Classes related through object or datatype properties.

• Object and datatype properties with undefined resources as domain or range.

• Instances of undefined resources or related through undefined object and datatype
properties.

With regard to the interchange of classes and properties with URI character restric-
tions in their names, KAON:

• Interchanges with WebODE and itself classes and propertieswhose name starts
with a character that is not a letter nor ’’ , but it does not interchange them with
Protégé because the information about the range of the property is not imported.

46 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Interchanges with WebODE and itself classes and propertieswith spaces in their
names but it does not interchange them with Protégé because the information about
the range of the property is not imported.

• Interchanges with WebODE and itself classes and propertieswith URI reserved
characters in their names, but it does not interchange them with Protégé because
the information about the range of the property is not imported.

• Interchanges with itself classes and properties with XML delimiter characters in
their names, but it does not interchange them with Protégébecause the information
about the range of the property is not imported.

6.2 Protéǵe results
by RAÚL GARCÍA-CASTRO

This section presents the results of evaluating the RDF(S) interoperability capabilities
of Protégé.

Table 6.3 shows the combinations of components that can be modelled in Protégé and
tells whether these combinations can be interchanged from the tools to Protégé or not.

In Table 6.3 we can see the combinations of components can be interchanged between
the tools that can model the combination of components and Protégé. These combinations
are:

• Classes and class hierarchies without cycles.

• Object properties with a domain and range or without domain or range. In the
last case, the object property is created with a range ofAny.

• Instances of a single class.

The other combinations of components are not interchanged,although Protégé can
model them, for the following reasons:

• Classes that are instances of a single metaclass.Protégé does not import that
classes are instances of multiple metaclasses (even if one of them is rdfs:Class).
Therefore, Protégé cannot import that classes are instances of a single metaclass if
in the file they also appear as instances ofrdfs:Class. We propose two solutions for
this problem:

– When Corese and KAON export classes that are instances of a metaclass,
they should export the classes as instances of just the metaclass and not of
rdfs:Class.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 47

6. RDF(S) INTEROPERABILITY RESULTS AND ANALYSIS

Combination of components Corese KAON Protéǵe WebODE
Classes OK OK OK OK
Classes instance of a single metaclass FAIL FAIL OK -
Classes instance of a multiple metaclassesFAIL FAIL FAIL -
Class hierarchies without cycles OK OK OK OK
Datatype properties without domain and
range

FAIL FAIL OK -

Datatype properties with domain but with-
out range

OK FAIL OK -

Datatype properties without domain but
with range

FAIL OK OK -

Datatype properties whose range is StringFAIL OK OK OK
Object properties without domain and rangeOK OK OK -
Object properties with domain but without
range

OK OK OK -

Object properties without domain but with
range

OK OK OK -

Object properties with a domain and rangeOK OK OK OK
Instances of a single class OK OK OK OK
Instances of multiple classes FAIL FAIL FAIL -
Instances related through object propertiesFAIL OK OK OK
Instances related through datatype proper-
ties

FAIL OK OK OK

Table 6.3: Components modelled in Protégé interchanged correctly

– When Protégé imports a class that is instance of multiple metaclasses (includ-
ing rdfs:Class), it should import it correctly.

• Classes instance of multiple metaclasses.Protégé does not import that classes
are instances of multiple metaclasses (even if one of them isrdfs:Class). There-
fore, Protégé cannot import that classes are instances ofmultiple metaclasses. We
propose one solution for this problem:

– When Protégé imports a class that is instance of multiple metaclasses (includ-
ing rdfs:Class), it should import it correctly.

• Datatype properties without domain or range, or with range String. Protégé
crashes and does not import anything when a XML Schema datatype (i.e.xsd:integer)
is defined in the file as ardfs:Datatype. We propose two solutions for this problem:

– When Corese exports XML Schema datatypes, it should not export them as
rdfs:Datatype.

48 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

– When Protégé imports a XML Schema datatype defined asrdfs:Datatype, it
should not crash.

• Instances of multiple classes.Protégé does not import instances that are instances
of multiple classes. We propose one solution for this problem:

– When Protégé imports an instance that is instance of multiple classes, it should
import it correctly.

• Instances related through object and datatype properties.Protégé crashes when
it imports properties withrdf:datatypeattributes. We propose two solutions for this
problem:

– When Corese exports instances related through properties,it should not export
rdf:datatypeattributes in the properties.

– When Protégé imports ardf:datatypeattribute in a property, it should not
crash.

The combinations of components of the common knowledge model of the tools that
cannot be modelled and, therefore, cannot be interchanged with Protégé are the following:

• Class hierarchies with cycles. When Protégé finds a cycle in a class hierarchy
from Corese, it crashes and does not import anything. We propose one solution for
this problem:

– When Protégé imports class hierarchies with cycles, it should not crash.

• Classes related through object properties. Protégé does not import the property
between the class and another class nor the domain and range of the property.

• Classes related through datatype properties. Protégé does not import the prop-
erty between the class and a datatype nor the domain and rangeof the property.

• Object and datatype properties with undefined resources as domain or range.
Protégé creates the undefined resource as a class.

• Object and datatype properties with multiple domains.Protégé creates the prop-
erty as a template slot with multiple domains. This is not theexpected result because
in Protégé multiple domains in slots are considered as theunion of all the domains
and in RDF(S) multiple domains in properties are consideredthe intersection of all
the domains. We propose one solution for this problem:

– When Protégé imports object and datatype properties withmultiple domains,
it should import them as template slots with no domain, as it occurs when it
imports object properties with multiple ranges.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 49

6. RDF(S) INTEROPERABILITY RESULTS AND ANALYSIS

• Object properties with multiple ranges. Protégé creates the property as a tem-
plate slot with a range ofAny.

• Datatype properties whose range is a XML Schema datatype.When receiving
ontologies from Corese, Protégé crashes and does not import anything when a XML
Schema datatype (i.e.xsd:integer) is defined in the file as ardfs:Datatype. We
propose two solutions for this problem:

– When Corese exports XML Schema datatypes, it should not export them as
rdfs:Datatype.

– When Protégé imports a XML Schema datatype defined asrdfs:Datatype, it
should not crash.

When receiving from KAON and WebODE, Protégé creates the XML Schema
datatype as a class, which is the range of the property.

• Instances of undefined resources.Protégé creates the undefined resource as a
class.

• Instances related through undefined object and datatype properties. Protégé
creates the property as a template slot without a domain and with a range ofAny.
The property between the instances is not created.

• Instances related through datatype properties whose rangeis a XML Schema
datatype. Protégé creates the XML Schema datatype as a class and the range of
the property is this class. But it does not import the literalvalue of the property. We
propose one solution for this problem:

– When Protégé imports instances related through datatypeproperties whose
range is a XML Schema datatype, it should import the literal value as an
instance of the XML Schema datatype class.

Regarding the interchange of classes and properties with URI character restrictions in
their names, Protégé:

• Interchanges with KAON and WebODE classes and properties whose name start
with a character that is not a letter nor ’’, but it does not interchange them with
itself because Protégé replaces when exporting the illegal character with ’’.

• Does not interchange with any tool classes and properties having spaces in their
names because all the tools replace when exporting the illegal character with ’’.

• Interchanges with WebODE classes and properties with URI reserved characters in
their names, but it does not interchange them with KAON and itself because they
replace when exporting the illegal character with ’’.

50 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Does not interchange with any tool classes and properties having XML delimiter
characters in their names.

6.3 WebODE results
by RAÚL GARCÍA-CASTRO

This section describes the results of evaluating the RDF(S)interoperability capabili-
ties of WebODE.

Table 6.4 shows the combinations of components that can be modelled in WebODE
and whether these combinations can be interchanged from thetools to WebODE or not.

Combination of components Corese KAON Protéǵe WebODE
Classes OK OK OK OK
Class hierarchies without cycles FAIL OK OK OK
Datatype properties with domain and whose
range isString

FAIL OK OK OK

Datatype properties with domain and whose
range is a XML Schema datatype

OK OK - OK

Object properties with a domain and a rangeOK OK OK OK
Instances of a single class OK OK OK OK
Instances related through object propertiesOK OK OK OK
Instances related through datatype proper-
ties whose range is String

OK OK OK OK

Instances related through datatype proper-
ties whose range is a XML Schema datatype

OK - - OK

Table 6.4: Components modelled in WebODE interchanged correctly

In Table 6.4 we can see the combinations of components that can be interchanged
among the tools that can model the combination of componentsand WebODE. These are:

• Classes.

• Datatype properties with a domain and whose range is a XML Schema datatype.

• Object properties with a domain and a range.

• Instances of a single class.

• Instances related through object properties, or through datatype properties
whose range isString or a XML Schema datatype.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 51

6. RDF(S) INTEROPERABILITY RESULTS AND ANALYSIS

The remainder combinations of components are not interchanged even though WebODE
can model them. The reasons for this are:

• Class hierarchies without cycles. WebODE does not import the subclass proper-
ties if the superclass is not defined as a class in the file. We propose two solutions
for this problem:

– When Corese exports class hierarchies without cycles, it should export the
superclasses as classes in the file.

– When WebODE imports superclasses, it should import them as classes, even
if they are not defined in the file.

• Datatype properties with domain and whose range isString. WebODE crashes
when theString range is defined in the file as a datatype without namespace. We
propose two solutions for this problem:

– When Corese exports the rangeString, it should export it with a namespace.

– When WebODE imports files with datatypes without namespace,it should not
crash.

The combinations of components that cannot be modelled and,therefore, cannot be
interchanged with WebODE are the following:

• Classes that are instances of metaclasses.

WebODE cannot model metaclasses. Therefore, when it receives metaclasses from
other tools, it imports the metaclasses as classes and losesthe rdf:type properties
between classes. If a metaclass is not defined as a class in theexported file, the
metaclass is not imported. We propose two solutions for thisproblem:

– When Corese and Protégé export a metaclass, they should define it as a class
in the file.

– When WebODE imports a metaclass, it should import it correctly even if it is
not defined as a class in the file.

If the class is not defined as a class in the exported file, the class is imported as an
instance. We propose one solution for this problem:

– When Protégé exports a class instance of a metaclass, to define the class as a
class in the file.

• Class hierarchies with cycles. When WebODE finds a cycle in a class hierarchy
from Corese, it creates a class and an imported term with the same name as the
object of therdfs:subClassOfproperty that causes the cycle and creates the subclass
with the imported term. We propose one solution for this problem:

52 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

– When WebODE imports a hierarchy with cycles, it should create the hierarchy
removing therdfs:subClassOfproperties that form the cycles.

• Classes related through object properties. WebODE does not import the prop-
erty.

• Classes related through datatype properties. WebODE does not import the prop-
erty.

• Object and datatype properties without domain and without range. When
WebODE imports an object or a datatype property without domain and range, it
createsrdfs:Resourceas an imported term and the property as an object property
with a domain and range ofrdfs:Resource.

• Object and datatype properties with domain and without range. When WebODE
imports an object or a datatype property with domain but without range, it creates
rdfs:Resourceas an imported term and the property as an object property with a
range ofrdfs:Resource.

• Object and datatype properties without domain and with range.

When WebODE imports an object or a datatype property withoutdomain but with
range, it createsrdfs:Resourceas an imported term and the property with a domain
of rdfs:Resource.

• Object and datatype properties with undefined resources as domain or range.
WebODE creates the undefined resource as a class.

• Object and datatype properties with multiple domains. WebODE imports an
object or datatype property that has multiple domains, creating an anonymous con-
cept as the domain of the datatype property and as subclass ofone of the domain
classes. One proposed solution for this problem is:

– When WebODE imports an object or datatype property with multiple domains,
it should create the anonymous concept as subclass of all thedomain classes.

• Object properties with multiple ranges. WebODE imports an object property that
has multiple ranges by creating an anonymous concept as the range of the property
and as subclass of one of the range classes. One proposed solution for this problem
is:

– When WebODE imports an object property with multiple ranges, it should
create the anonymous concept as subclass of all the range classes.

• Instances of undefined resources.WebODE does not import the instance.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 53

6. RDF(S) INTEROPERABILITY RESULTS AND ANALYSIS

• Instances of multiple classes.WebODE imports the instance as instance of just
one class.

• Instances related through undefined object and datatype properties. WebODE
does not import the undefined properties.

Regarding the interchange of classes and properties with URI character restrictions in
their names, WebODE:

• Interchanges with KAON and itself classes and properties whose name start with
a character that is not a letter nor ’’, but does not interchange them with Protégé
because Protégé replaces when exporting the illegal character with ’ ’.

• Does not interchange with any tool classes and properties with spaces in their
names, as the tools replace when exporting the illegal character with ’ ’.

• Interchanges with itself classes and properties with URI reserved characters in their
names, but it does not interchange them with KAON and Protégé because these
tools replace when exporting the illegal character with ’’.

• Does not interchange classes and properties having XML delimiter characters in
their names with any tool.

54 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Chapter 7

RDF(S) interoperability in the use cases

by ELENA PASLARU BONTAS, LYNDON NIXON, MALGORZATA MOCHOL,
AND RAÚL GARCÍA CASTRO

This chapter focuses on the utilization of the RDF(S) interoperability benchmark-
ing in the context of the business use cases collected from Knowledge Web Industry
Board partners and published in the deliverable D1.1.2 (Prototypical Business Use Cases)
[Nixon et al., 2004]. Following the establishment of a typology of knowledge processing
components/tasks, which are common to real world business scenarios, in D1.1.3 (Knowl-
edge processing tasks) [Shvaikoet al., 2004] these use cases have been further analyzed
in order to extract core research challenges in these terms,which can be delivered to
Knowledge Web researchers, in deliverable D1.1.4 (System and knowledge technology
components for prototypical applications and business cases) [Legeret al., 2005].

Starting with the latter, we concentrate here on those use cases in which the interoper-
ability issue has been identified as a research question which needs further investigation
and which could take benefit from the results achieved in workpackages 1.2 and 2.2.

In the use cases, the need of interoperability mainly appears at two levels (not always
separated). One is during the development and maintenance of the ontologies, where a
group of ontology developers must jointly develop and interchange ontologies. And the
other is during the use of the ontologies, where some tools need to interchange ontologies
for their correct working.

The collaborative ontology engineering process is inconceivable without interopera-
ble ontology management tools. Local ontologies are developed independently possibly
importig external ontologies or using different supporting tools and different engineer-
ing approaches (from scratch, using ontology learning techniques etc.). Further on, the
knowledge modelled with these ontologies might be stored invarious semantic reposito-
ries.

Next, we describe the use cases where interoperability is critical to their success and
research solutions must be provided to accomplish them. In the other use cases interoper-
ability, although relevant, is not critical to accomplish them, being a secondary research

55

7. RDF(S) INTEROPERABILITY IN THE USE CASES

problem.

Every use case will be described in the following way: first wewill give a brief
overview of the business scenario outlining the need for semantic technologies, then we
will introduce the identified RDF(S) interoperability requirements of the scenario.

7.1 Use Case 1. Recruitment from Worldwidejobs

Topic: eRecruitment

Knowledge Web Partner: Free University Berlin

Industry Board Member: World Wide Jobs GmbH

The use case focuses on the usage of semantic technologies inthe eRecruitment do-
main for the realization of an ontology-based matching and ranking engine for job portals.

Requirements for RDF(S) interoperability

The semantic job portal will have to store huge amounts of collected RDF data and to
provide high performance access to this data for its users. This raises the problem of scal-
ability and efficient retrieval in current RDF storage solutions, but also the question of
interoperability between the RDF(S) repositories and other non-RDF legacy data sources.
In the current situation, if interoperability is not achieved with information providers that
manage non-RDF data, the information coverage of the semantic portal will be very lim-
ited.

A second aspect of the eRecruitment scenario is related to the creation and mainte-
nance of the ontological structures underlying the semantic portal implementation. As
eRecruitment ontologies are subject to frequent changes inloosely coupled development
teams, there is a need for interoperable ontology management environments, in order to
allow a dispersed community of ontology developers to interact with the eRecruitment
ontologies in a comfortable and in the same time efficient manner.

7.2 Use Case 3. News Aggregation from Neofonie

Topic: News aggregation service

Knowledge Web Partner: Free University Berlin

Industry Board Member: Neofonie GmbH

56 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

The business case deals with the realization of an aggregated news service which
provides business clients with advanced information management capabilities. Semantic
technologies can be applied for the implementation of many of these services, from the
classification and annotation of the news items using ontologies to content-based retrieval.

Requirements for RDF(S) interoperability

One of the difficulties of this use case is that of translatingnews from heterogeneous
information sources storing their data in different formats and with different underlying
representation formalisms. As in the previous case, the news coverage depends on the
ability of obtaining news from as much sources as possible.

Another research challenge of this use case is the development and maintenance of
the ontology/ontologies modelling the domain of the aggregated news collections. These
tasks take benefit from the availability of interoperable technologies, which do not con-
strain the engineering team in their choices upon a particular technological environment
for developing and maintaining ontologies.

7.3 Use Case 4. Product Lifecycle Management from Sem-
tation

Topic: Product lifecycle management

Knowledge Web Partner: Free University Berlin

Industry Board Member: Semtation GmbH

Product lifecycle management is currently based around themanual development of
a product catalogue in which the product knowledge and relationships are defined by the
developers at the implementation stage. Using semantic technologies such catalogues
could be refined by means of formal ontologies describing products and their core proper-
ties. The usage of ontologies in this context forms a basis for various information services
related to the product descriptions, such as ontology-based search and product compar-
isons.

Requirements for RDF(S) interoperability

In order to tap the full potential of ontologies as means to model product-related infor-
mation there is a need for tools supporting domain experts inthe knowledge explicitation
task. We can identify that there are different levels of ontology that will need to be cre-
ated, possibly by different management tasks. The tool developer will need an ontology

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 57

7. RDF(S) INTEROPERABILITY IN THE USE CASES

that models the common aspects of product catalogues. The tool user will need an ontol-
ogy (or ontologies) that can express knowledge about his or her type of product. Finally,
users of the product catalogue data (not of the tool) may havetheir own requirements that
will have to be met.

Each of these types of users have different expertise with the ontology development
process and model different aspects of the ontologized product catalogue. Therefore, they
require different tools for developing the ontology and theinteroperability of these tools
in this setting is essential for the accomplishment of this task.

58 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Chapter 8

Recommendations

by RAÚL GARCÍA-CASTRO

8.1 Recommendations for ontology developers

This section offers recommendations for ontology developers when using ontology devel-
opment tools to build ontologies with the goal of interchanging them with other tools.

If the ontology is being developed bearing in mind interoperability, ontology develop-
ers should be aware of the components that can be representedin the ontology develop-
ment tools and in RDF(S). Furthermore, they should try to usethe common components
of these tools in their ontologies to avoid the already knownknowledge losses.

Ontology developers should also be aware of the semantic equivalences and differ-
ences between the knowledge models of the tools and the interchange language. For
example, in Protégé multiple domains in template slots are considered the union of all the
domains while in RDF(S) multiple domains in properties are considered the intersection
of all the domains; in WebODE instance attributes are local to a single concept while in
RDF(S) properties are global and can be used in any class.

Depending on the tools that participate in the ontology interchange, the level of in-
teroperability is greater or lower, as can be seen in Chapter6. The benchmarking results
show that interoperability can be achieved among the tools that have participated in the
benchmarking using:

• Classes.

• Class hierarchies without cycles.

• Object properties with domain and with range.

• Instances of a single class.

59

8. RECOMMENDATIONS

• Instances related through object properties.

Also, it is not recommended to name resources including in their names spaces or any
character that is restricted in the RDF(S), URI or XML specifications.

In the case of interoperability in the RDF repositories, although these repositories
export and import correctly to RDF(S), users should consider the limitations that other
tools have when exporting their ontologies to RDF(S) with the aim of interchanging them.

8.2 Recommendations for software developers

This section includes general recommendations for improving the interoperability of the
tools when developing them as well as some guidelines for developers to enhance each of
the participating tools according to the results and to the practices found.

Interoperability between ontology development tools using RDF(S) as interchange
language depends on how the importers and exporters of thesetools work. And how these
importers and exporters work depends on the development decisions made by tool devel-
opers, who are different people with different needs. Therefore, it is not straightforward
to provide general recommendations for developers. Nevertheless, some comments can
be extracted from the analysis of the benchmarking results:

• In a few cases, a development decision will produce an interoperability improve-
ment with some tools but a loss with others. For example, whenexporting classes
that are instances of a metaclass, some tools require that the class be defined as
instance ofrdfs:Classwhile some other tools require the opposite.

• The collateral consequences of the development decisions should be analysed by
the tool developers. For example, if a datatype is imported as a class in the ontol-
ogy, then the literal values of this datatype should be imported as instances in the
ontology, which would complicate the management of these values.

• Tool developers and ontology developers should be aware of the semantic equiv-
alences and differences between the knowledge models of their tool and the in-
terchange language; on the other hand, the tools should notify the user when the
semantics is changed.

• The first requirement for achieving interoperability is that the importers and ex-
porters of the tools are robust and work correctly when dealing with unexpected
inputs. Although this is an evident comment, the results show that this require-
ment is not fulfilled by the tools and even some tools crash when importing some
combinations of components.

60 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Above all, tools should deal correctly with the combinations of components that
can be present in the interchange language but cannot be modelled in them. For
example, cycles in class and property hierarchies cannot bemodelled in ontology
development tools. Nevertheless, these tools should be able to import these hierar-
chies eliminating the cycles.

• When exporting components commonly used by ontology development tools, they
should be completely defined in the file. This means that metaclasses and classes in
class hierarchies should be defined as instances ofrdfs:Class, properties should be
defined as instances ofrdf:Property, etc.

• Exporting complete definitions of other components can cause problems if these are
imported by other tools. Not every tool deals with datatypesdefined as instances of
rdfs:Datatypein the file or withrdf:datatypeattributes in properties.

• Every exported resource should have a namespace if the document does not define
a default namespace.

Next, we offer some recommendations to improve each of the participating tools ac-
cording to the results and to the practices found. Although it is not compulsory to follow
these recommendations, they help correct interoperability problems as it was detected
when analysing the results.

For Corese to improve its interoperability with the other tools participating in the
benchmarking, it should:

• Export metaclasses defining them as classes in the file.

• Export class hierarchies defining all the superclasses as classes in the file.

• Not export classes that are instances of a metaclass as classes that are instances of
rdfs:Class.

• Not export datatypes without a namespace.

• Not export XML Schema datatypes as ardfs:Datatypein the file.

• Not includerdf:datatypeattributes in properties when exporting instances related
through properties.

For KAON to improve its interoperability with the other tools participating in the
benchmarking, it should:

• Not export classes that are instances of a metaclass as classes that are instances of
rdfs:Class.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 61

8. RECOMMENDATIONS

• Not export datatype properties without range as datatype properties with a range of
rdfs:Literal.

• Export all the domains when exporting datatype properties with multiple domains
and a XML Schema datatype as range.

• Not crash when importing class hierarchies with cycles.

In order forProtéǵe to improve its interoperability with the other tools participating
in the benchmarking, it should:

• Export correctly classes that are instances of multiple metaclasses.

• Import correctly classes that are instances of multiple metaclasses (includingrdfs:Class).

• Export correctly instances that are instances of multiple classes.

• Import correctly instances that are instances of multiple classes.

• Export classes that are instances of a metaclass defining them as a class in the file.

• Export metaclasses defining them as a class in the file.

• Not crash when importing XML Schema datatypes defined as ardfs:Datatype.

• Not crash when importingrdf:datatypeattributes in properties.

• Not crash when importing class hierarchies with cycles.

• Not crash when importing property hierarchies with cycles.

• Export object and datatype properties with multiple domains as properties with no
domain, as it occurs in the case of exporting object properties with multiple ranges.

• Import object and datatype properties with multiple domains as template slots with
no domain, as it occurs when importing object properties with multiple ranges.

• Import the literal value as an instance of the XML Schema datatype class when
importing instances related through datatype properties whose range is a XML
Schema datatype.

• Not crash when importing XML Schema datatypes defined as ardfs:Datatype.

• Not crash when importingrdf:datatypeattributes in properties.

• Not crash when importing class hierarchies with cycles.

• Not crash when importing property hierarchies with cycles.

62 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

D1.2.2.1.1 RDF(S) Interoperability Benchmarking IST Project IST-2004-507482

• Not crash when importing resources with empty nodes in the unshortened syntax.

• Not crash when importing resources with blank nodes in the unshortened syntax.

For WebODE to improve its interoperability with the other tools participating in the
benchmarking, it should:

• Import superclasses in class hierarchies as classes, even if they are not defined in
the file.

• Not crash when importing files with datatypes without namespace.

• Import metaclasses even if they are not defined as classes in the file.

• Removerdfs:subClassOfproperties that form cycles when importing class hierar-
chies with cycles.

• Create the anonymous concept as subclass of all the domain classes when importing
datatype and object properties with multiple domains.

• Create the anonymous concept as subclass of all the range classes when importing
object properties with multiple ranges.

8.3 Feasibility of RDF(S) interoperability in the use cases

This section includes an analysis of the feasibility of the industry use cases interoper-
ability requirements stated in Chapter 7, when dealing withontology interchange using
RDF(S) as interchange language.

The use cases considered in Knowledge Web show the need of developing and main-
taining ontologies present in heterogeneous Semantic Web resources and created using
different approaches (from scratch, using ontology learning techniques, etc.). Also, on-
tology repositories are one of the preferred options for ontology storage and share. There-
fore, ontology development tools should be able of interoperating with these repositories
and resources.

Benchmarking results show us that there is no problem with interoperability when
only using native RDF(S) tools.

The problem is that the profile of ontology developers is alsohighly heterogeneous.
The developers of an ontology are usually geographically dispersed, belong to different
organisations, have different levels of expertise with thetechnology, and use different
tools in the ontology development process. Therefore, using RDF(S) native tools may not
be the correct approach in some of the use cases.

KWEB/2006/D1.2.2.1.1/v1.5 3. August, 2006 63

8. RECOMMENDATIONS

In any case, developers and users should be aware of the side effects of interchanging
ontologies, as interoperability using ontology development tools with different knowl-
edge models is limited to a subset of ontology components depending on the tools that
interchange the ontology.

In order to transact the use cases some decisions will have tobe made for solving
interoperability issues. This deliverable provides guidelines for helping in making these
decisions and contains the interoperability results of thetools that took part of the bench-
marking.

8.4 Recommendations for benchmarking

This section offers recommendations to perform benchmarking activities, extracted from
the lessons learnt while instantiating the methodology.

Benchmarking needs the participation of relevant experts in the domain together with
the best-in-class tools.

Resources are needed mainly in three tasks: benchmarking organisation, definition
of the experimentation, and execution of the experiments and analysis of the results. It
should be ensured that enough resources are allocated to each of these tasks.

Benchmarking is not about comparing the results of the toolsbut the practices that lead
to these results. Therefore, experimentation should be designed to obtain these practices
as well as the results.

In this benchmarking activity, the experimentation over the tools was done almost
manually. Carrying out manual experiments and analysing the results is expensive. There-
fore, these tasks should be automated as much as possible.

Another drawback of performing experiments manually is that it can be influenced by
human mistakes. To avoid this, some mechanisms should be setup to detect this kind of
errors.

Benchmarking is an activity that is lasting as it requires tasks that are not immedi-
ate: announcements, agreements, etc. Therefore, benchmarking activities should start
early in time and the benchmarking planning should considera realistic duration of the
benchmarking.

64 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Chapter 9

Conclusion

by RAÚL GARCÍA-CASTRO

This document is intended to serve not just as a summary of theRDF(S) interoperabil-
ity benchmarking, but as a guide for people who want to perform benchmarking activities
or interoperability evaluations over Semantic Web technology.

The results of the benchmarking can also be used by ontology development tool users
that have problems when interchanging ontologies or want toforesee the results of a future
interchange.

The benchmark suites that have been used in the benchmarkingcan be used by any tool
with RDF(S) import and export capabilities, with no need to participate in the benchmark-
ing, and can be useful both while the tool is being developed and after its development
has finished.

Although it is not required that the developers of the tool participate in the benchmark-
ing and perform the experiments over their tool, their involvement facilitates the execution
and analysis of the experimentation results to a large extent.

In all the cases where tool developers performed the experimentation over their own
tools, tool improvement has occurred before theImprovephase of the methodology, as
developers were able to detect problems and correct their tools while executing the bench-
mark suites.

The manual execution of the experiments and analysis of the results causes the bench-
mark suite to be costly. Sometimes tool developers have automated the execution of the
benchmark suites, but not always. On the other hand, work hasstarted to give some means
of analysing the experimentation results automatically and to provide functionalities for
updating the experimentation results or including the results of new tools.

In order to automate both the execution of the benchmark suites and the analysis of
the results, having machine-readable descriptions of the benchmarks (i.e. in RDF) would
be very useful.

Another drawback of the manual execution of experiments is that the results obtained

65

9. CONCLUSION

depend on the people performing these experiments, on theirexpertise with the tools and
on their ability to extract the practices performed for developing the tools.

66 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Bibliography

[Arpı́rez et al., 2003] J.C. Arpı́rez, O. Corcho, M. Fernández-López, andA. Gómez-
Pérez. WebODE in a nutshell.AI Magazine, 24(3):37–47, Fall 2003.

[Brickley and Guha, 2004] D. Brickley and R.V. Guha. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation 10 February 2004, 2004.

[D1.2.2.1.2, 2007] D1.2.2.1.2 Benchmarking the interoperability of ontology develop-
ment tools using OWL as interchange language. Technical report, Knowledge Web, To
appear in June 2007.

[Garcı́a-Castro and Gómez-Pérez, 2005a] R. Garcı́a-Castro and A. Gómez-Pérez. A
method for performing an exhaustive evaluation of RDF(S) importers. InProceedings
of the Workshop on Scalable Semantic Web Knowledge Based Systems (SSWS2005),
number 3807 in LNCS, pages 199–206, New York, USA, November 2005. Springer-
Verlag.

[Garcı́a-Castro and Gómez-Pérez, 2005b] R. Garcı́a-Castro and A. Gómez-Pérez. A
method for performing an exhaustive evaluation of RDF(S) importers. InProceedings
of the Workshop on Scalable Semantic Web Knowledge Based Systems (SSWS2005),
number 3807 in LNCS, pages 199–206, New York, USA, November 2005. Springer-
Verlag.

[Garcı́a-Castro and Gómez-Pérez, 2006a] R. Garcı́a-Castro and A. Gómez-Pérez.
Benchmark suites for improving the rdf(s) importers and exporters of ontology
development tools. InProceedings of the 3rd European Semantic Web Conference
(ESWC2006), LNCS 4011, Budva, Montenegro, June 2006. Springer-Verlag.

[Garcı́a-Castro and Gómez-Pérez, 2006b] R. Garcı́a-Castro and A. Gómez-Pérez. Inter-
operability of protégé using RDF(S) as interchange language. InProceedings of the
9th International Prot́eǵe Conference (Protéǵe2006), Stanford, USA, July 2006.

[Garcı́a-Castroet al., 2004] R. Garcı́a-Castro, D. Maynard, H. Wache, D. Foxvog, and
R. González-Cabero. D2.1.4 specification of a methodology, general criteria and
benchmark suites for benchmarking ontology tools. Technical report, Knowledge Web,
December 2004.

67

BIBLIOGRAPHY

[Garcı́a-Castro, 2005] R. Garcı́a-Castro. D2.1.5 prototypes of tools and benchmark suites
for benchmarking ontology building tools. Technical report, Knowledge Web, Decem-
ber 2005.

[Legeret al., 2005] A. Leger, L. Nixon, M. Mochol, F. Paulus, L. Rocuet, M.Bonifacio,
R. Cuel, M. Jarrar, Y. Kompatsiaris, V. Papastathis, and S. Dasiopoulou. D1.1.4 v1 sys-
tem and knowledge technology components for prototypical applications and business
cases. Technical report, Knowledge Web, June 2005.

[Nixon et al., 2004] L. Nixon, M. Mochol, A. Leger, F. Paulus, L. Rocuet, M.Bonifacio,
R. Cuel, M. Jarrar, P. Verheyden, Y. Kompatsiaris, V. Papastathis, S. Dasiopoulou, and
A. Gómez-Pérez. D1.1.2 prototypical business use cases.Technical report, Knowledge
Web, December 2004.

[Shvaikoet al., 2004] P. Shvaiko, L. Nixon, M. Mochol, A. Leger, F. Paulus, L. Rocuet,
Y. Kompatsiaris, V. Papastathis, and S. Dasiopoulou. D1.1.3 knowledge processing
requirements analysis. Technical report, Knowledge Web, December 2004.

68 3. August, 2006 KWEB/2006/D1.2.2.1.1/v1.5

Acknowledgments

Thanks to all the people that have participated in the RDF(S)interoperability benchmark-
ing by the time of writing this deliverable: Olivier Corby, York Sure, Moritz Weiten, and
Markus Zondler. Without their effort, this could have not been possible.

Thanks to Rosario Plaza for reviewing the grammar of this deliverable.

69

Related deliverables

A number of Knowledge web deliverables are clearly related to this one:

Project Number Title and relationship
KW D1.1.2 Prototypical business use casesprovided a description of the use

cases that are being considered in Knowledge Web.
KW D2.1.4 Specification of a methodology, general criteria and bench-

mark suites for benchmarking ontology tools presented the
benchmarking methodology that has been used for benchmarking
the interoperability of ontology development tools using RDF(S)
as interchange language.

KW D2.1.5 Prototypes of tools and benchmark suites for benchmarking
ontology building toolsprovided a description of the benchmark
suites that have been used in the benchmarking and how the exe-
cution of the experiments was automated for the WebODE ontol-
ogy development tool.

70

